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We study the prospects of detecting and characterising Dark Matter at colliders using Machine
Learning (ML) techniques. We focus on the monojet and missing transverse energy (MET) channel
and propose a set of benchmark models for the study: a typical WIMP Dark Matter candidate in
the form of a SUSY neutralino, a pseudo-Goldstone impostor in the shape of an Axion-Like Particle,
and a light Dark Matter impostor whose interactions are mediated by a heavy particle. All these
benchmarks are tensioned against each other and against the main SM background (Z+jets). Our
analysis uses both the leading-order kinematic features as well as the information in additional hard
jets. We use different representations of the data, from a simple event data sample with values of
kinematic variables fed into a Logistic Regression algorithm or a Neural Network, to a transformation
of the data into images related to probability distributions, fed to Deep and Convolutional Neural
Networks. We also study the robustness of our method against including detector effects, dropping
kinematic variables, or changing the number of events per image. In the case of signals with more
combinatorial possibilities (events with more than one hard jet), the most crucial data features are
selected by performing a Principal Component Analysis. We compare the performance of all these
methods, and find that using the 2D images significantly improves the performance.

I. INTRODUCTION

After the Higgs boson discovery at the Large Hadron
Collider (LHC), a strong focus has shifted towards Dark
Matter (DM) searches. The discovery of DM and its char-
acterisation would have profound consequences in Parti-
cle Physics, Cosmology and Astrophysics and the LHC
could be the key to it. In spite of having experimental
evidence of the presence of DM, we do not know what is
its true nature, its mass scale, spin and interactions; or
even if DM is a particle or a whole sector of new particles
and interactions as in the SM.

The unknown properties of DM open the possibility of
many different types of DM candidates being consistent
with the DM relic density determination from the Cosmic
Microwave Background (CMB), as well as other astro-
physical constraints. To further explore DM, searches are
being conducted in three main directions: underground
experiments aiming to directly detect the interaction of
DM with nuclei (direct detection), astrophysical observa-
tories searching for an excess of light or charged particles
in the sky (indirect detection), and collider searches for
imprints of DM in collisions of protons and leptons (col-
lider searches).

Among the hypothesized DM candidates, the category
of Weakly-Interacting Massive Particles (WIMPs) enjoy
a privileged position, as a WIMP DM could in turn link
to other issues plaguing the Standard Model (SM) of Par-
ticle Physics. Indeed, the WIMP paradigm is realised
in many extensions of the SM, such as Supersymmetry
(SUSY), where the WIMP is typically a new stable Majo-
rana fermion with electroweak couplings and mass linked
to the breaking of SUSY.

Typical DM collider searches are based on the idea
that a stable and neutral particle, if produced at collid-

ers, would leave the detector without resistance. Hence,
the collider strategy is to search for traces of the DM
presence via the associated production of other particles,
namely the identification of singular objects within the
detector (mono searches), where a single object could be
a jet, W or Z boson, top quark, photon or tt̄ pair. The
motivation for using these channels is that DM candi-
dates (which cannot be directly detected) could be ex-
posed through a momentum-mismatch in the final state,
where the detected objects appear to recoil against noth-
ing.

A variety of DM scenarios could also be indirectly
probed at the LHC via displaced track and vertices sig-
natures using the long lived particle searches (see e.g. ref.
[1] and references therein). Collider-stable particles are
particles which do not interact with the detector and do
not decay before leaving it, hence manifesting as miss-
ing momentum and mimicking DM particles. Note that
a collider-stable particle could be completely stable (as
is thought to be the case for DM particles) or be un-
stable but with a lifetime long enough such that it is
not likely to decay before it leaves the detector. In our
search for New Physics at the LHC, we must then at-
tempt to remove this degeneracy. This task is even more
challenging than analysing the signal and background for
DM searches because here we are concerned with two or
more (unknown) physics models.

This complex analysis would likely benefit from the
implementation of new (more sophisticated) techniques
beyond conventional search strategies. This task calls
for the use of Machine Learning (ML), which is emerging
as a powerful tool for New Physics searches at LHC (see
e.g. the recent review by Radovic et al. [2] and references
therein).

More conventional ML methods like boosted decision
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trees (BDTs) have already been incorporated into many
data analysis packages which made a significant impact in
the analysis. Several recent studies have shown exciting
applications of the ML methods for various tasks, like
constraining Wilson coefficients of higher-dimensional
operators in the EFT framework[3–5], top-tagging[6, 7],
cosmological phase transitions[8], parameter exclusion in
SUSY models[9], quark-gluon tagging[10] etc. ML tech-
niques have also been used recently for non-collider DM
searches using substructure probes[11, 12], for cosmolog-
ical DM[13] and in direct detection experiments[14].

In this work, we will apply ML techniques to explore
the possibility of disentangling different scenarios for DM
and impostors. We will consider the canonical search for
DM: events with one jet recoiling against missing trans-
verse energy (monojet searches), and use Machine Learn-
ing techniques in DM signal characterization. The main
focus is to explore the potential of ML techniques for
the characterization of the discovered DM candidate 1.
Therefore our task is to explore the features of the sig-
nal and to be able to distinguish one signal from another.
We will compare the features of DM signals from different
Beyond the Standard Model (BSM) models. Specifically,
we will use as benchmarks of comparison three types of
models: a heavy WIMP dark matter from SUSY, Axion-
Like Particles (ALPs) [15, 16] and a simplified DM model
with a spin-1 mediator. These will provide enough va-
riety of characteristics to analyse differences and degen-
eracies among models.

