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Abstract

We study the Killing vectors of the quantum ground-state manifold of a
parameter-dependent Hamiltonian. We find that the manifold may have sym-
metries that are not visible at the level of the Hamiltonian and that different
quantum phases of matter exhibit different symmetries. We propose a Bianchi-
based classification of the various ground-state manifolds using the Lie algebra
of Killing vector fields. Moreover, we explain how to exploit these symmetries
to find geodesics and explore their behaviour when crossing critical lines. We
briefly discuss the relation between geodesics, energy fluctuations and adia-
batic preparation protocols. Our primary example is the transverse-field Ising
model. We analyze both the anisotropic and the isotropic cases and find ana-
lytic solutions to the geodesic equations.
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1 Introduction

In recent years, there has been an increasing interest in the study of the geometry of
quantum states of quantum many-body systems. While the origin of the geometric approach
for characterising quantum states is rooted in the quantum estimation theory developed in
70’s [1,2], see [3] for a recent review, only relatively recently it became a useful tool for wider
applications. Geometric invariants based on quantum geometric tensors have been used to
study quantum phase transitions [4–8], to create optimal adiabatic ground-state preparation
protocols [9] and to derive bounds for the time integral of energy fluctuations over unit
fidelity protocols [10]. The quantum geometric approach became an experimentally testable
tool for physics of the many-body ground states and non-equilibrium dynamics in a number
of setups [11–18].

The idea behind these works is that quantum mechanics can be viewed as a geometric
theory in the following sense. The parameter space of an arbitrary quantum system can
be endowed with the structures of Riemannian and differential geometry. The simplest,
and the most commonly used, way to introduce it is to define a metric in parameter space
by considering an overlap amplitude between neighbouring ground states. The resulting
object is commonly known as quantum geometric tensor (QGT). The real symmetric
part of the QGT (also called quantum Fisher-Rao metric, quantum information metric
or, somewhat erroneously Fubini-Study metric) can be considered a Riemann metric on
the parameter manifold. In contrast, the imaginary part is related to the geometric (or
Berry) curvature associated with the geometric (Berry) connection (note however that its
derivation is entirely generic and does not rely on any adiabaticity assumptions). These
two complementary parts of the QGT provide a wealth of geometrical and topological
structure to an arbitrary quantum many-body system. We can use its real part to construct
geometric quantities – Christoffel symbols, Riemann and Ricci tensors, scalar and Gauss
curvature – whereas both the real and imaginary parts provide us with topological data of
the quantum parameter manifold – the Euler and Chern (or Chern-Simons, depending on
dimensionality) invariants respectively. These invariants may abruptly change across phase
transitions.

In order to have a better picture of the geometry and the shape of a manifold, it
is important to understand its symmetries. These are encoded in the so-called Killing
vector fields which are intimately related to Lie derivatives. Indeed, these Killing vectors
naturally satisfy Lie algebra relations and form the isometry group of the manifold. In
1898 Bianchi (see [19] for a translation of the original text) suggested a classification of
low-dimensional (d=1,2,3) Lie algebras which naturally leads to a classification of real
and complex manifolds. In 3 dimensions, for example, this distinguishes 11 classes (for
later developments and higher dimensions see [20]). In the 80’s Thurston conjectured a
geometrization program (see the summary book [21]) according to which every closed
three-dimensional manifold can be built up out of these Bianchi geometric class model
geometries using tools of differential topology. Perelman [22–24] proved the geometrization
conjecture in 2003.

Following this course, we arrive at the rather intriguing possibility of a Bianchi-based
classification of the parameter manifolds of the quantum ground states of many-body
systems for (at least) a low number of parameters. As a consequence, different quantum
phases of matter correspond to different Bianchi classes or can be constructed out of them
according to the geometrization conjecture. States corresponding to different classes are
separated by quantum phase transitions. We illustrate this approach here with the example
of the quantum transverse-field Ising model (TFIM). It shows an interesting phenomenon:
the quantum ground state parameter manifold may have symmetries which are not visible at
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the level of the Hamiltonian. In particular, one of the phases of the anisotropic TFIM has
two continuous symmetry generators while the Hamiltonian itself has only a Z2 discrete
symmetry.

Another facet of the Killing vectors approach is the notion of geodesics. For every Killing
vector field, there is a quantity which is conserved along geodesics of this field, according
to the Nöther theorem. These conserved quantities allow for the explicit integration of
the geodesic equations. The latter could inform the design of optimal quantum state
preparation protocols.

Despite the QGT being the “drosophila” of low-dimensional many-body physics, in
terms of frequency of study, in both equilibrium and non-equilibrium setups, see e.g. [25]
for an extensive review, only a limited number of papers are devoted to the quantum
geometric aspects of the QGT, [8–10, 26, 27]. On the other hand, we are not aware of
analytical solutions for the geodesic paths of the ground-state manifold of the TFIM spin
chain. For this simple integrable model, we can find analytical solutions. In order to solve
the geodesic equations, we exploit the symmetries of the manifold. Since the Noether’s
theorem associates a conserved charge to each symmetry, with enough symmetries, we can
constrain the problem completely. Interestingly, we find that some symmetries are lost
during phase transitions.

The paper is organized as follows: Sections II and III are devoted to covariant formula-
tions of quantum geometric tensors and related geometric quantities, such as Christoffel
symbols, Killing vectors and symmetries; Section IV deals with the transverse field XY
model; In Section V we analyze hidden symmetries of the Killing vector fields and Bianchi
classification of the quantum phases, while a special limit of the nearly isotropic XY model
is treated in Section VI. Geodesics and the energy fluctuations are considered in Section
VII. Possible future directions are discussed in Section VIII.

