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Abstract

We derive the simplest commutation relations of operator algebras associated
to M2 branes and an M5 brane in the Ω-deformed M-theory, which is a natural
set-up for Twisted holography. Feynman diagram 1-loop computations in the
twisted-holographic dual side reproduce the same algebraic relations.

Contents

1 Introduction and Conclusions 2
1.1 Structure of the paper 4

2 Twisted holography via Koszul duality 4
2.1 Twisted supergravity 5
2.2 Ω-deformed M-theory 7
2.3 Comparing elements of operator algebra 10
2.4 Koszul duality 11
2.5 Anomaly cancellation 12
2.6 Large N limit and a back-reaction of N M2-branes 13
2.7 M5-brane in Ω−deformed M-theory 14

3 M2-brane algebra and M5-brane module 17
3.1 M2-brane algebra 17
3.2 M5-brane module 19

4 Perturbative calculations in 5d U(1) CS theory coupled to 1d QM 20
4.1 Ingredients of Feynman diagrams 21
4.2 Feynman diagram 22

5 Perturbative calculations in 5d U(1) CS theory coupled to 2d βγ 26
5.1 Ingredients of Feynman diagrams 26
5.2 Feynman diagram I 29
5.3 Feynman diagram II 30

6 Conclusion 31

A Algebra and bi-module computation 33
A.1 Algebra 33

1



SciPost Physics Submission

A.2 Bi-module 38

B Intermediate steps in Feynman diagram calculations 41
B.1 Intermediate steps in section 4.2 41
B.2 Intermediate steps in section 5.2 44
B.3 Intermediate steps in section 5.3 45

References 47

1 Introduction and Conclusions

In [1], Costello and Li developed a beautiful formalism, which prescribes a way to topo-
logically twist supergravity. Combining with the classical notion of topological twist of
supersymmetric quantum field theory [2,3], we are now able to explore a topological sector
for both sides of AdS/CFT correspondence. It was further suggested in [4] a systematic
method of turning an Ω-background, which plays an important roles [5–10] in studying
supersymmetric field theories, in the twisted supergravity.

Topological twist along with Ω-deformation enables us to study a particular protected
sub-sector of a given supersymmetric field theory [11–14], which is localized not only in
the field configuration space, but also in the spacetime. Interesting dynamics usually
disappear along the way, but as a payoff we can make more rigorous statement on the
operator algebra.

The topological holography is an exact isomorphism between the operator algebras of
gravity and field theory. In this paper, we will focus on a particular example of topological
holography: the correspondence of the operator algebra of M-theory on a certain back-
ground parametrized by ε1, ε2, which localizes to 5d non-commutative U(K) Chern-Simons
theory with non-commutativity parameter ε2

1, and the operator algebra of the worldvol-
ume theory of M2-brane, which localizes to 1d topological quantum mechanics(TQM). In
particular, [18] proved the isomorphism between two operator algebras. The isomorphism
was manifested by the mathematical notion, so called Koszul duality [18].

The important first step of the proof was to impose a BRST-invariance of the 5d U(K)
CS theory coupled with the 1d TQM. 5d CS theory is a renormalizable, and self-consistent
theory [17]. However, in the presence of the topological defect that couples 1d TQM and
5d CS theory, certain Feynman diagrams turn out to have non-zero BRST variations.
For the combined, interacting theory to be quantum mechanically consistent, the BRST
variations of the Feynman diagrams should combine to give zero. This procedure magically
reproduces the algebra commutation relations that define 1d TQM operator algebra, Aε1,ε2 .
It is very intriguing that one can extract non-perturbative information in the protected
operator algebra from the perturbative calculation.

In fact, both the algebra of local operators in 5d CS theory and the 1d TQM opera-
tor algebra Aε1,ε2 are deformations of the universal enveloping algebra of the Lie algebra
Diffε2(C)⊗glK over the ring C[[ε1]]. Deformation theory tells us that the space of deforma-
tions of U(Diffε2(C)⊗glK) is the second Hochschild cohomology HH2(U(Diffε2(C)⊗glK)).
Although this Hochschild cohomology is known to be hard to compute, there is still a clever

1The 5d CS theory that appear in this paper is always meant to be a certain variant of the usual 5d
CS theory with topological-holomorphic twist and with non-commutativity turned on in the holomorphic
directions.
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way of comparing these two deformations [18]: notice that both of the algebras are de-
fined compatibly for super groups GLK+R|R, and their deformations are compatible with
transition maps GLK+R|R ↪→ GLK+R+1|R+1, so they are actually controlled by elements
in the limit

H2(lim
R

HC∗(U(Diffε2(C)⊗ glK+R|R))) (1)

and the limit is well-understood, it turns out that the space of all deformations is essentially
one-dimensional: a free module over C[κ] where κ is the central element 1 ⊗ IdK . Hence
the algebra of local operators in 5d CS theory and the 1d TQM operator algebra are
isomorphic up to a κ-dependent reparametrization

~ 7→
∞∑
i=1

fi(κ)~i (2)

where fi(κ) are polynomials in κ.
Later, in [19] the same algebra with K = 1 was defined using the gauge theory ap-

proach, and a combined system of M2-branes and M5-branes were studied. Especially, [19]
interpreted the degrees of freedom living on M5-branes as forming a bi-module Mε1,ε2 of
the M2-brane operator algebra, and suggested the evidence by going to the mirror Coulomb
branch algebra [20, 21] and using the known Verma module structure of massive super-
symmetric vacua [22, 23]. Appealing to the brane configuration in type IIB frame, they
argued a triality in the M2-brane algebra, which can also be deduced from its embedding
in the larger algebra, affine gl(1) Yangian [24–27].

