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Abstract

We present here various techniques to work with clean and disordered quan-
tum Ising chains, for the benefit of students and non-experts. Starting from the
Jordan-Wigner transformation, which maps spin-1/2 systems into fermionic
ones, we review some of the basic approaches to deal with the superconducting
correlations that naturally emerge in this context. In particular, we analyze
the form of the ground state and excitations of the model, relating them to the
symmetry-breaking physics, and illustrate aspects connected to calculating dy-
namical quantities, thermal averages, correlation functions, and entanglement
entropy. A few problems provide simple applications of the techniques.
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The quantum many-body problem is notoriously difficult [1, 2]. Recent times have
seen tremendous development in our experimental abilities in dealing with well-controlled
quantum systems, in different platforms, from superconducting qubits used in quantum
information processing [3–6] to quantum simulators, for instance with trapped ions [7] or
ultracold atoms [8–10].

These experimental advances call for a parallel theoretical understanding of equilib-
rium, both at zero and finite temperatures, and out-of-equilibrium properties of systems of
interacting spins. While few exactly solvable models are known [11], many numerical tech-
niques have been developed in the last decades, ranging from quantum Monte Carlo [12]
to density matrix renormalization group [13, 14], matrix product states [15] and tensor
networks [16,17].

An extremely rich class of models is given by Ising models with long-range interactions,
directly relevant to many experimental platforms, like trapped ions [7], and Rydberg
atoms [18]. For Rydberg atoms [18], the relevant Hamiltonian, when written in terms of
spin-1/2 (Pauli) operators σ̂αj (with α = x, y, z and j a site-index) has the form: 1

Ĥ =
∑
i<j

Jij σ̂
z
i σ̂

z
j +

∑
i

(
hxi σ̂

x
i + hzi σ̂

z
i

)
, (2)

where the couplings Jij — in principle long-ranged — can be tuned, for instance, by
varying the distance between Rydberg atoms.

What we are going to study in these lecture notes is the much simpler case of an
XY/Ising spin chain with nearest-neighbour interactions in a transverse field:

Ĥ = −
L∑

j=1

(
Jx
j σ̂

x
j σ̂

x
j+1 + Jy

j σ̂
y
j σ̂

y
j+1

)
−

L∑
j=1

hj σ̂
z
j , (3)

where L is the length of the chain, and we will allow for arbitrary nearest-neighbour

couplings J
x/y
j in the x and y direction in spin space, and arbitrary transverse fields hj .

1This is based on the identification, at each site i, of the atomic ground |gi⟩ and Rydberg excited
state |ri⟩ with the spin-1/2 eigenstates of σ̂z

i = |gi⟩⟨gi| − |ri⟩⟨ri|, | ↑⟩ and | ↓⟩, respectively, with σ̂x
i =

|ri⟩⟨gi| + |gi⟩⟨ri|. In terms of the projector on the Rydberg state n̂i = |ri⟩⟨ri|, a standard expression for

Ĥ is:

Ĥ =
∑
i

ℏΩi

2
σ̂x
i −

∑
i

ℏ∆in̂j +
∑
i<j

Vij n̂in̂j , (1)

where Ωi is the Rabi frequency driving, ∆i the detuning, and Vij the interaction between Rydberg states
at different sites [18]. By writing n̂i = (1− σ̂z

i )/2, the spin representation in Eq. (2) follows directly.
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Interestingly, the quantum Ising chain with nearest-neighbour interactions is closely re-
lated to topological superconductivity, as the model is unitarily equivalent to the quadratic
fermionic Hamiltonian of a p-wave superconducting chain (see Sec. 2), that displays a
topological phase where zero-energy boundary Majorana modes appear [19]. 2 The p-
wave superconducting model, also known as the Kitaev chain, has been the center of a lot
of research in topological superconductivity, see Refs. [20–22] for a review.

The quantum Ising chain problem is an ideal playground for testing many of the
ideas of statistical mechanics, including recent non-equilibrium physics. As such, it is
a standard test case in much of the recent literature. It has been used for studying
the effect of quantum quenches in integrable systems [23–33], Kibble-Zurek scaling of
excitations [34–37], dynamical quantum phase transitions [38,39], dynamics of periodically
driven systems [36, 40–44], entanglement transitions [45–55], work statistics [56–59], and
time crystals [60,61], just to give some examples. A recent book on the subject, Ref. [62],
can be used as a source for some more literature.

These notes are intended for students willing to begin working with quantum Ising
chains. They can be also useful as a practical guide to researchers entering the field. We,
unfortunately, do no justice to the immense literature where concepts and techniques were
first introduced or derived, and even less so to the many papers where physical applications
are presented. We apologize in advance for that with authors whose work is not duly cited.
However, most of the topics include detailed derivations which should make these notes
reasonably self-standing.

The level of our presentation is roughly appropriate for graduate students, but master
students should also be able to follow most of the developments, provided they acquire the
necessary pre-requisites: second quantization [1] to deal with bosons and fermions, and
basic knowledge of quantum mechanics of the spin-1/2 [63].

More in detail, we will discuss how to map, through the Jordan-Wigner transformation,
the XY/Ising spin chain in Eq. 3 into a quadratic spinless fermion model:

Ĥ = −
L∑

j=1

(
(Jx

j + Jy
j )ĉ

†
j ĉj+1 + (Jx

j − Jy
j )ĉ

†
j ĉ

†
j+1 + H.c.

)
+

L∑
j=1

hj(2n̂j − 1) , (4)

where ĉ†j creates a spinless fermion at site j. This Hamiltonian, with a few details on
the boundary conditions which we will discuss at length, coincides with the celebrated
Kitaev chain model [19] for p-wave superconductors, supporting Majorana modes at the
boundaries of an open chain.

Following that, we will show how essentially any static and dynamic property of the
model can be determined. In particular, finding the 2L eigenvalues (including multiplic-
ities) and associated eigenvectors of Ĥ amounts to diagonalising a 2L × 2L matrix H
containing the couplings, a massive simplification which allows dealing with very large
chain lengths, L ∼ 1000, with moderate numerical effort. With comparable efforts, one
can calculate thermal properties, spin-spin correlation functions, and the entanglement
entropy. Moreover, an explicit time-dependence of the Hamiltonian parameters can be
dealt with quite easily by integrating over time a system of 2L differential equations, the
so-called Bogoliubov-de Gennes equations.

Here is an outline of the material presented. We start, in Sec. 1, from the Jordan-
Wigner transformation, which allows mapping the spin-chain Hamiltonian in Eq. (3) into
the spinless fermion Hamiltonian in Eq. (4), as detailed in Sec. 2. Next, Sec. 3 treats the
case of an ordered Ising chain with periodic boundary conditions, where a simple analytical

2This phase corresponds to the symmetry-breaking phase of the quantum Ising chain, as we will better
clarify in Sec. 3, and 6.2.
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reduction to an assembly of 2 × 2 problems is possible. In Sec. 5 we discuss the Nambu
formalism for dealing with the quadratic fermionic Hamiltonian in the general disordered
case. Section 6 shows how to diagonalize the spinless fermion Hamiltonian in the general
disordered case, while in Sec. 7 we derive the Bogoliubov-de Gennes equations which
encode the unitary Schrödinger dynamics for the case of a time-dependent Hamiltonian.
Sections 8 and 9 contain the technicalities related to the calculation of correlation functions
involving Jordan-Wigner string operators and the entanglement entropy, while in Sec. 10
we show how to calculate thermal averages. Finally, in Appendix A we show how to
calculate the overlap between different Fock states for two different Ising Hamiltonians.

A word on the notation. We will try to be consistent with a notation in which quantum
mechanical operators acting in the full Hilbert space, 2L dimensional for a system of L
spins, are denoted with a hat, such as Ĥ for the Hamiltonian or Û for a unitary operator.
Matrices (and vectors) are denoted in boldface, such as U, if they refer to L×L (or 2×2)
block matrices, or as U or H, if they refer to 2L× 2L matrices. Here is a table where the
main symbols are explained.

σ̂αj Pauli matrices (α = x, y, z) at site j

ĉ†j Creation operator for a spinless fermion at site j

ĉ†k Creation operator for a spinless fermion with wave-vector k

γ̂†µ Creation operator for a Bogoliubov fermion

Ĥ The Hamiltonian operator

Ĥp=0,1 The parity even/odd projection (for p = 0/1) of the fermionic Hamiltonian

Ĥp=0,1 The fermionic Hamiltonian with ABC/PBC (for p = 0/1)

Ψ̂k The two-component Nambu fermion operator with wave-vector k
Hk The 2× 2 Hamiltonian block with wave-vector k
Rk The 3-dimensional effective magnetic field with wave-vector k
Uk The 2× 2 unitary matrix with eigenvectors of Hk with wave-vector k

Ψ̂ The 2L-dimensional Nambu fermion operator composed of ĉj and ĉ†j
Φ̂ The 2L-dimensional Nambu fermion operator composed of γ̂µ and γ̂†µ
H The 2L× 2L Hamiltonian matrix in the Nambu formalism
U The 2L× 2L unitary matrix with eigenvectors of H

U,V L× L blocks of the unitary matrix U

1 Jordan-Wigner transformation

For systems of bosons and fermions, a large assembly of many-body techniques has
been developed [1]. In particular, while the full Hilbert space for particles on lattices with
L sites is exponentially large in L, models which are quadratic in the fermion or bosons
creation/destruction operators are “solvable”, as they reduce to solving a single-particle
problem [1]. Spin systems, on the contrary, are neither bosons nor fermions. Their full
Hilbert space is also exponentially large — 2L for spin-1/2 on a lattice with L sites — but
the equivalent of a “solvable quadratic” problem is lacking: even the simplest spin-spin
interactions make the Hamiltonian essentially unsolvable, in general.

Consider, to start with, a single spin-1/2, and the three components of the spin oper-
ators represented in terms of the usual Pauli matrices 3 σ̂α with α = x, y, z. The Hilbert

3Recall that

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
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space of a single spin is two-dimensional: for instance, you can write a basis as {|↑⟩, |↓⟩},
in terms of the eigenstates of σ̂z, with σ̂z|↑⟩ = |↑⟩ and σ̂z|↓⟩ = −|↓⟩. Moreover, if σ̂αj de-
note Pauli matrices at different lattice sites j, hence acting on “different” (distinguishable)
two-dimensional Hilbert spaces, then[

σ̂αj , σ̂
α′
j′
]
= 0 for j′ ̸= j . (5)

But on the same site, the angular momentum commutation rules lead to[
σ̂xj , σ̂

y
j

]
= 2iσ̂zj (6)

and cyclic permutations [63]. Interestingly, by defining the raising and lowering operators
σ̂±j = (σ̂xj ± iσ̂yj )/2 which act on the basis states as σ̂+|↓⟩ = |↑⟩ and σ̂−|↑⟩ = |↓⟩, you can
verify that {

σ̂+j , σ̂
−
j

}
= 1 , (7)

where
{
Â, B̂

}
= ÂB̂ + B̂Â denotes the anti-commutator, typical of the canonical anti-

commutation rules for fermions [1].
Using bosons to describe spins would seem impossible. First of all, if we have a single

boson b̂† with associated vacuum state |0⟩, such that b̂ |0⟩ = 0, then, using the canonical
bosonic commutation rules

[
b̂, b̂†

]
= 1 you can construct an infinite dimensional Hilbert

space [1] with states

|n⟩ = 1√
n!
(b̂†)n|0⟩ , where n = 0, 1, · · ·∞ .

However, if we decide to truncate such a Hilbert space to only two states, {|0⟩, |1⟩}, assum-
ing (b̂†)2|0⟩ = 0, then the Hilbert space of a single spin-1/2 can be easily mimicked. Such
a truncation, which can be thought of as adding a large — ideally “infinite” — on-site
repulsion term to the boson Hamiltonian, is known as hard-core boson. We transform the
Pauli spin-1/2 operators σ̂αj (with α = x, y, z, and j a generic site index) into hard-core

bosons b̂†j , by identifying 4 at each site |0⟩ ↔ |↑⟩ and |1⟩ = b̂†|0⟩ ↔ |↓⟩. Recalling that

σ̂± = (σ̂x ± iσ̂y)/2 act as σ̂+|↓⟩ = |↑⟩, and σ̂−|↑⟩ = |↓⟩, we must have:
σ̂+j = b̂j

σ̂−j = b̂†j

σ̂zj = 1− 2b̂†j b̂j

=⇒


σ̂xj = b̂†j + b̂j

σ̂yj = i(b̂†j − b̂j)

σ̂zj = 1− 2b̂†j b̂j

. (8)

These operators b̂†j commute at different sites — as the original σ̂αj do — but are not

ordinary bosonic operators. They anti-commute on the same site 5
{
b̂j , b̂

†
j

}
= 1 and they

verify the hard-core constraint (b̂†j)
2|0⟩ = 0, i.e., at most one boson is allowed on each site.

which verify [σ̂x, σ̂y] = 2iσ̂z. The physical spin operators have an extra factor ℏ/2.
4This identification is not unique, as you can swap the two states.
5Since on the same site

{
σ̂+
j , σ̂

−
j

}
= 1, this implies that

{
b̂j , b̂

†
j

}
= 1, while ordinary bosons would have

the commutator [b̂j , b̂
†
j ] = 1.

5
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Info: The hard-core boson mapping might be viewed as a way of rewriting spin-1/2
models in a rather general setting. For instance, if you have a Heisenberg model for
spin-1/2 sitting on a lattice, whose sites are denoted by j and with nearest-neighbour

pairs denoted by ⟨j, j′⟩ we could write, defining n̂j = b̂†j b̂j :

ĤHeis =
J

4

∑
⟨j,j′⟩

(
σ̂zj σ̂

z
j′+2(σ̂+j σ̂

−
j′+σ̂

−
j σ̂

+
j′ )
)
→ J

∑
⟨j,j′⟩

(
(n̂j−

1
2)(n̂j′−

1
2)+

1
2(b̂

†
j′ b̂j+b̂

†
j b̂j′)

)
.

The second expression shows that we are dealing with hard-core bosons hopping on
the lattice and repelling each other at nearest-neighbors. Needless to say, this helps
in no way in solving the problem.

i

The hard-core constraint seems to be ideally representable in terms of spinless fermions
ĉ†j , where the absence of double occupancy is automatically enforced by the Pauli exclusion
principle, and the anti-commutation on the same site comes for free.

↓ ↓ ↑ ↑ ↓ ↑

1 2 3 4 5 6
= b̂†1 b̂

†
2 b̂

†
5 |0⟩ = ĉ†1 ĉ

†
2 ĉ

†
5 |0⟩

Figure 1: Top: an L = 6 site spin configuration. Bottom: The corresponding particle configura-
tion.

Unfortunately, whereas the mapping of σ̂αj into hard-core bosons b̂†j is true in any

spatial dimension, writing b̂†j in terms of spinless fermions ĉ†j is straightforwardly useful
only in one-dimension (1D), where a natural ordering of sites is possible, j = 1, 2, · · · , L.
In other words, because fermion operators on different sites must anti-commute, the exact
handling of the resulting minus signs — which are absent in the original spin problem —
is very natural only in 1D.

Let ĉ†j and ĉj denote the creation and annihilation operators for spinless fermions at

site j, with canonical anti-commutation relations
{
ĉj , ĉ

†
j′
}
= δj,j′ ,

{
ĉj , ĉj′

}
=
{
ĉ†j , ĉ

†
j′
}
= 0,

and n̂j = ĉ†j ĉj the corresponding number operator, whose eigenvalues can be only 0 or 1.

Key properties of eiπn̂j . Important in the whole discussion below are the following

simple properties of eiπn̂j :

K1) e
iπn̂

j′ ĉj = ĉje
iπn̂

j′ for j′ ̸= j

K2) eiπn̂j ĉj = −ĉje
iπn̂j

K3) eiπn̂jeiπn̂j = 1

K4) e−iπn̂j = eiπn̂j = 1− 2n̂j

. (9)

i

In words: eiπn̂j commutes with fermionic operators at different sites, while it anti-commutes
on the same site. The anti-commutation in K2 can be verified by using the fermionic anti-

6
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commutation rules, or by arguing that n̂j = 0 when it sits to the left of ĉj , while n̂j = 1

when it sits to the right of ĉj . K3, equivalent to ei2πn̂j = 1, implies that eiπn̂j = e−iπn̂j .

By taking the Hermitian conjugate of K1 and K2 you obtain identical expressions for ĉ†j .

K4 follows because the possible eigenvalues of n̂j are 0 and 1.
The Jordan-Wigner (JW) transformation of hard-core bosons into spinless fermions

reads:

b̂j = K̂j ĉj = ĉjK̂j with K̂j =

j−1∏
j′=1

e
iπn̂

j′ = e
iπ

∑j−1

j′=1
n̂
j′ , (10)

where the non-local string operator K̂j is simply a sign, K̂j = ±1, counting the parity of
the number of fermions before site j, between sites 1 and j − 1, multiplying the fermionic
operator ĉj , with which it commutes.

We will now show that the following two properties of the b̂j follow:

Prop.1 :


{
b̂j , b̂

†
j

}
= 1{

b̂j , b̂j

}
= 0{

b̂†j , b̂
†
j

}
= 0

Prop.2 :


[
b̂j , b̂

†
j′

]
= 0[

b̂j , b̂j′
]
= 0[

b̂†j , b̂
†
j′

]
= 0

if j ̸= j′ , (11)

which is a formal way of writing that the b̂j are hard-core bosons. Prop.1 is straightforward

because the string K̂j cancels completely, for instance

b̂†j b̂j = ĉ†jK̂
†
j K̂j ĉj = ĉ†j ĉj ,

and, similarly, b̂j b̂
†
j = ĉj ĉ

†
j . In essence, on each site b̂j inherits the anti-commutation

property Prop.1 from the fermion ĉj .

To prove Prop.2, let us consider
[
b̂j1 , b̂

†
j2

]
, assuming j2 > j1. Using Eq. (10) and

properties K1,K3 from Eq. (9) it is simple to show that

b̂j1 b̂
†
j2

= ĉj1

( j2−1∏
j=j1

eiπn̂j

)
ĉ†j2 , (12)

which means that only the piece of JW string from j1 to j2 − 1 survives. Similarly, you
can show that

b̂†j2 b̂j1 =

( j2−1∏
j=j1

eiπn̂j

)
ĉ†j2 ĉj1 = −

( j2−1∏
j=j1

eiπn̂j

)
ĉj1 ĉ

†
j2

= +ĉj1

( j2−1∏
j=j1

eiπn̂j

)
ĉ†j2 , (13)

where the change of sign in the first line is due to the fermionic anti-commutation, ĉ†j2 ĉj1 =

−ĉj1 ĉ
†
j2
, and the crucial final change of sign is due to K2, while all the other operators

eiπn̂j for j ̸= j1 commute with ĉj1 , due to K1. Comparing Eq. (12) with Eq. (13) you

deduce that
[
b̂j1 , b̂

†
j2

]
= 0. All the other commutation relationships in Prop.2 are proven

similarly.

7
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Here is a summary of a few useful expressions where the string operator K̂j disappears
exactly:

b̂†j b̂j = ĉ†j ĉj ,

b̂†j b̂
†
j+1 = ĉ†j(1− 2n̂j)ĉ

†
j+1 = ĉ†j ĉ

†
j+1 ,

b̂†j b̂j+1 = ĉ†j(1− 2n̂j)ĉj+1 = ĉ†j ĉj+1 ,

b̂j b̂j+1 = ĉj(1− 2n̂j)ĉj+1 = ĉj(1− 2(1− ĉj ĉ
†
j))ĉj+1 = −ĉj ĉj+1 ,

b̂j b̂
†
j+1 = ĉj(1− 2n̂j)ĉ

†
j+1 = ĉj(1− 2(1− ĉj ĉ

†
j))ĉ

†
j+1 = −ĉj ĉ

†
j+1 . (14)

Notice the minus signs on the right-hand side, which should not be forgotten. Notice also
that we have used

j−1∏
j′=1

(
e
iπn̂

j′

) j∏
j′=1

(
e
iπn̂

j′

)
= eiπn̂j = 1− 2n̂j , (15)

because all but the last eiπn̂j -term cancel in the two strings.

Jordan-Wigner transformation. Summarising, spins are mapped into fermions
using: 

σ̂xj = K̂j (ĉ
†
j + ĉj)

σ̂yj = K̂j i(ĉ
†
j − ĉj)

σ̂zj = 1− 2n̂j

with K̂j =

j−1∏
j′=1

e
iπn̂

j′ . (16)

Armed with these expressions, it is simple to show that some nearest-neighbor spin-
spin operators transform simply into quadratic fermionic operators

σ̂xj σ̂
x
j+1 =

(
ĉ†j ĉj+1 + ĉ†j ĉ

†
j+1 +H.c.

)
σ̂yj σ̂

y
j+1 =

(
ĉ†j ĉj+1 − ĉ†j ĉ

†
j+1 +H.c.

)
. (17)

Unfortunately, a longitudinal field term involving a single σ̂xj or σ̂yj cannot be translated
into a simple local fermionic operator.

i

One important point to note concerns boundary conditions. One often assumes pe-
riodic boundary conditions (PBC) for the spin operators, which means that the model
is defined on a ring geometry with L sites, j = 1, · · · , L, and the understanding that
σ̂α0 ≡ σ̂αL and σ̂αL+1 ≡ σ̂α1 . This immediately implies the same PBC conditions for the

hard-core bosons. Hence, for instance: b̂†Lb̂L+1 ≡ b̂†Lb̂1. But observe what happens when
we rewrite a term of this form using spinless fermions:

b̂†Lb̂1 =

( L−1∏
j=1

eiπn̂j

)
ĉ†Lĉ1 = −

( L∏
j=1

eiπn̂j

)
ĉ†Lĉ1 = −eiπN̂ ĉ†Lĉ1 , (18)

where

N̂ =

L∑
j=1

ĉ†j ĉj , (19)

8
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is the total number of fermions, and the second equality follows because to the left of ĉ†L
we certainly have n̂L = 1, and therefore eiπn̂L ≡ −1. Similarly, you can verify that:

b̂†Lb̂
†
1 =

( L−1∏
j=1

eiπn̂j

)
ĉ†Lĉ

†
1 = −

( L∏
j=1

eiπn̂j

)
ĉ†Lĉ

†
1 = −eiπN̂ ĉ†Lĉ

†
1 . (20)

Warning: This shows that boundary conditions are affected by the fermion parity

eiπN̂ = (−1)N̂ , and PBC become anti-periodic boundary condition (ABC) when N̂ is
even. No problem whatsoever is present, instead, when the boundary conditions are
open (OBC), because there is no link, in the Hamiltonian, between operators at site
L and operators at site L+ 1 ≡ 1. More about this in a short while.

!

2 Transverse field Ising-XY models: fermionic formulation

Info: There is a whole class of one-dimensional spin systems where a fermionic re-
formulation can be useful. Probably the most noteworthy is the XXZ Heisenberg
chain, which would read:

ĤXXZ =
∑
j

(
J⊥
j (σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1) + Jzz

j σ̂zj σ̂
z
j+1

)
−
∑
j

hj σ̂
z
j . (21)

The corresponding fermionic formulation reads:

ĤXXZ →
∑
j

(
2J⊥

j (ĉ†j ĉj+1 +H.c.) + Jzz
j (2n̂j − 1)(2n̂j+1 − 1)

)
+
∑
j

hj(2n̂j − 1) , (22)

which shows that the fermions interact at nearest-neighbours, due to the Jzz
j -term.

i

Let us now concentrate on a class of one-dimensional models where the resulting
fermionic Hamiltonian can be exactly diagonalized, because it is quadratic in the fermions:
such a class includes the XY model and the Ising model in a transverse field.

Anisotropic XY model in a transverse field. After a rotation in spin space, we
can write the spin Hamiltonians leading to a quadratic fermion problem (allowing for
non-uniform, possibly random, couplings) as follows:

Ĥ = −
L∑

j=1

(
Jx
j σ̂

x
j σ̂

x
j+1 + Jy

j σ̂
y
j σ̂

y
j+1

)
−

L∑
j=1

hj σ̂
z
j , (23)

where σ̂αj are Pauli matrices. The couplings Jx,y
j and the transverse fields hj can be

chosen, for instance, as independent random variables with uniform distribution. For
a system of finite size L with open boundary condition (OBC), the first sum runs
over j = 1, · · · , L − 1, or, equivalently, we would set Jx,y

L = 0. If periodic boundary
conditions (PBC) are chosen, the sum runs over j = 1, · · · , L and one assumes that
σ̂αL+1 ≡ σ̂α1 . For J

y
j = 0 we have the Ising model in a transverse field, for Jy

j = Jx
j the

isotropic XY model in a transverse field.

i

9
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In terms of hard-core bosons, the Hamiltonian becomes:

Ĥ = −
L∑

j=1

(
J+
j b̂

†
j b̂j+1 + J−

j b̂
†
j b̂

†
j+1 + H.c.