2 Geometric tensors

The geometric approach to quantum mechanics sprang from quantum information theory,
in the study of quantum parameter estimation [1,2]. In this setting, a metric, the quantum
Fisher information matrix or quantum Fisher-Rao metric, is defined in the space of possibly
mixed density matrices ρ. This metric is based on the symmetric logarithmic derivative
operator formalism. Consider a family of continuous parameters xµ such that ρ = ρ(x).
The quantum Fisher information matrix is defined as

Fµν =
1

2
Tr
(
ρ(λ){Lµ, Lν}

)
, (1)

where Lµ denotes the symmetric logarithmic derivative whose defining equation is in turn

∂µρ(x) =
1

2
(ρLµ + Lµρ) . (2)

The Fisher information is equivalent to the Bures metric and it endows the parameter
space xµ with a Riemannian structure. The statistical distance that this metric defines is
related to the quantum fidelity

Fµνdxµdxν = 8
(

1−
√
F (ρ(x), ρ(x+ dx))

)
, (3)

where F (ρ, σ) =
(

Tr
√√

ρσ
√
ρ
)2

. The Fisher information measures the sensitivity of a
quantum state with respect to changes in the parameters xµ (assuming one can trace this
state through changes in the Hamiltonian, e.g. there is always a GS and a gap).
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One of the central results of this theory is that the variance Var(xµ), associated with the
estimation of the parameter xµ after M independent measurements, satisfies the quantum
Cramer-Rao bound

Var(xµ) ≥ 1

MFµµ
. (4)

One can consult [3, 25] for a recent review of this topic. The geometrization of quantum
mechanics via quantum information theory is robust and has been studied extensively.
However, the generality of this approach turns out to be a disadvantage when working
with pure density matrices.

Unlike mixed states, the set of pure density matrices, from now on denoted by the
projective Hilbert space P (H), is a Kähler manifold. In addition to the Riemannian
structure coming from the quantum Fisher information, there is a complex structure and a
symplectic structure. To uncover the geometric tensors that define these structures, we take
a different route to geometrization and focus our analysis on the properties of the tangent
bundle TP (H). We want to emphasize that, in the following, we will only work with pure
density matrices ρ = |ψ〉 〈ψ|. However, one can also express all the results in terms of wave
functions |ψ〉. We will discuss some of the subtleties that appear when working with mixed
states at the end of this section.

For now, let us assume that the variables xµ are a coordinate patch of P (H), i.e.
dim(xµ) = dimP (H). Later, we will restrict the variables xµ to a much narrower set of
physical parameters. The tangent space TρP (H) at a point ρ(x) is the vector space spanned
by the set of matrices

tµ(x) = ∂µρ(x). (5)

This basis is called the coordinate basis of the tangent bundle. Note that our tangent
vectors are Hermitian and traceless matrices. Moreover, if ρ(x) = |ψ(x)〉 〈ψ(x)|, with
〈ψ|ψ〉 = 1, we have that

tµ = |∂µψ〉 〈ψ|+ |ψ〉 〈∂µψ| , (6)

where |∂µψ〉 = ∂µ |ψ(x)〉. Since we are working with pure states, tµ = {ρ, tµ}, i.e. tµ is
proportional to the symmetric logarithmic derivative Lµ.

Let us define the linear operator Aµ(x) such that Aµ(x) |ψ(x)〉 = i |∂µψ(x)〉. Since
∂µ(〈ψ|ψ〉) = 0, Aµ(x) must be Hermitian, and our tangent vector can be written in terms
of Aµ(x) as

tµ = i[ρ(x),Aµ(x)], (7)

where [ , ] is the matrix commutator. We conclude that every tangent vector tµ is generated
by a Hermitian matrix Aµ(x). The converse is also true: if A(x) is a Hermitian matrix,
then the commutator i[ρ(x),A(x)] is a tangent vector. The matrices Aµ(x) are called
adiabatic gauge potentials (AGPs). These potentials are fundamental objects in adiabatic
perturbation theory. They also play an essential role in describing the geometry of classical
and quantum states. We can even use these potentials to generalize geometric concepts
to the case of stationary and non-stationary density matrices. We recommend [28] for a
recent review on this topic.

As we saw earlier, the Fisher information matrix defines a metric on the tangent bundle

gµν =
1

2
Fµν = Tr(tµtν). (8)

There are multiple equivalent ways to write this equation. In terms of the wave function
|ψ〉,

gµν = 2 Re [〈∂µψ|∂νψ〉] + 2 〈∂µψ|ψ〉 〈∂νψ|ψ〉 , (9)
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and in terms of AGPs the metric reads

gµν = 〈{Aµ,Aν}〉c = 〈{Aµ,Aν}〉 − 2〈Aµ〉〈Aν〉, (10)

where 〈X〉 = 〈ψ|X |ψ〉.
One of the advantages of working with pure density matrices, rather than with wave

functions, is that the formulas we generate are automatically gauge invariant. That
is, the components of this metric are the same even if we change our basis of kets
|ψ(x)〉 → eiφ(x) |ψ(x)〉. This metric is the Fubini-Study metric. Let us explain the subtle
difference between the terms Fisher-Rao metric and Fubini-Study metric. The Fubini-Study
metric refers to the Hilbert-Schmidt inner product, or trace product, restricted to the set
of pure density matrices. The Fisher-Rao metric, on the other hand, is defined on the set of
mixed and pure density matrices via the symmetric logarithmic derivative. The Fisher-Rao
metric, when restricted to pure states, reduces to the Fubini-Study metric. This metric
can also be seen as a refinement of the notion of fidelity susceptibility. Indeed, we can also
define this metric by the infinitesimal separation

1− | 〈ψ(x)|ψ(x+ dx)〉 |2 =
1

2
gµνdx

µdxν . (11)

This relationship motivated the study of quantum phase transitions from a geometrical
perspective [4, 8, 29].