Crucially, [19] noticed U(1) CS should be treated separately from U(K) CS theory
with K > 1, since the algebras differ drastically and the ingredients of Feynman diagram
are different in U(1) CS, due to the non-commutativity. As a result, the operator algebra
isomorphism should be re-assessed.

Our work was motivated by the observation, and we will solve the following problems
in a part of this paper.

• The simplest algebra Aε1,ε2 commutator, which has ε1 correction.

• Feynman diagrams whose non-trivial BRST variation lead to the simplest algebra
commutator.

Next, we will make a first attempt to derive the bi-module structure from the 5d U(1) CS
theory, where the combined system of the M2-branes and the M5-brane is realized as the
1d TQM and the β − γ system2. Especially, we will answer the following problems.

• The simplest algebra Aε1,ε2 , bi-moduleMε1,ε2 commutator, which has ε1 correction.

• Feynman diagrams whose non-trivial BRST variation lead to the simplest algebra
Aε1,ε2 , bi-module Mε1,ε2 commutator.

Our work is only a part of a bigger picture. The algebra Aε1,ε2 is a sub-algebra of
affine gl(1) Yangian [19], and there exists a closed form formula for the most general
commutators, which can be derived from affine gl(1) Yangian. One can try to derive the
commutators from 5d U(1) CS theory Feynman diagram computation.

Going to type IIB frame, the brane configurations map to Y-algebra configuration [28].
Here, the general M2-brane algebra is formed by the co-product of three different M2-
brane algebras related by the triality. The local operators supported on M5-branes form a

2One way to understand the appearance of β−γ system is to go to type IIA frame, where the M5-brane
maps to a D4 brane, and the 11d supergravity background maps to a D6-brane. D4-D6 strings form 4d
N = 2 hypermultiplet. Under the Ω-background, the 4d N = 2 hypermultiplet localizes to βγ system [11].
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generalized W1+∞ algebra [28]. The β − γ Vertex Algebra that our M5-brane supports is
the simplest example of this generalized W1+∞. Hence, we are curious if our story can be
further generalized to the coupled system of the 5d U(1) CS theory and the generalized
W1+∞ algebra.

1.1 Structure of the paper

After reviewing the general concepts in section §2, we show the following algebra commu-
tator in §3.1.

[t[2, 1], t[1, 2]]ε1 = ε1ε2t[0, 0] + ε1ε
2
2t[0, 0]t[0, 0] (3)

where [•]ε1 is the O(ε1) part of [•], t[m,n] ∈ Aε1,ε2 . The detail of the proof is shown in
Appendix A.1. The commutation relation was successfully checked by 1-loop Feynman
diagram associated to 5d CS theory and 1d TQM. This is the content of section §4.
We collected some intermediate integral computations used in the Feynman diagram in
Appendix B.1.

Next, we show the following algebra-bi-module commutator in §3.2.[
t[2, 1], b[z1]c[z0]

]
ε1

= ε1ε2t[0, 0]b[z0]c[z0] + ε1ε2b[z
0]c[z0] (4)

where b[zm], c[zm] ∈ Mε1,ε2 . The detail of the proof can be found in Appendix A.2. We
reproduced the commutation relation using the 1-loop Feynman diagram computation in
the 5d CS theory, 1d TQM, and 2d βγ coupled system. This is the content of section §5.
We collected some intermediate integral computations used in the Feynman diagram in
Appendix B.2 and Appendix B.3.

Note added: recently, complete commutation relations for the algebra Aε1,ε2 was pro-
posed in [29].

2 Twisted holography via Koszul duality

Twisted holography is the duality between the protected sub-sectors of full supersymmetric
AdS/CFT [31–33], obtained by topological twist and Ω-background both turned on in the
field theory side and supergravity side. The most glaring aspect of twisted holography3 is
an exact isomorphism between operator algebra in both sides, which is manifested by a
rigorous Koszul duality. Moreover, the information of physical observables such as Witten
diagrams in the bulk side that match with correlation functions in the boundary side is
fully captured by OPE algebra in the twisted sector [37].

This section is prepared for a quick review of twisted holography for non-experts. The
idea was introduced in [1] and studied in various examples [4, 15, 18, 19, 38, 39] with or
without Ω-deformation. The reader who is familiar with [4] can skip most of this section,
except for §2.2, §2.3, and §2.7, where we set up the necessary conventions for the rest of
this paper. These subsections can be skipped as well, if the reader is familiar with [19].
Also, see a complementary review of the formalism in the section 2 of [19].