)
+

L∑
j=1

hj(2n̂j − 1) , (24)

where we have introduced a shorthand notation 6 J±
j = Jx

j ± Jy
j .

Next, we switch to spinless fermions, since all terms appearing in the previous expres-
sion do not involve explicitly the string operator K̂j . In terms of fermions, the Hamiltonian
is essentially identical. We would remark that in the fermionic context, the pair creation
and annihilation terms are characteristic of the BCS theory of superconductivity [64]. The
only tricky point has to do with the boundary conditions. If one uses open boundary con-
ditions, the first sum runs over j = 1, · · · , L − 1 and there is never a term involving site
L+ 1, hence we have:

ĤOBC = −
L−1∑
j=1

(
J+
j ĉ

†
j ĉj+1 + J−

j ĉ
†
j ĉ

†
j+1 + H.c.

)
+

L∑
j=1

hj(2n̂j − 1) . (25)

In the PBC case, terms like b̂†Lb̂L+1 ≡ b̂†Lb̂1 = −eiπN̂ ĉ†Lĉ1 and b̂†Lb̂
†
L+1 ≡ b̂†Lb̂

†
1 = −eiπN̂ ĉ†Lĉ

†
1

appear in the Hamiltonian, where N̂ is the number of fermions operator. Therefore:

ĤPBC = ĤOBC + eiπN̂
(
J+
L ĉ

†
Lĉ1 + J−

L ĉ
†
Lĉ

†
1 + H.c.

)
. (26)

Info: Notice that, although the number of fermions N̂ is not conserved by Hamil-

tonian in Eq. (26), its parity eiπN̂ = (−1)N̂ is a “constant of motion” with value 1
or −1. So, from the fermionic perspective, it is as if we apply anti-periodic bound-
ary conditions (ABC), hence ĉL+1 = −ĉ1, if there is an even number of fermions

and periodic boundary condition (PBC), hence ĉL+1 = ĉ1, if there is an odd number
of fermions. This symmetry can also be directly seen from the spin Hamiltonian in
Eq. (23), where one should observe that the nearest-neighbour σ̂xj σ̂

x
j+1 and σ̂yj σ̂

y
j+1

can only flip pairs of spins, hence the parity of the overall magnetization along the z
direction is unchanged. Such a parity can be easily and equivalently expressed as:

P̂ =

L∏
j=1

σ̂zj =

L∏
j=1

(1− 2n̂j)=

L∏
j=1

eiπn̂j = eiπN̂ . (27)

We remark that P̂ flips all the σ̂xj and σ̂yj , i.e., P̂σ̂
x,y
j P̂ = −σ̂x,yj , in the Hamiltonian

in Eq. (23), leaving it invariant. This parity symmetry is the Z2-symmetry which the
system breaks in the ordered ferromagnetic phase, as we will better discuss later on.

i

Let us define the projectors on the subspaces with even and odd number of particles:

P̂even =
1

2
(1̂ + eiπN̂ ) = P̂0 and P̂odd =

1

2
(1̂− eiπN̂ ) = P̂1 . (28)

With these projectors, we can define two fermionic Hamiltonians acting on the 2L−1-
dimensional even/odd parity subspaces of the full Hilbert space:

Ĥ0 = P̂0ĤPBCP̂0 and Ĥ1 = P̂1ĤPBCP̂1 , (29)

6This notation should not generate confusion with the angular momentum ladder operators. Here there
is no imaginary unit i, and the couplings J±

j = Jx
j ± Jy

j are just real numbers.

10
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in terms of which we might express the full fermionic Hamiltonian in block form as:

ĤPBC =

(
Ĥ0 0

0 Ĥ1

)
. (30)

Observe that if you write a fermionic Hamiltonian of the form:

Ĥp=0,1 = −
L−1∑
j=1

(
J+
j ĉ

†
j ĉj+1 + J−

j ĉ
†
j ĉ

†
j+1 + H.c.

)
+ (−1)p

(
J+
L ĉ

†
Lĉ1 + J−

L ĉ
†
Lĉ

†
1 + H.c.

)

+
L∑

j=1

hj(2n̂j − 1) , (31)

then you can regard Ĥ1 as a legitimate PBC-fermionic Hamiltonian since

Ĥ1 = −
L∑

j=1

(
J+
j ĉ

†
j ĉj+1 + J−

j ĉ
†
j ĉ

†
j+1 + H.c.

)
+

L∑
j=1

hj(2n̂j − 1) , (32)

with the interpretation ĉL+1 ≡ ĉ1. Similarly, Ĥ0 is a legitimate ABC-fermionic Hamilto-

nian where you should pose ĉL+1 ≡ −ĉ1. Neither of them, however, expresses the correct
fermionic form of the PBC-spin Hamiltonian. However, they are useful in expressing the
fermionic blocks:

Ĥ0 = P̂0Ĥ0P̂0 = Ĥ0P̂0 and Ĥ1 = P̂1Ĥ1P̂1 = Ĥ1P̂1 , (33)

since Ĥp=0,1 conserve the fermionic parity, hence they commute with P̂0,1.

Warning: The distinction between Ĥ0,1 and the corresponding Ĥ0,1 might appear
pedantic, but is important, since the former acts non-trivially only on 2L−1-dimensional
blocks, while the latter live in the full Hilbert space, hence are 2L-dimensional. This
fact, for instance, complicates the calculation of thermal averages and is further dis-
cussed in Sec. 10.

!

Info: In the OBC case, since J±
L = 0, the two fermionic Hamiltonians coincide and

you can omit the label: Ĥ0 = Ĥ1 → Ĥ. Because of that, in the OBC case, you can
simply set ĤOBC = Ĥ and work with a single fermionic Hamiltonian.

i

3 Uniform XY-Ising model.

As a warm-up, let us study the uniform case, where Jx
j = Jx, Jy

j = Jy, hj = h,
originally solved in Ref. [65]. It is customary to parameterise Jx = J(1 + κ)/2 and

11



SciPost Physics Lecture Notes Submission

Jy = J(1− κ)/2, so that J+ = J and J− = κJ . The Hamiltonian is then: 7

ĤOBC = −J
L−1∑
j=1

(
ĉ†j ĉj+1 + κĉ†j ĉ

†
j+1 + H.c.

)
+ h

L∑
j=1

(2ĉ†j ĉj − 1) , (34)

for the OBC case, and:

ĤPBC = ĤOBC + eiπN̂J
(
ĉ†Lĉ1 + κĉ†Lĉ

†
1 + H.c.

)
. (35)

We assume from now on that the number of sites L is even: this is not a big restriction
and is useful.

In the spin-PBC case, if the number of fermions N̂ takes an odd value, then we effec-
tively have ĉL+1 ≡ ĉ1; if, on the contrary, N̂ takes an even value, then the L-th bond has an

opposite sign to the remaining ones, which can also be reformulated as ĉL+1 ≡ −ĉ1. Since
the Hamiltonian conserves the fermion parity, both the even and the odd particle subsec-
tors of the fermionic Hilbert space have to be considered when diagonalizing the model,
precisely as in the general case of Eq. (30). Introducing the two fermionic Hamiltonians
as in Eq. (31) we now have:

Ĥp=0,1 = −J
L∑

j=1

(
ĉ†j ĉj+1 + κĉ†j ĉ

†
j+1 + H.c.

)
+ h

L∑
j=1

(2n̂j − 1) , (36)

where we recall that p = 0, 1 is associated with the fermionic parity — p = 0 for even and
p = 1 for odd parity — and that this compact way of writing assumes that the boundary
terms are treated with:

ĉL+1 ≡ (−1)p+1ĉ1 . (37)

Let us now introduce the fermion operators in k-space, ĉk and ĉ†k, with {ĉk, ĉ
†
k′} = δk,k′ .

The direct and inverse transformations are defined as follows:
ĉk =

e−iϕ

√
L

L∑
j=1

e−ikj ĉj

ĉj =
eiϕ√
L

∑
k

e+ikj ĉk

, (38)

where the overall phase eiϕ does not affect the canonical anti-commutation relations, but
might be useful to change the phase of the anomalous BCS pair-creation terms (see below).
Which values of k should be used in the previous transformation depends on p. For p = 1
we have ĉL+1 ≡ ĉ1, which in turn implies, from the expression for ĉj in terms of ĉk, that

eikL = 1, hence the standard PBC choice for the k’s:

p = 1 =⇒ Kp=1 =
{
k =

2nπ

L
, with n = −L

2 + 1, · · · , 0, · · · , L2
}
. (39)

7Notice that one can change the sign of the h-term by making a particle-hole transformation c̃j →
(−1)j ĉ†j , which transforms ñj → 1− n̂j , and 1− 2ñj → 2n̂j − 1, while leaving the hopping term untouched
(same sign of J). With the current choice of the h-term, the h → +∞ ground state in the spin represen-
tation |↑↑ · · · ↑⟩ is mapped into the fermionic vacuum, which will be useful in discussing the ground state.
(Notice that the phase factor (−1)j exchange the roles of k = 0 and k = π in the discussion of the ground
state.) Similarly, the same particle-hole transformation but without phase factor (−1)j would also invert
the sign of the J-term, from ferromagnetic to antiferromagnetic.

12
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For p = 0 we have ĉL+1 ≡ −ĉ1, which implies that eikL = −1, hence an anti-periodic
boundary conditions (ABC) choice for the k’s:

p = 0 =⇒ Kp=0 =
{
k = ±(2n− 1)π

L
, with n = 1, · · · , L2

}
. (40)

In terms of ĉk and ĉ†k, with the appropriate choice of the k-vectors, Ĥp becomes: 8

Ĥp = −J
∑
k∈Kp

(
2 cos k ĉ†kĉk + κ

(
e−2iϕeikĉ†kĉ

†
−k +H.c.

))
+ h

∑
k∈Kp

(2ĉ†kĉk − 1) . (41)

Notice the coupling of −k with k in the (anomalous) pair-creation term, with the excep-
tions of k = 0 and k = π for the p = 1 (PBC) case, which do not have a separate −k
partner. It is useful to manipulate the (normal) number-conserving terms 9 to rewrite the
Hamiltonian as:

Ĥp =
∑
k∈Kp

(
(h− J cos k)

(
ĉ†kĉk − ĉ−kĉ

†
−k

)
− κJ

(
e−2iϕeikĉ†kĉ

†
−k +H.c.

))
. (42)

The two terms with k = 0 and k = π, present for p = 1 (PBC), taken together can be
written as:

Ĥ0&π = −2J (n̂0 − n̂π) + 2h (n̂0 + n̂π − 1) . (43)

The remaining p = 1 terms, and all terms for p = 0, come into pairs (k,−k). Let us define
the positive k values as follows:

K+
p=1 =

{
k = 2nπ

L , with n = 1, · · · , L2 − 1
}

K+
p=0 =

{
k = (2n−1)π

L , with n = 1, · · · , L2
}
.

(44)

Then we can write the Hamiltonians as:

Ĥ0 =
∑
k∈K+

0

Ĥk Ĥ1 = Ĥ0&π +
∑
k∈K+

1

Ĥk , (45)

where we have grouped terms with k and −k into a single Hamiltonian Ĥk of the form:

Ĥk = 2(h− J cos k)
(
ĉ†kĉk − ĉ−kĉ

†
−k

)
− 2κJ sin k

(
ie−2iϕĉ†kĉ

†
−k − ie2iϕĉ−kĉk

)
. (46)

Interestingly, the Hamiltonians Ĥk commute for different k, [Ĥk, Ĥk′ ] = 0, and act non-
trivially only in the 4-dimensional space generated by the states:{

ĉ†kĉ
†
−k|0⟩ , |0⟩ , ĉ

†
k|0⟩ , ĉ

†
−k|0⟩

}
(47)

8We use the standard fact that the sum over j introduces a Krönecker delta for the wave-vectors:

1

L

L∑
j=1

e−i(k−k′)j = δk,k′ .

9We use that ∑
k

2 cos k ĉ†k ĉk =
∑
k

cos k
(
ĉ†k ĉk − ĉ−k ĉ

†
−k

)
,

where we used the anti-commutation relations,
∑

k cos k = 0, and∑
k

(2ĉ†k ĉk − 1) =
∑
k

(
ĉ†k ĉk − ĉ−k ĉ

†
−k

)
.

13
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where they have a 4× 4 matrix of the form:
2(h− J cos k) −2iκJe−2iϕ sin k 0 0
2iκJe2iϕ sin k −2(h− J cos k) 0 0

0 0 0 0
0 0 0 0

 . (48)

Check of dimensions. Recall that both Ĥp=0,1 have 2L eigenvalues (including

multiplicity). Indeed, there are L
2 such terms for Ĥ0, hence a dimension 4

L
2 = 2L.

Notice that Ĥk=0,π also works in a 4-dimensional subspace,{
|0⟩ , ĉ†0ĉ

†
π|0⟩ , ĉ

†
0|0⟩ , ĉ

†
π|0⟩

}
, (49)

and there are L
2 − 1 wave-vectors in K+

1 , hence again a total dimension for Ĥ1 of

4
L
2
−14 = 2L. Recall, finally, that the correct eigenvalues are obtained from the block

Hamiltonians Ĥp=0,1 which have 2L−1 eigenvalues each (including multiplicity), those
with even (p = 0) or odd (p = 1) fermion parity.

i

To deal with the necessary combination of states {ĉ†kĉ
†
−k|0⟩ , |0⟩} involved in the non-

trivial 2× 2 blocks of the Hamiltonian, requiring essentially a Bogoliubov transformation,
we now define a fermionic two-component spinor

Ψ̂k =

(
ĉk
ĉ†−k

)
, Ψ̂†

k = (ĉ†k , ĉ−k) (50)

with anti-commutation relations (α = 1, 2 stands for the two components of Ψ̂){
Ψ̂kα, Ψ̂

†
k′α′

}
= δα,α′δk,k′ . (51)

We can then rewrite each Ĥk as:

Ĥk =
∑
α,α′

Ψ̂†
kα

(
Hk

)
αα′Ψ̂kα′ = (ĉ†k , ĉ−k)

(
2(h− J cos k) −2κJie−2iϕ sin k
2κJie2iϕ sin k −2(h− J cos k)

)
︸ ︷︷ ︸

Hk

(
ĉk
ĉ†−k

)
,

(52)
where we have highlighted a 2× 2 Hermitian matrix Hk which can be expressed in terms
of new pseudo-spin Pauli matrices τ̂x,y,z as:

Hk = Rk · τ̂ . (53)

Here we recognise an “effective magnetic field” Rk given by:

Rk = 2
(
− κJ sin 2ϕ sin k , κJ cos 2ϕ sin k , (h− J cos k)

)T

. (54)

Info: Observe the role of the arbitrary phase ϕ introduced in the transformation from
real space to momentum space, Eq. (38). For ϕ = 0 the effective magnetic field lives
in the y− z plane in pseudo-spin space, while for ϕ = π

4 it lives in the x− z plane and
the pseudo-spin Hamiltonian is real, as it involves τ̂x and τ̂ z.

i

14



SciPost Physics Lecture Notes Submission

By solving the 2 × 2 eigenvalue problem for the pseudo-spin Hamiltonian Hk we find
the eigenvalues ϵk± = ±ϵk with:

ϵk =
∣∣Rk

∣∣ = 2J

√(
h

J
− cos k

)2

+ κ2 sin2 k ≥ 0 , (55)

with corresponding eigenvectors (vk± , uk±)
T which can be expressed in terms of spin

eigenstates in the direction Rk/|Rk|. From now on we will fix ϕ = 0, so that the pseudo-
spin effective magnetic field lives in the y−z plane. Define the shorthandRk = (0 , yk , zk)

T

with zk = 2(h−J cos k) and yk = 2κJ sin k. For the negative energy eigenvector, we have:(
vk−
uk−

)
≡
(
vk
uk

)
=

1√
2ϵk(ϵk + zk)

(
iyk

ϵk + zk

)
, (56)

where we have introduced the shorthands vk = vk− and uk = uk−. Note, in passing, that
u−k = uk, while v−k = −vk, since zk is even in k, while yk is odd. The positive-energy
eigenvector (vk+ , uk+)

T is related to the previous one by a simple transformation: 10(
vk+
uk+

)
=

(
u∗k

−v∗k

)
=

1√
2ϵk(ϵk + zk)

(
ϵk + zk
iyk

)
. (59)

The unitary matrix Uk having the two previous eigenvectors as columns:

Uk =

(
u∗k vk

−v∗k uk

)
, (60)

diagonalizes Hk:

U†
k Hk Uk =

(
ϵk 0
0 −ϵk

)
. (61)

So, define new fermion two-component operators Φ̂k through(
γ̂k
γ̂†−k

)
def
= Φ̂k = U†

kΨ̂k =

(
ukĉk − vkĉ

†
−k

v∗kĉk + u∗kĉ
†
−k

)
. (62)

It is straightforward to verify that γ̂k is indeed a fermion. 11 In terms of Φ̂k = (γ̂k , γ̂
†
−k)

T

and Φ̂†
k = Ψ̂†

kUk = (γ̂†k , γ̂−k), we have:

Ĥk = Ψ̂†
k Uk U

†
k Hk Uk U

†
kΨ̂k = Φ̂†

k

(
ϵk 0
0 −ϵk

)
Φ̂k = ϵk

(
γ̂†kγ̂k − γ̂−kγ̂

†
−k

)
= ϵk

(
γ̂†kγ̂k + γ̂†−kγ̂−k − 1

)
. (64)

10Indeed, write the eigenvalue problem for (vk , uk)
T, with energy ϵk− = −ϵk:{

zkvk − iykuk = −ϵkvk

iykvk − zkuk = −ϵkuk

. (57)

Now change the sign of the second equation, take the complex-conjugate of both, and rewrite them in
inverted order, to get: {

zk(u
∗
k)− iyk(−v∗k) = ϵk(u

∗
k)

iyk(u
∗
k)− zk(−v∗k) = ϵk(−v∗k)

, (58)

which is the eigenvalue equation for (vk+ , uk+)
T.

11One can verify anti-commutation relationships very easily:{
γ̂k, γ̂

†
k

}
=

{
uk ĉk − vk ĉ

†
−k, u

∗
k ĉ

†
k − v∗k ĉ−k

}
= |uk|2

{
ĉk, ĉ

†
k

}
+ |vk|2

{
ĉ†−k, ĉ−k

}
= |uk|2 + |vk|2 = 1 , (63)

where the last equality follows from the normalization condition for the eigenvectors.
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Figure 2: (a) The two bands ±ϵk plotted by varying the transverse field h in the range [0, 2].
(b-d) The bands ±ϵk for three different transverse fields h: (b) h/J = 0.5 (inside the ferromagnetic
region), (c) h/J = 1 (the critical point), (d) h/J = 1.5 (inside the paramagnetic phase). Notice
the remarkable behaviour at h = hc = J , clearly visible in panel (c): a gapless linear spectrum.
Notice also how you can hardly distinguish the bands of the two gapped phases in (b) and (d). But
their topology is distinctly different: see the discussion related to Fig. 3. Here J = 1 and κ = 1.

The form of the two bands ±ϵk, as a function of k and for several values of h is noteworthy.
Figure 2 shows plots that illustrate them.
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Winding and topology. It is instructive to trace the behaviour of the “effective
magnetic field” Rk, of magnitude |Rk| = ϵk, that the system “sees” as the wave-
vector k spans the so-called Brillouin zone [−π, π). Fixing ϕ = 0 in Eq. (54), this
effective magnetic field lies in the y − z plane, Rk = (0, yk, zk)

T with yk = 2κJ sin k
and zk = 2(h− J cos k), where it draws the ellipse of equation a

y2k
4κ2J2

+
(zk − 2h)2

4J2
= 1 , (65)

as k spans the interval [−π, π). We show in Fig. 3 three examples of this ellipse (circles,
for κ = 1), one for |h| < J , one for h > J , and that for h = J . For |h| < J we see
that the vector Rk turns around and comes back to its original position, making one
complete revolution around the origin, as k varies in [−π, π). We term the number of
revolutions as the index [66] (or winding number) of the vector, and here it equals 1.
As we change h in the range −J < h < J , the index, for continuity reasons, keeps the
constant value 1 (it can only assume discrete values). In the case h > J , the vector
Rk makes no revolution around the origin and its index is 0: it keeps this value for
any h > J , for the same continuity argument as before. The transition of the index
between the two values 1 and 0 occurs at h = J . At that point, the continuity of
the index as a function of the curve is broken, because the index is not defined for
h = J , as the curve passes through the origin for k = 0. The index is a topological
quantity, invariant under continuous transformations. Because it takes different values
for |h| < J and h > J we say that these two phases have different topologies. We
see that Rk = 0 corresponds to a degeneracy point of the 2 × 2 Hamiltonian Hk —
realised for k = 0 and h = J (but also for k = π and h = −J) — and the discontinuity
of the index corresponds to the closing of the gap in the single-quasiparticle spectrum
shown in Fig. 2(c).

aThe ellipse degenerates into a segment for κ = 0, corresponding to the isotropic XY model. Hence,
our argument requires κ ̸= 0.

i

3.1 Ground state and excited states of the uniform XY-Ising model.

The expressionHk = ϵk
(
γ̂†kγ̂k+γ̂

†
−kγ̂−k−1

)
in Eq. (64), together with the expression for

ϵk ≥ 0 in Eq. (55), allows to immediately conclude that the ground state of the Hamiltonian

must be the state |∅γ⟩ which annihilates the γ̂k for all k, positive and negative, the so-called
Bogoliubov vacuum:

γ̂k |∅γ⟩ = 0 ∀k . (66)

In principle, one can define two such states, one in the p = 0 (even, ABC) sector, and one
in the p = 1 (odd, PBC) sector. However, one finds that the winner between the two, i.e.,
the actual global ground state, is the one in the p = 0 (even) sector, with an energy

EABC
0 = −

ABC∑
k>0

ϵk . (67)

The ground state can be written explicitly as:

|∅γ⟩ABC ∝
ABC∏
k>0

γ̂−kγ̂k|0⟩ , (68)
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Figure 3: Curves drawn by the vector Rk as k spans [−π, π), for three values of h. Here J = 1,
κ = 1.

where |0⟩ is the vacuum for the original fermions, ĉk|0⟩ = 0. The explicit calculation shows
that: ∏

k>0

γ̂−kγ̂k|0⟩ =
∏
k>0

(
u−kĉ−k − v−kĉ

†
k

)(
ukĉk − vkĉ

†
−k

)
|0⟩

=
∏
k>0

(−vk)
(
uk + vkĉ

†
kĉ

†
−k

)
|0⟩ , (69)

where we used that u−k = uk and v−k = −vk. By normalising the state, we arrive at the
BCS form:

|∅γ⟩ABC =

ABC∏
k>0

(
uk + vkĉ

†
kĉ

†
−k

)
|0⟩ . (70)

The PBC-sector ground state must contain an odd number of particles. Since a BCS-
paired state is always fermion-even, the unpaired Hamiltonian terms Ĥ0&π must contribute
with exactly one fermion in the ground state. It is simple to verify that, with our choice
of the sign of h > 0, the ground state has n̂k=0 → 1 and n̂k=π → 0, resulting in an extra
term of the form

δE0&π = min(Ĥ0&π) = −2J . (71)

The PBC-ground state is, therefore:

|∅γ⟩PBC = ĉ†k=0

PBC∏
0<k<π

(
uk + vkĉ

†
kĉ

†
−k

)
|0⟩ = γ̂0

PBC∏
0<k<π

(
uk + vkĉ

†
kĉ

†
−k

)
|0⟩ , (72)

where we defined γ̂0 = ĉ†0 and γ̂π = ĉπ for the unpaired states. The corresponding energy
is:

EPBC
0 = −2J −

PBC∑
0<k<π

ϵk . (73)
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Figure 4: The gap between the ground state in the PBC and ABC sectors versus the transverse
field h/J . The two lower insets illustrate the exponential drop to 0 of the gap in the ferromagnetic
region (left), and the power-law behaviour at the critical point (right). Here κ = 1.

And here comes an amusing subtlety of the thermodynamic limit L → ∞. When you
consider the energy-per-site e0 = E0/L, then the ground state energy should simply tend
to an integral:

e0 = − lim
L→∞

1

L

ABC∑
k>0

ϵk = −
∫ π

0

dk

2π
ϵk . (74)

The same integral appearing in Eq. (74) gives the ground state energy-per-site in the PBC
sector, but an amusing role is played by the two boundary points at 0 and π, when one
considers the energy splitting ∆E0 = EPBC

0 −EABC
0 . Notice in particular that Eq. (67) for

EABC
0 involves L/2 k-points in the interval (0, π), while Eq. (73) for EPBC

0 involves L/2− 1
points in the interval (0, π) and an extra term −2J . If you refrain from being too cavalier
with the L → ∞ limit, you discover that the energy splitting ∆E0 = EPBC

0 − EABC
0 is,

in the whole ferromagnetically ordered region −J < h < J , a quantity that goes to zero
exponentially fast when L→ ∞: in other words, the two sectors, ABC and PBC, provide
the required double degeneracy of the ferromagnetic phase: you can see that easily for
h = 0. Less trivial, but true, for all |h| < J . On the contrary, ∆E0 is finite 12 in the
quantum disordered regions |h| > J , ∆E0 = 2(|h| − J), and goes to zero as a power-law,
more precisely as π/(2L), at the critical points hc = ±J . In Fig. 4 we illustrate these facts
by numerically evaluating ∆E0.