Note we will base our analysis solely on differential
information, not on overall cross-sections. The reason
to restrict the analysis on kinematics alone is due to
the freedom one has on the values of couplings in each
model. For example, the production cross section of
SUSY WIMPs depends strongly on its nature, e.g. Bino-
like or Higgsino-like would lead to different values on the
total number of events, yet differential kinematics (di-
vided by the total number of events) would not sizeably
change. By restricting the analysis to differential infor-
mation, we can draw more robust conclusions about the
ability to distinguish different scenarios. Note though
that discovery potential does depend on both discrimina-
tion power and production cross section, and this work
focuses on the aspects of the analysis which can then be
translated into different benchmarks.

The paper is organised as follows. In the next section II
we describe the models which we use for benchmarking
DM scenarios. In Sec. III, we discuss kinematic fea-
tures in the monojet signal, both at leading-order in the
QCD expansion (LO) and next-to-leading-order (NLO)
and show differences between the SUSY benchmark and
the SM background. In section IV we describe the ML
methods and address the WIMP DM characterization us-

1 However in the appendix we also perform the classification for
the SM background versus signal benchmarks.

ing ML methods considered. In the last section, we dis-
cuss our findings and conclude.

II. DESCRIPTION OF BENCHMARK MODELS

In this section we describe our choices of benchmark
models. These models span a large enough range of kine-
matic features to compare with SM processes, as well as
to see the strength and limitations of the task of disen-
tangling different DM scenarios.

Model Mass Type of coupling
SUSY1 mχ̃0= 100 GeV Bino-like
SUSY2 mχ̃0= 200 GeV Bino-like
SUSY3 mχ̃0= 300 GeV Bino-like
ALP negligible gluon-ALP
EFT negligible 4-fermion

TABLE I. Summary of benchmark models.

We first consider a set of three benchmarks in the
WIMP DM scenario based on Bino-like SUSY neutrali-
nos and with masses in the range 100 to 300 GeV, see
Table I. We did not consider heavier WIMPs as they
would likely be very hard to find at the LHC in monojet
events. The cross section of production in monojet final
states decreases quickly with the WIMP mass [17].

To contrast against the WIMP we consider two al-
ternative cases. The first is an Axion-Like Particle (or
ALP) which is a paradigm for signatures from pseudo-
Goldstone bosons. They can be light and collider-stable
due to the derivative (suppressed) nature of their cou-
plings. ALPs themselves could be a DM particle or can
be a DM mediator (see e.g. [18]). These exotic parti-
cles are constrained by Astrophysics as well as colliders
in a complementary fashion [15]. ALPs are also searched
in axion experiments, which are designed to target their
couplings with the photons.

In this work, we do not restrict the ALP to be a DM
candidate, and could decay after being produced, just
not inside the detector 2. It escapes detection as it has
no charge under SU(3)c × U(1)Y , hence its signatures
are the same as DM, mono-searches. For the monojet
channel, the ALP relevant couplings are to gluons, as
couplings to quarks are mass-suppressed:

La ⊃ −
gagg

2
aTr

[
GµνG̃

µν
]
. (1)

Note that the ALP-gluon coupling has the following
bound [15, 16]

gagg . 1.1·10−5 GeV−1 (90% C.L.) for ma . 60 MeV
(2)

2 If the ALP decays inside the detector, its detection would still
be difficult due to its lightness. Nevertheless, one can still search
for its effects on tails of distributions [19].
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FIG. 1. Feynman diagrams for monojet process in the linear ALP (top), EFT framework with a massive spin-1 mediator
(middle) and SUSY WIMP DM cases (bottom).

Note that coupling of ALPs with photons or massive par-
ticles would lead to mono-photon, -W, -Z, -top and -Higgs
signatures.

We consider a second alternative scenario to WIMP
DM based on light DM produced from the decay of the
heavy mediator. We label this EFT DM, as the effective
interaction between the SM and DM is via a four-fermion
higher-order operator. The simplified model Lagrangian
which describes the interaction of DM (χ) with the vector
mediator (Y ) is given by

LY = χ̄γµg
V
χ χY

µ. (3)

and similarly for the interaction between the mediator
and quarks. Note that the kinematic distribution of
events is not very sensitive to the dark matter mass (see
Fig. A1 in the appendix) in the limit of mY � mχ.

Within these models, monojet signatures would result
from the processes shown in Fig. 1: a pair of DM particles
(or a single ALP) produced in association with one initial
state radiation (ISR) gluon or quark.

Finally, we consider the dominant SM background
given by Z+jets, where the Z boson decays to neutri-
nos.

III. KINEMATIC DISTRIBUTIONS

After presenting our benchmark scenarios for New
Physics, in this section we describe the kinematic features
which the Machine Learning algorithms will be able to
optimize over. The aim of this section is to explain some
of the features that the ML results will show.