After defining the notion of twisted supergravity in §2.1, we will focus on a particular
(twisted and Ω−deformed) M-theory background on Rt × C2

NC × Cε1 × Cε2 × Cε3 , where
NC means non-commutative, and εi stands for Ω−background related to U(1) isometry
with a deformation parameter εi in §2.2. N M2 branes extending Rt × Cε1 leads to
the field theory side. As we will explain in §2.3, a bare operator algebra isomorphism

3A similar line of development was made in [34,35], using twisted Q-cohomology, where Q is a particular
combination of a supercharge Q and a conformal supercharge S [36]. In the sense of [11], Q-cohomology is
equivalent to QV -cohomology, where QV is the modified scalar super charge in Ω−deformed theories.
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between twisted supergravity and twisted M2-brane worldvolume theory is given by an
interaction Lagrangian between two system. Due to this interaction, a perturbative gauge
anomaly appears in various Feynman diagrams, and a careful cancellation of the anomaly
will give a consistent quantum mechanical coupling between two systems. Strikingly, the
anomaly cancellation condition itself leads to a complete operator algebra isomorphism,
by fixing algebra commutators. This will be described in §2.5. To discuss holography, it
is necessary to include the effect of taking large N limit and the subsequent deformation
in the spacetime geometry. We will illustrate the concepts in §2.6. In §2.7, we will explain
how to introduce M5-brane in the system and describe the role of M5-brane in the gravity
and field theory side. In short, the degree of freedom on M5-brane will form a module
of the operator algebra of M2-brane. Similar to M2-brane case, anomaly cancellation
condition for M5-brane uniquely fixes the structure of the module.

2.1 Twisted supergravity

Before discussing the topological twist of supergravity, it would be instructive to recall
the same idea in the context of supersymmetric field theory, and make an analogue from
the field theory example.

Given a supersymmetric field theory, we can make it topological by redefining the
generator of the rotation symmetry M using the generator of the R-symmetry R.

M → M ′ = M +R (5)

As a part of Lorentz symmetry is redefined, supercharges, which were previously spinor(s),
split into a scalar Q, which is nilpotent

Q2 = 0, (6)

and a 1-form Qµ. Because of the nilpotency of Q, one can define the notion of Q-
cohomology.

Following anti-commutator explains the topological nature of the operators in Q-
cohomology– a translation is Q-exact.

{Q,Qµ} = Pµ (7)

To go to the particular Q-cohomology, one needs to turn off all the infinitesimal super-
translation εQ except for the one that parametrizes the particular transformation δQ gen-
erated by Q.

More precisely, if we were to start with a gauge theory, which is quantized with BRST
formalism, the physical observables are defined as BRST cohomology, with respect to
some QBRST . The topological twist modifies QBRST , and the physical observables in the
resulting theory are given by Q′BRST -cohomology.

QBRST → Q′BRST = QBRST +Q (8)

As an example, consider 3dN = 4 supersymmetric field theory. The Lorentz symmetry
is SU(2)Lor and R-symmetry is SU(2)H×SU(2)C , where H stands for Higgs and C stands
for Coulomb. There are two ways to re-define the Lorentz symmetry algebra, and we choose
to twist with SU(2)C , as this will be used in the later discussion. In other words, one
redefines

M → M ′ = M +RC (9)
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The resulting scalar supercharge is obtained by identifying two spinor indices, one of
Lorentz symmetry α and one of SU(2)C R-symmetry a

Qαaȧ → Qaaȧ (10)

and taking a linear combination.

Q = Q+
11̄

+Q−
12̄

(11)

This twist is called Rozansky-Witten twist [40], and will be used in twisting our M2-brane
theory.

One way to start thinking about the topological twist of supergravity is to consider a
brane in the background of the “twisted” supergravity. If one places a brane in a twisted
supergravity background, it is natural to guess that the worldvolume theory of the brane
should also be topologically twisted coherently with the prescribed twisted supergravity
background.

Given the intuition, let us define twisted supergravity, following [1]. In supergravity,
the supersymmetry is a local(gauge) symmetry, a fermionic part of super-diffeomorphism.
As usual in gauge theories, one needs to take a quotient by the gauge symmetry, and
this is done by introducing a ghost field. As supersymmetry is a fermionic symmetry,
the corresponding ghost field is a bosonic spinor, q. Twisted supergravity is defined as a
supergravity in a background where the bosonic ghost q takes a non-zero value.

It is helpful to recall how we twist a field theory to have a better picture for presumably
unfamiliar non-zero bosonic ghost. One can think the infinitesimal super-translation pa-
rameter ε that appears in the global supersymmetry transformation as a rigid limit of the
bosonic ghost q. For instance, in 4d N = 1 holomorphically twisted field theory [41–44],
with Q paired with ε+, the supersymmetry transformation of the bottom component φ of
anti-chiral superfield Ψ̄ = (φ̄, ψ̄, F̄ ) transforms as

δφ = ε̄ψ̄, δψ̄ = iε+∂̄φ̄+ iε−∂φ̄+ ε̄F̄ (12)

As we focus on Q-cohomology, we set ε+ = 1, ε− = ε̄ = 0, then the equations reduce into

δφ̄ = 0, δψ̄ = i∂̄φ̄ (13)

In the similar spirit, in the twisted supergravity, we control the twist by giving non-zero
VEV to components of the bosonic ghost q.