Regarding the excited states, let us start from the p = 0 (even, ABC) sector. Consider,

12Again, the convergence in L to such finite value is exponentially fast in the whole quantum disordered
region.
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as a warm-up, the state γ̂†k1 |∅γ⟩
ABC. A simple calculation shows that, regardless of the sign

of k1:

γ̂†k1 |∅γ⟩
ABC = ĉ†k1

ABC∏
k>0

k ̸=|k1|

(
uk + vkĉ

†
kĉ

†
−k

)
|0⟩ . (75)

In essence, the application of γ̂†k1 transforms the Cooper-pair at momentum (|k1|,−|k1|)
into an unpaired fermion in the state ĉ†k1 |0⟩. This would cost an extra energy +ϵk1 over
the ground state: the gain −ϵk1 obtained from pairing is indeed transformed into a no-gain

(energy 0) for the unpaired state ĉ†k1 |0⟩, consistently with the 4× 4 structure of Eq. (48)
predicting two eigenvalues 0 for the unpaired states. There is a problem with parity,
however: a single unpaired fermion changes the overall fermion parity of the state. Hence,
the lowest allowed states must involve two creation operators, γ̂†k1 γ̂

†
k2

with k1 ̸= |k2|:

γ̂†k1 γ̂
†
k2
|∅γ⟩ABC = ĉ†k1 ĉ

†
k2

ABC∏
k>0

k ̸=|k1|,|k2|

(
uk + vkĉ

†
kĉ

†
−k

)
|0⟩ . (76)

The energy of such excitation is EABC
0 +ϵk1 +ϵk2 because we loose two Cooper pairs. Quite

amusingly, if you consider the special case γ̂†k1 γ̂
†
−k1

you find that:

γ̂†k1 γ̂
†
−k1

|∅γ⟩ABC =
(
− v∗k1 + u∗k1 ĉ

†
k1
ĉ†−k1

) ABC∏
k>0

k ̸=|k1|

(
uk + vkĉ

†
kĉ

†
−k

)
|0⟩ . (77)

This means that γ̂†k1 γ̂
†
−k1

transforms the Cooper pair at momentum (|k1|,−|k1|) into the
corresponding anti-bonding pair:(

uk1 + vk1 ĉ
†
k1
ĉ†−k1

)
|0⟩

γ̂†
k1

γ̂†
−k1−−−−−→

(
− v∗k1 + u∗k1 ĉ

†
k1
ĉ†−k1

)
|0⟩ .

This costs an energy 2ϵk1 , consistent with the previous expression EABC
0 + ϵk1 + ϵk2 , if you

consider that ϵ−k1 = ϵk1 .
Generalising, we can construct all the excited states in the even-fermion sector, by

applying an even number of γ̂†k to |∅γ⟩ABC, each γ̂†k costing an energy ϵk. In the occupation
number (Fock) representation we have, therefore:

|ψ{nk}⟩ =
ABC∏
k

(
γ̂†k

)nk

|∅γ⟩ABC with nk = 0, 1 &
ABC∑
k

nk = even

E{nk} = EABC
0 +

ABC∑
k

nkϵk . (78)

We see that there are 2L−1 such states, as required.

Remark: An important remark and check is here in order. First: the counting of
the excitation number is correct if the k in Eq. (78) are allowed to range among the
L positive and negative wave-vectors allowed by ABC: 2L Fock states if the parity
check is not enforced, 2L−1 if we enforce parity. Second: recall that we can transform
a Cooper pair of energy −ϵk into the corresponding anti-paired state, of energy +ϵk.
The state that realises that is γ̂†kγ̂

†
−k|∅⟩

ABC. Its energy is 2ϵk above that of the ground
state, consistently with the formula given in Eq. (78), since ϵ−k + ϵk = 2ϵk.

!
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In the p = 1 (odd, PBC) sector, some care must be exercised. One should apply

an even number of γ̂†k to the ground state |∅γ⟩PBC, including in the choice the unpaired

operators γ̂†0, amounting to removing the fermion from the k = 0 state, and γ̂†π, amounting
to creating a fermion in the k = π state.

3.1.1 The spectral gap

We now want to understand the spectral gap of our model, i.e., the difference between
the first excited state E1 and the ground state E0, ∆E = E1−E0. More generally, we would
ask also for the spectral gap of excitations having a given momentum k, ∆k. Naively, one
might think that, starting from the ABC ground state of energy EABC

0 , the lowest excited

state is obtained by considering states with two extra fermions, γ̂†kγ̂
†
−k|∅⟩

ABC, which have
energy EABC

0 + 2ϵk. However, we should consider excitations that, starting for instance

from |∅⟩ABC and applying a single creation operator γ̂†k lead to a state in the subspace with

opposite fermion parity, γ̂†k|∅⟩
ABC, with an energy gap:

∆k = ϵk . (79)

The difficulty with this way of reasoning is related to the choice of k appropriate in
that construction since the k values corresponding to ABC boundary conditions do not
coincide with those for PBC. However, it is clear that this will make no difference in the
thermodynamics limit L → ∞, so that Eq. (79) does indeed express the spectral gap for
excitations at momentum k. The smallest such gap is obtained for k = 0 when h > 0 so
that, from Eq. (55), we deduce that:

∆E = 2|h− J | = 2|h− hc| , (80)

where hc = J . 13 Two things are worth noticing: 1) ∆E vanishes linearly with the
deviation from the critical point |h−hc|; 2) exactly at criticality, see Fig. 2(c), the spectral
gap ∆k vanishes linearly in the momentum |k| → 0:

∆crit
k = 2J

√
(1− cos k)2 + κ2 sin2 k ≈ 2J |κk| . (81)

3.1.2 The Green’s functions

In calculating expectation values of operators, for instance, spin-spin correlation func-
tions, it is useful to identify the elementary one-body expectation values, often referred
to as one-particle Green’s functions. Since the number of fermions is not conserved, there
are ordinary and anomalous Green’s functions [64,67], which we define here as follows: 14

Gjj′ ≡ ⟨ψ0|ĉj ĉ
†
j′ |ψ0⟩ and Fjj′ ≡ ⟨ψ0|ĉj ĉj′ |ψ0⟩ . (82)

We assume that the initial state |ψ0⟩ is the Bogoliubov vacuum of the operators γ which
diagonalise the Hamiltonian, |ψ0⟩ = |∅γ⟩ABC. By expressing the real-space fermionic op-
erators in terms of their momentum space counterparts we immediately deduce, using

13For h < 0 the smallest gap is at k = π, and ∆E = 2|h+ J | = 2|h− hc|, with hc = −J .
14There are many definitions of Green’s functions. Here we consider equal-time operators: apart from a

factor −i we have, in Kadanoff-Baym notation [67], would one would denote as G>.
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momentum conservation, that:
Gjj′ =

1

L

∑
k

eik(j−j′)⟨ψ0|ĉk ĉ
†
k|ψ0⟩ =

1

L

∑
k

eik(j−j′)|uk|2

Fjj′ =
e2iϕ

L

∑
k

eik(j−j′)⟨ψ0|ĉk ĉ−k|ψ0⟩ = −e2iϕ

L

∑
k

eik(j−j′)u∗kvk

, (83)

where the last step comes from using the relationship ĉk = u∗kγ̂k + vkγ̂
†
−k and the fact that

γ̂k|ψ0⟩ = 0.

Show that, in the thermodynamic limit L → ∞, by taking ϕ = 0 and using the
properties of uk and vk, one can write:

Gjj′ =

∫ π

0

dk

2π

zk
ϵk

cos (k(j − j′)) +
1

2
δj,j′

Fjj′ =

∫ π

0

dk

2π

yk
ϵk

sin (k(j − j′))

. (84)

where zk = 2(h − J cos k) and yk = 2κJ sin k. Calculate numerically the Green’s
functions in the Ising case κ = 1, for three representative values of the transverse
field: a) h = J/2, b) h = J , c) h = 2J . Observe that the Green’s functions decay
exponentially fast in the separation |j− j′| in cases a) and c). In the Ising case κ = 1,
and at the critical point h = J , show analytically that the Green’s functions decay as
a power law of the distance j − j′. a

aEvaluate the integrals showing that:

Gjj′ =
1

2
δj,j′ −

1

π

1

4(j − j′)2 − 1
and Fjj′ =

2

π

(j − j′)

4(j − j′)2 − 1
.

Problem 1. The elementary Green’s functions.

3.2 Relationship with the spin representation

It is instructive to comment on the relationship between the spectrum we have found
in the fermionic representation and the corresponding physics in the original spin repre-
sentation. In this section, we fix the anisotropy parameter to κ = 1, focusing on the Ising
case.

Let us start with the classical Ising model (h = 0)

Ĥclassical = −J
L∑

j=1

σ̂xj σ̂
x
j+1 , (85)

and consider the two degenerate ground states that you can easily construct in this case:

|+,+, · · · ,+⟩ and |−,−, · · · ,−⟩ , (86)
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where |±⟩ = 1√
2
(1,±1)T denote the two eigenstates of σ̂x with eigenvalues ±1. Recall

that the parity operator reads, in terms of spins, as P̂ =
∏L

j=1 σ̂
z
j , and that σ̂z|±⟩ = |∓⟩.

Hence, you easily deduce that:

P̂|+,+, · · · ,+⟩ = |−,−, · · · ,−⟩ and P̂|−,−, · · · ,−⟩ = |+,+, · · · ,+⟩ . (87)

This implies that the two eigenstates of the parity operator must be:

|ψ±⟩ =
1√
2

(
|+,+, · · · ,+⟩ ± |−,−, · · · ,−⟩

)
=⇒ P̂|ψ±⟩ = ∓|ψ±⟩ . (88)

These two opposite parity states must be represented by the two fermionic ground states
belonging to the ABC and PBC sectors. They are exactly degenerate for h = 0. The
states in this doublet are crucial for the symmetry-breaking in the thermodynamic limit.

Now consider the effect of a small h, taking for simplicity of argument the Ising Hamil-
tonian with OBC:

ĤOBC = −J
L−1∑
j=1

σ̂xj σ̂
x
j+1 − h

L∑
j=1

σ̂zj . (89)

Let us consider the limit |h| ≪ J . The two lowest-energy states have exactly the form in
Eq. (86), or Eq. (88), at lowest-perturbative order in |h|/J . To construct higher-energy
excitations, consider domain-wall configurations of the form

|l⟩ = | −,−, · · · ,−︸ ︷︷ ︸
sites 1→l

, +, · · · ,+⟩ with l = 1 · · ·L− 1 . (90)

For h = 0, these L−1 lowest-energy domain-wall excitations are degenerate and separated
from the two ground states by a gap of 2J . Therefore, we can study the effect of a
small transverse-field term, for |h| ≪ J , using standard textbook degenerate perturbation
theory [63]. The Hamiltonian restricted to the L− 1-dimensional subspace of the domain-
wall excitations has the form

Ĥeff = 2J
L−1∑
l=1

|l⟩ ⟨l| − h
L−2∑
l=1

(
|l⟩ ⟨l + 1|+H.c.

)
. (91)

This Hamiltonian is quite easy to diagonalize, as it resembles a standard tight-binding
problem with open boundary conditions. As in the quantum mechanical example of an
infinite square well [63], it is simple to verify that the appropriate sine combination of two
opposite momenta plane waves of momentum k satisfy the correct boundary conditions:

|ψk⟩ =
1

Nk

L−1∑
l=1

sin(kl) |l⟩ with k =
nπ

L
, (92)

for n = 1, . . . , L− 1, and Nk a normalization factor. These delocalized domain-walls have
an energy:

µk = 2J − 2h cos k . (93)

We notice that if we expand the excitation energies ϵk in Eq. (55) up to lowest order in

h/J we obtain ϵk ≈ µk +O((h/J)2). So, we see that a state with a single quasiparticle γ̂†k
has the same energy as the delocalized domain-wall state in Eq. (92). This justifies the
picture that quasiparticles are indeed delocalized domain walls. 15

15We performed our analysis for the case of OBC. The case with PBC is similar, the only difference
being that the lowest-energy excitations for h = 0 have two domain walls. Nevertheless, with an analysis
very similar to the one above, one can show that the excited states for |h| ≪ J have energy 2µk and can
be interpreted as states with two quasiparticles.
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Let us continue our perturbative reasoning to see how we can estimate the separation
between the two ground states originating from the h = 0 doublet discussed above, when
h > 0. As mentioned above, the states |+,+, · · · ,+⟩ and |−,−, · · · ,−⟩ are degenerate
for h = 0, and this doublet is separated from the other states by a gap ≥ 2J . The
degenerate states |+⟩ = |+,+, · · · ,+⟩ and |−⟩ = |−,−, · · · ,−⟩ are coupled only at order
L in perturbation theory: we need to flip L spins, with the σ̂zj operators, to couple one to

the other. Hence, we expect their splitting to be ∆E0 ∼ (h/J)L, i.e., exponentially small
in the system size L for small |h|: the resulting eigenstates |ψ±(h)⟩, even and odd under
parity, approach the two eigenstates in Eq. (88) for h→ 0. This energy splitting is exactly
the quantity ∆E0 discussed in Sec. 3.1. So, in the thermodynamic limit, we break the
Z2 symmetry. At any finite size we have the symmetry preserving ground states |ψ±(h)⟩
which tend to Eq. (88) for h → 0. These states can be regarded as superpositions of two
macroscopically ordered states |±⟩h = 1√

2
(|ψ+(h)⟩ ± |ψ−(h)⟩), where “macroscopically

ordered” means that the longitudinal magnetization M̂x =
∑

j σ̂
x
j has an expectation

value which is extensive in L. So, in the subspace generated by |ψ±(h)⟩ there can be an
explicit symmetry-breaking 16 of Z2 only in the thermodynamic limit, where the two states
are degenerate and the slightest local perturbation selects one of the two macroscopically
ordered superpositions |±⟩h.

4 Connection with the Onsager solution of the 2d classical
Ising model

Although the quantum Ising chain in a transverse field is the primary interest of these
lecture notes, it is important to understand its connection with the celebrated classical
Ising model in two dimensions, whose celebrated exact solution was given by Onsager
in 1944 [68]. This connection is representative of a general relationship between classical
statistical mechanics in d dimensions, and quantum mechanics in d−1 dimensions [69]. We
will see that the ground state properties of the one-dimensional quantum Ising model in a
transverse field precisely mirror the finite temperature statistical mechanics properties of
the classical Ising model in two-dimensions, in the high-anisotropy limit [69]. The critical
exponents of the two models are identical, and even the numerical value of the transition
temperature predicted by Onsager is perfectly described by the quantum critical point of
the quantum Ising chain.

Consider the classical two-dimensional Ising model sketched in Fig. 5 for a square
lattice with L sites in the x-direction and N in the y-direction, with periodic boundary
conditions (PBC) in the latter. Each lattice since (i, j) is associated with an Ising spin
σji = ±1. The partition function of the model is given by: [70]

Z =
∑

σ1,··· ,σN

⟨σ1|T|σN ⟩ ⟨σN |T|σN−1⟩ · · · ⟨σj+1|T|σj⟩ · · · ⟨σ2|T|σ1⟩ ≡ TrTN , (94)

where the trace emerges from the PBC choice of boundary conditions along the y-direction.
Here, σj denotes the j-th row configuration, comprising the L spins in the x-direction,
which we denote as σj = (σj1, σ

j
2, · · · , σ

j
L), and ⟨σj+1|T|σj⟩ denotes the so-called transfer

16Nevertheless, all the states in this doublet, |ϕ⟩ = α|ψ+(h)⟩ + β|ψ−(h)⟩ with |α|2 + |β|2 = 1, show
long-range correlations also at finite size. Indeed, the correlator ⟨ϕ|σ̂x

j σ̂
x
j+l|ϕ⟩ is always finite (equal to 1

in the limit h→ 0), and
lim
l→∞

lim
L→∞

|⟨ϕ|σ̂x
j σ̂

x
j+l|ϕ⟩| ̸= 0 ,

expressing the long-range order associated with symmetry-breaking. See the related problem in Sec. 8.
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PBC

Jx

Jy

σj

σj+1

⟨σj+1|T |σj⟩→

1

2

...

j

j + 1

...

N

1 2 . . . i i+ 1 . . . L

Figure 5: The 2-dimensional classi-
cal Ising model on a square lattice
with L × N sites, denoted as (i, j)
with 1, · · · , L and j = 1, · · · , N . PBC
are enforced in the y-direction: you
can think of the system as “living
on a cylinder” with axis along the x-
direction. Boundary conditions along
the x-direction are left unspecified:
they could be open, fixed, or peri-
odic. In the latter case, you might
picture the system as “living on a
torus”. The blue lines highlight the
couplings Jx, connecting sites (i, j)
and (i+1, j), and Jy, connecting (i, j)
and (i, j + 1). The shaded rectangle
highlights the Boltzmann weights in-
cluded in the definition of the “trans-
fer matrix” ⟨σj+1|T|σj⟩.

matrix, a 2L × 2L matrix collecting all the Boltzmann weights pertaining to rows j and
j + 1:

⟨σj+1|T|σj⟩ = e

β

L∑
i=1

(
Jyσ

j
i σ

j+1
i +

Jx
2

(
σji σ

j
i+1 + σj+1

i σj+1
i+1

)
+
h

2

(
σji + σj+1

i

))
. (95)

We can regard the row configuration σj as a computation basis state for a spin chain with
L sites, i.e., simply the eigenstates of Pauli spin operators σ̂zi :

σ̂zi |σj⟩ = σji |σ
j⟩ .

It is simple to write a quantum operator which faithfully reproduces the matrix elements
of the transfer matrix: 17

T̂ = e

β

2

L∑
i=1

(
Jxσ̂

z
i σ̂

z
i+1 + hσ̂zi

) [
L∏
i=1

(
eβJy1i + e−βJy σ̂xi

)]
e

β

2

L∑
i=1

(
Jxσ̂

z
i σ̂

z
i+1 + hσ̂zi

)

= CL e

β

2

L∑
i=1

(
Jxσ̂

z
i σ̂

z
i+1 + hσ̂zi

)
e

Γ

L∑
i=1

σ̂xi
e

β

2

L∑
i=1

(
Jxσ̂

z
i σ̂

z
i+1 + hσ̂zi

)
. (97)

Although exact, the quantum expression for T̂ is not easy to handle: The three different
terms do not commute and you cannot rewrite T̂ as the exponential of a single quantum

17The first expression is easy to establish from the requirement in Eq. (95). The second expression
follows by rewriting: (

eβJy1i + e−βJy σ̂x
i

)
≡ C eΓσ̂x

i ≡ C (1i coshΓ + σ̂x
i sinhΓ) ,

where we used (σ̂x)2n = 1, and (σ̂x)2n+1 = σ̂x in the second equality, to expand the exponential. To find
the constants C and Γ we write explicitly: C coshΓ = eβJy

C sinhΓ = e−βJy

=⇒

 tanhΓ = e−2βJy

C2 = 2
sinh 2Γ

. (96)
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Hamiltonian operator. Suppose, however, that the coupling constants Jx and Jy are highly
anisotropic.

The high-anisotropy limit. More precisely, assume that:

High-anistropy limit:


βJx = ϵJ

βh = ϵh∥

Γ = ϵh⊥ =⇒ βJy = −1
2 log tanh ϵh

⊥
(98)

where ϵ (with dimensions of “time/ℏ”) is “small”, and J , h∥, h⊥ (with dimensions
of “energy”) are suitable constants. More properly, the dimensionless combinations
ϵJ , ϵh∥, and ϵh⊥ are assumed to be small. These assumptions imply that when βJx
is “small”, then βJy = −1

2 log tanh ϵh
⊥ is “large”, justifying the terminology “high-

anisotropy limit”, when ϵ→ 0.

i

In terms of these quantities, let us now define two quantum operators:

Ĥz = −
L∑
i=1

(
Jσ̂zi σ̂

z
i+1 + h∥σ̂zi

)
and Ĥx = −h⊥

L∑
i=1

σ̂xi , (99)

such that the exact transfer matrix can be written as

T̂ = CL e−
ϵ
2
Ĥze−ϵĤxe−

ϵ
2
Ĥz . (100)

In high-anisotropy limit ϵ → 0, the three exponentials can be combined by using the
relationship

eϵÂeϵB̂ = eϵÂ+ϵB̂+ ϵ2

2
[Â,B̂]+··· = eϵ(Â+B̂) +O(ϵ2) , (101)

which is the simplest instance of the Baker-Campbell-Hausdorff formula.

The transfer matrix in the high-anisotropy limit. This leads us to our final
expression:

T̂
ϵ→0≃ CL e−ϵĤ with Ĥ = Ĥz + Ĥx = −

L∑
i=1

(
Jσ̂zi σ̂

z
i+1 + h∥σ̂zi + h⊥σ̂xi

)
. (102)

So, in the high-anisotropy limit, the classical transfer matrix has been mapped onto
the imaginary-time a evolution operator of a quantum Ising chain in a transverse field
h⊥. The y-direction of the classical problem — for which we chose periodic boundary
conditions — becomes the imaginary-time direction of the quantum problem.

aThe usual real-time evolution operator e−itĤ/ℏ becomes, under the substitution t → −iτ , the
imaginary-time evolution operator e−τĤ/ℏ, very important in numerical Quantum Monte Carlo ap-
proaches, see Ref. [12], and in statistical mechanics, see Ref. [70].

i

To better understand the deep relationship between the statistical mechanics of the
classical Ising model in two dimensions, and the physics of the quantum Ising chain, let
us return to the classical transfer matrix T. Since T is a positive real matrix — and even
symmetric, by construction —, we can use Perron-Frobenius theorem, which guarantees
that T has a unique (positive) eigenstate |λ0⟩ with a maximum eigenvalue λ0 — the so-
called Perron root —, which is itself real and positive and greater than the modulus of any
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Re{λ}

Im{λ}

λ00

Figure 6: The Perron-Frobenius theorem.
The red dot denotes λ0, the Perron root,
which is the maximum eigenvalue of T, real
and positive. All other eigenvalues (smaller
black dots) stay within the circle of radius λ0
in the complex plane. For the symmetric T
considered here, all other eigenvalues are real
as well.

other eigenvalue, λ0 > |λα>0|, in general complex, but in the present case real, because T is
symmetric. We can write, in terms of the eigenstates |λα⟩ of T, the spectral decomposition
of T as:

T =

2L−1∑
α=0

λα|λα⟩⟨λα| =⇒ Z = TrTN =
2L−1∑
α=0

λNα ,

where the last equation follows because TN is easy to calculate on the basis of the eigen-
vectors of T, and its trace, leading to Z, is also simply the sum of all λNα .

Exponential dominance of the Perron root. Let us denote the maximum
eigenvalue of T by λ0. In the limit N → ∞, the partition sum is exponentially
dominated by λ0:

βF

N
= − 1

N
logZ

N→∞−−−−→ − log λ0 .

i

In the high-anisotropy limit ϵ→ 0, we rewrite the partition function as:

Z = TrTN ≡ Tr T̂N ϵ→0≃ CLN Tr e−ϵNĤ . (103)

The Perron-Frobenius theorem, in this context, tells us that the largest eigenvalue of T,

connected to the ground state energy of Ĥ, λ0
ϵ→0≃ Ce−ϵE0 , dominates the partition sum.

Indeed, for any finite L, the quantum Hamiltonian Ĥ has a finite gap ∆E = E1−E0 above
its (non-degenerate) ground state energy E0 = Le0, so that the next eigenvalue makes a
negligible contribution in the limit N → ∞ (as long as ϵ > 0):

λN1
ϵ→0≃ CNe−ϵNE1 = CNe−ϵNE0e−ϵN∆E ≈ λN0 e−ϵN∆E .