The input for the ML studies is a list of events
with their kinematic features simulated using a partic-
ular benchmark model. We perform both parton- and
detector-level simulations to generate the data samples.
More details related to event generation can be found in
Appendix A.

The kinematic features of those events are generically
multi-dimensional, but one can project into 1D and 2D
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FIG. 2. Monojet parton-level LO 1D histograms for WIMP, EFT and ALP scenarios, as well as the SM background.

FIG. 3. Monojet detector-level 1D histograms for WIMP, EFT and ALP scenarios, as well as the SM background.

kinematic space. For example, in Fig. 2 we show a set of
1D distributions for this process. Note that the jet trans-
verse momentum in SUSY1 (lightest SUSY WIMP) and
ALP is very similar, and also close to the SM background
distribution, whereas the other SUSY scenarios and the
EFT exhibit a harder spectrum and easier discrimination
with respect to the SM. Additionally, the pseudorapidity
η distribution of the jet is very similar for the ALP and
SM background cases.

At the level of 1D distributions, one cannot distinguish
any preferred direction of the azimuthal angle φ distribu-
tion for both the New Physics signals and SM background
processes. Additional information can be obtained when
moving from 1D to 2D distributions, as we will show in
section IV C and is discussed (in the Bayesian context)
in Ref. [20], where we show the event distribution in the

2D plane of pjT vs η. Different models are compared to
each other in this plane. The top three panels show a
clear difference in the high-pT region of SUSY2, SUSY3
and EFT benchmarks against the SM background. In the
lower-leftmost plot we show that this is not the case for
ALPs, whose pT distributions are not so peaked. Never-
theless, the η and pT information is still useful. Finally,
the two other lower plots show ALPs as compared to
the EFT benchmark and the light SUSY case. The EFT
case leads to harder pT spectrum and easier to differ-
entiate from ALPs than the light SUSY case. We will
see how the ML techniques will exhibit a similar trend.
ALPs will be hard to separate from SUSY1, or light DM,
whereas EFT and SUSY3 will have the most overlap, as
both exhibit similar hard spectra.

The characteristics of these rough features, broadening
in pseudorapidity and pT reach, and what conclusions

one can draw from them, depend on level of accuracy of
our simulation. To explore robustness against showering
and detector effects, we promoted the simulation to the
Pythia and Delphes level. In Fig. 3 we show the same
choices distributions as in Fig. 2 but now at detector-
level. The overall behaviour is indeed maintained from
parton-level to detector-level.

Finally, we discuss how one would use another source
of information from these monojet topologies. Monojet
events do often contain an additional hard jet. Splitting
or additional ISR emission is not extremely rare, and with
an additional object in the final state more information
can be extracted of the DM nature. To account for the
additional jet, we simulate detector-level events for the
monojet (LO) and dijet (NLO) production. For all the
cases, we consider data samples of 50K events with one
additional jet of pT > 25 GeV. 1D histograms for the
constructed kinematic variable are shown in Fig. 4. An
additional jet provides a new source of kinematic infor-
mation, enhancing the discriminating power of our study.
For example, notice that the distributions of ∆φj1j2 (j1:

leading jet, j2: sub-leading jet) and ∆φj2MET are quite
characteristic for the signals and background.

IV. DM CHARACTERIZATION USING
MACHINE LEARNING

In this section we start our discussion on the use of su-
pervised Machine Learning techniques for Dark Matter
signal characterization meaning that we focus on disen-
tangling the different DM signals from each other rather
than the discovery of any DM signal from the back-
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FIG. 4. Detector-level 1D histograms for the dijet process for WIMP, EFT and ALP scenarios, as well as the SM background.

ground. Our analysis is done for the idealised scenario
where all signals and the background have the same num-
ber of events as mentioned earlier, though we show re-
sults for comparison with background in Appendix C.
The main question we shall endeavour to answer is then
whether it is possible to disentangle an electroweak-scale

WIMP DM signal from an ALP or an EFT signal with
very light DM.

The input data we used for the analysis consists of
three kinematic features of the monojet i.e. pT , ηj and
φj . We use this data both as an array input and also in
the form of 2D histograms to build a ML algorithm.
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FIG. 5. ROC curves using logistic regression for different
WIMP scenarios versus ALP/EFT signals for the LO parton
level analysis.

In the following sections, we will compare the perfor-
mance of different methods, and also parton-level versus
detector-level simulations. For this analysis, we will con-
sider the kinematics of the leading jet (pT > 130 GeV)
for the LO analysis and in addition to this also of the
sub-leading jet for the NLO data sample. For the rea-
sons mentioned in Sec. II, we do not use the cross-section
information, so a balanced dataset is considered for all
the classes. Data samples are divided in 70% : 30% pro-
portions for the training and test samples.

A. Logistic Regression

As a first step, we perform logistic regression for the
monojet data without any data processing. We used
SGDclassifier of sklearn python library with a log-loss
function. For the parton level events, Receiver operating
characteristic (ROC) curves for SUSY signals vs ALP
and EFT signals are shown in Fig 5. We consider the
three benchmark values for the neutralino mass in the
WIMP scenario described in Sec. II. We can see that the
AUC3 value varies from 0.50 to 0.64 for the SUSY3 versus
EFT and SUSY3 versus ALP, and the other four cases lie
in-between. In other words, one can easily separate heavy
WIMPs from the ALP monojet, however EFT monojet
would not be efficiently classified. The regularization pa-
rameter λ = 10−5 is used for all the cases.