Indeed, [1] proved that by turning on non-zero bosonic spinor vacuum expectation

value 〈q〉 6= 0 with qαΓαβµ qβ = 0 for a vector gamma matrix, one can obtain the effect of
topological twisting. We can now compare with the field theory case above (6): Q2 = 0
with Q 6= 0. One can think of εQ as a rigid limit of q.

The operator algebra of twisted type IIB supergravity is isomorphic to that of Kodaira-
Spencer theory [46]. The following diagram gives a pictorial definition of the two theories,
which turned out to be isomorphic to each other.
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Figure 1: Starting from type IIB string theory, one can obtain same theory by taking two
operations– 1. String field limit, 2. Topological twist– in any order.

Notice that the topological twist in the first column of the picture is the twist applied
on the worldsheet string theory4, whereas that in the second column is the twist on the
target space theory.

Lastly, there are two types of twists available: a topological twist and a holomorphic
twist, and it is possible to turn on the two different types of twists in the two different
directions of the spacetime. The mixed type of twists is called a topological-holomorphic
twist, e.g. [47]. Different from a topological twist, a holomorphic twist makes only the
(anti)holomorphic translation to be Q-exact; after the twist we have Q and Qz such that

{Q,Qz} = Pz̄ (14)

Hence, the holomorphic translation is actually physical(not Q-exact), and there exists non-
trivial dynamics arising from this. [1,4] showed that it is possible to discuss a holomorphic
twist in the supergravity. It is actually important to have a holomorphic direction to keep
the non-trivial dynamics, as we will later see.

2.2 Ω-deformed M-theory

Similar to the previous subsection, we will start reviewing the notion of Ω-deformation of
topologically twisted field theory. To define Ω-background, one first needs an isometry,
typically U(1), generated by some vector field V on a plane where one wants to turn on
the Ω-background. Ω-deformation is a deformation of topologically twisted field theory
and physical observables are defined with respect to the modified QV cohomology, which
satisfies

Q2
V = LV , where QV = Q+ iV µQµ (15)

where LV is a conserved charge associated to V , and iV µ is a contraction with the vector
field V µ, reducing the form degree by 1.

As the RHS of (15) is non-trivial, QV cohomology only consists of operators, which
are fixed by the action of LV – O such that LVO = 0. Hence, effectively, the theory is

4We thank Kevin Costello, who pointed out that the arrow from Type IIb string theory to B-model
topological string theory is still mysterious in the following sense. In Ramond-Ramond formalism, as the
super-ghost is in the Ramond sector and it is hard to give it a VEV. In the Green-Schwarz picture surely
it should work better, but there are still problems there, as the world-sheet is necessarily embedded in
space-time whereas in the B model that is not allowed.
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defined in two less dimensions, if the isometry group is U(1). More generally, one can
turn on Ω-background in the n planes, and the dynamics of the original theory defined on
D-dimensions is localized on D − 2n dimensions.

In [4], a prescription for turning Ω-background in twisted 11d supergravity was intro-
duced; we need 3-form field εC, along with U(1) isometry generated by a vector field εV ,
where ε is a constant, measuring the deformation. Similar to the field theory description,
in this background(〈q〉, C 6= 0), the bosonic ghost q squares into the vector field, εV to
satisfy the 11d supergravity equation of motion.

q2 = qα(Γαβ)µqβ = εVµ (16)

The Ω-background localizes the supergravity field configuration into the fixed point of the
U(1) isometry. From now on, we will call Ω-background with parametrized by εi as Ωεi

background. More generally, one can turn on multiple Ωεi-background in the separate
2-planes, which we will denote as Cεi .

The topologically twisted and Ω−deformed 11d background that we will focus in this
paper is

11d SUGRA: Rt × C2
NC × Cε1 × TN1;ε2,ε3 (17)

where TN1;ε2,ε3 is Taub-NUT space, which can be thought of as S1
ε2×R×Cε3 . The twist is

implemented with the bosonic ghost chosen such that holomorphic twist in C2
NC directions

5 and topological twist in Rt × Cε1 × TN1;ε2,ε3 directions6. The 3-form is

C = V d ∧ dz̄1 ∧ dz̄2 (18)

where V d is 1-form, which is a Poincare dual of the vector field V on Cε2 plane.
The statement of twisted holography is the duality between the protected subsector

of M2-brane and the localized supergravity, due to the Ω-background. We first want
to introduce M2 branes and establish the explicit isomorphism at the level of operator
algebras. Place N M2-branes on

M2-brane: Rt × {·} × Cε1 × {·} (19)

To set up the stage for the concrete computation, it is convenient to go to type IIa frame
by reducing along an M-theory circle. We pick the M-theory circle as S1

ε2 , which is in the
direction of the vector field V .7

After reducing on S1
ε2 , the Taub-NUT geometry maps into one D6-brane and N M2-

branes map to N D2-branes.

type IIa SUGRA : Rt × C2
NC × Cε1 × R× Cε3

D6-brane : Rt × C2
NC × Cε1

D2-branes : Rt × × Cε1

(20)

and 3-form C-field reduces into a B-field, which induces a non-commutativity [z1, z2] = ε2
on C2

NC .
B = ε2dz̄1 ∧ dz̄2 (21)

There are two types of contributions to gravity side: 1. closed strings in type IIa string
theory and 2. open strings on the D6-brane. It was shown in [4] that we can completely

5NC stands for Non-Commutative. This will become clear in the type IIa frame.
6As remarked, if one introduces branes, the worldvolume theory inherits the particular twist that is

turned on in the particular direction that the branes extend.
7For a different purpose, to make contact with Y-algebra system, type IIb frame is better, but we will

not pursue this direction in this paper.
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forget about the closed strings, so the open strings from the D6-brane entirely capture
gravity side.