All in all, for large N (and fixed small ϵ) we would write:

Z = e−βF ϵ→0≃ CLN e−ϵNE0
(
1 + e−ϵN∆E + · · ·

)
≈ CLN e−ϵLNe0 + · · ·

Taking the logarithm and dividing by N2d = NL we get the free-energy per spin f :

βf = lim
N2d→∞

βF

N2d
= − lim

N2d→∞

logZ

N2d

ϵ→0≃ ϵ e0 − logC , (104)

where the constant C plays a minor role: it is simply an additive contribution to the free
energy.
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Singularities of f correspond to singularities of e0. The important point is
that we expect that the singularities of the classical free-energy per spin f (in the
thermodynamical limit) should be reflected by the singularities of e0, the ground state
energy per spin of the quantum model.

i

Let us check this prediction. In zero longitudinal field (h = 0) and for uniform cou-
plings with PBC in both directions, the classical Ising model in d = 2 has been solved by
Onsager, who succeeded in diagonalizing the exact transfer matrix T [68]. Onsager’s solu-
tion predicts that the 2d Ising model in zero longitudinal field has a transition temperature
Tc (where the free-energy f shows singularities) given by:

sinh (2βcJx) sinh (2βcJy) = 1 . (105)

Let us briefly summarize the physics of this classical model. For T > Tc the system is in
a disordered phase, where the thermal average of the local spin at any site R vanishes in
zero longitudinal field (h = 0): ⟨σR⟩0 = 0. For T < Tc, on the contrary, the Z2 symmetry
of the classical model in zero field is spontaneously broken in the thermodynamic limit and
a non-vanishing local order parameter m develops:

m = ⟨σR⟩0 = lim
h→0+

lim
N2d→∞

⟨σR⟩ > 0 . (106)

The way in which m vanishes when T → T−
c , the critical temperature, is captured by a

critical exponent traditionally denoted as β (not to be confused with 1/kBT ):

m(T ) ∝ (Tc − T )β T ≤ Tc . (107)

For the Ising model in d = 2, its exact value is β = 1
8 . When the symmetry is spontaneously

broken, the large-distance limit of the correlation function of the order parameter tends
exponentially fast to the square of the local order parameter:

⟨σRσR′⟩0
|R−R′|→∞−−−−−−−→ m2 +O(e−|R−R′|/ξ(T )) , (108)

where ξ(T ) is a temperature-dependent correlation length. This exponentially fast decrease
of correlations is indeed true both in the broken symmetry phase, where m ̸= 0, as well as
in the high-temperature symmetric phase, where m = 0, suggesting that it is convenient
to define the connected correlation functions as

Cconn
x = ⟨σxσ0⟩0 −m2 , (109)

which decays exponentially fast to zero both for T < Tc, and for T > Tc. A power-law
behaviour emerges at Tc, where ξ(Tc) = ∞ (in the thermodynamic limit). A scaling Ansatz
proposed by M. Fisher [71,72] tells us that:

Cconn
x = ⟨σxσ0⟩0 −m2 ∝ e−|x|/ξ(T )

|x/a|d−2+η
, (110)

where the last expression is valid for |x| ≫ a, the lattice spacing. Here d is the dimen-
sionality of the lattice, ξ(T ) is the correlation length, and η is the anomalous exponent for
correlations. The correlation length ξ(T ) is finite for T ̸= Tc, but diverges at Tc with a
critical exponent ν

ξ(T ) ∼ 1

|T − Tc|ν
. (111)
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For the Ising model in d = 2, ν = 1 and η = 1
4 .

Let us now switch to the quantum Ising chain. The quantum critical point of the
uniform quantum Ising chain, where singularities of

e0 = lim
L→∞

E0

L
= −

∫ π

0

dk

2π
ϵk , (112)

are present, occurs at h⊥c = J . Indeed, if you look at the bands in Fig. 2 you immediately
see that they are very smooth for h⊥ ̸= J (panels b and d), but develop a cusp for h⊥ = J
(panel c). This corresponds, in terms of Eq. (98), to

h⊥c = J ⇐⇒ Γc = βcJx ⇐⇒ e−2βcJy = tanhβcJx . (113)

The correspondence of parameters is such that the high-temperature (disordered) phase
for T > Tc, and the low-temperature (ordered) phase for T < Tc are mapped into the
quantum phases with h⊥ > J , and h⊥ < J , respectively.

Remarkably, all exact critical exponents of the zero-field 2d Ising model are reproduced
by the quantum Ising chain. Let us consider the correlation length critical exponent ν.
Following Kogut [69][Sec. III], consider the spin-spin correlation function between sites
with the same x-coordinate, and a distance na away in the y-direction: R = a(i, 1) and
R′ = a(i, n + 1). Translational invariance implies that the result depends only on n. By
calculating the thermal average using the transfer matrix, and taking the high-anisotropy
limit, we get:

Cn = ⟨σn+1
i σ1i ⟩ =

1

TrTN
Tr(TN−nσn+1

i Tnσ1i )

small ϵ−−−−→ 1

Tr e−ϵNĤ
Tr(e−ϵ(N−n)Ĥ σ̂zi e

−ϵnĤ σ̂zi ) . (114)

In the limit N → ∞, the quantum ground state |ψ0⟩ dominates the trace, hence:

Cn
small ϵ, N→∞−−−−−−−−−→ 1

e−ϵNE0
⟨ψ0|e−ϵ(N−n)Ĥ σ̂zi e

−ϵnĤ σ̂zi |ψ0⟩

= eϵnE0⟨ψ0|σ̂zi e−ϵnĤ σ̂zi |ψ0⟩

=
∞∑

m=0

⟨ψ0|σ̂zi e−ϵn(Ĥ−E0)|ψm⟩⟨ψm|σ̂zi |ψ0⟩

=

∞∑
m=0

e−ϵn(Em−E0)
∣∣⟨ψm|σ̂zi |ψ0⟩

∣∣2 , (115)

where we have inserted a resolution of the identity with eigenstates |ψm⟩ of Ĥ. In the
limit of large n, it is appropriate to keep only the ground and first excited state |ψ1⟩ out
of the infinite sum, hence:

Cn
small ϵ, n large−−−−−−−−−→

∣∣⟨ψ0|σ̂zi |ψ0⟩
∣∣2 + e−ϵn(E1−E0)

∣∣⟨ψ1|σ̂zi |ψ0⟩
∣∣2 + · · · (116)

The spectral gap ∆E = E1 − E0 emerges as the crucial quantity determining the large n
behaviour of correlations. By comparing this expression with the general form in Eq. (108),
we realize that:

m = ⟨ψ0|σ̂zi |ψ0⟩ and
a

ξ
= ϵ∆E . (117)

Since ∆E vanishes linearly at the critical point, see Eq. (80), we conclude that ν = 1.
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Concerning the order parameter m, the calculation by Pfeuty [65][Eq. 3.12] shows that

m = ⟨ψ0|σ̂zi |ψ0⟩ =


(
1−

(
h⊥/J

)2) 1
8

for |h⊥/J | < 1

0 for |h⊥/J | ≥ 1

. (118)

Hence β = 1
8 .

Figure 7: Plot of or-
der parameter m for
the Ising chain in a
transverse field, ac-
cording to Eq. (118).

As for the anomalous exponent η, it should be extracted from the calculation of spin-
spin correlations at the critical point. We will address this calculation explicitly in Sec. 8.
The result will be that η = 1

4 , as expected.
Finally, concerning the specific heat singularities, observe that one expects, at a general

second-order critical point: [70]

cv(T ) = −T ∂
2f

∂T 2
∝ |T − Tc|−α , (119)

where α = 0 (a logarithmic singularity) for the 2d Ising model. The quantum equivalent
of this singularity shows up in the second derivative of the ground state energy per spin,
e0, with respect to the transverse field h⊥.

Calculate the second derivative of e0 with respect to h⊥, and show that it has a
logarithmic divergence, in the thermodynamic limit, for h⊥ → J .

Problem 2. Singularities of the ground state energy.

Quantitatively, you might wonder how close are the two predictions for Tc — the one
deduced from Onsager’s solution, Eq. (105), and the one deduced from the critical point
of the quantum Ising chain, Eq. (113) —- as a function of the anisotropy of the couplings
Jx/Jy (which should be “small” for the quantum mapping to be in principle valid). The
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Figure 8: Plot of
the critical coupling
βcJy = Jy/(kBTc)
from the 2d On-
sager’s solution,
Eq. (105), compared
to the quantum-
mapped prediction
of Eq. (113), versus
the anisotropy of
the lattice Jx/Jy.
The two predictions
coincide.

two results are shown in Fig. 8: Rather surprisingly, Eqs. (105) and (113) give precisely 18

the same Tc for all values of the anisotropy Jx/Jy.

Summary of classical to quantum mapping. To summarise, the quantum
Ising chain in a transverse field captures perfectly well the critical singularities of
the classical two-dimensional Ising model. As a bonus (but this is not general), we
even get a quantitatively perfect prediction for the critical point temperature Tc, well
beyond the high-anisotropy limit. Interestingly, the Jordan-Wigner mapping is unable
to solve the 1d quantum Ising chain precisely in the case Onsager’s solution cannot
deal with: in the presence of a longitudinal field.

i

5 Nambu formalism for the general disordered case

As we have seen, in the ordered case the Hamiltonian can be diagonalized by a Fourier
transformation, reducing the problem to a collection of 2×2 “pseudo-spin-1/2” problems,
followed by a Bogoliubov transformation, as first shown in Refs. [65, 73, 74]. In the disor-
dered case, we can proceed similarly, but we cannot reduce ourselves to 2× 2 problems in
a simple way. 19 By using the Nambu formalism, we define a column vector Ψ̂ and its

18If you call z = e−2βcJy , from the Onsager relation Eq. (105), solving a simple quadratic equation, you
get:

z = e−2βcJy =

√
S2 + 4− 2

S
with S = 2 sinh(2βcJx) .

Straightforward algebra, using duplication formulas cosh(2βcJx) = cosh2(βcJx) + sinh2(βcJx) and
sinh(2βcJx) = 2 sinh(βcJx) cosh(βcJx), leads then to the result stated in Eq. (113).

19For the time-independent case, a theorem due to Bloch and Messiah guarantees that there is always
an appropriate basis in which the problem reduces to 2 × 2 blocks, but this is not very useful if you are
willing to tackle dynamical problems. See Sec. A.
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Hermitian conjugate row vector Ψ̂†, each of length 2L, by

Ψ̂ =



ĉ1
...

ĉL
ĉ†1
...

ĉ†L


=

(
ĉ
ĉ†

)
Ψ̂† =

(
ĉ†1 , · · · , ĉ

†
L , ĉ1 , · · · , ĉL

)
=
(
ĉ† , ĉ

)
, (120)

or Ψ̂j = ĉj , Ψ̂j+L = ĉ†j and Ψ̂†
j = ĉ†j , Ψ̂

†
j+L = ĉj for j ≤ L. 20

Warning: Notice that the Ψ̂ satisfy quite standard fermionic anti-commutation re-
lations

{Ψ̂j , Ψ̂
†
j′} = δj,j′ , (121)

for j, j′ = 1, ..., 2L, except that {Ψ̂j , Ψ̂j+L} = 1 for all j ≤ L, which brings about
certain factors 2 in the Heisenberg’s equations of motion (see later).

!

It is useful, for later purposes, to introduce the 2L× 2L swap matrix S:

S =

(
0L×L 1L×L

1L×L 0L×L

)
. (122)

in terms of which Ψ̂† = (SΨ̂)T.
Consider now a general fermionic quadratic form

Ĥ =
∑
jj′

(
Aj′j ĉ

†
j′ ĉj +A∗

j′j ĉ
†
j ĉj′
)
+
∑
jj′

(
Bj′j ĉ

†
j′ ĉ

†
j +B∗

j′j ĉj ĉj′
)
, (123)

where Aj′j = A∗
jj′ , i.e., A = A† is Hermitian, and Bjj′ = −Bj′j , i.e., B = −BT is anti-

symmetric because ĉj ĉj′ is anti-symmetric under exchange of the two operators, and any

symmetric part of B would not contribute. It is simple to verify that Ĥ can be expressed
in terms of Ψ̂, omitting an irrelevant constant term TrA, as:

Ĥ = Ψ̂† H Ψ̂ =
(
ĉ† , ĉ

)( A B
−B∗ −A∗

)(
ĉ
ĉ†

)
. (124)

There is an intrinsic particle-hole symmetry in a fermionic Hamiltonian having this
form. This symmetry, further discussed in Sec. 6.1, is connected with the fact that the
Hermitian 2L× 2L matrix H satisfies:

HS = −SH∗ . (125)

In the XY-Ising case, all couplings are real and we have two different fermionic Hamil-
tonians, one for each parity sector p = 0, 1, which we report here for convenience, using
also 2n̂j − 1 = ĉ†j ĉj − ĉj ĉ

†
j :

Ĥp=0,1 = −
L∑

j=1

(
J+
j ĉ

†
j ĉj+1 + J−

j ĉ
†
j ĉ

†
j+1 + H.c.

)
+

L∑
j=1

hj(ĉ
†
j ĉj − ĉj ĉ

†
j) , (126)

20The notation for ĉ might be a bit confusing and should be intended as a shorthand, rather than
a column vector. We are not consistently assuming, for instance, that ĉ† is a row vector. The same
shorthanded but imperfect notations will be assumed later on for the Bogoliubov rotated operators γ̂ and
γ̂†.
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with the boundary condition:
ĉL+1 = (−1)p+1ĉ1 . (127)

The corresponding 2L× 2L matrices Hp are now real and symmetric. Hence A is real and
symmetric (A = A∗ = AT), and B is real and anti-symmetric (B = B∗ = −BT):

H =

(
A B

−B∗ −A∗

)
Ising−→ Hp =

(
A B

−B −A

)
. (128)

The structure of the two blocks A and B is given, in the Ising case, by: Aj,j = hj

Aj,j+1 = Aj+1,j = −
J+
j

2
= −Jj

2

 Bj,j = 0

Bj,j+1 = −Bj+1,j = −
J−
j

2
= −κJj

2

, (129)

where we have assumed, once again, that Jx
j = Jj(1 + κ)/2 and Jy

j = Jj(1− κ)/2. In the
PBC-spin case, we have additional matrix elements:

AL,1 = A1,L = (−1)p
J+
L

2
= (−1)p

JL
2
, (130)

and

BL,1 = −B1,L = (−1)p
J−
L

2
= (−1)p

κJL
2

, (131)

both depending on the fermion parity p. The OBC case is recovered by simply setting
JL = 0, which makes H1 = H0.

6 Diagonalisation of Ĥ: the time-independent case.

We start considering the eigenvalue problem for a general Hermitian 2L × 2L matrix
showing that the intrinsic particle-hole symmetry of the problem leads to the Bogoliubov-
de Gennes (BdG) equations. See Refs. [75–77]. We remark that one recovers the re-
sults of Sec. 3 when the couplings are uniform and the matrices A and B have a simple
translationally-invariant structure.

6.1 The Bogoliubov-de Gennes equations.

Let us consider the eigenvalue problem for a general Hermitian 2L× 2L matrix H

H

(
uµ

vµ

)
=

(
A B

−B∗ −A∗

)(
uµ

vµ

)
= ϵµ

(
uµ

vµ

)
(132)

where u,v are L-dimensional column vectors, composing the 2L-dimensional column vec-

tor

(
uµ

vµ

)
, and the µ index refers to µ-th eigenvector. By explicitly writing the previous

system, we find the so-called Bogoliubov-de Gennes equations:{
A uµ +B vµ = ϵµuµ

−B∗uµ −A∗vµ = ϵµvµ

. (133)
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It is easy to verify that if (uµ , vµ)
T is eigenvector with eigenvalue ϵµ, then

(
v∗
µ , u

∗
µ

)T
is an eigenvector with eigenvalue −ϵµ. 21 In the Ising case, A = A∗ and B = B∗, and we
can always take the solutions to be real. 22

We can organize the eigenvectors in a unitary (orthogonal, if the solutions are real)
2L× 2L matrix

U =

(
u1 · · · uL v∗

1 · · · v∗
L

v1 · · · vL u∗
1 · · · u∗

L

)
=

(
U V∗

V U∗

)
(134)

U and V being L× L matrices (real, as we can choose to be, in the Ising case) with the
uj and vj as columns. As a consequence:

U† H U =



ϵ1 0 · · · 0 0 0 · · · 0
0 ϵ2 · · · 0 0 0 · · · 0
...

... · · ·
...

...
... · · ·

...
0 0 · · · ϵL 0 0 · · · 0

0 0 · · · 0 −ϵ1 0 · · · 0
0 0 · · · 0 0 −ϵ2 · · · 0
...

... · · ·
...

...
... · · ·

...
0 0 · · · 0 0 0 · · · −ϵL


≡ diag(ϵµ,−ϵµ) = Ediag . (135)

If we define the new Nambu fermion 23 operators Φ̂ and Φ̂† in such way that

Ψ̂ = U Φ̂ (136)

we can write Ĥ in diagonal form

Ĥ = Ψ̂† H Ψ̂ = Φ̂† U† H U Φ̂ = Φ̂† Ediag Φ̂ . (137)

Similarly to Ψ̂, we can define new fermion operators γ̂ such that

Φ̂ =

(
γ̂

γ̂†

)
= U† Ψ̂ =

(
U† V†

VT UT

) (
ĉ
ĉ†

)
. (138)

21Indeed: {
A v∗

µ +B u∗
µ = −ϵµv∗

µ

−B∗v∗
µ −A∗u∗

µ = −ϵµu∗
µ

,

coincides exactly with Eq. (133), after taking a complex conjugation, exchanging the two equations and
reshuffling the terms. An alternative derivation uses the fact that

S

(
u
v

)
=

(
v
u

)
,

and that HS = −SH∗, see Eq. (125).
22Since H is a real and symmetric matrix, it can be diagonalized by a real orthogonal matrix.
23We have: {

Φ̂µ, Φ̂
†
µ′
}

=
{∑

j′

U†
µj′Ψ̂j′ ,

∑
j

Ψ̂†
jUjµ′

}
=

∑
jj′

U†
µj′Ujµ′

{
Ψ̂j′ , Ψ̂

†
j

}
=

∑
j

U†
µjUjµ′ = (U†U)µµ′ = δµµ′ .
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More explicitly, we can write: 24
γ̂µ =

L∑
j=1

(U∗
jµĉj +V∗

jµĉ
†
j)

γ̂†µ =
L∑

j=1

(Vjµĉj +Ujµĉ
†
j)

, (140)

which can be easily inverted, remembering that Ψ̂ = U Φ̂, to express the ĉj operators in

terms of the γ̂µ: 
ĉj =

∑
µ

(Ujµγ̂µ +V∗
jµγ̂

†
µ)

ĉ†j =
∑
µ

(Vjµγ̂µ +U∗
jµγ̂

†
µ)

. (141)

Finally Ĥ in terms of the γ̂ operators reads, assuming we have taken ϵµ > 0:

Ĥ =

L∑
µ=1

(
ϵµγ̂

†
µγ̂µ − ϵµγ̂µγ̂

†
µ

)
=

L∑
µ=1

2ϵµ

(
γ̂†µγ̂µ − 1

2

)
(142)

and the ground state is the state annihilated by all γ̂µ, which we denote by |∅γ⟩:

γ̂µ|∅γ⟩ = 0 ∀µ =⇒ Ĥ|∅γ⟩ = E0|∅γ⟩ with E0 = −
L∑

µ=1

ϵµ . (143)

The 2L eigenstates can be expressed as:

|ψ{nµ}⟩ =
L∏

µ=1

(
γ̂†µ
)nµ |∅γ⟩ with nµ = 0, 1

E{nµ} = E0 + 2
∑
µ

nµϵµ . (144)

24The conditions for the transformation in Eq. (140) to be canonical are:

U†U =

(
U†U+V†V U†V∗ +V†U∗

VTU+UTV VTV∗ +UTU∗

)
=

(
1 0

0 1

)
⇒

{
U†U+V†V = 1
VTU+UTV = 0

(139)

since you realise that the block 22 is simply the ∗ of block 11 and block 12 is the † of block 21. Interestingly,
the condition VTU + UTV = 0 tells us that VTU is anti-symmetric, and the same happens for UTV.
From the fact that UU† must also equal the identity matrix, we might deduce that UU† +V∗VT = 1 and
UV† +V∗UT = 0.
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Warning: The previous discussion applies to a generic quadratic fermion Hamiltonian
Ĥ. Consequently, it also applies to the two different parity Hamiltonians Ĥp relevant
for the Ising case, which one could express as:

Ĥp =
L∑

µ=1

(
ϵp,µγ̂

†
p,µγ̂p,µ − ϵp,µγ̂p,µγ̂

†
p,µ

)
=

L∑
µ=1

2ϵp,µ

(
γ̂†p,µγ̂p,µ − 1

2

)
. (145)

This implies that there are two distinct Bogoliubov vacuum states |∅p⟩, one for each

set of operators γ̂p,µ. Recall, however, that the block Hamiltonian Ĥp = P̂pĤpP̂p

involves projectors on the appropriate sub-sectors, which must be handled appropri-
ately. Moreover, the possible presence of zero-energy eigenvalues must be appropri-
ately taken care of: see below. This is important in calculating thermal averages, as
further discussed in Sec. 10.

!

Before ending, a note on zero-energy eigenvalues, which has a practical relevance when
calculating thermal averages. If you calculate the eigenvalues {ϵµ} by a numerical diago-
nalization routine, the presence of zero-energy eigenvalues complicates the story. Indeed,
the zero-energy eigenvalues, if present, must come in an even number. This is rather clear
from the fact that the total dimension is 2L and that every non-zero positive eigenvalue
ϵµ > 0 must have a negative partner −ϵµ < 0. Unfortunately, the computer will produce
eigenvectors associated with the degenerate zero-energy eigenvalues which do not have the
structure alluded at in Eq. (134). To enforce such a structure you can exploit the swap
matrix S.

Info: Let us consider the Ising case, where H is real and particle-hole symmetry reads
HS = −SH. Hence if (uµ , vµ)

T is a zero-energy state, so is S (uµ , vµ)
T = (vµ , uµ)

T.
Hence the zero-energy subspace — the so-called KerH, whose even dimension we
denote by N0 — is invariant for S. Hence you can restrict S to such N0-dimensional
subspace, and diagonalize it there. But S is such that S2 = 1, hence its eigenvalues
can be only ±1, the eigenstates of S being even or odd under swap of the first and last
L components. Even more: you can show that S must have exactly as many +1 as −1
eigenvalues in that subspace. Now, if (u , u)T is a zero-energy even-swap eigenstate,
and (v , −v)T a zero-energy odd-swap eigenstate — both normalised and orthogonal
— then the two combinations:

1√
2

(
u+ v
u− v

)
and

1√
2

(
u− v
u+ v

)
, (146)

are both normalised, orthogonal, and have precisely the structure shown in Eq. (134).
These states should be used to enforce the required structure of Eq. (134), crucial to
fulfilling the correct anti-commutation rules.

i
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Show that the static Bogoliubov-de Gennes equations in Eq. (133) are equivalent, for
general couplings, to the diagonalization of the following tight-binding problem for

the two-component spinor Wjµ
def
=

(
Ujµ

Vjµ

)
:

−Jj
2

(τ̂ z + iκτ̂y)Wj+1,µ − Jj−1

2
(τ̂ z − iκτ̂y)Wj−1,µ + hj τ̂

zWjµ = ϵµWjµ ,

where τ̂ are pseudo-spin Pauli matrices acting on the two components of Wjµ.
Next, consider the uniform case Jj = J and hj = h. Use Fourier transforms

Wjµ = 1
L

∑
k e

ikjWkµ (where the k-vectors used depend, as usual, from the boundary
conditions) to show that:

(Hk − 2ϵµ)Wkµ = 0 ,

where Hk = (2κJ sin k)τ̂y + 2(h − J cos k)τ̂ z as in Eq. (52). This shows that the
correct correspondence between the general BdG approach of Sec. 6 and the k-space
approach of Sec. 3, is given by 2ϵµ→ ϵk.

Problem 3. Tight-binding formulation of the BdG equations.

Consider now a uniform Ising chain with κ = 1 and a single impurity on-site j = l.
Take Jj ≡ J > 0, hj = h − himp δjl, with 0 < himp ≪ h, himp ≪ J, J ̸= ±h.
Show that the impurity induces two bound-state excitations, one above and one be-
low the continuum [2|J−h|, 2|J+h|] of the extended excitations of the uniform chain.

Answer: 2ϵ±µ =2|J±h|± hJ
|J±h|

(
himp

J

)2
+o

(
himp

J

)2
.

Hint: Assuming that 2ϵµ is outside of the spectrum of the unperturbed uniform chain, and
using Fourier transforms, show that you arrive at the following equation determining the
non-trivial solutions ϵµ: (

1− 2himp

L

∑
k

(Hk − 2ϵµ)
−1
τ̂z

)
Wlµ = 0 .

Assuming himp ≪ h, show that, for L → ∞, 1 ≃ 2himp

∫ 2π

0
dk
2π Tr

(
(Hk − 2ϵµ)

−1
τ̂z
)
. Cal-

culate the trace using Hk = ϵke
iθk τ̂

x/2 τ̂z e−iθk τ̂
x/2 with tan θk = J sin k

h−J cos k , and perform the

integral over k. Give an expression for ϵµ approximated to second order in himp/J .

Problem 4. Bound-state excitations for an Ising chain with an impurity.