3 AUC (area under the ROC curve) is a measure of the algorithm’s
performance.

B. Neural Networks-kinematic features

We investigate the classification accuracy using Deep
Neural Networks (DNN) with the same input features
i.e. pT , η and φ of the jet. We used five fully-connected
hidden layers for the network as including more layers
does did improve the performance.

For all the layers, except the final one, the number
of neurons equal to the number of data features that are
considered. For the intermediate layers, a ReLU activation
function is used, whereas we use a ‘sigmoid’ function for
the output layer. We considered the binary cross-entropy
loss function. The ‘dropouts’ option is also activated,
with 0.2 as the optimized choice. Finally, the ‘adadelta’
optimizer, and batch-size and epochs are set to 500 and
300, respectively.

Before discussing the performance of DNN for the sig-
nal classification, we discuss some aspects of the analysis
when using DNNs with the three kinematic inputs: the
first aspect relates to the robustness of the analysis with
changes in the level of simulation detail. We see from
the similarity between figures A3 and A4 in Appendix C
for the signal versus background scenario that the DNN
only performs slightly worse when using the more noisy
detector-level data than the pure parton-level data. We
also compared the performance of DNNs with just two
variables (by excluding the φ variable) and found that
there is no degradation in the classification accuracy.
This is expected, as the three input variables are re-
dundant once energy-momentum conservation within the
event is taken into account. We also explore the benefit
of considering NLO dijet processes in addition to mono-
jet for the signal versus background scenario. In this
case we consider eight features: pj1T , p

j2
T , η

j1 , ηj2 , MET,

∆φj1j2 , ∆φj1MET , and ∆φj2MET . Using the DNN with the
same architecture for this data sample we get indeed an
enhancement in the classification accuracy as shown in
Fig. A5 in Appendix C.

We use NNs with kinematic features as input for the
classification of different signals. As mentioned earlier,
classification accuracy is not very different for the detec-
tor level simulated data, hence we consider parton-level
data in this section. In Fig. 6, we show the ROC curves
using the Neural Network with raw kinematic features for
the WIMP signal, where the other new physics signals
are taken as competitors. The AUC values for WIMP
SUSY3 versus EFT, and SUSY1 versus axion signal are
0.50 and 0.58 respectively (same as logistic regression
case). Therefore the likelihood to misidentifying light
WIMPs and axions is very high, and the same is true for
heavy WIMP and EFT DM.

Another way to express this statement is shown in
Fig. 7, where we plot the likelihood that a true WIMP
signal is misidentified for an ALP or EFT DM scenario.
The likelihood is computed as the false positive rate for
the optimal point on the ROC curve. Since we are not
considering the weight of the cross-section for different
signals, we find the optimal point by minimizing the Eu-
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FIG. 6. ROC curves using Neural Network for different
WIMP scenarios versus ALP/EFT signals using the raw kine-
matic features (LO parton-level analysis).

FIG. 7. Probability of misidentifying ALPs or EFT DM sce-
narios with a true SUSY WIMP as a function of the neutralino
mass (parton-level LO data).

clidean distance from the (1=TPR4,0=FPR) value.

C. DNN with 2D histograms

As mentioned earlier, the information in the monojet
event is saturated by choosing two variables, pjT and ηj .
Therefore, inspired by the use of Convolutional Neural
Networks (CNNs) in the classification of images, we con-
struct ‘images’ from 2D histograms using pT and η of the
jet.

4 TPR is fraction of signal events correctly identified by the algo-
rithm, and FPR is the fraction of background events identified
as signal events by the algorithm.

One has choices on how to group the events into im-
ages. The simulated dataset contains NTot total number
of events, and is divided into NImages number of images,
such that each image contains r = NTot/NImages number
of events.

Creating a number of ‘images’ to train a network is a
powerful tool since each image is itself giving an approx-
imation of the joint Probability Density Function (PDF)
distribution for both pT and η. The degree to which each
image approximates the PDF depends on the number of
events r chosen to be in an image. For a fixed total
number of events (determined by the LHC integrated lu-
minosity) there will then be a trade-off between r and
NImages that will affect the accuracy of the model.

We will examine this method in both the monojet-LO
case and the dijet-NLO case.

1. Monojet-LO

Before analysing the data with a CNN, we first at-
tempt solving the problem with a DNN. This is achieved
by decomposing the 2D histogram into a 1D array with
values corresponding to the normalised number of events
in each bin. Note that whilst the may seem like we are
just reconstructing the original distributions, this is not
the case since this data now contains correlations from
individual distributions. A few illustrative pictures of
these plots are shown in Fig. 8.