D6-brane worldvolume theory is 7d SYM, and it localizes on 5d non-commutative U(1)
Chern-Simons on Rt × C2

NC due to Ωε1-background on Cε1 [48]. The 5d Chern-Simons
theory is not the typical Chern-Simons theory, as it inherits a topological twist in Rt
direction and a holomorphic twist in C2

NC direction, in addition to the non-commutativity.
As a result, a gauge field only has 3 components

A = Atdt+Az̄1dz̄1 +Az̄2dz̄2 (22)

and the action takes the following form.

S =
1

ε1

∫
Rt×C2

NC

dz1dz2

(
A ? dA+

2

3
A ? A ? A

)
(23)

The star product ?ε2 is the standard Moyal product induced from the non-commutativity
of C2

NC : [z1, z2] = ε2. The Moyal product between two holomorphic functions8 f and g is
defined as

f ?ε g = fg + ε
1

2
εij

∂

∂zi
f
∂

∂zj
g + ε2

1

222!
εi1j1εi2j2

(
∂

∂zi1

∂

∂zi2
f

)(
∂

∂zj1

∂

∂zj2
g

)
(24)

The gauge transformation Λ ∈ Ω0(R× C2
NC)⊗ gl19 acting on the gauge field A is

A 7→ A+ dΛ + [Λ, A], where [Λ, A] = Λ ?ε2 A−A ?ε2 Λ (25)

The field theory side is defined on N D2-branes, which extend on Rt × Cε1 . This is
3d N = 4 gauge theory with 1 fundamental hypermultiplet and 1 adjoint hypermultiplet.
Since the D2-branes are placed on topologically twisted supergravity background, the
theory inherits the topological twist, which is Rozansky-Witten twist. We will work on
N = 2 notation, then each of N = 4 hypermultiplet splits into a chiral and an anti-chiral
N = 2 multiplet. We denote the scalar bottom component of the fundamental chiral and
anti-chiral multiplet as Ia and Ja, and that of adjoint multiplets as Xa

b and Y a
b , where a

and b are U(N) gauge indices. Those scalars parametrize the hyper-Kahler target manifold
M, which has non-degenerate holomorphic symplectic structure. This structure turns the
ring of holomorphic functions onM into a Poisson algebra with the following basic Poisson
brackets:

{Ia, Jb} = δba, {Xa
b , Y

c
d } = δadδ

c
b (26)

It is known that the gauge invariant combinations of Q-cohomology of Rozansky-Witten
twisted N = 4 theory is equivalent to the Higgs branch chiral ring. The elements of Higgs
branch chiral ring are gauge invariant polynomials of I, J , X, and Y :

IS(XmY n)J, TrS(XmY n) (27)

where S(•) means fully symmetrized polynomial of the monomial •.
Upon imposing the F-term relation10

[X,Y ] + IJ = ε2δ, (28)

8The Moyal product is extended to a product on the Dolbeault complex Ω0,∗(C2) by the same formula,
except that the product between two functions becomes a wedge product between two forms.

9gl1 Lie algebra factor comes from the simple fact that the theory is U(1) gauge theory. For now, there
is no essential difference between Ω0(R× C)2NC and Ω0(R× C)2NC ⊗ gl1; however, having gl1 rather than
glK makes a huge difference in the Feynman diagram computation, which will be discussed in §4.

10Physically, one needs to impose the F-term relation, as it is a part of defining condition for the
supersymmetric vacua, as a critical locus of our specific 3d N = 4 superpotential. Algebraically, F-term
relation forms an ideal of the ring of holomorphic functions on M.

9
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one can show two words in (27) are equivalent11 up to a factor of ε2
12, and the physical

observables purely consist of one of them. Let us call them as

t[m,n] =
1

ε1
TrSXmY n (30)

In the Ωε1-background, the Higgs branch chiral ring is quantized to an algebra and the
support of the operator algebra in 3d N = 4 theory also localizes to the fixed point of the
Ωε1-background. Therefore, the theory effectively becomes 1d TQM(Topological Quantum
Mechanics) [23,49,50].

In summary, two sides of twisted holography are 5d non-commutative Chern-Simons
theory and 1d TQM. Until now, we have not quite taken a large N limit and resulting
back-reaction that will deform the geometry. The large N limit will be crucial for the
operator algebra isomorphism to work and we will illustrate this point in the section §2.6.