The next problem helps in understanding that the presence of disorder changes the
nature of the eigenstates, from being extended in space (plane-wave-like) to being space
localized.
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Consider the model with the disorder in both Jj and hj . Assume that Jj ∈ [Jmin, 1]
and hj ∈ [0, hmax] are uniformly distributed, with Jmin > 0. Numerically solve the
Bogoliubov-de Gennes equations Eq. (133) and show that, whatever the choice of

hmax and Jmin, the spinor eigenfunctions Wjµ
def
=

(
Ujµ

Vjµ

)
are localized in space. This

means that these eigenfunctions are uniformly bounded by a function exponentially
decaying over a characteristic length-scale ξloc, the so-called localization length. More
formally, fixing hmax and Jmin, there exists a ξloc such that√

|Ujµ|2 + |Vjµ|2 ≤ C e−|j−lµ|/ξloc ∀µ , (147)

where lµ depends on µ and C is a constant. This phenomenon can be seen when the
system size exceeds the localization length, L > ξloc. Study localization also using the
inverse participation ratio [78,79]

IPRµ =
∑
j

∣∣|Wjµ|2
∣∣2 =∑

j

∣∣|Ujµ|2 + |Vjµ|2
∣∣2 . (148)

Average IPRµ over µ and verify that it tends towards a constant value, for increasing
L. a

aObserve that plane-wave delocalized states have IPR = 1/L, while fully localized states have
IPR = 1. The problem of Anderson localization in the Kitaev model – the fermionic representation
of the quantum ising chain – has been considered in [80].

Problem 5. Anderson localization of states for the disordered Ising chain.

The space localization phenomenon discussed in the previous problem is an example
of Anderson localization, see Refs. [78, 79]. The space localization of the eigenstates has
profound consequences on the physics of the problem. As shown in Ref. [81], there is
still a region of transverse fields where the system shows ferromagnetic long-range order.
Contrary to the ordered case — where long-range order is seen in the ground state only
and is immediately lost in higher excited states — the presence of disorder, with the
associated space-localized excitations, leads to the consequence that the whole spectrum
shows long-ranged spin-spin correlations. See Ref. [82].

6.2 Open boundary conditions and Majorana fermions

The case of a chain with open boundary conditions is particularly interesting, because
Majorana fermions, and the associated zero-energy modes, emerge quite naturally from
the discussion [19]. In this section, we work out explicitly the case of a chain with open
boundary conditions, introduce the Majorana fermions first as a formal device to perform
the diagonalization, and then discuss the physical role they have as boundary excitations
at vanishing energy in the broken symmetry phase.

For illustration purposes, let us consider the case in which the spin chain has L = 4
sites, and couplings J1, J2, J3 > 0, while J4 = 0 (as dictated by OBC). 25 The 2L × 2L
Hamiltonian matrix (in this case, an 8×8 matrix) will have the form (we fix the anisotropy

25If you want to do numerical tests, we suggest you take different values for Jj , for instance, J1 = 1,
J2 = 2 and J3 = 3, to avoid degeneracies, which might lead to a mixing of the corresponding eigenvectors.
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parameter κ = 1):

H =
1

2



2h −J1 0 0 0 −J1 0 0
−J1 2h −J2 0 J1 0 −J2 0
0 −J2 2h −J3 0 J2 0 −J3
0 0 −J3 2h 0 0 J3 0

0 J1 0 0 −2h J1 0 0
−J1 0 J2 0 J1 −2h J2 0
0 −J2 0 J3 0 J2 −2h J3
0 0 −J3 0 0 0 J3 −2h


. (149)

Let us consider first the case with h = 0, corresponding to the classical Ising model with the
given couplings. The corresponding eigenvalues/eigenvectors (disregarding the ordering of
the non-zero eigenvalues) are found to be:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J1 J2 J3 0 −J1 −J2 −J3 0

−1
2 0 0 1√

2
1
2 0 0 0

1
2 −1

2 0 0 1
2

1
2 0 0

0 1
2 −1

2 0 0 1
2

1
2 0

0 0 1
2 0 0 0 1

2 − 1√
2

1
2 0 0 1√

2
−1

2 0 0 0
1
2

1
2 0 0 1

2 −1
2 0 0

0 1
2

1
2 0 0 1

2 −1
2 0

0 0 1
2 0 0 0 1

2
1√
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(150)

where you should observe that the structure of Eq. (134) is correctly respected, except for
the two zero eigenvalues, which the diagonalization routine has decided to give us in this
particular form. This form itself is particularly interesting. It suggests that the following
fermionic combinations naturally emerge:

ϵ1 = J1 → Φ̂1 = γ̂1 = 1
2(ĉ

†
2 + ĉ2) +

1
2(ĉ

†
1 − ĉ1)

ϵ2 = J2 → Φ̂2 = γ̂2 = 1
2(ĉ

†
3 + ĉ3) +

1
2(ĉ

†
2 − ĉ2)

ϵ3 = J3 → Φ̂3 = γ̂3 = 1
2(ĉ

†
4 + ĉ4) +

1
2(ĉ

†
3 − ĉ3)

ϵ4 = 0 → Φ̂′
4 =

1√
2
(ĉ†1 + ĉ1)

−ϵ1 = −J1 → Φ̂5 = γ̂†1 = 1
2(ĉ

†
2 + ĉ2)− 1

2(ĉ
†
1 − ĉ1)

−ϵ2 = −J2 → Φ̂6 = γ̂†2 = 1
2(ĉ

†
3 + ĉ3)− 1

2(ĉ
†
2 − ĉ2)

−ϵ3 = −J3 → Φ̂7 = γ̂†3 = 1
2(ĉ

†
4 + ĉ4)− 1

2(ĉ
†
3 − ĉ3)

−ϵ4 = 0 → Φ̂′
8 =

1√
2
(ĉ†4 − ĉ4)

. (151)

Several things strike our attention. First: Φ̂′
4 is Hermitian and Φ̂′

8 is anti-Hermitian, and

they are not Hermitian conjugate pairs, contrary to all other (Φ̂j , Φ̂j+4) pairs. If you want
to construct ordinary fermionic operators, then you should redefine:

Φ̂′
4 → Φ̂4 = γ̂4 = 1

2(ĉ
†
1 + ĉ1) +

1
2(ĉ

†
4 − ĉ4)

Φ̂′
8 → Φ̂8 = γ̂†4 = 1

2(ĉ
†
1 + ĉ1)− 1

2(ĉ
†
4 − ĉ4)

(152)

with an orthogonal transformation which leaves the subspace of two degenerate eigenvalues
0 invariant, precisely as alluded to in the last info-box of 6.1. Second: certain Hermitian
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combinations seem to play a peculiar role. In particular, let us define the Majorana
fermions: 26

čj,1 = (ĉ†j + ĉj) and čj,2 = i(ĉ†j − ĉj) . (154)

These operators are manifestly Hermitian. They allow us to express the original fermions
as:

ĉj =
1
2(čj,1 + ičj,2) and ĉ†j =

1
2(čj,1 − ičj,2) , (155)

and satisfy the anti-commutation relations:

{čj,α, čj′,α′} = 2δj,j′δα,α′ . (156)

Notice, in particular, that this implies that different Majorana anti-commute, but (čj,α)
2 =

1.
In terms of these operators, we have:

Φ̂1 = γ̂1 = 1
2(ĉ

†
2 + ĉ2) +

1
2(ĉ

†
1 − ĉ1) = 1

2(č2,1 − ič1,2)

Φ̂2 = γ̂2 = 1
2(ĉ

†
3 + ĉ3) +

1
2(ĉ

†
2 − ĉ2) = 1

2(č3,1 − ič2,2)

Φ̂3 = γ̂3 = 1
2(ĉ

†
4 + ĉ4) +

1
2(ĉ

†
3 − ĉ3) = 1

2(č4,1 − ič3,2)

Φ̂4 = γ̂4 = 1
2(ĉ

†
1 + ĉ1) +

1
2(ĉ

†
4 − ĉ4) = 1

2(č1,1 − ič4,2)

Φ̂5 = γ̂†1 = 1
2(ĉ

†
2 + ĉ2)− 1

2(ĉ
†
1 − ĉ1) = 1

2(č2,1 + ič1,2)

Φ̂6 = γ̂†2 = 1
2(ĉ

†
3 + ĉ3)− 1

2(ĉ
†
2 − ĉ2) = 1

2(č3,1 + ič2,2)

Φ̂7 = γ̂†3 = 1
2(ĉ

†
4 + ĉ4)− 1

2(ĉ
†
3 − ĉ3) = 1

2(č4,1 + ič3,2)

Φ̂8 = γ̂†4 = 1
2(ĉ

†
1 + ĉ1)− 1

2(ĉ
†
4 − ĉ4) = 1

2(č1,1 + ič4,2)

(157)

There is something simple behind the previous story. If you rewrite the original Ising
coupling in terms of fermions, you realize that for instance:

−Jj σ̂xj σ̂xj+1 → −Jj(ĉ†j ĉj+1 + ĉ†j ĉ
†
j+1 +H.c.) = −Jj(ĉ†j − ĉj)(ĉ

†
j+1 + ĉj+1)

≡ −iJj čj,2čj+1,1 , (158)

i.e., the Ising term couples in a precise way neighbouring Majorana operators. All we have
done, to diagonalise it, is to introduce the appropriate combination γ̂j = 1

2(čj+1,1 − ičj,2)

and γ̂†j = 1
2(čj+1,1 + ičj,2) and re-express the coupling term as:

−Jj σ̂xj σ̂xj+1 → −iJj čj,2čj+1,1 = Jj(γ̂
†
j γ̂j − γ̂j γ̂

†
j ) , (159)

which suggests that the ground state is the vacuum of those γ̂j operators. 27

There is a second simple case we can deal with. Take all hj > 0 and Jj = 0, so that
the Hamiltonian is now:

Ĥ =
L∑

j=1

hj(2n̂j − 1) =
L∑

j=1

hj(ĉ
†
j ĉj − ĉj ĉ

†
j) → i

L∑
j=1

hj čj,1čj,2 . (160)

26This definition is non-standard. The standard definition used by Kitaev [19] duplicates the sites and
defines the Majorana fermions as living on even/odd sites as:

č2j−1 = (ĉ†j + ĉj) and č2j = i(ĉ†j − ĉj) . (153)

27Interestingly, in the vacuum we gain an energy −Jj from each bond. Breaking that, we would get a
contribution +Jj from the bond, hence an energy cost, referred to the vacuum, of 2Jj : this explains, for
instance, the factor 2 in front of ϵµ in Eq. (142).
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This shows that the ground state, now the vacuum of the ĉj , still involves a “pairing” of
Majorana fermions, but now on the same site j. The two different Majorana pairings are
sketched in Fig. 9.

γ̂1 γ̂2 γ̂3

1 2 3 4

ĉ1 ĉ2 ĉ3 ĉ4

1 2 3 4

Figure 9: Left: an L = 4 open chain with the off-site Majorana pairing leading to the Bogoliubov
vacuum. Right: The on-site Majorana pairing leads to the ordinary vacuum for hj > 0.

Returning to the previous case with hj = 0, the ground states certainly verify

γ̂j |∅⟩ = 0 for j = 1, · · · , L− 1(= 3) . (161)

But there are two states satisfying such a condition, a degeneracy that is ultimately related
to the presence of unpaired Majorana operators at the end of the chain, as emerging from
Fig. 9 (left). Indeed, one such state is also the vacuum of γ̂L=4:

γ̂j |∅0⟩ = 0 for j = 1, · · · , L(= 4) . (162)

On such a state, we have (generalising now to arbitrary even L)

γ̂Lγ̂
†
L|∅0⟩ = |∅0⟩ =⇒ ič1,1čL,2|∅0⟩ = |∅0⟩ . (163)

The second possible ground state is |∅1⟩ = γ̂†L|∅0⟩ for which:

γ̂†Lγ̂L|∅1⟩ = |∅1⟩ =⇒ ič1,1čL,2|∅1⟩ = −|∅1⟩ . (164)

These two ground states have opposite fermion parity, 28 because they differ by the appli-
cation of γ̂†L.

28Notice, incidentally, that the fermionic parity can be expressed as:

P̂ =

L∏
j=1

(1− 2n̂j) =

L∏
j=1

(
(ĉ†j + ĉj)(ĉ

†
j − ĉj)

)
=

L∏
j=1

(−ičj,1čj,2) , (165)
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Figure 10: The spectrum of eigenvalues εµ = 2ϵµ ≥ 0 of an ordered Ising chain with OBC, versus
the transverse field h. (We show only half of the particle-hole symmetric spectrum ±ϵµ. ) Here
L = 256. Notice the zero-energy eigenvalue for h < hc = J . This eigenvalue is exponentially small
in the length L for all h < hc.

Info: As discussed by Kitaev [19], the two zero-modes survive for 0 < h < J , with a
splitting which is exponentially small in the length of the chain, as long the broken
symmetry leads to two possible ground states.

The existence of these modes is deeply related to the topological considerations
done when discussing Fig. 3. Indeed, a fermionic chain with |h| < J and OBC is
equivalent to surrounding the chain with the fermionic vacuum — in turn, equivalent
to an Ising chain with h → ∞. But one cannot go continuously from a phase with a
winding index of 1 to a phase with an index of 0. Therefore, at the border between two
phases with different indexes, the gap must close to enforce this discontinuity (we saw
when discussing Fig. 3, the deep connection between the discontinuity of the index
and the closing of the gap). Hence, the gap must close at the boundary, and this effect
appears as two zero-energy boundary modes which behave as Majorana excitations.
As we saw above, there are only two ways of combining them into fermionic excitations,
which are indeed very non-local objects. For any finite system size L, the two Majorana
fermions have an overlap exponentially small in L. If we combine them into fermionic
excitations, we find a gap between them which is exponentially small in the system
size. This is the same gap we found in Secs. 3.1 and 3.2, which vanishes in the
thermodynamic limit and leads to symmetry-breaking. Now we appreciate its intimate
connection with topology.

i

To visualize these facts, we show in Fig. 10 the spectrum of eigenvalues ϵµ ≥ 0 (eval-
uated numerically) of an ordered Ising chain with OBC. We mark in red one of the two
zero-energy modes we have discussed above, surviving for all h ≤ hc = J . The mode is not
exactly at zero, but, rather, exponentially small in L. Finite-size effects (here L = 256)
lead to a visible rounding effect in the proximity of hc.
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6.3 The BCS form of the ground state.

The next problem we would like to solve is how to write the Bogoliubov vacuum |∅γ⟩ in
terms of the ĉ†j in the general non-homogeneous case, in a way that generalizes the simple
BCS form we have in k-space:

|∅γ⟩ABC =
ABC∏
k>0

(
uk + vk ĉ

†
k ĉ

†
−k

)
|0⟩ . (166)

For that purpose, let us make the Ansatz that |∅γ⟩ can be written as a Gaussian state of
the form:

|∅γ⟩ = N exp
(1
2

∑
j1j2

Zj1j2 ĉ
†
j1
ĉ†j2

)
|0⟩ ≡ N eZ |0⟩ , (167)

where Z will be our shorthand notation for the quadratic fermion form we exponentiate.
Clearly, since ĉ†j1 ĉ

†
j2

= −ĉ†j2 ĉ
†
j1
we can take the matrix Z to be antisymmetric (but complex,

in general): any symmetric part of Z would give no contribution. The conditions that Z

has to satisfy should be inferred from the fact that we require that γ̂µ|∅γ⟩ = 0, hence:

N
L∑

j=1

(
U∗

jµĉj +V∗
jµĉ

†
j

)
eZ |0⟩ = 0 ∀µ . (168)

Since Z is made of pairs of ĉ†s, it commutes with ĉ†j , hence, ĉ
†
je

Z |0⟩ = eZ ĉ†j |0⟩. The first

term, containing ĉje
Z |0⟩, is more problematic. We would like to commute ĉj through eZ

to bring it towards the fermionic vacuum state |0⟩, where it annihilates. To do so, let us
start calculating: [

ĉj ,Z
]
=

1

2

[
ĉj ,
∑
j1j2

Zj1j2 ĉ
†
j1
ĉ†j2

]
=
∑
j′

Zjj′ ĉ
†
j′ , (169)

where we have used the antisymmetry of Z. We see, therefore, that [ĉj ,Z], being a

combination of ĉ†j′ commutes with Z and with any function of Z. It takes then little

algebra 29 to show that:[
ĉj , e

Z
]
=
[
ĉj ,Z

]
eZ = eZ

[
ĉj ,Z

]
⇒ ĉje

Z = eZ
(
ĉj + [ĉj ,Z]

)
. (170)

The conditions in Eq. (168) therefore read:

N eZ
L∑

j=1

(
U∗

jµ

(
ĉj + [ĉj ,Z]

)
+V∗

jµĉ
†
j

)
|0⟩ = 0 ∀µ . (171)

Noticing that ĉj |0⟩ = 0, substituting Eq. (169), and omitting irrelevant prefactors we
therefore have: (∑

jj′

U∗
j′µZj′j ĉ

†
j +

∑
j

V∗
jµĉ

†
j

)
|0⟩ = 0 ∀µ , (172)

29Simply expand the exponential in the usual way, realise that

[ĉj ,Z
n] = n [ĉj ,Z]Zn−1 ,

because [ĉj ,Z] commutes with all powers of Z, and reconstruct the exponential to get the result.
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where we have exchanged the dummy indices j and j′ in the first term. Next, we collect
the two terms by writing:∑

j

(
(U†Z)µj + (V†)µj

)
ĉ†j |0⟩ = 0 ⇒ Z = −(U†)−1V† . (173)

This is the condition that Z has to verify for the state |∅γ⟩ to be annihilated by all γ̂µ.
This is the so-called Thouless formula [83]. It takes very little algebra 30 to verify that,
indeed, such a form of Z is antisymmetric.

We will see in Sec. 7.1, see Eq. (206), that the Gaussian form just derived applies
also to a time-dependent state |ψ(t)⟩ when the dynamics follows a unitary Schrödinger
evolution with an Hamiltonian Ĥ(t) which is quadratic in the fermionic operators.

According to a theorem of linear algebra [84] any antisymmetric matrix can always be
reduced to a “standard canonical” form by applying a unitary matrix D as follows:

Z = DΛDT with Λ =


0 λ1 0 0 · · ·

−λ1 0 0 0 · · ·
0 0 0 λ2 · · ·
0 0 −λ2 0 · · ·
...

...
...

...
...


L×L

, (175)

where in general the λp are complex. If L is even, there are L
2 blocks 2× 2 with some λp,

while if L is odd, Λ has an extra row/column of zeroes. The unitary matrix D allows us

to define combinations of the fermions c†j which form natural “BCS-paired” orbitals,

d̂†p =
∑
j

(DT)pj ĉ
†
j =

∑
j

Djpĉ
†
j . (176)

Labelling the consecutive columns of D as 1, 1, 2, 2, · · · , p, p, · · · , with p up to L/2, one
can readily check that in terms of the d†s the Bogoliubov vacuum |∅γ⟩ reads:

|∅γ⟩ = N exp
( L/2∑

p=1

λpd̂
†
pd̂

†
p

)
|0⟩ = N

L/2∏
p=1

(
1 + λpd̂

†
pd̂

†
p

)
|0⟩ . (177)

30Observe that:

ZT = −(V†)T
(
(U†)−1

)T

= −V∗
(
(U†)T

)−1

= −V∗ (U∗)
−1

.

However, from block 12 in Eq. (139) we get:

U†V∗ = −V†U∗ ⇒ ZT = −V∗(U∗)−1 = (U†)−1V† = −Z . (174)
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It remains to evaluate the normalization constant N . Now we calculate: 31

1 = ⟨∅γ |∅γ⟩ = |N |2 ⟨0|
L/2∏
p=1

(
1 + λ∗pd̂pd̂p

) (
1 + λpd̂

†
pd̂

†
p

)
|0⟩

= |N |2
L/2∏
p=1

(
1 + |λp|2

)
= |N |2

[
det
(
1+ΛΛ†

)]1/2
= |N |2

[
det
(
1+ ZZ†

)]1/2
= |N |2

[
det
(
1+ (U†)−1V†VU−1

)]1/2
= |N |2

[
det
(
(U†)−1(U†U+V†V)U−1

)]1/2
= |N |2

[
det
(
(UU†)−1

)]1/2
= |N |2 1

|det(U)|
⇒ |N | =

√
|det(U)| . (178)

Summarising, we have derived the so-called Onishi formula [83], which states that:∣∣∣⟨0|∅γ⟩∣∣∣2 = |N |2 = |det(U)| . (179)

If we express the Bogoliubov vacuum in terms of the λp we have:

|∅γ⟩ =
L/2∏
p=1

1√
1 + |λp|2

(
1 + λpd̂

†
pd̂

†
p

)
|0⟩ =

L/2∏
p=1

(
up + vpd̂

†
pd̂

†
p

)
|0⟩ , (180)

where we have defined up = 1/
√

1 + |λp|2 and vp = λp/
√

1 + |λp|2, which verify |up|2 +
|vp|2 = 1.

Further details about the overlap between BCS states of the form discussed previously
are given in Appendix A.

7 Schrödinger dynamics in the time-dependent case

A time dependence of the Hamiltonian can come from many different sources [7,9,10,
85]. The simplest case, which is used in the so-called quantum annealing approach [86–88],
consists in assuming that the transverse fields are time-dependent hj(t): for instance,
they might be slowly annealed from a very large value towards zero. Alternatively, the
Hamiltonian couplings might be changed in some time-periodic fashion [89], as further
discussed in Sec. 7.3. In all these cases, the elements of the matrices A and B become
time-dependent and consequently Ĥ → Ĥ(t). We proceed now in general, assuming A(t)
and B(t).

Start from Schrödinger’s equation:

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ . (181)

31In the derivation we use that:

ΛΛ† =


|λ1|2 0 0 0 · · ·
0 |λ1|2 0 0 · · ·
0 0 |λ2|2 0 · · ·
0 0 0 |λ2|2 · · ·
...

...
...

...
...


L×L

.
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Since the norm of |ψ(t)⟩must be conserved, this implies the existence of a unitary evolution
operator Û(t, t0) such that |ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩, which satisfies the same equation:

iℏ
d

dt
Û(t, t0) = Ĥ(t)Û(t, t0) with Û(t0, t0) = 1̂ . (182)

Next, consider the expectation value of a time-dependent operator Ô(t) in the Schrödinger’s
picture

⟨Ô(t)⟩ ≡ ⟨ψ(t)|Ô(t)|ψ(t)⟩ = ⟨ψ(t0)|Û †(t, t0)Ô(t)Û(t, t0)|ψ(t0)⟩
≡ ⟨ψ(t0)|ÔH(t)|ψ(t0)⟩ , (183)

where we have introduced Heisenberg’s picture operator

ÔH(t) ≡ Û †(t, t0)Ô(t)Û(t, t0) . (184)

Therefore the equation of motion of an operator in Heisenberg’s picture for the general
case of a time-dependent Hamiltonian reads: 32

iℏ
d

dt
ÔH(t) = Û †(t, t0)

([
Ô(t), Ĥ(t)

]
+ iℏ

∂

∂t
Ô(t)

)
Û(t, t0) . (186)

7.1 The time-dependent Bogoliubov-de Gennes equations.

Let’s write Heisenberg’s equation of motion for operator ĉj

iℏ
d

dt
ĉjH(t) = Û †(t, t0)

[
ĉj , Ĥ(t)

]
Û(t, t0) (187)

By calculating the commutator

[
ĉj , Ĥ(t)

]
=

2L∑
l,l′=1

Hll′(t)
[
ĉj , Ψ̂

†
l Ψ̂l′

]

=

2L∑
l,l′=1

Hll′(t)
({
ĉj , Ψ̂

†
l

}
Ψ̂l′ − Ψ̂†

l

{
ĉj , Ψ̂l′

})

=
2L∑

l,l′=1

Hll′(t)
(
δl,jΨ̂l′ − Ψ̂†

l δl′,j+L

)

= 2
L∑

j′=1

(
Ajj′(t)ĉj′ +Bjj′(t)ĉ

†
j′

)
(188)

32Here we use:

iℏ d
dt
Û(t, t0) = Ĥ(t)Û(t, t0) and − iℏ d

dt
Û†(t, t0) = Û†(t, t0)Ĥ(t) .

Notice that if Ĥ and Ô are time-independent[
Û , Ĥ

]
=

[
Û†, Ĥ

]
= 0 and iℏ ∂

∂t
Ô = 0 ,

then Eq. (186) takes the well-known form:

iℏ d
dt
ÔH =

[
ÔH, Ĥ

]
. (185)
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we see that we have a linear equation of motion

iℏ
d

dt
ĉjH(t) = 2

L∑
j′=1

(
Ajj′(t) ĉj′H(t) +Bjj′(t) ĉ

†
j′H(t)

)
(189)

and analogously for the operator ĉ†j . With a more compact notation, one can write the
linear Heisenberg equations of motion for the elementary fermionic operators as:

iℏ
d

dt
Ψ̂H(t) = 2H(t) Ψ̂H(t) , (190)

the factor 2 on the right-hand side originating from the off-diagonal {Ψ̂j , Ψ̂j+L} = 1 for
j = 1 · · ·L. The initial condition for these equations can be written as:

Ψ̂H(t = t0) ≡ Ψ̂ = U0

(
γ̂

γ̂†

)
= U0 Φ̂ , (191)

where γ̂ are the Bogoliubov fermions that diagonalise Ĥ(t0), and U0 the corresponding
rotation matrix.