Recall that an almost complex structure in a complex manifold M is a (1,1)-tensor
field J : TpM→M such that J ◦ J = −1. For P (H), an almost complex structure arises
naturally when we consider the vector fields generated by the tangent vectors themselves

J(tµ) = i[ρ, tµ]. (12)

Since tµ is a Hermitian matrix J(tµ) is a tangent vector and J is a well-defined tensor field
of rank (1, 1). Note that applying the map twice returns the original tangent vector but
with the opposite sign

J (J(tµ)) = −[ρ, [ρ, tµ]] = −tµ. (13)

This follows from the property ρ2 = ρ and the relations {ρ, tµ} = tµ and ρtµρ = 0. Hence,
J is an almost complex structure on P (H). This complex structure is compatible with the
Fubini-Study metric

g(J(tµ), J(tν)) = g(tµ, tν). (14)

A metric that has this property is called a Hermitian metric. Finally, we can use the almost
complex structure to define the symplectic two-form

Ω(tµ, tν) = g(tµ, J(tν)) = iTr
(
[ρ, ∂νρ]∂µρ

)
. (15)

By using the metric compatibility of J we can show that Ω is antisymmetric, i.e. it is a
differential two-form. Moreover, this two form is non-degenerate because the metric is
non-degenerate. If we can prove that dΩ = 0, then we have successfully endowed P (H)
with a Kähler structure. Let us demystify the identity of Ω by expressing it in terms of the
wave function |ψ(x)〉,

Ωµν = −i
(
〈∂µψ|∂µψ〉 − 〈∂νψ|∂µψ〉

)
, (16)

where ρ(x) = |ψ(x)〉 〈ψ(x)|. This is the Berry curvature, and it is the field strength of the
quantum geometric connection Aµ

Aµ = i 〈ψ|∂µψ〉 . (17)
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Note that the quantum geometric connection depends on our choice of phase eiφ(x) |ψ(x)〉
(as expected from a gauge field), but the field strength Ω = −idA does not. Also observe
that Aµ are the diagonal components of the AGP Aµ. From this, we also conclude that
dΩ = 0, since d2 = 0. This shows that the Fubini-Study metric and the Berry curvature
are intimately related. We can express both using a single complex tensor: the quantum
geometric tensor

Qµν = gµν + iΩµν = 2 〈∂µψ|∂νψ〉 − 2 〈∂µψ|ψ〉 〈ψ|∂νψ〉 . (18)

When working with mixed states, there are a few generalizations that are worth
mentioning. We began our discussion on geometry by introducing the Fisher information
matrix, a metric defined on the set of mixed states. This metric is equivalent to the
Bures metric, and it is related to the quantum fidelity F (ρ, σ). However, there are other
metrics that we can consider. In dynamical response theory, for example, the definitions
that appear are a generalization of the connected correlation functions. For example
Ωµν = iTr(ρthermal[Aµ,Aν ]) [28]. These two definitions only coincide when working with
pure states and have different properties otherwise. In this paper, we focus on the
Riemannian properties of pure states and leave the mixed states’ discussion for future
work.

3 The ground-state manifold

Consider a Hamiltonian H(x) that depends on a parameter manifold xµ ∈ M. In this
section, dim(xµ) ≤ dimP (H). So now, our parameters will only parametrize a submanifold
of P (H) and not the entire space. For simplicity, we will assume that our Hamiltonian has
a non-degenerate ground state |Ω(x)〉. Depending on the specific Hamiltonian, the ground
state |Ω(x)〉 could be an embedding of M into P (H) or not. Recall that an embedding
is a smooth map that is injective. Sometimes, |Ω(x)〉 is independent of a variable xµ,
and therefore the map is not injective. We are interested in the cases in which |Ω(x)〉
describes an embedding (at least for a subset U ⊆M). In other words, we want to study
the cases in which the set {ρ0(x) = |Ω(x)〉 〈Ω(x)| : x ∈M} is a well-defined submanifold
of P (H). We call this submanifold the ground-state manifold of H(x). Strictly speaking,
the ground-state manifold and the parameter manifold M are two different spaces but,
since we are dealing with an embedding, we will abuse the notation and refer to both as
the ground-state manifold M.

What geometric tensors do we have on the ground-state manifold? The pullback of
g defines a Riemannian structure on M, but the pullback of Ω does not always define a
symplectic structure. This happens because the pullback of a non-degenerate two-form is
not guaranteed to be another non-degenerate two-form. Indeed, if M is odd dimensional,
then Ω (restricted to the tangent space of the submanifold), is a degenerate two-form.
Nonetheless, Ω still has the interpretation of the Berry curvature. Unfortunately, the
pullback of the almost complex structure is not a well defined tensor on M.

We will pay special attention to the Riemannian structure of the ground-state manifold
and use this structure to study quantum phase transitions. Given a Riemannian manifold
(M, g) there are a few standard quantities that we can compute: the Riemann tensor and
its contractions, Killing vector fields and geodesics. Let us quickly recall the definitions of
these objects.

The Christoffel symbols, are given by the formula

Γλµν =
1

2
gλδ(∂νgµδ + ∂µgνδ − ∂δgµν). (19)
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We can take an advantage that we are working with an embedding and write an expression
for these symbols in terms of traces and tangent vectors:

Γλµν = gλδΓ
δ
µν = Tr (tλ∂µtν) . (20)

We show how to derive this expression in Appendix A.
The Riemann tensor and its contractions encode all the information about the curvature

of the manifold. In a coordinate basis, the components of the Riemann tensor are given by

Rρσµν = ∂µΓρνσ + ΓρµλΓλνσ − (µ↔ ν) (21)

The contractions of the Riemann tensor are commonly known as the Ricci tensor Rµν =
Rλµλν and the Ricci scalar R = Rµµ. The Riemann tensor also has topological information,
since its integral gives the Euler characteristic of the manifold. This result is known as the
Gauss-Bonnet theorem in two dimensions [30] and the Chern-Gauss-Bonnet theorem in any
number of even dimensions [31]. In [8], the authors proposed to use the Euler characteristic
of the ground-state manifold as a new topological number. Recall that a Killing vector
field is the infinitesimal generator of an isometry. From an active point of view, isometries
are changes in ground-state manifold that leave the metric invariant. Consider a smooth
deformation of our ground-state manifold ρ(x, τ) driven by the parameter τ such that
ρ(x, 0) = ρ(x). We should think of this deformation as defining a new, deformed, ground-
state manifold M(τ) = {ρ(x, τ) : x ∈ parameter space} for each value of τ . We say that
this family of diffeomorphisms is a continuous isometry if

d

dτ
gµν(x, τ) =

d

dτ
Tr
[
∂µρ(x, τ)∂νρ(x, τ)

]
= 0. (22)