We consider pT and η in range [130, 2000] GeV and
[-4 to 4], respectively with 29 × 29 bins. We use the in-
formation of event density in this grid as an input for a
DNN. The network is well optimised with two fully con-
nected hidden layers, both consisting of twenty neurons
with a ReLU activation function and a softmax activa-
tion function for the output layer. After investigation,
we do not find over-training to be an issue, so only in-
clude a small number of dropout neurons. The network is
trained for 300 epochs with a batch size of 500. We eval-
uate the network’s performance through accuracy (found
from finding whether the predicted result (ranging from 0
to 1) round to 0 or to 1). This is done within the training
dataset whilst training, then with the validation dataset
whilst evaluating how the network is training, and finally
with the test dataset.

We find that averaging over more number of events
per image improves the classification accuracy. As an
illustration of this effect, in Fig. 9, we show the accuracy
plot for WIMP SUSY3 versus ALPs data and how it
depends on the number of events injected in one picture
for the fixed data sample. The different colored curves
correspond to varying the total data sample. For a fixed
data sample, the number of images a DNN is trained
and tested is reduced when we increase the number of
events per image. As we know that with more events
per image the input data approaches closer to the true
likelihood function for the event distributions and this is
clearly reflected in the increase in accuracy with number
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FIG. 8. Illustrative 2D histograms for SUSY1 (left) and ALP case (right) averaging over 200 events.

of events per image.

FIG. 9. Accuracy versus number of events per image, with
varying total number of events for SUSY3 versus ALP. We
use fully-connected NNs with two hidden layers for different
data sample size. The parton-level data set is considered for
this plot.

We studied the dependence of the accuracy with the
size of the data sample. Once we have enough data to
train the DNN, adding more events does not improve
accuracy, whereas the accuracy decreases for smaller val-
ues of the ratio r. In Fig. 9 central values of accuracy
are plotted for different total number of events. Using
the total number of 100K data sample the DNN perfor-
mance is very stable, but it starts becoming unstable for
the 50K data sample. We also note that using less than
20k total events leads to large errors in accuracy. ROC
curves for the signal-to-signal identification using DNN
with 2D histograms are shown in Figs. 10 for the LO data
sample.

All of the analysis here has been conducted with the
assumption that the number of different type of signal
events are the same and that we can fully decompose
events into purely signal and background. This has al-
lowed us to investigate disentangling the various DM
model presented, however it is not a realistic scenario.
We therefore also explore how effectively the classifiers
can disentangle DM models with varying levels of signal

in Appendix D.

FIG. 10. ROC curves (DNN with 2D histograms, r = 20)
for SUSY WIMP benchmarks versus other signals, for the
parton-level with 50K events are used for each signal.

2. Dijet-NLO

We also consider the Next-to-Leading-Order (NLO)
processes in which two parton-level jets in addition to the
1-jet process are produced. We also simulate detector-
level for the NLO processes, and use both the leading and
sub-leading jet. More details about how two jet events
are selected can be found in the Appendix A.

Since for the NLO process we have eight different fea-
tures, there are 28 possible variations of 2D histograms
that we could produce. If this were to be fully taken
into account, then it might prove fruitful to combine the
results of those 28 ML algorithms together in some man-
ner. Alternatively, one could produce three (or higher)-
dimensional histograms and deconvolve them for the
DNN, or use a three (or higher)-dimensional CNN. How-
ever, we shall not take this approach here to avoid the
risk of over-complicating an analysis which may not ben-
efit from it and obscure the physics. Instead, we perform
a Principal Component Analysis (PCA) to the NLO data
in order to determine which features are more relevant.
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FIG. 11. The explained variance ratio of the new principal
component axes (with the number of principal component
axes being 8, the same number of original features), high-
lighting the relative importance of the principal components
in terms of capturing variance in the datasets.

Figure 11 (and Fig. A2 in the Appendix) shows that
whilst all but one feature columns contribute to the vari-
ance of the dataset, a significant amount of the variance
within the datasets is captured within the first three prin-
cipal component axes. By finding the correlation between
the original features and the new principal component
axes, we can determine which features are most impor-
tant in terms of holding information. We expect an in-
crease in classification performance if we were to use the
principal component axes as new feature columns, how-
ever we choose instead to use the original feature columns
that correspond most strongly to the most important
principal component axes, as we are primarily interested
in establishing which features are most relevant for our
2D analysis as a proof-of-concept.

The correlations can be seen in Table II for ALP and
the SUSY3 benchmark, and for other cases in Tables B1,
B2, B3, and B4 of the Appendix B. One can see from
the table that the three most important features are the
same for all datasets, namely pj1T , ∆φj1j2 , and ∆φj1MET.

We do find an increase in classifier performance when
using the pj1T and ∆φj1MET distributions over pj1T and ηj1 .
The ROC curves for a DNN (with the same architecture
as before) are shown in Fig. 12.

We note that using dijet data with the 2D histogram
approach performs slightly worse than when using the
monojet data showing that more information is contained
within the pjT and ηj for a monojet process than the pj1T
and ∆φj1MET of one jet in a dijet process and therefore it
is still useful to include the other features of a dijet event,
even if they do offer diminishing returns on performance
after the second. Note that our results are on this are
not intended as a comprehensive evaluation but rather
as evidence that it is possible and prudent to include
dijet events for the 2D histogram method.