We are not quite done: We have an explicit linear equation for Ψ̂H(t), but we need
an explicit solution for this equation, obtained by some “simple enough” integration of a
finite-dimensional linear problem. There are now at least two ways of getting the desired
result.

First route. We make the Ansatz that |ψ(t)⟩, the time-evolved state of the system, is
a Bogoliubov vacuum annihilated by a set of time-dependent quasi-particle annihilation
operators γ̂µ(t)

γ̂µ(t) |ψ(t)⟩ = 0 ∀µ ∀t . (192)

This requirement immediately implies, by taking a total time derivative, that:

0 = iℏ
d

dt

(
γ̂µ(t) |ψ(t)⟩

)
=

(
iℏ
∂

∂t
γ̂µ(t)

)
|ψ(t)⟩+ γ̂µ(t)

(
iℏ
d

dt
|ψ(t)⟩

)
=

(
iℏ
∂

∂t
γ̂µ(t) + γ̂µ(t)Ĥ(t)− Ĥ(t)γ̂µ(t)

)
|ψ(t)⟩ (193)

where we have added, in the last step, a term γ̂µ(t) |ψ(t)⟩ = 0. The last expression implies:
33

iℏ
∂

∂t
γ̂µ(t) = −

[
γ̂µ(t), Ĥ(t)

]
. (194)

By considering the equation of motion of the Heisenberg operator γ̂µH(t) we have

iℏ
d

dt
γ̂µH(t) = Û †(t, t0)

([
γ̂µ(t), Ĥ(t)

]
+ iℏ

∂

∂t
γ̂µ(t)

)
Û(t, t0) ≡ 0 , (195)

where we have used Eq. (194) in the last step. So, since γ̂µH does not depend on t, it must

coincide with its t = t0 value. Let’s call this value γ̂µ = γ̂µH = γ̂µ(t = t0).

33A mathematician would complain, here, that this is not a valid implication: an arbitrary linear com-
bination of γ̂µ(t) could be added that, acting on |ψ(t)⟩, gives 0. We are a bit swift here, but the result is
correct. We will get to the same result by a second route in a short while.
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Let us assume now, inspired by Eq. (141), that the ĉjH(t) are indeed expressed by

ĉjH(t) =
L∑

µ=1

(
Ujµ(t) γ̂µ +V∗

jµ(t) γ̂
†
µ

)
, (196)

and let us see if this expression solves the required Heisenberg equations in Eq. (189) for
an appropriate choice of the time-dependent coefficients Ujµ(t) and Vjµ(t). Substituting
in Eq. (189) we get:

L∑
µ=1

(
iℏ
(
d

dt
Ujµ(t)

)
γ̂µ + iℏ

(
d

dt
V∗

jµ(t)

)
γ̂†µ

)
= 2

L∑
j=1

Aij(t)
(
Ujµ(t)γ̂µ +V∗

jµ(t)γ̂
†
µ

)

+ 2
L∑

j=1

Bij(t)
(
Vjµ(t)γ̂µ +U∗

jµ(t)γ̂
†
µ

)
. (197)

By equating the coefficients of γ̂µ and γ̂†µ we obtain the time-dependent Bogoliubov-de
Gennes equations:

iℏ
d

dt
Ujµ(t) = 2

L∑
j′=1

(
Ajj′(t)Uj′µ(t) +Bjj′(t)Vj′µ(t)

)
iℏ
d

dt
Vjµ(t) = −2

L∑
j′=1

(
B∗

jj′(t)Uj′µ(t) +A∗
jj′(t)Vj′µ(t)

) (198)

or more compactly, collecting together µ = 1, · · · , L solutions in L × L blocks U and V:
34

iℏ
d

dt

(
U(t)
V(t)

)
= 2 H(t)

(
U(t)
V(t)

)
. (200)

Notice that if (uµ(t) , vµ(t))
T is solution of Eq. (198) then

(
v∗
µ(t) , u

∗
µ(t)

)T
is also a solution,

so we need to find only µ = 1, · · · , L solutions, as indeed alluded by the compact form
(200), not 2L. Once we have the first L, it is automatically guaranteed that:

iℏ
d

dt

(
U(t) V∗(t)
V(t) U∗(t)

)
= 2 H(t)

(
U(t) V∗(t)
V(t) U∗(t)

)
. (201)

Second route. It is reassuring to get to the same time-dependent Bogoliubov-de Gennes
equations by a second, quicker, route. Let us recall the linear equation we want to solve,
with its initial condition:

iℏ
d

dt
Ψ̂H(t) = 2 H(t)Ψ̂H(t)

Ψ̂H(t = t0) ≡ Ψ̂ = U0

(
γ̂

γ̂†

)
= U0 Φ̂

34In the time-independent case, the solution is equivalent to solving the time-independent Bogoliubov-de
Gennes equations. Indeed in this case the time evolution of the solution is

H

(
uµ

vµ

)
= ϵµ

(
uµ

vµ

)
⇒

(
uµ(t)
vµ(t)

)
= e−2iϵµt/ℏ

(
uµ

vµ

)
(199)

and, as you can easily verify, the same result can be obtained by using directly Eq. (200) with H(t) = H.
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where γ̂ are the Bogoliubov fermions that diagonalise Ĥ(t0), and U0 the corresponding
2L× 2L rotation matrix. Inspired by the form of the initial condition, let us search for a
solution of the same form:

Ψ̂H(t) = U(t)

(
γ̂

γ̂†

)
= U(t) Φ̂ (202)

with the same Φ̂ used to diagonalise the initial t = t0 problem. For this to be a solution,
the time-dependent coefficients U(t) must satisfy the linear Bogoliubov-de Gennes time-
dependent equations:

iℏ
d

dt
U(t) = 2H(t)U(t) (203)

with initial conditions U(t = t0) = U0. The latter form is just a compact way of expressing
Eq. (201).

It is easy to verify that this implies that the operators γ̂µ(t) in the Schrödinger picture
are time-dependent and annihilate the state |ψ(t)⟩: this was indeed the starting point of
the Bogoliubov Ansatz presented in the first route. Indeed, since(

γ̂H

γ̂†
H

)
= U†(t)

(
ĉH(t)

ĉ†H(t)

)
⇒

(
γ̂ (t)

γ̂†(t)

)
= U†(t)

(
ĉ
ĉ†

)
(204)

we can immediately write, in the Schrödinger picture:

γ̂µ(t) =

L∑
j=1

(
U∗

jµ(t) ĉj +V∗
jµ(t) ĉ

†
j

)
. (205)

If we go back to Sec. 6.3, we realize that the algebra carried out there is perfectly applicable
here, and allows us to write the time-dependent state |ψ(t)⟩ in the explicit Gaussian form:

|ψ(t)⟩ = N (t) exp
(1
2

∑
j1j2

Zj1j2(t)ĉ
†
j1
ĉ†j2

)
|0⟩ , (206)

with the anti-symmetric matrix Z(t) given by:

Z(t) = −
(
U†(t)

)−1
V†(t) . (207)

It is not very hard to explicitly verify that such a state satisfies the Schrödinger equation:

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ , (208)

provided U(t) and V(t) satisfy the time-dependent BdG equations in Eq. (200). Indeed,
the time derivative of the state |ψ(t)⟩ is simply:

iℏ
d

dt
|ψ(t)⟩ = iℏ

(
1

2
(ĉ†)TŻ(t)(ĉ†) +

Ṅ (t)

N (t)

)
|ψ(t)⟩ .

On the right-hand side, the Hamiltonian terms can be rewritten by using that, for instance:∑
jj′

ĉ†j′Aj′j ĉje
Z(t)|0⟩ =

∑
jj′

ĉ†j′(AZ)j′j ĉ
†
je

Z(t)|0⟩ .

Rewriting all the Hamiltonian terms we get:

Ĥ(t)|ψ(t)⟩ =
(
(ĉ†)T

(
B+AZ+ ZA+ ZB∗Z

)
(ĉ†)− TrA− TrB∗Z

)
|ψ(t)⟩ .
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By explicitly calculating the derivative of Z(t) using the BdG equations one can check,
after some lengthy algebra, that the two expressions indeed coincide. 35

Consider the uniform model with anisotropy κ = 1. Take J = 1 (constant in time,
and taken as our unit of energy), and consider a time-dependent transverse magnetic
field h(t). Show that, in analogy with the form of the ABC ground state in Eq. (70),
the time-dependent state

|ψ(t)⟩ =
ABC∏
k>0

(
uk(t) + vk(t)ĉ

†
k ĉ

†
−k

)
|0⟩ ,

solves the time-dependent Schrödinger equation iℏ|ψ̇(t)⟩ = Ĥ0(t)|ψ(t)⟩ in the fermionic
ABC sector provided uk(t) and vk(t) satisfy, for all k, the following BdG equations:

iℏψ̇k(t) = Hk(t)ψk(t) with ψk(t) =

(
vk(t)
uk(t)

)
.

Problem 6. Time-dependent BdG equations for a uniform chain.

Consider now a slow annealing of the transverse field h(t) from the initial value hi ≫
J at time t = 0, to the final value hf = 0 at time t = τ , for instance linearly:
h(t) = hi(1 − t/τ). Initialize the system in the ground state of Ĥk(t = 0), and
numerically study the BdG evolution for all k, for a sufficiently large L. Consider
now the expectation value of the density of defects over the ferromagnetic ground
state at the end of the non-equilibrium protocol

ρdef(τ) =
1

2L

L∑
j=1

⟨ψ(τ)|(1− σ̂xj σ̂
x
j+1)|ψ(τ)⟩ .

Show that ρdef(τ) ∼ τ−1/2 for sufficiently large τ , provided L is large enough. a

This is the so-called Kibble-Zurek scaling, see Refs. [35, 90] for details and further
references on this topic.

aThe power-law scaling of ρdef(τ) holds for τ ≪ τ∗L where τ∗L ∝ L2 is a characteristic time where
the finite-size critical gap, scaling as 1/L, starts to be visible. For larger τ , the finite-size critical gap
at hc/J = 1 becomes relevant, and the density of defects starts decaying faster.

Problem 7. Crossing the critical point with an out-of-equilibrium protocol.

7.2 Calculating time-dependent expectation values.

Once we have a solution to the time-dependent BdG equations, we can calculate time-
dependent expectations of operators quite easily. Consider, for instance, the elementary

35Indeed, the equation for Ż(t) is interesting: it is non-linear, and can be written without much difficulty
in the case of imaginary-time dynamics as well.
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one-body Green’s function:

Gjj′(t) ≡ ⟨ψ(t)|ĉj ĉ
†
j′ |ψ(t)⟩ = ⟨ψ(t0)|ĉjH(t)ĉ

†
j′H(t)|ψ(t0)⟩

Fjj′(t) ≡ ⟨ψ(t)|ĉj ĉj′ |ψ(t)⟩ = ⟨ψ(t0)|ĉjH(t)ĉj′H(t)|ψ(t0)⟩ . (209)

We assume that the initial state |ψ(t0)⟩ is the Bogoliubov vacuum of the operators γ which
diagonalise Ĥ(t0), i.e., |ψ(t0)⟩ = |∅γ⟩. The algebra is most directly carried out by working
with the 2L× 2L Nambu one-body Green’s function matrix

Gjj′(t) ≡ ⟨ψ(t)|Ψ̂jΨ̂
†
j′ |ψ(t)⟩ = ⟨ψ(t0)|Ψ̂jH(t)Ψ̂

†
j′H(t)|ψ(t0)⟩ , (210)

by using the fact that the corresponding transformed Green’s function is simple, since
|ψ(t0)⟩ = |∅γ⟩:

Gγ
µµ′ ≡ ⟨ψ(t0)|Φ̂µΦ̂

†
µ′ |ψ(t0)⟩ =

(
1 0

0 0

)
. (211)

In matrix form, we immediately calculate:

G(t) = ⟨ψ(t0)|Ψ̂H(t)Ψ̂
†
H(t)|ψ(t0)⟩ = U(t) ⟨ψ(t0)|Φ̂ Φ̂†|ψ(t0)⟩U†(t)

= U(t)

(
1 0

0 0

)
U†(t) =

(
U(t)U†(t) U(t)V†(t)

V(t)U†(t) V(t)V†(t)

)
(212)

Summarising, the four L× L blocks of G read:

G(t) =

(
G(t) F(t)

F†(t) 1−GT(t)

)
=

(
U(t)U†(t) U(t)V†(t)

V(t)U†(t) V(t)V†(t)

)
. (213)

Info: Notice that, quite generally, G is Hermitian, while F, as a consequence of the
fermionic anti-commutations is anti-symmetric:

G(t) = U(t)U†(t) = G†(t) and F(t) = U(t)V†(t) = −FT(t) . (214)

i

Expectation values of more complicated operators can be reduced to sums of products
of Green’s functions through the application of Wick’s theorem [1]. This fact will be
explicitly used later on, for instance, when calculating expectation values for spin-spin
correlation functions, see Sec. 8, or the Entanglement entropy, see Sec. 9. Moreover,
time-correlation functions with Heisenberg operators at different times can be calculated
similarly.

7.3 Floquet time-dependent case.

A particular case of dynamics is that in which the Hamiltonian is periodic in time, i.e.,
a period τ exists such that Ĥ(t+ τ) = Ĥ(t). The whole field of Floquet engineering is re-
cently actively pursuing this strategy to construct interesting phases of matter, sometimes
without a counterpart in equilibrium physics. See Refs. [89, 91] and reference therein for
more details.

The Floquet theorem [92,93] guarantees the existence in the Hilbert space of a complete
basis of solutions of the time-dependent Schrödinger equation which are periodic “up to a
phase factor”, i.e., such that:

|ψFα(t)⟩ = e−iEαt/ℏ |ψPα(t)⟩ with |ψPα(t)⟩ = |ψPα(t+ τ)⟩ . (215)
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This way of writing is closely reminiscent of the time-independent case, except that
the state |ψPα(t)⟩, known as Floquet mode, is now periodic in time rather than a time-
independent eigenstate of the Hamiltonian; the Eα, which plays the role of the eigenenergy,
is known as Floquet quasi-energy. There are 2L, as many as the dimension of the Hilbert
space, Floquet solutions of this type, and these solutions can be used as a convenient
time-dependent basis to expand states. Their usefulness consists in the fact that if we
expand a general initial state as

|ψ(0)⟩ =
∑
α

|ψPα(0)⟩⟨ψPα(0)|ψ(0)⟩ ,

then the time-evolution can be written, for free, in a form that is reminiscent of the
time-independent case, i.e.:

|ψ(t)⟩ =
2L∑
α=1

e−iEαt/ℏ |ψPα(t)⟩ ⟨ψPα(0)︸ ︷︷ ︸
Û(t)

|ψ(0)⟩ . (216)

Explicit construction of the many-body Floquet states can be obtained through a
Floquet analysis of the time-dependent Bogoliubov-de Gennes (BdG) equations, in a way
similar to that, used to construct the energy eigenstates from the solution of the static
BdG equations (see Sec. 6). To do that, let us write the BdG equations (203)

iℏ
d

dt

(
U(t)
V(t)

)
= 2H(t)

(
U(t)
V(t)

)
. (217)

Since H(t + τ) = H(t) is a periodic 2L × 2L matrix, the Floquet theorem guarantees the
existence of a complete set of 2L solutions which are periodic up to a phase. L of them
have the form:

e−iϵµt/ℏ
(
uPµ(t)
vPµ(t)

)
for µ = 1 · · ·L with

{
uPµ(t+ τ) = uPµ(t)
vPµ(t+ τ) = vPµ(t)

,

and the remaining L, by particle-hole symmetry, are automatically obtained as

eiϵµt/ℏ
(
v∗

Pµ(t)

u∗
Pµ(t)

)
.

Collecting all the quasi-energies ϵµ into a diagonal matrix ϵ = diag(ϵµ), and the various
column vectors uPµ(t) and vPµ(t) into a L × L matrices UP(t) and VP(t), it is straight-
forward to show that the structure of the Floquet solutions of the BdG solutions is 36

UF(t) =

(
UF(t) V∗

F(t)

VF(t) U∗
F(t)

)
=

(
UP(t) e

−iϵt/ℏ V∗
P(t) e

iϵt/ℏ

VP(t) e
−iϵt/ℏ U∗

P(t) e
iϵt/ℏ

)
. (218)

Using these solutions, we can construct the Bogoliubov operators γ̂Fµ(t) which annihilate
a vacuum Floquet state |∅F(t)⟩ through the standard method employed in the general
time-dependent case (see Eq. 140):(

γ̂F(t)

γ̂†
F(t)

)
= U†

F(t)

(
ĉ
ĉ†

)
, (219)

36Notice that the quasi-energy phase factors have to stay on the right of the periodic part, for the
ordinary rules of matrix multiplication to give the correct phase-factor to each column of the matrix.
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or, more explicitly, for µ = 1, · · · , L:

γ̂Fµ(t) = eiϵµt/ℏ
L∑

j=1

(
(U∗

P(t))jµĉj + (V∗
P(t))jµĉ

†
j

)
⇒ γ̂Fµ(t+ τ) = eiϵµτ/ℏγ̂Fµ(t) ∀t .

(220)

The Floquet vacuum state |∅F(t)⟩ annihilated by all the γ̂Fµ(t) has the Gaussian form (see
Eq. (206)):

|∅F(t)⟩ = NF(t) exp
(1
2

∑
j1j2

(ZF(t))j1j2 ĉ
†
j1
ĉ†j2

)
|0⟩ , (221)

where, see Secs. 6 and 7, the Thouless and Onishi formulas hold:

ZF(t) = −(U†
F(t))

−1V†
F(t) and NF(t) =

√
|det(UF(t))| . (222)

Let us show that the Floquet vacuum state is periodic, i.e.,

|∅F(t+ τ)⟩ = |∅F(t)⟩ ,

or, to put it differently, its many-body quasi-energy is E0 = 0. To this aim, it suffices to
show that ZF(t) and NF(t) are both periodic. From VF = VP e

−iϵt/ℏ and UF = UP e
−iϵt/ℏ

we immediately derive that V†
F(t) = eiϵt/ℏV†

P(t) and (U†
F(t))

−1 = (U†
P(t))

−1 e−iϵt/ℏ. From
these relationships, in turn, it follows immediately that the quasi-energy phase-factors
cancel in ZF, i.e.:

ZF(t) = −(U†
F(t))

−1V†
F(t) = −(U†

P(t))
−1V†

P(t) , (223)

which is manifestly periodic in time, ZF(t + τ) = ZF(t), because both UP and VP are
periodic. The periodicity of NF(t) follows because∣∣det(UF(t))

∣∣ = ∣∣det(UP(t)) det(e
−iϵt/ℏ)

∣∣ = ∣∣det(UP(t))
∣∣ ∣∣e−i

∑
µ ϵµt/ℏ

∣∣ = ∣∣det(UP(t))
∣∣ ,

i.e., once again something manifestly periodic in time. At this point, we can easily, in
principle, construct all the 2L many-body Floquet states by simply applying any product
of γ̂†Fµ(t) to |∅F(t)⟩: 37

|ψF{nµ}(t)⟩ =
L∏

µ=1

(
γ̂†Fµ(t)

)nµ

|∅F(t)⟩ , (224)

where nµ = 0 or 1 is the occupation number of the γ̂†Fµ(t) operator. From Eq. (220) and
the periodicity of the Floquet vacuum, it follows that the quasi-energy of |ψF{nµ}(t)⟩ is
given by:

E{nµ} =

L∑
µ=1

nµϵµ . (225)

8 Spin-spin correlation functions

As discussed in Sec. 4, the thermal physics of the classical Ising model in two dimensions
is reproduced by the ground state physics of the quantum Ising chain. Here we consider

37Some care should be exercised if the boundary conditions depend on the fermionic parity. In that case,
one should work separately in the two subsectors with even and odd fermionic parity, starting from the
corresponding vacuum state.

53



SciPost Physics Lecture Notes Submission

spin-spin correlation functions. From the general theory we know that, see Eq. (110),
the ground state expectation value of the spin-spin (order-parameter) correlations for a
translationally invariant system should have the form: 38

Cxx
j,j+n = ⟨σ̂xj σ̂xj+n⟩

n large−−−−→ m2 + const× e−an/ξ

nη
, (226)

where m is the order-parameter m = ⟨σ̂xj ⟩, ξ the correlation length, and η the anomalous
exponent.

The question we address here is how to calculate spin-spin correlation functions for
the quantum Ising chain, see Refs. [74, 94] for a more in-depth and general discussion.
Specifically, we want to show how to calculate spin-spin correlations for the three possible
directions in spin-space:

Cxx
j1,j2 = ⟨σ̂xj1 σ̂

x
j2⟩ , Cyy

j1,j2
= ⟨σ̂yj1 σ̂

y
j2
⟩ , Czz

j1,j2 = ⟨σ̂zj1 σ̂
z
j2⟩ . (227)

Here we discuss in detail the equilibrium case only.
The Czz

j1,j2
does not involve the Jordan-Wigner non-local string, and comes automat-

ically from using Wick’s theorem, once you have calculated the single-particle Green’s
functions, including the anomalous term, see Sec. 3.1.2 and Sec. 7.2.

By a direct application of the Jordan-Wigner mapping σ̂zj = 1 − ĉ†j ĉj and of Wick’s
theorem, show that:

Czz
j1,j2 = 4

(
Gj1,j1 −

1

2

)(
Gj2,j2 −

1

2

)
+ 4Gj1,j2(δj1,j2 −Gj2,j1) + 4|Fj1,j2 |2 . (228)

Verify that Czz
j1,j1

= 1. Show that:

⟨σ̂zj ⟩ = 2
(
Gj,j −

1

2

)
. (229)

Recognise that the first term in Czz
j1,j2

is simply ⟨σ̂zj1⟩⟨σ̂
z
j2
⟩. As a consequence, the

so-called connected correlation function is given by:

Czz,conn
j1,j2

def
= Czz

j1,j2 − ⟨σ̂zj1⟩⟨σ̂
z
j2⟩ = 4Gj1,j2(δj1,j2 −Gj2,j1) + 4|Fj1,j2 |2 . (230)

For the translationally invariant critical Ising case (κ = 1, h = J), using the Green’s
functions derived in Sec. 3.1.2, verify that:

Czz,conn
1,1+n =

4

π2
1

4n2 − 1
. (231)

Compare this with Eq. (3.3) of Ref. [65].

Problem 8. The zz correlations.

Consider now the calculation of the σ̂xj1 σ̂
x
j2

correlations 39 for j2 > j1. Using the
Jordan-Wigner mapping we get:

Cxx
j1,j2 = ⟨σ̂xj1 σ̂

x
j2⟩ = ⟨(ĉ†j1 + ĉj1) exp

(
iπ

j2−1∑
j=j1

n̂j

)
(ĉ†j2 + ĉj2)⟩ . (232)

38Recall that the rotation in spin-space we have performed is such that the longitudinal direction is given
by σ̂x.

39Recall that, in our convention, x is the spin direction in which the symmetry-breaking occurs.
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Recall now that:

eiπn̂j = 1− 2n̂j = ĉj ĉ
†
j − ĉ†j ĉj = (ĉ†j + ĉj)(ĉ

†
j − ĉj) = ÂjB̂j , (233)

where the last expression involves the definitions [75]

Âj = (ĉ†j + ĉj) ≡ čj,1 and B̂j = (ĉ†j − ĉj) = −ičj,2 , (234)

closely related to the Majorana fermions. Hence we can write:

Cxx
j1,j2 = ⟨σ̂xj1 σ̂

x
j2⟩ = ⟨Âj1

( j2−1∏
j=j1

ÂjB̂j

)
Âj2⟩

= ⟨B̂j1Âj1+1B̂j1+1 · · · Âj2−1B̂j2−1Âj2⟩ , (235)

where we used that (Âj)
2 = 1.

At this point, we use Wick’s theorem [1], since this is a product of fermion operators
averaged on the ground state of a quadratic Hamiltonian (a Gaussian state, as we have
seen in Sec. 6.3), or on a thermal state of a quadratic Hamiltonian, depending on whether
we are calculating correlations at T = 0 or finite T . There are 2(j2 − j1) elements in the
product, which we should be contracted pairwise in all possible ways, with the appropriate
permutation sign [1].

Recall: The results of Sec. 7.2 concerning the elementary fermionic Green’s functions
tell us that:

Gjj′
def
= ⟨ĉj ĉ

†
j′⟩ =

(
UU†)

jj′
(236)

and
Fjj′

def
= ⟨ĉj ĉj′⟩ =

(
UV†)

jj′
. (237)

Recall also that the anti-commutation of the fermionic destruction operators forces F
to be anti-symmetric. Moreover, if the average is taken over the ground state so that
U and V can be taken to be both real a, then G = UUT is real and symmetric, and
F = UVT is real and anti-symmetric.

aThe same results can be easily obtained from thermal averages, see Sec. 10.