That is, the metric does not change under the transformation. The Killing vector field that
generates this isometry is

ξ(x) =
d

dτ
ρ(x, τ)

∣∣
τ=0

. (23)

An example of a Killing vector field is the vector field generated by a constant AGP A

ξ(x) = i[ρ(x),A]. (24)

We can immediately check this result

d

dτ
gµν(x, τ) = Tr

(
∂µξ(x)tν

)
+ Tr

(
tµ∂νξ(x)

)
= Tr

(
[tµ,A]tν

)
+ Tr

(
tµ[tν ,A]

)
= 0 (25)

Since we are working with an embedding of M in an ambient space P (H), we have
to consider two types of isometries. If the Killing vector field ξ ∈ TP (H) is part of the
tangent bundle TM, i.e. ξ = ξµtµ for a coordinate basis {tµ = ∂µρ} of TM then the
submanifold is invariant under the isometry and ξ satisfies the Killing equation

Lξgµν = ∇µξν +∇νξµ = 0. (26)

Where L denotes the Lie derivative. If ξ ∈ TP (H) but not in TM then the isometry does
not leave the submanifold invariant. You may think of a rotation that leaves the 2-sphere
embedded in R3 invariant and a translation that changes its position in space. Both are
isometries but the Killing vector field of the rotation lies inside the tangent bundle of the
2-sphere and the Killing vector field of the translation does not. We are mostly concerned
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with the first class of isometries thus, will also require the Killing vector field to be part of
the tangent bundle of M.

The Killing equation can also be written in terms of wave functions |ψ〉 or in terms of
AGPs Aµ. For example a vector field ξ = i[ρ(x),Aξ(x)] is a Killing vector field if and only
if

〈{∂µAξ,Aν}〉c + 〈{∂ν Aξ,Aµ}〉c = 0. (27)

The set of Killing vectors on a manifold M forms a Lie algebra, where the Lie bracket is
defined by the differential commutator [[ , ]]. This commutator should not be confused with
the matrix commutator [ , ]. If t1 = tµ1 (x)∂µρ(x) and t2(x) = tµ2 (x)∂µρ(x) are two vector
fields on M, then

[[t1, t2]]f(x) = tµ1∂µ
[
tν2∂νf(x)

]
− tµ2∂µ

[
tν1∂νf(x)

]
, (28)

where f :M→ R is a test function on M. Low dimensional real Lie algebras (d = 1, 2, 3)
have been classified. In 3 dimensions, for example, there are 11 classes. This is called the
Bianchi classification [19]. This suggest the possibility of classifying the different quantum
ground-states of many-body systems using the Lie algebra of their Killing vector fields.

Geodesics are paths that locally minimize the distance between two points in a manifold.
We can find them by solving the geodesic equations

d2xµ

ds2
= −Γµλρ

dxλ

ds

dxρ

ds
. (29)

Here s is an affine parameter, i.e. gµν
dxµ

ds
dxµ

ds = 1. Most of the times, we can only solve these
equations numerically. One exception happens when we have enough Killing vector fields
in our manifold. Each Killing vector has an associated conserved charge along geodesics
xµ(s)

∂sQξ = ∂s

(
ξµ
dxµ

ds

)
= 0 (30)

So, each Killing vector corresponds to a first order differential equation. Requiring that
our geodesic is parametrized by an affine parameter gives one extra restriction. In general,
we only need dim(M)− 1 Killing vector fields to find the geodesics of a manifold.

4 The anisotropic transverse-field Ising model

Let us apply these concepts to the anisotropic TFIM, also known as the XY model. There
are a few reasons why this model is a good example. First, we can solve the model exactly.
Second, this model has a rich phase diagram with three different regions: two ferromagnetic
phases and one paramagnetic phase. Third, the Hamiltonian depends on three parameters
and has a non-vanishing Berry curvature. The model is described by the Hamiltonian

H = −
N∑
j=1

Jxσ
x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + hσzj (31)

where σαj are the Pauli matrices of the j-th spin site. To fix our energy scale we work with
the variables:

Jx = J

(
1 + γ

2

)
and Jy = J

(
1− γ

2

)
, (32)

and set J = 1. We will add an additional parameter φ to our Hamiltonian that corresponds
to a rotation of all spins around the z-axis by an angle of φ/2. We apply this rotation with
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(h - cos k, � sin k) (h - cos k, � sin k)

h h+1 1 2

(1 - cos k, � sin k)

h 1 h+1

c) h<1b) h=1a) h>1

θk

EkEk
Ek

γ γ γ

Figure 1: Ellipse representation of the anisotropic TFIM ground state. Note that the
ellipse is parametrized counterclockwise whenever γ > 0. The winding number |θπ − θ0|/π
determines if the Hamiltonian is in the paramagnetic or ferromagnetic phase.

the unitary transformation U =
∏
j e
−iφσzj /4, H → UHU †. We assume periodic boundary

conditions, σαN+1 = σα1 . The solution of this model is somewhat convoluted and it involves
Jordan-Wigner, Fourier and Bogoliubov transformations. We will not solve the model here
but the interested reader may find a modern version of the solution in [27]. The mapping
to fermions yields a unique ground state that can be represented using a tensor product of
Bloch vectors with polar angle θ and azimuthal angle φ:

|Ω(h, γ, φ)〉=
∏
k>0

|Ωk〉 with |Ωk〉=

(
cos(θk/2)e−i

φ
2

sin(θk/2)ei
φ
2 .

)
(33)

Here,

Ek =

√
(h− cos k)2 + γ2 sin2 k and tan θk =

γ sin k

h− cos k
. (34)

Your may see [8] for a detailed description of this ground-state. These definitions suggest a
graphic representation for the ground state |Ω(h, γ, φ)〉 as a loop in the xy-plane. If we
interpret the energy Ek as a distance from the origin of the xy-plane and θk as its angle
from the x-axis, we find that the allowed energies lie on the ellipse

x(k) = h− cos k and y(k) = γ sin k. (35)

The allowed energies depend on the values of h and γ. There are a few combinations of h
and γ that are important (see Fig. 1). When h = 1 the ellipse touches the origin. At this
point, our model is a gapless theory. The critical line h = 1 separates the ferromagnetic
(h < 1) and paramagnetic (h > 1) phases. In the paramagnetic region, the ellipse also
touches the origin when γ = 0. This is an example of an anisotropic phase transition
between a ferromagnet aligned along the X direction (γ > 1) and a ferromagnet aligned in
the Y direction (γ < 1).