D. CNN with 2D histograms

After transforming our events into histograms/images
(which are the approximations of PDFs) and processing
them using a DNN, we move onto applying CNNs to
them. We use a CNN with two convolutional layers, two

ALP PCA correlations

pj1T pj2T ηj1 ηj2 ∆φj1j2 MET ∆φj1MET ∆φj2MET

PC-1 0.66 0.36 0.01 0.00 -0.01 0.67 0.01 0.01
PC-2 -0.01 0.00 -0.02 -0.02 -0.38 -0.01 0.76 0.52
PC-3 0.01 -0.01 0.05 0.04 -0.76 0.00 0.06 -0.64
PC-4 0.00 0.00 -0.70 -0.71 -0.04 0.00 -0.02 -0.06
PC-5 -0.29 0.93 0.05 -0.04 -0.01 -0.22 -0.01 -0.01
PC-6 0.02 -0.06 0.71 -0.71 0.00 0.01 -0.00 0.00
PC-7 0.70 0.05 0.00 -0.00 0.00 -0.71 -0.00 0.00
PC-8 0.00 -0.00 0.00 0.00 0.52 -0.00 0.64 -0.56

SUSY3, Mχ̃0
1

= 300 GeV PCA correlations

pj1T pj2T ηj1 ηj2 ∆φj1j2 MET ∆φj1MET ∆φj2MET

PC-1 0.67 0.32 0.00 0.01 0.00 0.67 -0.00 -0.00
PC-2 -0.00 -0.01 0.01 -0.01 0.32 -0.00 -0.76 -0.57
PC-3 0.00 -0.00 -0.07 -0.06 -0.80 0.00 0.11 -0.58
PC-4 -0.01 0.02 0.70 0.70 -0.07 -0.01 0.01 -0.05
PC-5 -0.22 0.95 -0.00 -0.02 0.00 -0.23 -0.01 -0.00
PC-6 -0.00 0.01 -0.71 0.71 0.01 -0.00 -0.01 -0.00
PC-7 0.71 -0.01 -0.00 0.00 -0.00 -0.71 0.00 0.00
PC-8 0.00 0.00 0.00 -0.00 0.50 0.00 0.64 -0.58

TABLE II. PCA original feature to principal component cor-
relations for the ALP and SUSY3 benchmark (rounded to 2
d.p.).

FIG. 12. ROC curves (DNN with 2D histograms, r = 20) for
SUSY WIMP versus signal for the dijet NLO detector-level
simulation. For these plots, 50K events are used for each
process.

max-pooling layers and one dense flatten hidden layer,
with ReLu activation function for all the cases.

ROC curves are shown in Figs. 13 and 14, for LO and
NLO processes respectively. As mentioned earlier, CNNs
are able to retain the information of spatial correlations
and usually perform better than DNNs for the image
data. But in our case, because images are constructed
from highly processed information (PDFs are already an
abstract concept) we find no sizeable improvement re-
spect to the DNN results. The performance for the LO
(detector-level) and NLO data sample is the same and
is lower than the parton-level LO analysis for the ALPs
and SUSY1 case.
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FIG. 13. ROC curves (CNN with 2D histograms, r = 20)
for SUSY WIMP benchmarks versus other signals, for the
parton-level with 50K events are used for each signal.

FIG. 14. ROC curves (CNN with 2D histograms, r = 20) for
signal versus signal for the dijet NLO detector level simula-
tion. For these plots, 50K events are used for each process.

V. CONCLUSIONS AND OUTLOOK

In this paper, we used supervised Machine Learning
algorithms for the identification of WIMP dark matter in
the monojet and missing transverse energy channel. In
addition to considering the prospects of detecting WIMP
monojet signal over the SM background, we also address
the key question of what is the probability that other
signals may mimic WIMP dark matter. We considered
LO and NLO parton- detector-level events for the data
samples. We found that for the LO signal there is not
a significant degradation in the performance when we
perform the realistic detector level analysis.

We used different ML approaches to the classification
problem: logistic regression, DNNs and CNNs. We found
that for the kinematic variables NN performs slightly bet-
ter than logistic regression.

We then created images made of approximations to the
probability density of events in a kinematic 2D plane.
We then feed the images to a DNN and a CNN. The
processing of these images offers a better classification
accuracy than lists of events with values of kinematic
observables. We show that this method can produce good
results for the characterisation of different DM models.
We found a trade-off between the accuracy and number
of events averaged for one histogram. In a more realistic
situation, one would expect a small sample of DM events,
hence our exploration of low values of r.

We also investigated NLO monojet processes and
found that the accuracy could increase as compared to
the LO monojet, simply because an event with more than
one object contains more information. In this case, we
performed a PCA analysis to decide the most important
combination of features, and then constructed 2D his-
tograms of those although we find that when using the
2D histogram method we obtain slightly worse perfor-
mance when using dijet events with only two variables
however we do demonstrate that it is possible to incor-
porate the additional information from dijet events into
our methods.

The techniques proposed could be used for the actual
data incorporating the information of the cross-section by
choosing specific model benchmarks. Our study focused
instead on features which are independent of these. Nev-
ertheless, one could consider the jet images constructed
event-by-event instead of our choice of probability distri-
butions.