!

Let us start by observing that

ÂjÂj′ = ⟨ÂjÂj′⟩ = ⟨(ĉ†j + ĉj)(ĉ
†
j′ + ĉj′)⟩ = Gjj′ + (δj,j′ −Gj′j) +Fjj′ +F∗

j′j = δj,j′ (238)

where we used that G = GT and (F∗)T = −F. Similarly, we have that:

B̂jB̂j′ = ⟨B̂jB̂j′⟩ = ⟨(ĉ†j−ĉj)(ĉ
†
j′−ĉj′)⟩ = −Gjj′−(δj,j′−Gj′j)+Fjj′+F∗

j′j = −δj,j′ . (239)

These findings simply eliminate contractions between operators of the same type. 40

We are therefore left with the contractions of the type:

B̂jÂj′ = ⟨B̂jÂj′⟩ = ⟨(ĉ†j − ĉj)(ĉ
†
j′ + ĉj′)⟩ = −Gjj′ + (δj,j′ −Gj′j)− Fjj′ + F∗

j′j

= δj,j′ − 2(Gjj′ + Fjj′)
def
= Mj,j′ (240)

40Observe that contractions of the type ⟨ÂjÂj⟩ or ⟨B̂jB̂j⟩ never occur from the Wick’s expansion.
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and

ÂjB̂j′ = ⟨ÂjB̂j′⟩ = ⟨(ĉ†j + ĉj)(ĉ
†
j′ − ĉj′)⟩ = Gjj′ − (δj,j′ −Gj′j)− Fjj′ + F∗

j′j

= 2(Gj′j + Fj′j)− δj,j′ = −Mj′,j (241)

as perhaps expected.

Warning: The previous considerations apply to expectations calculated on the ground
state or to thermal expectations. When considering time-dependent expectations the
condition of reality of the matrices G and F no longer applies, and appropriate mod-
ifications would be needed, see Ref. [94].

!

We now have to account for all possible contractions of the B-A type, say, with the
proper permutation sign. If you think for a while, you realize that you can organize the
whole of Wick’s sum into the determinant of an appropriate matrix as follows:

Wick → B̂j1Âj1+1B̂j1+1Âj1+2 · · · B̂j2−1Âj2 + B̂j1Âj1+1B̂j1+1Âj1+2 · · · B̂j2−1Âj2 + · · ·

= det


Mj1,j1+1 Mj1,j1+2 · · · Mj1,j2

Mj1+1,j1+1 Mj1+1,j1+2 · · · Mj1+1,j2
...

...
. . .

...
Mj2−1,j1+1 Mj2−1,j1+2 · · · Mj2−1,j2


(j2−j1)×(j2−j1)

. (242)

Here, to help the reader recognize the various contractions, we have used colours.

Info: A good way to understand the structure of the matrix determinant you see is
to notice that the second (column) index is constant — going from j1 + 1 to j2 —
and tells you which is the Â operator in the contraction: the corresponding first (row)
index tells you the B̂ partner in the contraction, and as you see it grows from j1 up
to j2 − 1, as appropriate for the B̂ partners.

i

Summarizing, we can write:

Cxx
j1,j2 = det



Mj1,j1+1 Mj1,j1+2 · · · Mj1,j2−1 Mj1,j2

Mj1+1,j1+1 Mj1+1,j1+2 Mj1+1,j1+3 · · · Mj1+1,j2

...
...

. . .
...

...

Mj2−2,j1+1 Mj2−2,j1+2 · · · Mj2−2,j2−1 Mj2−2,j2

Mj2−1,j1+1 Mj2−1,j1+2 · · · Mj2−1,j2−1 Mj2−1,j2


.(243)
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With similar arguments, using the Jordan-Wigner mapping of σ̂yj , show that:

Cyy
j1,j2

= ⟨σ̂yj1 σ̂
y
j2
⟩ = (−1)j2−j1−1⟨B̂j1+1Âj1+1 · · · B̂j2−1Âj2−1B̂j2Âj1⟩ . (244)

Use Wick’s theorem to deduce that:

Cyy
j1,j2

= det



Mj1+1,j1 Mj1+1,j1+1 · · · Mj1+1,j2−2 Mj1+1,j2−1

Mj1+2,j1 Mj1+2,j1+1 · · · Mj1+2,j2−2 Mj1+2,j2−1

...
...

. . .
...

...

Mj2−1,j1 Mj2−1,j1+1 · · · Mj2−1,j2−2 Mj2−1,j2−1

Mj2,j1 Mj2,j1+1 · · · Mj2,j2−2 Mj2,j2−1


. (245)

Problem 9. The yy correlations.

The translationally invariant case is particularly noteworthy, since the various Mj,j′

depend only on the difference of sites. Denoting by Mj−j′ = Mj,j′ , setting j1 = 1 and
j2 = 1 + n, we can then write:

Cxx
n

def
= Cxx

1,1+n = det



M−1 M−2 · · · M−(n−1) M−n

M0 M−1 · · · M−(n−2) M−(n−1)

...
. . .

. . .
. . .

...

Mn−3 Mn−4 · · · M−1 M−2

Mn−2 Mn−3 · · · M0 M−1


, (246)

and

Cyy
n

def
= Cyy

1,1+n = det



M1 M0 · · · M−(n−3) M−(n−2)

M2 M1 M0 · · · M−(n−3)

...
. . .

. . .
. . .

...

Mn−1 Mn−2 · · · M1 M0

Mn Mn−1 · · · M2 M1


, (247)

both having the form of an n× n Toeplitz matrix 41 determinant.

41By definition, a matrix in which every sub-diagonal is constant.
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By referring to the results for the one-particle Green’s functions, show that the critical
Ising case (h = J and κ = 1), and in the thermodynamic limit L→ ∞, the elementary
contractions are given by:

Mj,j′ = Mj−j′ =
1

π
√
2

∫ π

0
dk

cos(k(j − j′ + 1))− cos(k(j − j′))√
1− cos k

. (248)

Evaluate the integral. a

aShow that:

Mj−j′ = − 2

π

1

1 + 2(j − j′)

Problem 10. The translationally invariant case.

Consider a uniform Ising chain with PBC. By working in the fermionic ABC sector,
calculate numerically the spin-spin correlation function Cxx

1,1+n for the three cases: a)
h/J = 1/2, b) h/J = 2 and c) h/J = 1. Verify that the correlations Cxx

1,1+n tend to
decrease with increasing n, until n ∼ L/2, and then increase back towards a value
Cxx
1,L ≡ Cxx

1,2. Explain why this happens. Verify numerically that, when L → ∞
— practically, try increasing L in your calculation —, Cxx

1,L/2 tends towards a finite

value for case a), it goes to zero exponentially fast in case b), and as a power law
in case c). Estimate the exponent of such a power law. In the critical case c),
compare the results obtained for a finite chain length L, and those obtained by using
the contractions Mj−j′ evaluated in the thermodynamic limit L → ∞ (see previous
problem). Repeat the calculations for Cyy

1,1+n. Compare with the analytical solutions
provided in Ref. [65].

Problem 11. Spin-spin correlation functions.

Thanks to the existence of approximate formulae for the asymptotic behavior of
Toeplitz matrix determinants [95–99], these exact formulas are the starting point of many
large-distance results [29,65,74,94,100], also related to the 2d classical Ising model [101–
103].

9 Entanglement entropy

The entanglement entropy is a way to quantify entanglement [104], that plays a fun-
damental role in many-body physics, both in- and out-of-equilibrium. In the first case,
the development of long-range quantum correlations captured by the entanglement en-
tropy is closely related to critical points of second-order quantum-phase transitions [105].
In the case of the Ising model we are discussing here, the situation has been discussed
in [106, 107], and it was found that the half-chain entanglement entropy scales logarith-
mically with the system size at the critical point, in deep connection with conformal field
theories [107–109].

On the non-equilibrium side, the entanglement plays an important role in the dynamics
of quenched many-body systems. In the case of ergodic thermalizing systems, local observ-
ables thermalize, and this happens because the local density matrix becomes mixed, due
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to the strong entanglement quantum correlations generated by the dynamics (see [110,111]
for a review). In the case of integrable Hamiltonians, there is no thermalization, but lo-
cal observables tend to an asymptotic value described by the so-called generalized Gibbs
ensemble (GGE) [111,112]. In this case, the asymptotic local density matrix is less mixed
and the dynamics generates less quantum correlations due to local constraints [113–115].

The entanglement entropy quantifies these quantum correlations and is an invaluable
tool to distinguish between thermalizing and GGE cases (see, for instance, [116]). More-
over, in case of disorder, many-body localization can appear, an integrable phase where
quantum correlations propagate slowly, and half-chain entanglement entropy increases
logarithmically in time, in contrast with the linear increase of clean ergodic or integrable
systems [117–121]. The Ising model is integrable, and under a quantum quench its half-
chain entanglement entropy linearly increases in time, until it reaches an asymptotic value
linear in the system size and smaller than the thermal value, as discussed in [27,115], also
in connection with conformal field theories [108].

Finally, the entanglement entropy has a very important role in witnessing the so-called
entanglement transitions. If a quantum system undergoes random measurements from a
classical environment, the entanglement can show very different behaviours, depending
on whether the effect of the quantum dynamics dominates (strong entanglement) or the
effect of the onsite measurements (small entanglement). This is reflected in the behaviour
of the half-chain entanglement entropy that scales differently with the system size in each
entanglement phase. Also in this context the Ising model has been widely employed [45–
55], together with similar quadratic fermionic models [45,52,122–131], where one evaluates
the entanglement entropy using the methods described here.

So, the question of how to calculate the entanglement entropy for the quantum Ising
chain is a very important one, and we address it here using the methods developed
in [27, 106]. (Equivalent methods leading even to closed expressions for the ground-state
entanglement entropy are described in [132–134]. The approach of Ref. [135] for a general
real Gaussian density matrix is also worth mentioning.). To explain what the entangle-
ment entropy is, let us start from the concept of reduced density matrix. For a system
described by a pure state |ψ⟩, we can equivalently adopt a density matrix formulation [70],
using ρ̂ = |ψ⟩⟨ψ|. The reduced density matrix is a proper (generally non-pure) density ma-
trix obtained by tracing out a part of the system. To be concrete, if our Ising chain has L
sites, then we can write:

ρ̂l = Tr{l+1,··· ,L} ρ̂ , (249)

where Tr{l+1,··· ,L} indicates that we take a partial trace over the sites of the chain not
belonging to the connected subsystem with sites {1, · · · , l}.

The reduced density matrix ρ̂l must be a positive Hermitian operator acting in the
Hilbert space of the {1 · · · l} spins, whose trace is 1. It has 2l non-negative eigenvalues
wi which sum to 1. The only case in which it is itself a pure state is when only one of
the wi is equal to 1, and all the others vanish. This, in turn, is only possible when the
state of the two connected subchains {1 · · · l} and {l + 1 · · ·L} is a product state, i.e., a
state without entanglement. A good way to capture such entanglement is to calculate the
so-called entanglement entropy

Sl = −Tr{1,··· ,l} ρ̂l log ρ̂l = −
2l∑
i=1

wi logwi , (250)

which vanishes exactly when the state is a product state and is positive otherwise.
What do we know about ρ̂l? Recall now that a basis of Hermitian operators for each

spin is given by the three Pauli matrices, supplemented by the identity matrix which we
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denote by σ̂0 = 12. Hence, we can certainly write ρ̂l as:

ρ̂l =
1

2l

∑
α1, ..., αl

Cα1···αl
σ̂α1
1 · · · σ̂αl

l with αi = 0, x, y, z . (251)

The first question is how the coefficients Cα1···αl
in this expansion can be written.

Info: Let us recall the analogous problem for the case of a single spin. If we write
ρ̂ = 1

2

∑
αCασ̂

α, then while C0 = 1 due to the unit trace of ρ̂, we can reconstruct the
other coefficients Cα=x,y,z from measurements of the different components of the spin,
more precisely, from the spin expectation values

⟨σ̂α⟩ = Tr
(
σ̂αρ̂

)
=

1

2

∑
α′

Cα′ Tr
(
σ̂ασ̂α

′)
= Cα , (252)

where we used that Tr(σ̂ασ̂α
′
) = 2δα,α′ . The name tomography is often used in this

context: you reconstruct full information on the state by appropriate measurements.

i

In a very similar way, consider measuring the expectation value of the operator σ̂α1
1 · · · σ̂αl

l

on the state ρ̂l. We get:

Cα1···αl
= Tr{1···l}

(
σ̂α1
1 · · · σ̂αl

l ρ̂l

)
= Tr{1···l}Tr{l+1···L}

(
σ̂α1
1 · · · σ̂αl

l ρ̂
)

= Tr{1···L}

(
σ̂α1
1 · · · σ̂αl

l ρ̂
)
≡ ⟨ψ|σ̂α1

1 · · · σ̂αl
l |ψ⟩ , (253)

where the second step follows from Eq. (249).

Remark: The 4l complex coefficients Cα1···αl
completely specify the reduced density

matrix ρ̂l, an operator in a 2l-dimensional space. How to get the eigenvalues of ρ̂l
and extract the entanglement entropy Sl, seems a highly non-trivial task, at this
stage. Notice also that the previous considerations apply to any spin system. There
is nothing special, so far, about the quantum Ising chain.

!

Let us look more closely at an example of such a term. Consider, for a block of l = 8
sites the term C000xz00y:

C000xz00y = ⟨ψ|σ̂x4 σ̂z5σ̂
y
8 |ψ⟩ . (254)

First of all observe that such a term respects the parity invariance of the Hamiltonian,
as it possesses an even number of σ̂x and σ̂y operators: if there was an odd number of
them, the coefficient would vanish due to the parity selection rule. Next, we map spins
into fermions.
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Info: To map spins into fermions, recall the Jordan-Wigner transformation:
σ̂xj = K̂j (ĉ

†
j + ĉj)

σ̂yj = K̂j i(ĉ
†
j − ĉj)

σ̂zj = 1− 2n̂j

with K̂j =

j−1∏
j′=1

(1− 2n̂j′) . (255)

Recall also the following useful ways of writing some of the previous fermionic quan-
tities. First of all, Majorana (Hermitian) combinations appear explicitly in σ̂x and
σ̂y:

čj,1 = (ĉ†j + ĉj) and čj,2 = i(ĉ†j − ĉj) . (256)

Second, you can re-express in many ways the operator 1− 2n̂j :

1− 2n̂j = ĉj ĉ
†
j − ĉ†j ĉj = (ĉ†j + ĉj)(ĉ

†
j − ĉj) = −ičj,1čj,2 . (257)

i

Therefore, we get: 42

C000xz00y = ⟨ψ|K̂4 (ĉ
†
4 + ĉ4) (1− 2n̂5) K̂8 i(ĉ

†
8 − ĉ8)|ψ⟩

= ⟨ψ|(ĉ†4 + ĉ4) (1− 2n̂4) (1− 2n̂6) (1− 2n̂7) i(ĉ
†
8 − ĉ8)|ψ⟩

= ⟨ψ|č4,1 (−ič4,1č4,2) (−ič6,1č6,2) (−ič7,1č7,2) č8,2|ψ⟩

= ⟨ψ| (−ič4,2) (−ič6,1č6,2) (−ič7,1č7,2) č8,2|ψ⟩ . (258)

Warning: In the notation of Sec. 8, see Eq. (234), such an expectation value would
translate into:

C000xz00y = i⟨ψ|B̂4Â6B̂6Â7B̂7B̂8|ψ⟩ , (259)

hence in equilibrium (i.e., for a ground state or thermal calculation) it would still
vanish, simply because you cannot construct the correct number of non-vanishing
Wick’s contractions! In any case, you notice how the approach we have undertaken
is essentially impossible to carry out. Even after calculating, through an appropriate
application of Wick’s theorem, all possible non-vanishing coefficients Cα1···αl

calculat-
ing the eigenvalues of the corresponding reduced density matrix seems an incredibly
difficult task!

!

But there is something very special about a quantum Ising chain. If |ψ⟩ is the ground
state of the quantum Ising chain, the state has a Gaussian form, as explained in Sec. 6.3.
Similarly, for a state |ψ(t)⟩ = Û(t, 0)|ψ(0)⟩, corresponding to a Schrödinger time evolution
with an arbitrary quantum Ising chain Hamiltonian, starting from some |ψ(0)⟩ with a
Gaussian form. In all these cases, Wick’s theorem comes to rescue us in the calculation of
the relevant expectation values, which can be expressed as a sum of products of elementary
one-particle Green’s functions [1]. It turns out that working with Majorana fermions is a
good way of handling efficiently ordinary and anomalous fermionic Green’s functions. To
do that, let us be equipped with a matrix notation for the Majorana as well.

42Use the fact that (1 − 2n̂j) commutes with terms which do not involve fermions at site j, and that

(1 − 2n̂j)
2 = 1. This leads, in particular, to a cancellation of the two tails originating from the Jordan-

Wigner string operators K̂4 and K̂8 . Moreover, recall that the square of a Majorana gives the identity:
(čj,1)

2 = (čj,2)
2 = 1.
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To be consistent with the Nambu notation for the ordinary fermions, we better define
the Majorana column vector: 43

č =



č1,1
č2,1
...

čL,1
č1,2
č2,2
...

čL,2


=



1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1

−i 0 · · · 0 i 0 · · · 0
0 −i · · · 0 0 i · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · −i 0 0 · · · i





ĉ1
ĉ2
...

ĉL
ĉ†1
ĉ†2
...

ĉ†L


= W Ψ̂ , (261)

where we defined the 2L× 2L block matrix:

W =

(
1 1

−i1 i1

)
. (262)

One can define the Majorana 2L× 2L correlations matrix as:

Mnn′ = ⟨ψ|čnčn′ |ψ⟩ =
∑
j,j′

(W)nj⟨ψ|Ψ̂jΨ̂
†
j′ |ψ⟩(W

†)j′n′ , (263)

which in full matrix form is immediately related to the Nambu Green’s function G:

M = W G W† . (264)

Upon substituting the block-expression for the Nambu Green’s function G in Eq. (213) we
obtain, after simple block-matrix algebra:

M =

(
1+ (G−GT) + (F− F∗) i(G+GT − 1)− i(F+ F∗)

−i(G+GT − 1)− i(F+ F∗) 1+ (G−GT)− (F− F∗)

)
= 1 + iA (265)

where the 2L × 2L matrix A is real and anti-symmetric, 44 and both G and F are (in
general) complex.

Remark: Notice that, quite generally, FT = −F as a consequence of the fermionic
anti-commutation. If we are in equilibrium (ground state or thermal) then both G
and F can be taken to be real. Moreover, G is symmetric, G = GT. This implies that

M = 1 + i

(
0 −1+ 2G− 2F

1− 2G− 2F 0

)
(266)

in agreement with the Majorana equilibrium correlators seen in Sec. 8.

!

43The standard definition [19] which in row-vector form would read:

č = (č1, č2, č3, č4, · · · , č2L−1, č2L) ≡ (č1,1, č1,2, č2,1, č2,2, · · · , čL,1, čL,2) , (260)

mixes the different blocks of the Nambu fermions in a way that makes the algebra extremely painful.
44The fact that A is real and anti-symmetric follows from the fact that, quite generally, from G = UU†

and F = VU† and the unitary nature of the Bogoliubov rotation — see Eq. (7.2) — it follows that G+GT

is real and symmetric, F + F∗ is real and anti-symmetric, while both G − GT and F − F∗ are purely
imaginary and anti-symmetric.
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This algebra of re-expressing the Green’s functions in terms of Majorana correlators,
which in turn involve a single 2L×2L real and anti-symmetric matrix A, will be important
in a short while. 45

How to calculate the reduced density matrix spectrum. We are now ready to
proceed, circumventing the difficulty of calculating all the 4l complex coefficients of the
reduced density matrix in Eq. (251) and finding its spectrum.

Step 1: The Majorana matrix M fully determine the (pure) state |ψ⟩, because of the
Gaussian nature of the latter and Wick’s theorem. We can equivalently write

Mnn′ = ⟨ψ|čnčn′ |ψ⟩ = Tr
(
čnčn′ ρ̂

)
(267)

where ρ̂ = |ψ⟩⟨ψ| is the pure-state density matrix associated with |ψ⟩.
Step 2: Consider now restricting the Majorana correlation matrix to the sub-chain

{1 · · · l}. We will denote such a 2l×2l matrix as Ml. Ml is made by four l×l blocks suitably
extracted from the full 2L×2L matrix M according to the site-indices involved in {1 · · · l}.
Most importantly, since it is the block-truncation of an M = 1 + iA, with A = A∗ = −AT,
it will retain the same structure. More precisely, assuming now n, n′ ∈ {1, · · · , l} we have: (Ml)n,n′ = δn,n′ + iAn,n′ (Ml)n,l+n′ = iAn,L+n′

(Ml)l+n,n′ = iAL+n,n′ (Ml)l+n,l+n′ = δn,n′ + iAL+n,L+n′

(268)

With a slight leap in the notation, we will now denote these 4 blocks as:

Ml = 12l + iAl , (269)

where both Ml and Al are taken to be 2l × 2l and Al is real and anti-symmetric.
Ml contains correlations between Majorana fermions living on the physical sites of the

reduced chain {1 · · · l}. All other sites have been effectively eliminated from the discussion
to the point that we might consider restricting our Majorana operators to

č =



č1,1
č2,1
...

čl,1
č1,2
č2,2
...

čl,2


2l

=



1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1

−i 0 · · · 0 i 0 · · · 0
0 −i · · · 0 0 i · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · −i 0 0 · · · i


2l×2l



ĉ1
ĉ2
...

ĉl
ĉ†1
ĉ†2
...

ĉ†l


2l

. (270)

45Incidentally, although we will not use it, the same transformation might be applied to the Hamiltonian
Ĥ to rewrite it in terms of Majorana fermions as follows:

Ĥ = Ψ̂† H Ψ̂ =
1

4
(č)T W H W† (č)

where use used that W−1 = 1
2
W† and, see Eq. (124):

W H W† =

(
(A−A∗) + (B−B∗) i(A+A∗)− i(B+B∗)

−i(A+A∗)− i(B+B∗) (A−A∗)− (B−B∗)

)
= iAH

with a real anti-symmetric AH = A∗
H = −AT

H , since A = A† and BT = −B. The unitary Bogoliubov
rotation would now translate into a real orthogonal rotation of Majorana fermions which transforms the
real anti-symmetric matrix AH into a standard canonical form.
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Hence, we can use the reduced density matrix in these averages:

(Ml)n,n′ = Tr
(
čnčn′ ρ̂

)
≡ Tr{1···l}

(
čnčn′ ρ̂l

)
= δn,n′ + i(Al)n,n′ . (271)

Step 3: We can transform the matrix Al to a canonical form, by a (real) orthogonal
transformation R. The canonical form of a real anti-symmetric matrix is, see Ref. [84],
made of l anti-symmetric 2× 2 blocks along the diagonal:

Al = R Λ RT with Λ =



0 λ1 0 0 · · · 0 0
−λ1 0 0 0 · · · 0 0

0 0 0 λ2 · · · 0 0
0 0 −λ2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 λl
0 0 0 0 · · · −λl 0


2l×2l

, (272)

with λq=1···l real. Using the rotation matrix R, we can define 2l new combinations of
Majorana fermions:

ďq =
2l∑

n=1

Rnq čn for q = 1, · · · , 2l . (273)

These new Majorana combinations, which now mix different sites of the sub-chain {1 · · · l},
have a very simple correlation matrix:

Tr{1···l}
(
ďqďq′ ρ̂l

)
= δq,q′ + iΛq,q′ . (274)

Now we switch back to ordinary fermions, simply because we are much more trained and
used to thinking in terms of them. We therefore define:

d̂q =
1

2

(
ď2q−1 + iď2q

)
for q = 1, · · · , l . (275)

By construction, given the simple correlations encoded by the matrix Λ, these fermions
have averages

Tr{1···l}
(
d̂†qd̂q′ ρ̂l

)
= δq,q′

1 + λq
2

≡ δq,q′Pq , (276)

which shows that λq ∈ [−1, 1], in order for the average fermionic occupation to be 0 ≤
Pq ≤ 1, and that the different fermions d̂q are uncorrelated.

Step 4: We have found l new uncorrelated fermionic operators. Hence, in this rather
non-local basis the reduced density matrix factorizes, each 2× 2 block having eigenvalues

Pq =
1 + λq

2
and 1− Pq =

1− λq
2

, (277)

and contributing an entropy S = −Pq logPq− (1−Pq) log(1−Pq). Hence, we finally arrive
at the entanglement entropy:

Sl = −
l∑

q=1

(
Pq logPq + (1− Pq) log(1− Pq)

)
. (278)

The evaluation of the correlation matrix and the entanglement entropy can be implemented
numerically with rather standard techniques.
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Calculate the ground-state entanglement entropy for a uniform Ising chain, with l =
L/2, in the three cases: a) h/J = 1/2, b) h/J = 2, and c) h/J = 1. Show that the
half-chain entanglement entropy tends to a constant, for increasing L, in cases a) and
b), while it grows logarithmically in the critical case c). a

aThe logarithmic divergence in the critical case is consistent with the conformal field theory analysis
of Ref. [107,136]. Away from criticality, where the correlation length ξ is large but finite, the results
of Ref. [107] apply.