We can associate a topological number to the ferromagnetic and paramagnetic phases:
the winding number of the ellipse

(
x(k), y(k)

)
with respect to the origin. A winding

number of 1 indicates a ferromagnetic ground state, while a winding number of 0 indicates
a paramagnetic one. An analysis of these shapes and their topological properties can
be found in [32]. These shapes are widely used in the study of extended TFIM, see, for
example, [33].
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Now that we have a ground state, let us compute its metric. A few properties of |Ωk〉
simplify the computation: first 〈∂µΩk|Ωk〉 = 0 and second Re[〈∂φΩk|∂µΩk〉] = 0. Where
µ, ν = h, γ. We find that the components of the metric are

gµν =
1

2

∑
k>0

(∂µθk) (∂νθk), (36)

and for φ, we have

gφµ = 0, gφφ =
1

2

∑
k>0

1− cos2 θk =
1

2

∑
sin2 θk. (37)

Using Fig. 1, it is easy to find explicit expressions for the metric

ghγ =
∑
k>0

γ(cos k − h) sin2 k

2E4
k

, ghh=
∑
k>0

γ2 sin2 k

2E4
k

,

gγγ =
∑
k>0

(h− cos k)2 sin2 k

2E4
k

, gφφ=
∑
k>0

γ2 sin2 k

2E2
k

. (38)

The corresponding expressions for the Berry curvature are

Ωγφ =
∑
k>0

γ(cos k − h) sin2 k

2E3
k

, Ωhφ =
∑
k>0

γ2 sin2 k

2E3
k

. (39)

These expressions may be evaluated by solving the six integrals in the thermodynamic limit.
However, not all the integrals are independent and it turns out we only need to evaluate
three of them. The following results are valid in the thermodynamic limit (N →∞):

S1 =
1

N

N/2∑
n=1

γ2 sin2
(
2nπ
N

)
E(2nπN )2

=
1

2


|γ|

1+|γ| |h| < 1

γ2

γ2−1

(
1− |h|√

h2+γ2−1

)
|h| > 1

, (40)

where E(k) = Ek.

S2 =
1

N

N/2∑
n=1

1

E(2nπN )2
=

1

2


1

|γ|(1−h2) |h| < 1
|h|

(h2−1)
√
h2+γ2−1

|h| > 1
(41)

The last sum is a complicated expression. It corresponds to the ground-state energy of the
model and we need it to compute the components of the Berry curvature.

S3 =
1

N

N/2∑
n=1

E

(
2nπ

N

)
=


√
1−h2
π

[
E(a)−K(a)+ 1

1−h2 Π
(

h2

h2−1 , a
)]
, h2+γ2<1

1−h2
π|γ|

[
γ2

1−h2E(b)−K(b)+Π(h2, b)
]
, h2+γ2>1, |h|<1

h2−1
π
√
h2+γ2−1

[
aE
(
1
b

)
−K

(
1
b

)
+Π

(
1
h2
, 1b
)]
, |h|>1

(42)

where E,K and Π are the elliptic integrals

K(a)=

∫ π/2

0

dθ√
1− a sin2 θ

, E(a)=

∫ π/2

0
dθ
√

1− a sin2 θ,

Π(n, a) =

∫ π
2

0

dθ

(1− n sin2 θ)
√

1− a sin2 θ
(43)

10
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and

a =
1− h2 − γ2

1− h2
, b =

h2 + γ2 − 1

γ2
. (44)

The authors of [34] found this expression and showed that, despite its appearance, it is a
smooth function at the line h2 + γ2 = 1.

Let us evaluate the components of the metric tensor. We will divide the components of
the metric by the system size g → g/N and take the thermodynamic limit N →∞. We
find that

gφφ=
1

2
S1=

1

4


|γ|

1+|γ| |h| < 1

γ2

γ2−1

(
1− |h|√

h2+γ2−1

)
|h| > 1

ghh=−γ
4

∂S2
∂γ

=
1

8


1

|γ| (1− h2)
|h|<1

γ2|h|
(h2−1)(γ2+h2−1)3/2

|h|>1

ghγ =
1

4γ

∂S1
∂h

=
1

8


0 |h|<1

− hγ

|h| (γ2+h2−1)3/2
|h|>1

gγγ =
1

4γ

∂S1
∂γ

=
1

8



1

|γ| (|γ|+ 1)2
|h|<1 2

(1−γ2)2

(
|h|√

γ2+h2−1
−1

)
− γ2|h|

(1−γ2)(γ2+h2−1)3/2

 |h|>1
(45)

We will focus on the Riemannian structure defined by g, so we do not evaluate the
components of the Berry curvature explicitly. However, these can be derived from S3:

Ωhφ = ∂2hS3, Ωγφ = ∂h∂γS3. (46)

These results have been widely studied in recent years, e.g. [4,8,27,28]. The components
of the metric tensor we present here, and the ones derived in [8] differ by a factor of 2. This
depends on the convention used for the metric tensor. We work with the trace product
whilst many authors prefer to work with half of the trace product.

5 Hidden symmetries and Killing vector fields

Let us focus momentarily on the ferromagnetic sector of the ground-state manifold (|h| < 1).
A simple coordinate transformation reveals a hidden symmetry in the model. Take

h→ sinu and γ → sgn(v) tan2 v, (47)

where u, v ∈ (−π/2, π/2). The transformed metric reads

ds2ferr =
1

8
(4dv2 + cot2 vdu2 + 2 sin2 vdφ2). (48)

Remarkably, this metric is independent of the variable u, meaning that

∂

∂u
=
√

1− h2 ∂
∂h
, (49)

11
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is a Killing vector field on the ground-state manifold. Note that the vector field ∂φ is also
a Killing vector field on the paramagnetic manifold, and in fact of the entire ground-state
manifold. This is no surprise, and the reason is quite simple:

|Ω(h, γ, φ)〉 =
∏
j

e−iφσ
z
j /4 |Ω(h, γ, 0)〉 , (50)

where U =
∏
j e
−iφσzj /4 is a unitary operator generated by Aφ =

∑
j σ

z
j . The generator of

the transformation is also the generator of the vector field ∂φρ(x), i.e.