Moreover, this analysis could be extended for other
channels in collider dark matter searches, e.g. for the
Vector Boson Fusion (VBF) topology where we have two
additional forward jets. It would be interesting to com-
pare the performance of proposed methods for the dijet
and VBF case. A combined analysis of different channels
may offer enhanced sensitivity which will be investigated
in the near future.

Finally, the promising results of this analysis adds a
further motivation to explore the possibility of using un-
supervised techniques.
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Appendix A: Analysis set-up

1. Leading-order(LO) parton-level simulation

We generate parton-level events for monojet and miss-
ing energy signals and centre-of-mass energy

√
s = 14

TeV using MadGraph aMC@NLO v2.6.3.2 [21]. For
SUSY WIMP, we used MSSM-SLHA2 model (all the
SUSY spectrum is set to be very heavy except the light-
est neutralino). We use the Feynrules model file [22, 23]
for the linear ALPs [24] and spin-one mediator case
(DMsimp s spin1 [25] model) in the EFT framework.

Using these models, we generate the following pro-
cesses

pp→ aj ALPs (A1)

pp→ χχ̄j EFT, spin-1 mediator (A2)

pp→ χ̃0
1χ̃

0
1j SUSY-WIMP (A3)

For SM monojet background, we consider the following
dominant background:

pp→ Zj(Z → νν̄). (A4)

For all the processes 400K events are generated using
a cut of pT > 130 GeV for the jet pT . The following
kinematic variables are constructed;

pjT (MET), ηj , φj .

2. Leading-order (LO) and Next-to-Leading order
(NLO) detector-level simulation

We generate both monojet and dijet + MET processes.
As earlier, hard processes are generated using Madgraph
and pythia [26] is used for hadronization and showering.
Detector effects are incorporated using Delphes [27]
with the default ATLAS card. A generation level cut
of pjT > 130 GeV is used for leading jet pT . For the
NLO case, while analysing the root file, in addition to
the leading jet pT cut we also demand pjT > 25 GeV for
the sub-leading jet.

We have used 200K events for all the cases after root
file analysis. To avoid the double-counting from show-
ering, a jet merging scheme (MLM) with xqcut 20 GeV
is applied. For the monojet, we consider the same three
kinematic features as in the parton-level monojet events.
For the dijet, we construct the following kinematic vari-
ables :

• pj1T : transverse momentum of the leading jet.

• pj2T transverse momentum of the sub-leading jet.

• ηj1 : pseudo-rapidity of the leading jet.

• ηj2 : pseudo-rapidity of the sub-leading jet.

• MET: missing transverse momentum.

• ∆φj1j2 : angular separation between the leading
and sub-leading jet.

• ∆φj1MET: angular separation between the MET and
leading jet.

• ∆φj2MET: angular separation between the MET and
sub-leading jet.

For the dijet sample, we consider 50K events for all the
processes.

FIG. A1. The pT , η, and φ distributions for the monojet and
MET process in case of EFT spin-1 mediator (at parton-level)
for fixed mediator mass and various dark matter masses.
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Appendix B: PCA correlations

FIG. A2. The variance ratio of the new principal component
axes (with the number of principal component axes being 8,
the same number of original features), highlighting the rela-
tive importance of the principal components in terms of cap-
turing variance in the datasets.

Background PCA correlations

pj1T pj2T ηj1 ηj2 ∆φj1j2 MET ∆φj1MET ∆φj2MET

PC-1 0.67 0.41 -0.01 -0.01 -0.01 0.62 0.00 -0.00
PC-2 0.00 0.00 0.01 0.00 0.45 -0.00 -0.77 -0.45
PC-3 -0.00 -0.00 0.09 0.10 -0.70 -0.00 0.00 -0.70
PC-4 -0.01 0.00 -0.70 -0.70 -0.09 -0.01 -0.01 -0.10
PC-5 -0.12 0.89 -0.01 0.02 -0.00 -0.45 0.00 0.00
PC-6 -0.01 0.01 0.71 -0.71 -0.01 -0.01 0.01 -0.00
PC-7 0.73 -0.23 0.00 0.00 0.00 -0.65 0.00 0.00
PC-8 0.00 0.00 -0.00 -0.00 0.54 -0.00 0.64 -0.54

TABLE B1. PCA original feature to principal component
correlations for the SM background (rounded to 2 d.p.).

EFT PCA correlations

pj1T pj2T ηj1 ηj2 ∆φj1j2 MET ∆φj1MET ∆φj2MET

PC-1 0.67 0.34 -0.00 0.00 0.00 0.66 0.01 0.02
PC-2 -0.01 -0.01 -0.00 0.01 -0.33 -0.01 0.76 0.56
PC-3 0.01 -0.00 0.00 0.01 -0.80 0.01 0.10 -0.59
PC-4 -0.00 0.01 0.71 0.71 0.01 -0.00 -0.00 0.00
PC-5 -0.22 0.94 -0.03 0.02 -0.01 -0.27 0.00 -0.00
PC-6 0.01 -0.04 -0.71 0.71 0.01 0.01 -0.01 0.00
PC-7 -0.71 0.04 0.00 -0.00 -0.00 0.70 -0.00 -0.00
PC-8 -0.00 0.00 -0.00 0.00 0.51 0.00 0.64 -0.57

TABLE B2. PCA original features to principal component
correlations for the EFT simplified framework (rounded to 2
d.p.).