2.3 Comparing elements of operator algebra

As 5d CS theory has a trivial equation of motion: F = 0, all the observables have positive
ghost numbers. Also, since Rt direction is topological, the fields do not depend on t.
As a result, operator algebra consist of ghosts c(z1, z2) with holomorphic dependence on
coordinates of C2

NC , z1, z2. The elements are then Fourier modes of the ghosts.

c[m,n] = ∂mz1∂
n
z2c(0, 0) (31)

The non-commutativity in C2
NC planes induces an algebraic structure in the holomorphic

functions on C2
NC defined by the Moyal product.[

za1z
b
2, z

c
1z
d
2

]
= (za1z

b
2) ?ε2 (zc1z

d
2)− (zc1z

d
2) ?ε2 (za1z

b
2) =

∑
m,n

fm,na,b;c,dz
m
1 z

n
2 (32)

At the classical level (ε1 = 0), the operator algebra Aε1=0,ε2 of 5d CS theory is generated
by ghost fields c[m,n] with anti-commutativity relations, together with BRST differential
δ. As a graded associative algebra, A0,ε2 is isomorphic to ∧∗ (C[z1, z2]ε2) ∼= ∧∗ (Diffε2C),
note that here we identify z1 as ∂z2 using the Moyal product. The BRST differential δ is
the dual of the Lie bracket, thus Aε1=0,ε2 is the Chevalley-Eilenberg algebra of cochains
on the Lie algebra g = Diffε2C⊗gl1, denote by C∗(g). Note that here we treat the algebra
Aε1=0,ε2 as an algebra over the base ring C[ε1, ε2], so ε1, ε2 are algebraic parameters. At
the quantum level, the operator algebra Aε1=0,ε2 receives deformations, we will denoted it
by Aε1,ε2 .

On the other hand, the elements of the algebra of operators in 1d TQM in the large N
limit consist of t[m,n]. The defining commutation relations come from the quantization
of the Poisson brackets deformed by Ωε1-background:[

Ia, J
b
]

= ε1δ
b
a, [Xa

b , Y
c
d ] = ε1δ

a
dδ
c
b (33)

We will write the F-term relation with explicit gauge indices as follows.

Xi
kY

k
j −Xk

j Y
i
k + IjJ

i = ε2δ
i
j (34)

11They are related by following relation:

IS(XmY n)J = ε2TrS(XmY n) (29)

12Note that the ε2 factor, which was previously introduced as a measure for the non-commutativity in
the 5d CS theory, acts as an FI parameter in the 3d N = 4 gauge theory.
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We will call the algebra generated by t[m,n] with relations (33), (34) as ADHM algebra or
Aε1,ε2 . Note that here we treat the algebra Aε1,ε2 as an algebra over the base ring C[ε1, ε2].
This may seems to be strange at the first glance since t[m,n] is a priori defined over
C[ε±1 , ε2], nevertheless the commutators between those t[m,n]’s only involve polynomials
in ε1, so the algebra Aε1,ε2 is well-defined over C[ε1, ε2].

There is a one-to-one correspondence between c[m,n] and t[m,n], and [18] proved
an isomorphism between !Aε1,ε2 = Uε1(g) and Aε1,ε2 as C[ε1, ε2]-algebras for 5d U(K)
Chern-Simons theory coupled with 1d TQM with K > 1, where !Aε1,ε2 is a Koszul dual
of an algebra Aε1,ε2

13. The proof consists of two parts. First, one checks two algebras’
commutation relations match in the O(ε1) order. Next, one proves the uniqueness of the
deformation of the universal enveloping algebra U(g) by ε1 that ensures all order matching.
It worth mentioning that in the classical limit ε1 → 0 the algebra Aε1,ε2 does not agree
with the classical operator algebra of the ADHM mechanics, since the definition of the
algebra Aε1,ε2 involves 1/ε1, in other word, the isomorphism holds only at the quantum
level.

One of our goal is to extend the O(ε1) order matching to K = 1. It may seem trivial
compared to higher K, but it turns out that it is actually more complicated. We will give
the proof in §4, §5. The uniqueness of the deformation applies for all K including K = 1,
so we will not try to spell out the details in this work.

2.4 Koszul duality

Let us explain why in the first place we can expect the Koszul duality between 5d and
1d operator algebra in the large N limit. Further details on Koszul duality can be found
in [19,39,51,52]

The 5d theory is defined on Rt×C2
NC , where Rt is topological and C2

NC , and 1d TQM
couples to the 5d theory along Rt. As explained in (7), there is a scalar supercharge Q
and 1-form supercharge δ that anti-commute to give a translation operator Pt. We can
build a topological line defect action using topological descent.

Pexp

∫ ∞
−∞

[δ, x(t)] (35)

where
x(t) =

∑
m,n

c[m,n]t[m,n] (36)

The BRST variation of (35) vanishes if x(t) satisfies a Maurer-Cartan equation:

[Q, x] + x2 = 0 (37)

and if x ∈ A⊗ !A for some A, the Maurer-Cartan equation is always satisfied. Hence, it is
natural to expect the Koszul duality between Aε1,ε2 and Aε1,ε2 . So, the coupling between
the 5d ghosts and gauge invariant polynomials of 1d TQM is given by

Sint =

∫
Rt
t[m,n]c[m,n]dt. (38)

Now that we have three types of Lagrangians:

S5d CS + S1d TQM + Sint (39)

13It is known that for Aε1=0,ε2 = C∗(g), the Koszul dual !Aε1=0,ε2 is U(g) [45].
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We need to make sure if the quantum gauge invariance of 5d Chern-Simons theory remains
to be true in the presence of the interaction with 1d TQM. Namely, we need to investigate
if there is non-vanishing gauge anomaly in Feynman diagrams. Along the way, we will
derive the isomorphism between the operator algebras, as a consistency condition for the
gauge anomaly cancellation.