∂φρ = i[ρ,Aφ]. (51)

Since Aφ(x) = Aφ is a constant AGP, we conclude that ∂φρ must be a Killing vector field
on the ground-state manifold (see Eq. 25).

Eq. 49 is perhaps the most important result of this paper. It is striking that this
Killing vector field exists, since the transformation u → u + a, for a constant, is not a
symmetry of the Hamiltonian. It changes the ground-state and its energy. Moreover, the
Killing vector is confined to the ferromagnetic part of the ground-state manifold, and the
symmetry is lost once we cross the critical line at h = 1.

Since both Killing vector fields ∂u and ∂φ correspond to partial derivatives, their Lie
algebra

[[∂φ, ∂u]] = 0, (52)

corresponds to the Lie algebra of the abelian group (R2,+). Here, [[ , ]] is the commutator of
differential operators, not to be confused with the matrix commutator [, ]. The paramagnetic
region of the ground state has only one Killing vector field ∂φ, and therefore, is isomorphic
to the abelian algebra of the group (R,+). The fact that we can associate a Lie algebra to
the different phases of matter suggest the possibility of a Bianchi-based classification of
the different quantum phases of matter.

5.1 Critical lines and RG flows

Near the Ising phase transition at |h| = 1, the low energy TFIM is effectively described by
a theory of Majorana fermions whose mass gap is proportional to |h− 1|. The arguments
of Venuti and Zanardi [5] imply that ghh ∼ |h − 1|−1 whilst gµν ∼ 1 for the rest of
the components. This argument is based on a simple scaling analysis on the operators
associated with the deformations of xµ. More elaborate arguments, such as the ones
presented in [35], give a relationship between Renomalization Group flows, homothetic
vector fields and the scaling properties of the quantum metric tensor. However, we argue
that this information alone is not enough to determine the Killing vector fields of the
ground-state manifold. We can immediately see this from the exact expression for the
metric tensor. Close to the critical line, all the components of the metric tensor coincide
except the cross term ghγ . This term is zero in the ferromagnetic manifold and is not
zero (and also not divergent) in the paramagnetic manifold. This change alone is enough
to spoil the symmetry and prevents the vector field ∂u to be a Killing vector field, even
approximately, in the paramagnetic manifold. That is, knowing that gµν ∼ 1 is not enough
information to fix the isometries of the manifold.

5.2 Geodesics

We have two Killing vector fields in the ferromagnetic manifold. Each associated with a
conserved charge along geodesics. Together with the arc-length parametrization condition,

12
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Figure 2: a) A geodesic in the ferromagnetic sector of the ground-state manifold with
Qu = −0.9 and Qφ = 0.05. b) The projections of the blue curve onto the uv-plane and
φu-plane. Note the periodicity of the solution. c) A geodesic in the ferromagnetic sector of
the ground-state manifold with Qu = −0.9 but Qφ = 0. Since Qφ = 0 the curve lies inside
the uv−plane. Note that now the geodesic can probe the two ferromagnetic phases.

we have three first-order differential equations

Qu =
1

8
cot2 vu′(s), Qφ =

1

4
sin2 vφ′(s) (53)

1

2
v′(s)2 +

1

8
cot2 v u′(s)2 +

1

4
sin2 v φ′(s)2 = 1,

that suffice to solve for the geodesics of the manifold. Note that we do not have to consider
the geodesic equations, the symmetries give us enough constrains. In terms of the physical
variables h and γ, the conserved charges read

h′(s)

8|γ|
√

1− h2
= Qu and

|γ|
4(1 + |γ|)

φ′(s) = Qφ. (54)

To understand these equation better, we need an input from numerical solutions. Fig.
2 shows two geodesic solutions. Note that solutions are generically confined to one of the
ferromagnetic regions of the ground-state manifold unless there is a fine tuning involved,
Qφ = 0. Hence, they do not usually touch or cross the critical line at v = 0 or γ = 0.
However, they always touch the critical lines at u = ±π/2 or |h| = 1.

If we restrict ourselves to the domain where the functions u(v) and φ(v) are well defined,
solving for u′(v) and φ′(v), we find that

du

dv
= ± 8Qu tan2 v√

2− 8Q2
φ csc2 v − 16Q2

u tan2 v
(55)

dφ

dv
= ±

4Qφ csc2 v√
2− 8Q2

φ csc2 v − 16Q2
u tan2 v

. (56)

We are interested in studying the behaviour of geodesics that cross the phase transition
at v = 0. The values of v where the derivative diverge correspond to the maximum and
minimum values of v a geodesic has. Note that csc v → ∞ when v → 0, so a geodesic
crossing the critical line v = 0 must have Qφ = 0. Fig. 2 c) shows an example of a solution
with Qφ = 0.

13



SciPost Physics Submission

More interestingly is the fact that at v = 0 the derivative u′(v) vanishes independently
of the value of Qu. This means that, at the critical line, a geodesic is not uniquely specified
by its position and its velocity and we need to take into account higher derivatives. We
can explicitly see this behaviour by doing a Taylor expansion of the geodesic path solution
around v = 0,

u(v) = u(0)+
4
√

2Qu
3

v3 +O
(
v5
)
. (57)

Recall that u = arcsin(h) and v = sgn(γ)
√
|γ|+O

(
|γ|

3
2

)
. The intuition behind this

behavior is quite simple. Near the phase transition, the distance between two points is
8∆s2 ≈ (∆v)2 + cot2 v(∆u)2. Since cot2 v → ∞ when v → 0, ∆u must go to zero if we
want to have a finite value of s after crossing the critical line.