SUSY1, Mχ̃0
1

= 100 GeV PCA correlations

pj1T pj2T ηj1 ηj2 ∆φj1j2 MET ∆φj1MET ∆φj2MET

PC-1 0.67 0.35 0.01 0.00 -0.00 0.66 0.01 0.00
PC-2 0.00 0.01 -0.01 -0.01 0.37 0.00 -0.76 -0.53
PC-3 0.00 -0.02 -0.01 -0.01 0.77 0.01 -0.07 0.63
PC-4 -0.00 -0.01 0.71 0.71 0.01 -0.00 -0.01 -0.00
PC-5 -0.21 0.93 -0.03 0.04 0.01 -0.28 0.00 0.01
PC-6 -0.01 0.05 0.71 -0.71 0.00 -0.02 -0.00 -0.00
PC-7 0.71 -0.05 -0.00 -0.00 0.00 -0.70 -0.00 0.00
PC-8 0.00 0.00 0.00 0.00 -0.52 -0.00 -0.65 0.56

TABLE B3. PCA original features to principal component
correlations for the SUSY1 case (rounded to 2 d.p.).

SUSY2, Mχ̃0
1

= 200 GeV PCA correlations

pj1T pj2T ηj1 ηj2 ∆φj1j2 MET ∆φj1MET ∆φj2MET

PC-1 0.67 0.32 0.00 -0.00 -0.01 0.67 0.01 0.01
PC-2 0.01 0.01 0.00 -0.01 0.34 0.01 -0.76 -0.56
PC-3 -0.00 0.01 0.03 0.06 0.79 -0.00 -0.09 0.60
PC-4 0.00 -0.01 0.71 0.70 -0.05 0.00 0.00 -0.04
PC-5 -0.22 0.95 0.01 0.01 -0.01 -0.24 0.00 -0.01
PC-6 0.00 0.00 -0.71 0.71 -0.01 0.00 -0.00 -0.01
PC-7 0.71 -0.01 0.00 -0.00 0.00 -0.71 -0.00 -0.00
PC-8 0.00 0.00 -0.00 0.00 0.51 -0.00 0.65 -0.57

TABLE B4. PCA original features to principal component
correlations for the SUSY2 case (rounded to 2 d.p.).

Appendix C: Signal to background analysis

We show here results for signal to background classi-
fication. Note that these results are not intended to be
used for discovery since we are assuming the same num-
ber of signal and background events which would not be
the case for real data, but rather to demonstrate the per-
formance of our methods and provide a reference for how
well it is possible to distinguish the different signals from
background depending on the signal kinematics.

In Fig. A3, we show the ROC curves for various sig-
nals at parton-level, whereas the classification accuracy
for the detector-level LO and NLO event generation is
shown in Fig A4 and A5 respectively. ALPs are more
difficult to pick up from the SM background, a task that
becomes simpler and simpler as we increase the mass of
the DM particle. SUSY3 and EFT, as expected, exhibit
very similar performances, and in Fig. A3 the two lines
overlap each other. Nevertheless, the SUSY3 benchmark
corresponds to a DM particle of 300 GeV, whereas the
EFT corresponds to a DM particle with negligible mass.

Appendix D: Classifier performance at different
levels of signal

Here we present how the DNN and CNN for 2D his-
tograms perform for different levels of signal. We run
the classifiers as in sections IV C and IV D but this time
we construct the histograms from a mixture of both sig-
nal and background events. We set the total number of
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FIG. A3. ROC curves using Neural Networks for different
signals versus background for the LO parton-level analysis.

FIG. A4. ROC curves using Neural Networks for different
signals versus background for the LO detector-level simulated
data.

events per histogram to be fixed and change the ratio of
number of signal events NSig to background events NBG

and show the model accuracy in Figure A6 for when dis-
tinguishing between SUSY WIMP events and ALP and
EFT signals for various event ratios. Note that in the
limit NSig/NBG →∞ we reduce to the previous situation
where we are comparing only signal with no background.
We see that it is harder to distinguish SUSY signals from
the EFT than the ALP, especially around the mχ̃0= 300
GeV range.

FIG. A5. Neural Network NLO detector-level ROC curves for
different signals versus background.

FIG. A6. DNN for 2D histogram accuracy for differing num-
ber of signal events for 50 background events trained for 100
epochs

The plot shows us that we require comparable levels of
signal to background for good performance, illustrating
that this method is not suitable for discovery since discov-
ery would necessitate good performance for NSig � NBG

(it would be expected that performance increases with
total number of events - perhaps with a very large num-
ber of events the algorithm would be much more sensitive
for lower levels of signal but that is beyond the scope of
this paper.

The point of having the mixing between signal and
background is to demonstrate how effectively we can dis-
entangle DM candidates beyond the perfect idealised sce-
nario where NSig = NBG - assuming a discovery of sig-
nal is made it is good to know benchmarks for perfor-
mance since we would not be able to fully separate signal
from background in a realistic scenario. Knowing these
benchmarks is also useful for when constructing unsuper-
vised algorithms where it is useful to know the number
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of events required for good performance.
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