2.5 Anomaly cancellation

To give an idea that the cancellation of the gauge anomaly of 5d CS Feynman diagrams
fixes the algebra of operators in 1d TQM that couples to the 5d CS, let us review 5d U(K)
Chern-Simons example shown in [18]. Consider following Feynman diagram.

Figure 2: The vertical solid line represents the time axis. Internal wiggly lines stand for
5d gauge field propagators Pi, and the external wiggly lines stand for Fourier components
5d gauge field.

The BRST variation(δA = ∂c) of the amplitude of the above Feynman diagram is non-zero.

ε1εij(∂ziA
a)(∂zjc

b)Kfef caef
d
bf t[0, 0]t[0, 0] (40)

where Kab, fabc are a Killing form and a structure constant of u(K), and t[m,n] is an

element of ADHM algebra with gauge group G = U(N), and flavor group Ĝ = U(K).
To have a gauge invariance, we need to cancel the anomaly, and the gauge variation

of the following diagram has exactly factors like εij(∂ziA
a)(∂zjc

b):

Figure 3:

12
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The BRST variation of the amplitude is

ε1εij(∂ziA
a)(∂zjc

b)Kfef caef
d
bf [t[1, 0], t[0, 1]] (41)

Imposing the cancellation of the BRST variation between (40) and (41), we obtain

[t[1, 0], t[0, 1]] = ε1t[0, 0]t[0, 0] (42)

This is very impressive, since we obtain the ADHM algebra from 5d Chern-Simons theory
Feynman diagrams!

We will see that if K = 1, some ingredients of Feynman diagram change, but we can
still reproduce ADHM algebra with G = U(N), Ĝ = U(1).

2.6 Large N limit and a back-reaction of N M2-branes

Although we have not discussed explicitly about taking large N limit, but it was being
used implicitly in establishing the isomorphism between !Aε1,ε2 and Aε1,ε2 .

Here we explain some detail of taking large N limit. First notice that there are homo-
morphisms ιN

′
N : O(T ∗VK,N ′)→ O(T ∗VK,N ) for all N ′ > N induced by natural embedding

CN ↪→ CN ′ , where

VK,N = glN ⊕Hom(CK ,CN ), (43)

so that T ∗VK,N is the linear span of single operators I, J,X, Y , and the algebra O(T ∗VK,N )
is the commutative (classical) algebra generated by these operators (with no relations
imposed). Then we define the admissible sequence of weight 0 as

{fN ∈ O(T ∗VK,N )GLN |ιN ′N (fN ′) = fN}, (44)

and for integer r ≥ 0, a sequence {fN} is called admissible of weight r if {N−rfN} is
admissible sequence of weight 0 (e.g. the sequence {N} is admissible of weight 1), and
define O(T ∗VK,•)

GL• to be the linear span of admissible sequences of all possible weights.
It’s easy to see thatO(T ∗VK,•)

GL• is an algebra. Next we turn on the quantum deformation
which turn the ordinary commutative product to the Moyal product ?ε1 , and it’s easy to
see that for admissible sequences {fN} and {gN}, {fN ?ε1 gN} is also admissible. In this
way we obtained the quantized algebra Oε1(T ∗VK,•)

GL• .
The action of glN on VK,N induces a moment map

µ : glN → Oε1(T ∗VK,N ), Eji 7→ Xk
i Y

j
k −X

j
kY

k
i + IiJ

j , (45)

We want to set the moment map to ε2 times the identity, so we consider the shifted moment
map:

µε2 : glN → Oε1(T ∗VK,N ), Eji 7→ Xk
i Y

j
k −X

j
kY

k
i + IiJ

j − ε2δji , (46)

which is GLN -equivaraint. Together with the Moyal product on Oε1(T ∗VK,N ), µε2 gives
rise to a GLN -equivaraint map of left Oε1(T ∗VK,N )-modules

µε2 : Oε1(T ∗VK,N )⊗ glN → Oε1(T ∗VK,N ). (47)

Taking GLN -invariance, we obtain the quantum moment map

µε2 : (Oε1(T ∗VK,N )⊗ glN )GLN → Oε1(T ∗VK,N )GLN . (48)

It’s easy to varify that the image of µε2 is a two-sided ideal. Similar to Oε1(T ∗VK,•)
GL• , we

can define admissible sequences in (Oε1(T ∗VK,N )⊗glN )GLN and call this space (Oε1(T ∗VK,•)⊗
gl•)

GL• . Quantum moment maps for all N give rise to

µε2 : (Oε1(T ∗VK,•)⊗ gl•)
GL• → Oε1(T ∗VK,•)

GL• , (49)

13
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and the image is a two-sided ideal, so we can take the quotient of Oε1(T ∗VK,•)
GL• by this

ideal, this is by definition the large-N limit denoted by Oε1(Mε2
K,•).