Problem 12. Ground state entanglement for a uniform Ising chain.

10 Thermal averages

Thermal properties of the random transverse-field Ising chain have been studied by
P. Young in Ref. [76]. The case of open boundary conditions (OBC) poses indeed no
particular difficulties in calculating thermal averages: we are, after all, dealing with a free
Fermi gas of Bogoliubov-de Gennes quasiparticles, whose spectrum can be numerically
determined. The calculations become more tricky in the ring geometry (PBC) case, where
two different fermionic Hamiltonians should be used to determine the spectrum in the two
different even and odd fermion parity sub-sectors of the Hilbert space. This constraint on
the parity of the total number of fermions makes the calculation more difficult, in a way
that is conceptually similar to that of a free Fermi gas in the canonical ensemble. Such a
complication is dealt with in the present section.

Let us recall a few basic facts about the general structure of the Ising model Hamilto-
nian. The full Hamiltonian, when PBC are imposed to the spins reads:

ĤPBC =

(
Ĥ0 0

0 Ĥ1

)
. (279)

The two blocks of even and odd parity can be written as:

Ĥ0 = P̂0Ĥ0P̂0 = Ĥ0P̂0 and Ĥ1 = P̂1Ĥ1P̂1 = Ĥ1P̂1 (280)

where Ĥp=0,1 both conserve the fermionic parity, hence they commute with P̂0,1 and are
given by:

Ĥp=0,1 = −
L∑

j=1

(
J+
j ĉ

†
j ĉj+1 + J−

j ĉ
†
j ĉ

†
j+1 + H.c.

)
+

L∑
j=1

hj(2n̂j − 1) , (281)

with the boundary condition set by the requirement ĉL+1 ≡ (−1)p+1ĉ1.
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Warning: Neither Ĥp=0 nor Ĥp=1, alone, expresses the correct fermionic form of the
PBC-spin Hamiltonian. Indeed, after the BdG diagonalization, we can write:

Ĥp =

L∑
µ=1

2ϵp,µ

(
γ̂†p,µγ̂p,µ − 1

2

)
, (282)

hence we have, in general, two different vacuum states |∅p⟩ such that γ̂p,µ|∅p⟩ = 0,
and 2L corresponding Fock states, with different eigenvalues, unless the spins have
OBC, in which case JL = 0 and therefore Ĥp=1 = Ĥp=0. But we should keep only
2L−1 even and 2L−1 odd eigenvalues! How to do correctly the sums involved in the
thermal averages is the next issue we are going to consider.

!

Consider calculating the thermal average of an operator Ô. We should calculate:

Tr
(
Ô e−βĤ

)
=

∑
p=0,1

Tr
(
P̂pÔ e−βĤ

)
=
∑
p=0,1

Tr
(
P̂pÔ e−βĤP̂p

)
=

=
∑
p,p′

Tr
(
P̂pÔ P̂p′e

−βĤP̂p

)
=
∑
p

Tr
(
P̂pÔ P̂pe

−βĤpP̂p

)
=

=
∑
p

Tr
(
P̂pÔ P̂pe

−βĤpP̂p

)
=
∑
p

Tr
(
P̂pÔ P̂pe

−βĤp

)
=

[Ô,P̂p]=0
=

∑
p

Tr
(
Ô P̂pe

−βĤp

)
. (283)

This derivation uses standard properties of projectors and the trace, and, in the final step,
the assumption that Ô commutes with the parity. The thing to remark is that now the
fermionic Hamiltonians Ĥp appear, accompanied by a single projector P̂p. Next, we recall
that

P̂p =
1

2
(1̂ + (−1)peiπN̂ ) . (284)

Hence we arrive at:

Tr
(
Ô e−βĤ

)
=

1

2

∑
p=0,1

(
Tr
(
Ô e−βĤp

)
+ (−1)pTr

(
Ô eiπN̂e−βĤp

))
. (285)

The next thing to consider is how to deal with the term eiπN̂ , which we can always
re-express as:

eiπN̂ = ⟨∅p|eiπN̂ |∅p⟩ eiπ
∑L

µ=1 γ̂
†
p,µγ̂p,µ . (286)

Info: The meaning of such expression should be reasonably transparent. Parity is a
good quantum number. Once you determine it on the Bogoliubov vacuum, calculating

⟨∅p|eiπN̂ |∅p⟩ = ±1, then the parity of each Fock state simply amounts to counting
the number of γ̂† operators applied to the Bogoliubov vacuum. There is a slight
ambiguity in the meaning of |∅p⟩ that is good to clarify here. We have not defined
|∅p⟩ to be the ground state in the sub-sector with parity p — in which case you would

directly anticipate that ⟨∅p|eiπN̂ |∅p⟩ = (−1)p, but rather the Bogoliubov vacuum

state associated with Ĥp. So, depending on the couplings and boundary conditions,
the parity of |∅p⟩ might differ from (−1)p. There are cases where, for instance, there

is a single Ĥ with a single associated |∅⟩, but also cases where such a single Ĥ can have
two degenerate vacuum states |∅p⟩, as discussed in Sec. 6.2.

i
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Figure 11: (a) Comparison between Jordan-Wigner (JW) and numerical Exact Diagonalization
(ED) results for the average energy density, on a small ordered Ising chain (L = 10). (Right panel)
Open boundary conditions (OBC) and periodic boundary conditions (PBC) are compared for a
larger chain (L = 100), where ED cannot be performed. The system considered is always a Ising
chain with Jj = J = 1 and hj = h = 0.5J , with κ = 1. For OBC we set JL = 0.

The explicit evaluation of ⟨∅p|eiπN̂ |∅p⟩ can be carried out with the techniques explained
in Sec. 8. With the same notation used there, you can show that:

⟨∅p|eiπN̂ |∅p⟩ = ⟨∅p|Â1B̂1Â2B̂2 · · · ÂLB̂L|∅p⟩
= (−1)L⟨∅p|B̂1Â1B̂2Â2 · · · B̂LÂL|∅p⟩

= (−1)L det


M1,1 M1,2 · · · M1,L

M2,1 M2,2 · · · M2,L

...
...

. . .
...

ML,1 ML,2 · · · ML,L


L×L

. (287)

Hence, defining:

ηp = (−1)p⟨∅p|eiπN̂ |∅p⟩ , (288)

we finally get:

Tr
(
Ô e−βĤ

)
=

1

2

∑
p=0,1

(
Tr
(
Ô e−βĤp

)
+ ηpTr

(
Ô e−βĤp+iπ

∑L
µ=1 γ̂

†
p,µγ̂p,µ

))
. (289)

In particular, the partition function can be expressed as:

Z = Tr
(
e−βĤ

)
=

1

2

∑
p=0,1

(
Tr
(
e−βĤp

)
+ ηpTr

(
e−βĤp−iπ

∑L
µ=1 γ̂

†
p,µγ̂p,µ

))

=
1

2

∑
p=0,1

eβ
∑L

µ=1 ϵp,µ

( L∏
µ=1

(1 + e−2βϵp,µ) + ηp

L∏
µ=1

(1− e−2βϵp,µ)

)
.(290)
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The relevant single-particle thermal averages needed are then: 46

⟨γ̂†p,µγ̂p,µ′P̂p⟩ =
1

Z
⟨γ̂†p,µγ̂p,µ′P̂pe

−βĤ⟩

=
1

2Z

(
Tr
(
γ̂†p,µγ̂p,µ′ e

−βĤp

)
+ ηpTr

(
γ̂†p,µγ̂p,µ′ e

−βĤp+iπ
∑L

µ=1 γ̂
†
p,µγ̂p,µ

))
= δµ,µ′

e−2βϵp,µ

2Z

( L∏
l=1
l ̸=µ

(
1 + e−2βϵp,l

)
− ηp

L∏
l=1
l ̸=µ

(
1− e−2βϵp,l

))
, (293)

and:

⟨γ̂p,µγ̂
†
p,µ′P̂p⟩ =

1

Z
⟨γ̂p,µγ̂

†
p,µ′P̂pe

−βĤ⟩

=
1

2Z

(
Tr
(
γ̂p,µγ̂

†
p,µ′ e

−βĤp

)
+ ηpTr

(
γ̂p,µγ̂

†
p,µ′ e

−βĤp+iπ
∑L

µ=1 γ̂
†
p,µγ̂p,µ

))
= δµ,µ′

1

2Z

( L∏
l=1
l ̸=µ

(
1 + e−2βϵp,l

)
+ ηp

L∏
l=1
l ̸=µ

(
1− e−2βϵp,l

))
. (294)

Clearly, the averages where you destroy or create two γ̂ fermions vanish:

⟨γ̂p,µγ̂p,µ′P̂p⟩ = 0 and ⟨γ̂†p,µγ̂
†
p,µ′P̂p⟩ = 0 . (295)

Info: From the averages of the Bogoliubov operators, it is a simple matter to recon-
struct all elements of the ordinary and anomalous thermal Green’s functions for the
original fermions, as defined in Sec. 7.2. From these, using Wick’s theorem, other
thermal averages and correlation functions can be calculated, see Sec. 8.

i

We have tested these formulas on a chain of length L = 10. In the left panel of Fig. 11
we show the average internal energy E = ⟨Ĥ⟩ for L = 10, comparing the Jordan-Wigner
results to those obtained by Exact Diagonalisation (ED) of the problem with both open
and periodic boundary conditions. In the right panel of Fig. 11 we compare, for L = 100,
the thermal averages for E = ⟨Ĥ⟩ obtained with the Jordan-Wigner approach for OBC
and PBC.

46Observe that to calculate the fermionic single-particle Green’s functions we need the separate ingredi-
ents for the two sub-sectors p:

G =
〈
Ψ̂ Ψ̂†

〉
=

∑
p=0,1

〈
Ψ̂ Ψ̂†P̂p

〉
=

∑
p=0,1

Up

〈
Φ̂pΦ̂

†
pP̂p

〉
U†

p , (291)

where for every p-sector we defined (see Sec. 6)

Φ̂p =

(
γ̂p

γ̂†
p

)
= U†

p Ψ̂ . (292)

Since, in (291) Up depends on p, we have a weighted sum: it is not enough to calculate directly∑
p=0,1

〈
Φ̂pΦ̂

†
pP̂p

〉
.
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Consider a uniform quantum Ising chain with PBC. Using the techniques explained,
calculate (numerically) the free energy per site, F/L = − 1

βL logZ, and the entropy per
site, S/L = (E−F )/(LT ), as a function of the temperature T , for three representative
values of the (uniform) transverse field: h = 0.5J , h = J and h = 2J .

Problem 13. Free-energy and entropy.

11 Conclusion

We have presented a pedagogical description of the numerical and analytical methods
for studying the statics and the dynamics of the quantum Ising model in a transverse field
and, in general, of quadratic fermionic models. These methods are useful because these
models are at the center of many recent studies in quantum many-body non-equilibrium
physics, due to their rich phenomenology and the fact that the numerical analysis is feasible
up to very large system sizes.

We have started with the Jordan-Wigner transformation, needed to write the Ising
chain in the form of a quadratic fermionic model (known as the Kitaev model) and we
have diagonalized it in the case of a uniform chain. We have given special attention to the
second-order phase transition of this model and the connection with the classical phase
transition of the Ising model in two dimensions.

Then we moved to the diagonalization of the generic disordered model. We have in-
troduced the Nambu formalism, which has allowed us to show that the ground state has a
BCS (or Gaussian) form, and to get the Bogoliubov-de Gennes equations for the diagonal-
ization. To find the quasiparticle excitations, and then find eigenvalues and eigenstates,
one reduces to diagonalize a matrix with size quadratic in the system size, which allows
to scale up to large chains. We have applied these methods to the open Kitaev chain,
to show the existence of the zero-energy Majorana modes in the topological phase of this
model.

Then we have considered the case of the dynamics, where a very similar formalism
is valid and the state has still a Gaussian form for which Wick’s theorem is valid. Here
the dynamical Bogoliubov-de Gennes equations are valid, that are similar to a set of
Schrödinger equations for a single quasi-particle Hamiltonian. Their solution provides
all the properties of the Gaussian state and applying Wick’s theorem one can get the
expectations of all the observables.

Using this formalism, valid both for the ground state and the dynamics, we have then
studied how to get from the Gaussian state some important properties of the system, such
as the spin correlators and the entanglement entropy. The formulae we get are valid not
only for the Ising model but also for generic quadratic fermionic systems.

Finally, we moved to consider thermal averages. We have shown how to compute the
expectation of the observables at finite temperature by paying attention to fermion parity
effects, that are important at finite size.
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A Overlap between BCS states

Sometimes, for instance, in the context of quantum quenches, where the Hamiltonian
is abruptly changed, it is important to know how to calculate the overlap between BCS
states belonging to two different XY-Ising Hamiltonians Ĥ0 and Ĥ1. This appendix gives
details on this.

Let us start considering the two BCS ground states of Ĥ0 and Ĥ1. These two states
are Bogoliubov vacua for the fermionic operators γ̂0µ and γ̂1µ, and we denote them, for a

more compact notation, as |∅γ0⟩ = |∅0⟩ and |∅γ1⟩ = |∅1⟩. We will first compute |⟨∅1 |∅0⟩ |2,
and then we will extend the result to the overlap of general excited states. The two sets
of fermions can be written in terms of the original Jordan-Wigner fermions as:(

γ̂α

γ̂†
α

)
= U†

αΨ̂ =

(
U†

α V†
α

VT
α UT

α

)(
ĉ
ĉ†

)
. (296)

where α = 0, 1. We can write the direct unitary transformation from one set to the other
as follows: (

γ̂1

γ̂†
1

)
= U†

1U0

(
γ̂0

γ̂†
0

)
= U†

(
γ̂0

γ̂†
0

)
=

(
U† V†

VT UT

)(
γ̂0

γ̂†
0

)
, (297)

where:

U ≡
(
U V∗

V U∗

)
, (298)

with:

U = U†
0U1 +V†

0V1 V = VT
0U1 +UT

0V1 . (299)

We will prove that, if |∅0⟩ and |∅1⟩ are not orthogonal, then:

|⟨∅1|∅0⟩|2 = |det(U)| , (300)

a relationship which is known as Onishi formula. Indeed, we have already given proof of
this relationship in Sec. 6.3, for the special case in which one of the two sets of fermions
were the original Jordan-Wigner fermions ĉj with associated vacuum state |0⟩. There we
showed that, with the present notation:

|∅α⟩ = Nα exp
(1
2

∑
j1j2

(Zα)j1j2 ĉ
†
j1
ĉ†j2

)
|0⟩ , (301)

with:
Zα = −(U†

α)
−1V†

α , (302)
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and |⟨0|∅α⟩|2 = |Nα|2 = | det(Uα)|. With the same algebra, we could establish, for in-
stance, that:

|∅1⟩ = N eZ |∅0⟩ = N exp
(1
2

∑
j1j2

Zj1j2
γ̂†0,j1 γ̂

†
0,j2

)
|∅0⟩ , (303)

with:
Z = −(U†)−1V† , (304)

and |⟨∅0|∅1⟩|2 = |N |2 = | det(U)|. Several points in the previous derivation would call for
appropriate specifications: for instance, we assumed that U is invertible. Also, the case
of possible orthogonality of the two ground states was not discussed. Finally, the case of
pure Slater determinant without BCS-pairing, relevant for the isotropic XY model, was
not explicitly addressed.

We will now give an alternative proof that makes use of an interesting theorem due
to Bloch and Messiah [83, 137], and which clarifies all these issues. We will perform an
intermediate canonical transformation which first allows us to write an explicit equation
for |∅1⟩ in terms of |∅0⟩, and then to compute easily ⟨∅1| ∅0⟩. The theorem that Bloch and
Messiah proved [137] shows that matrices with the structure of U above can be decomposed
into a product of three unitary transformations as follows:

U =

(
D 0
0 D∗

)(
U V

V U

)(
C 0
0 C∗

)
, (305)

where D, C are L× L unitary matrices and U, V are L× L real matrices of the form:

U =



0
. . .

0
u1 0
0 u1

. . .

un 0
0 un

1
. . .

1



(306)

V =



1
. . .

1
0 v1

−v1 0
. . .

0 vn
−vn 0

0
. . .

0



(307)
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in which up > 0, vp > 0 and u2p + v2p = 1. From these relations we have:

U = DUC V = D∗VC . (308)

To proceed, we now notice that since:(
γ̂0

γ̂†
0

)
= U

(
γ̂1

γ̂†
1

)
=

(
D 0
0 D∗

)(
U V

V U

)(
C 0
0 C∗

)(
γ̂1

γ̂†
1

)
, (309)

we can think of the transformation as the product of 1) a first unitary transformation C

which does not mix particles and holes for fermions γ̂1, defined by(
α̂1

α̂†
1

)
=

(
C 0
0 C∗

)(
γ̂1

γ̂†
1

)
(310)

followed by 2) a simple “canonical form” of a transformation leading to new fermions:(
α̂0

α̂†
0

)
=

(
U V

V U

)(
α̂1

α̂†
1

)
, (311)

and a final transformation 3) leading to the fermions γ̂0, through a unitary D which does
not mix particles and holes: (

γ̂0

γ̂†
0

)
=

(
D 0
0 D∗

)(
α̂0

α̂†
0

)
. (312)

In essence, what the Bloch-Messiah theorem guarantees is that one can always find a
basis such that the transformed fermions, α̂0 and α̂1, are coupled by a particularly simple
matrix in which there are only three possibilities: i) for some indices, which we denote by

l, there is no transformation at all (the 1s in the diagonal of U), i.e., α̂1l = α̂0l; ii) for some

other indices, which we denote by k, the transformation is a pure particle-hole α̂†
1k = α̂0k:

these indices correspond to the 0s in the diagonal of U, and the 1s in the diagonal of V;
iii) all other indices, denoted by (p, p), are BCS-paired in a simple way, and they form
2× 2 blocks in the matrices U and V with coefficients up and vp, such that:

α̂†
1p = upα̂

†
0p − vpα̂0p

α̂†
1p = upα̂

†
0p + vpα̂0p . (313)

We must stress that the theorem does not tell us how many indices belong to the three
categories above: in some cases, all the indices might be 2×2-paired, but it is also possible
that the transformation is a pure particle-hole transformation without any pairing at all.

The construction of the relationship between |∅0⟩ and |∅1⟩ becomes particularly sim-

ple in terms for the fermions α̂0(1). The key idea is the α̂0(1) is related to γ̂0(1) by a
transformation which does not mix particles and holes, and therefore it is still true that
α̂0n |∅0⟩ = 0 and α̂1n |∅1⟩ = 0. Since |∅1⟩ is the state which is annihilated by any α̂1n we
can write it as:

|∅1⟩ = N
∏
n

α̂1n |∅0⟩ =
∏
k

α̂†
0k

∏
p

(
up + vpα̂

†
0pα̂

†
0p

)
|∅0⟩ , (314)

where N is a normalization constant. Notice that we included only BCS-paired indices
and particle-hole transformed k-indices but not l-indices, since α̂1l = α̂0l and the inclusion
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of such terms would give zero, since α̂0l |∅0⟩ = 0. Since, by hypothesis, the two states |∅0⟩
and |∅1⟩ are not orthogonal there should not be pure particles-holes k-indices either, and
therefore:

⟨∅0 |∅1⟩ = ⟨∅0|
∏
p

(
up + vpα̂

†
0pα̂

†
0p

)
|∅0⟩ =

∏
p

up =

√∏
p

u2p =

√
det(U) . (315)

Finally, since U = D†UC†, and D, and C are unitary transformations:

|⟨∅0 |∅1⟩ |2 = | det(D†UC†)| = |det(U)| , (316)

which is what we wanted to show.
The extension to the calculation of the overlap between |∅0⟩ and any eigenstate |{n1µ}⟩ =∏

µ∈I γ̂
†
1µ |∅1⟩, where I is the set of occupied states (n1µ = 1), is in principle straightfor-

ward. Here is a possible way to tackle the problem. This state can be thought of as the
vacuum of the following new set of fermions:

β̂†µ = γ̂†1µ if µ /∈ I β̂†µ = γ̂1µ if µ ∈ I , (317)

in which we have performed a particle-hole transformation for the occupied modes. Now
we can use the equation obtained for the scalar product between empty states, i.e.,

|⟨∅0| {n1µ}⟩|2 =
∣∣det(U′)

∣∣ , (318)

where the matrix U′ is:
U′ = U†

0U
′
1 +V†

0V
′
1 , (319)

in which:

(U′
1)jµ = (U1)jµ if µ /∈ I (U′

1)jµ = (V∗
1)jµ if µ ∈ I

(V′
1)jµ = (V1)jµ if µ /∈ I (V′

1)jµ = (U∗
1)jµ if µ ∈ I . (320)

A second approach to calculating these overlaps with excited states makes explicit use
of the Gaussian nature of the states. The relevant algebra follows directly from that of
Sec. 6.3. Let us start by considering the overlap between γ̂†0µ1

γ̂†0µ2
|∅0⟩ and |∅1⟩ = N eZ |∅0⟩.

This is given by:

⟨∅0|γ̂0µ2
γ̂0µ1

|∅1⟩ = N⟨∅0|γ̂0µ2
γ̂0µ1

eZ |∅0⟩

= N⟨∅0|eZ
(
γ̂0µ2

+
∑
µ′
2

Zµ2µ′
2
γ̂†
0µ′

2

)(
γ̂0µ1

+
∑
µ′
1

Zµ1µ′
1
γ̂†
0µ′

1

)
|∅0⟩

= N⟨∅0|eZ γ̂0µ2

(∑
µ′
1

Zµ1µ′
1
γ̂†
0µ′

1

)
|∅0⟩ = ⟨∅0|∅1⟩ Zµ1µ2 ,

wherein the second step we have made use of the commutation property:

γ̂0µe
Z = eZ

(
γ̂0µ + [γ̂0µ,Z]

)
= eZ

(
γ̂0µ +

∑
µ′

Zµµ′ γ̂†0µ′

)
. (321)

Notice that, for the overlap to be non-vanishing, we were forced to contract γ̂0µ2
against

γ̂†
0µ′

1
in the final step. A similar calculation shows that, if we have an even number
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2n of operators, the result is highly reminiscent of Wick’s theorem sum-of-products of
contractions:

⟨∅0|γ̂0µ2n
· · · γ̂0µ1

|∅1⟩ = N⟨∅0|eZ
(
γ̂0µ2n

+
∑
µ′
2n

Zµ2nµ′
2n
γ̂†
0µ′

2n

)
· · ·
(
γ̂0µ1

+
∑
µ′
1

Zµ1µ′
1
γ̂†
0µ′

1

)
|∅0⟩

= ⟨∅0|∅1⟩
∑
P

(−1)PZµP1
µP2

ZµP3
µP4

· · ·ZµP2n−1
µP2n

= ⟨∅0|∅1⟩ Pf (Z)2n×2n , (322)

while the overlap vanishes for an odd number of γ̂0µi
. In the last expression, the Wick’s

sum is rewritten in terms of the so-called Pfaffian of the anti-symmetric matrix Z (or more
properly, of the 2n× 2n elements of Z required by the indices µ1 · · ·µ2n):

Pf (Z)2n×2n = Pf


0 Zµ1µ2 Zµ1µ3 · · · Zµ1µ2n

Zµ2µ1 0 Zµ2µ3 · · · Zµ2µ2n

...
...

...
...

...
Zµ2nµ1 Zµ2nµ2 Zµ2nµ3 · · · 0


def
=

∑
P

(−1)P ZµP1
µP2

ZµP3
µP4

· · ·ZµP2n−1
µP2n︸ ︷︷ ︸

n factors

. (323)

Notice that the Pfaffian is defined by a Wick’s sum which contains n products of Z-
matrix elements, and not 2n, as the familiar det (Z)2n×2n. However, a remarkable identity
exists [138] which links the two objects:

det (Z)2n×2n =
∑
P

(−1)P Zµ1µP1
Zµ2µP2

· · ·Zµ2nµP2n︸ ︷︷ ︸
2n factors

=
(
Pf (Z)2n×2n

)2
. (324)

Notice, however, that the link exists only if the dimension of the antisymmetric matrix
we are considering is even: The determinant of an odd-dimension anti-symmetric matrix
is simply zero, while the Pfaffian is not defined. To summarise, we have obtained the
generalization of the Onishi formula in the form:

⟨∅0|γ̂0µ2n
· · · γ̂0µ1

|∅1⟩ = ⟨∅0|∅1⟩ Pf (Z)2n×2n = ⟨∅0|∅1⟩
(
det (Z)2n×2n

)1/2
. (325)
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