6 Near the isotropic transverse-field Ising model

A detailed analysis of the paramagnetic ground-state manifold is challenging due to the
complexity of the metric. Part of the complexity lies in the non-vanishing cross term gγh.
Due to this term the Killing vector field ∂u is lost during the phase transition. Even the
conserved charge Qφ = gφφφ

′(s) has a complicated structure. To simplify the metric, we
will restrict ourselves to the parameters (h, φ) and work with a constant value of γ (i.e.
dγ = 0). We will refer to this manifold as the hφ-ground-state manifold. We will work
near the Ising limit γ → 1.

First, let us do the coordinate transformation h → cscψ to clean the metric in the
paramagnetic manifold |h| > 1. Here, ψ ∈ (0, π/2). The resulting metric is

ds2par =
1

8
(dψ2 + sin2 ψdφ) +

1

16

[
1

2
(5 + 3 cos 2ψ) sin2 ψdφ2 (58)

+ (1 + 3 cos 2ψ)dψ2

]
(γ − 1) +O

[
(γ − 1)2

]
.

Although it looks messy, another change of variables ψ → β− 3
8(γ−1) sin 2β, for β ∈ (0, π/2),

reveals that this is the metric of a 2-sphere

ds2par =
1 + γ

16
(dβ2+ sin2 βdφ2) +O

[
(γ − 1)2

]
. (59)

The full coordinate transformation reads h→ cscβ + 3
4(γ − 1) cosβ cotβ, for h > 1. The

2-sphere is a maximally symmetric space with three Killing vector fields:

ξ1 = cosφ∂β − cotβ sinφ∂φ, ξ2 = − sinφ∂β − cotβ cosφ∂φ, ξ3 = ∂φ (60)

The Lie algebra of these Killing vector fields is the familiar algebra so(3) algebra

[[ξi, ξj ]] = εijkξk, (61)

which corresponds to a Type IX Lie algebra according to the Bianchi classification.
On the other hand, the ferromagnetic part of the hφ-ground-state manifold is a cylinder

ds2ferr =
1

8

(
du2

γ
+

2γdφ2

1 + γ

)
. (62)
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Here u = arcsin(h) and γ is constant but not necessarily close to one. Again, this is a
maximally symmetric space with three Killing vector fields

χ1 =
√
γ∂u, χ2 =

√
1 + γ

2γ
∂φ, χ3 = −

√
2γ2

1 + γ
∂u +

√
1 + γ

2γ2
∂φ. (63)

The Lie algebra of these Killing vectors is the algebra of the isometries of the Euclidean
plane e(2):

[[χ1, χ2]] = 0, [[χ1, χ3]] = χ2, [[χ2, χ3]] = −χ1. (64)

In the Bianchi classification, this is a Type VII0 Lie algebra.
Note that, despite having restricted ourselves to a hyperplane of the original ground-

state manifold of the anisotropic TFIM, we still find that different quantum phases of
matter correspond to different algebras.

6.1 Geodesics

Near the Ising point γ ≈ 1 the metric of the hφ-ground-state manifold is that of a cylinder
for |h| < 1 and a 2-sphere for |h| > 1. So, in the ferromagnetic manifold, geodesics are linear
functions of the type φ = mu+b, for some constants a and b. In the paramagnetic manifold,
geodesics are great circles, characterized by the implicit equation cotβ = q cos(φ+ φo),
for some other constants q, φo ∈ R. The matching conditions at the boundary give a
relationship between the two constants.

cos
[
φo − φ

(
u = ±π

2

)]
= 0, q = −7− 3γo

4m
. (65)

These conditions guarantee that geodesics are differentiable functions with a continuous
first derivative.

We can visualize the hφ-ground-state manifold using an isometric embedding of the
plane (h, φ) into R3. This technique was has been used to visualize the topological
properties of the TFIM [8] and it is also useful to visualize geodesics. Taking advantage of
the rotational symmetry we parametrize our manifold as a surface of revolution

Φ(h, φ) =
(
g(h), f(h) cosφ, f(h) sinφ

)
. (66)

Our task now is to find the functions f(h) and g(h) such that the induced metric

gφφ = ∂φΦ · ∂φΦ = f(h)2

ghh = ∂hΦ · ∂hΦ = f ′(h)2 + g′(h)2

ghφ = ∂φΦ · ∂hΦ = 0, (67)

corresponds to our metric. We find the following system of differential equations for h > 1

f(h)2 =
1

8h2
+ (γ − 1)

4h2 − 3

16h4
+O

[
(γ − 1)2

]
(68)

and

f ′(h)2 + g′(h)2 =
1

8h2(h2 − 1)
+ (γ − 1)

2h2 − 1

8h4(h2 − 1)
+O

[
(γ − 1)2

]
. (69)

Note that having a surface of revolution simplifies the computation and gives us a direct
result for f(h). For h < 1 we have the set of equations

f(h)2 =
γ

4(γ + 1)
, f ′(h)2 + g′(h)2 =

1

8γ(1− h2)
. (70)

15



SciPost Physics Submission

h = +1

h = −1

h = ∞

Figure 3: Isometric embedding of the hφ-ground-state manifold with a geodesic path.

Continuity in f(h) requires that

1 + γ

16
=

γ

4(γ + 1)
(71)

This condition can only be fulfilled if γ = 1. For other values of γ an isometric and
continuous embedding into R3 does not exist (at least as a surface of revolution). Solving
the differential equations for γ = 1 we find that

f(h) =
1√
2

{
1 |h| < 1

|h|−1 |h| > 1
(72)

g(h) = − 1

2
√

2

arcsinh |h| < 1√
h2 − 1

h
+ sgn(h)

π

2
|h| > 1

(73)

The embedding corresponds to a cigar-like surface made from a cylinder with two spherical
caps. See Fig. 3.

7 Geodesics and energy fluctuations

The ideas presented in this paper appear to be somewhat abstract, however they are
very physical. For example, we can apply these concepts to develop better ground-state
preparation protocols [9, 10, 36]. Consider a parameter-dependent Hamiltonian H(xµ) and
imagine that we have a system in the ground state |Ω(xi)〉 of H(xi). We can change the
system’s state from one ground state |Ω(xi)〉 to another one |Ω(xf )〉 by gradually changing
the parameters of the Hamiltonian from xµi to xµf . This is the content of the adiabatic
approximation.

Usually, we want to do this in a finite amount of time T . To increase our chances of
ending in the ground state |Ω(xf )〉 we would like to minimize energy fluctuations as much
as possible. The question is: Given a fixed time T , how should we change the parameters
xµ to minimize energy fluctuations? The answer is to take the geodesic path xµ(t).

For now, let us examine protocols that stay as close as possible to the ground-state
manifold. Anandan and Aharonov [37] pointed out that the speed of the evolution of a
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Figure 4: Numerical simulation of two adiabatic protocols over a finite time T = 50 for a
system with ten spins. The image on the right shows the path taken during the adiabatic
evolution. The image on the left shows the integral over energy fluctuations and the
difference between energies for each protocol. The dotted path describes a geodesic and the
continuous path is a straight line. Each white dot in the path represents 5 units of time.

pure state evolving via the Schrödinger equation is proportional to the uncertainty of its
energy

ds2 = Tr
(
ρ(t+ dt)− ρ(t)

)2
= 2∆H2dt2, (74)

where ∂tρ(t) = i[ρ(t), H(t)] and ∆H(t)2 = Tr
(
ρH2

)
− Tr(ρH)2. Or, in other words

v =
ds

dt
= ∆H. (75)

Here v is a velocity. The distance s(t) in this equation is the abstract distance in the
projective Hilbert space defined by the Fubini-Study metric. Since the geodesic paths on
the ground-state manifold minimize this distance, these are also the paths that minimise
the integral ever the energy fluctuations. One might worry that our argument might be
too sketchy, but this is indeed the correct answer. A proof of this statement is in [9].

Fig. 4 shows some numerical results supporting this argument. We solve numerically
for the Schrödinger evolution of the spin chain for a slowly changing Hamiltonian and
compare the results with the instantaneous ground state. The continuous path corresponds
to a simple linear parametrization λ(t) = (γ(t), h(t)) =

(
1− t

T

)
λo + t

T λf , while the dotted
path is a geodesic path λ(t) = α

(
` tT
)
. Here, α(s) is a geodesic parametrized by the

arc-length parameter s such that α(0) = λo and α(`) = λf . Unlike the straight line,
in the geodesic path the energy remains close to the ground-state energy even after the
phase transition. Also, the energy fluctuations of the geodesic path seem to grow linearly
rather than exponentially. Note how the geodesic path naturally slows down at the phase
transition.
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8 Conclusion

In summary, we have studied the symmetries of the ground-state manifold of the transverse-
field Ising model (TFIM) for both the anisotropic and the isotropic case. Remarkably, the
symmetries of the Hamiltonian are not identical to the symmetries of the manifold. For
the anisotropic case, we encountered a hidden symmetry in the ferromagnetic sector of the
manifold. This symmetry is related to a change in the magnitude of the magnetic field.
The transformation modifies the energy and the states of the system. However, it acts as
an isometry on the ferromagnetic sector of the manifold. From this result, we proposed a
classification of the different quantum phases of a parameter-dependent Hamiltonian based
on the Lie algebra of the related Killing vector fields. We found that the ferromagnetic
manifold has two Killing vector fields with an abelian Lie algebra. The paramagnetic
manifold has only one Killing vector field and a trivial Lie algebra. We argue that a simple
scaling analysis near the critical lines |h| = 1 is not enough to determine the Killing vector
fields of the metric tensor, since the regular terms in the metric play an important role in
defining the isometries of the manifold.

We repeated the analysis for the case of the isotropic TFIM and this resulted in yet
more symmetries. The ferromagnetic and the paramagnetic manifold both are maximally
symmetric spaces with three Killing vector fields each. The algebra of the ferromagnetic
manifold corresponds to the Lie algebra of the Euclidean isometries e(2) and is a Type
VII0 algebra in the Bianchi classification. The Lie algebra of the paramagnetic manifold is
the familiar so(3) algebra and is a Type IX algebra in the Bianchi classification.

We took advantage of these symmetries and computed the geodesics of the ground-state
manifold for the cases in which enough symmetries were available. Then, we analyzed the
behaviour of these solutions near critical lines. We found that some geodesics are confined
to specific regions of the ground-state manifold, but there are always solutions that cross the
critical lines. These geodesics have several applications in adiabatic quantum preparation
protocols as these are the paths that minimize the integral over energy fluctuations.
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A An expression for the Christoffel symbols

When working with an embedding in a flat manifold, like the set of density matrices in
Cn×n, the covariant derivative may be computed by first taking the partial derivative of
the vector field and then orthogonally project the result into the tangent space of the
embedding

∇µtν = Γλµνtλ = (∂µtν)λtλ (76)

note that we are only considering the tangent components of the partial derivative. This
result is known as the Gauss formula, by applying the dot product with respect to another
tangent vector tµ on both sides of this equation we get a closed formula for the Christoffel
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symbols
Γµνλ = gµδ Tr(tδ∂νtλ) (77)

here we take the dot product with respect to the full vector ∂νtλ and not just the tangent
projection because the normal components, by definition, vanish. Instead of tangent
vectors, we can express our formula for the Christoffel symbols in terms of bras and kets.
Let ρ = |ψ(x)〉 〈ψ(x)|, then

Γµνλ = (〈ψ|∂ν∂λψ〉 − 〈∂ν∂λψ|ψ〉) 〈ψ|∂µψ〉
+ (〈∂νψ|∂µψ〉 − 〈∂µψ|∂νψ〉) 〈ψ|∂λψ〉
+ (〈∂λψ|∂µψ〉 − 〈∂µψ|∂λψ〉) 〈ψ|∂νψ〉
+ (〈∂ν∂λψ|∂µψ〉+ 〈∂µψ|∂ν∂λψ〉) . (78)

A remark: In two dimensions we can compute the inverse metric gµν easily. So it is feasible
to find an expression for the Riemann tensor in terms of the state |ψ〉 and its derivatives.
However, this process becomes tedious, and the resulting expression is long and difficult to
handle.
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