From the definition above, we can write down a set of generators of Oε1(Mε2
K,•):

{N} and {IαS(XnY m)Jβ} for all integers n,m ≥ 0. (50)

Note that Costello also defined a combinatorical algebra Acomb
ε1,ε2 in section 10 of [18], which

depends on K but not on N . This is related to Oε1(Mε2
K,•) in the sense that generators of

Acomb
ε1,ε2 are

{N} and { 1

ε1
IαS(XnY m)Jβ} for all integers n,m ≥ 0, (51)

when ε1 6= 0. In the notation of [18] they corresponds to

D(∅) and Sym(D(α ⇓, ↑n, ↓m, β ⇑)) for all integers n,m ≥ 0, (52)

respectively. Under the aforementioned correspondence between generators, Acomb
ε1,ε2 is iso-

morphic to Oε1(Mε2
K,•) (Proposition 13.4.3 of [18]) when ε1 is invertible.

The general philosophy of AdS/CFT [31] teaches us that the back-reaction of N M2-
branes will deform the spacetime geometry. In our case, since the closed strings completely
decouple from the analysis, the back-reaction is only encoded in the interaction related
to the open strings. More precisely, the back-reaction is already encoded in the 5d-1d
interaction Lagrangian (38), a part of which we reproduce below.

Sback =

∫
Rt
t[0, 0]c[0, 0]dt. (53)

Here, we can explicitly see N in t[0, 0], as

t[0, 0] = IJ/ε1 = ε2Trδ
i
j/ε1 = N

ε2
ε1

(54)

where in the second equality, we used the F-term relation.
After taking large N limit, N becomes an element of the algebra Aε1,ε2 , which is

coupled to the zeroth Fourier mode of the 5d ghost, c[0, 0].

2.7 M5-brane in Ω−deformed M-theory

We want to include one M5(D4)-brane in the story, and review the role played by the new
element coming from the bi-module on M5(D4)-brane in the boundary and the bulk.

0 1 2 3 4 5 6 7 8 9 10

Geometry Rt Cε1 C2
NC Cε3 R S1

ε2

M2(D2) × × ×
M5 × × × × × ×
D4 × × × × ×

Table 1: M2, M5-brane

In the boundary perspective, it intersects with the M2(D2)-brane with two directions
and supports 2d N = (2, 2) supersymmetric field theory with two chiral superfields, whose
bottom components are ϕ, ϕ̃, arising from D2−D4 strings. This 2d theory interacts with
the 3d N = 4 ADHM theory with a superpotential

W = ϕ̃Xϕ (55)

14
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where X is a scalar component of the adjoint hypermultiplet of the 3d theory.

Figure 4: 3d N = 4 ADHM quiver gauge theory with G = U(N), F = U(1), decorated
with 2d N = (2, 2) field theory. X, Y are scalars of adjoint hypermultipet, and I, J are
scalars of (anti)fundamental hypermultiplet. The triangle node encodes the 2d theory. ϕ
and ϕ̃ are 2d scalars. In type IIA language, the circle, square, and triangle node correspond
to D2, D6, D4 branes, respectively.

A naive set of gauge invariant operators living on the 2d intersection are

IXmY nϕ̃, ϕXmY nJ, ϕXmY nϕ̃ (56)

The superpotential reduces [19,22] the above set into

Mε1,ε2 = {b[zn] = IY nϕ̃, c[zn] = ϕY nJ} (57)

The set of 2d observables Mε1,ε2 forms a bi-module of the ADHM algebra Aε1,ε2 .
The difference between left and right actions of the algebra A onMε1,ε2 is encoded in

the form of a commutator:

[a,m] = m′, where a ∈ A, m,m′ ∈Mε1,ε2 (58)

To verify (58), we need to establish the commutation relations between the set of letters
{ϕ, ϕ̃} and {X,Y, I, J}. Those are given by

IP (ϕ, ϕ̃) = P (ϕ, ϕ̃)I

JP (ϕ, ϕ̃) = P (ϕ, ϕ̃)J

Xi
jP (ϕ, ϕ̃) = P (ϕ, ϕ̃)Xi

j

Y i
j P (ϕ, ϕ̃) = P (ϕ, ϕ̃)(Y i

j + ϕ̃iϕj)

Xi
jϕiP (ϕ, ϕ̃) = −ε1∂ϕ̃jP (ϕ, ϕ̃)

Xi
jϕ̃

jP (ϕ, ϕ̃) = −ε1∂ϕiP (ϕ, ϕ̃)

(59)

Again, the non-trivial commutation relations in the last three lines originates from the
effect of the particular superpotentialW. For the derivation, we refer the reader to [19,22].

In the Ωε1-background, 2d N = (2, 2) theory localizes to a point, which is the origin
of Rt.
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Figure 5: Left figure represents a coupled system of 3d N = 4 ADHM theory(the cylinder)
and 2d N = (2, 2) theory(the middle disk in the cylinder) from D2 branes and a D4 brane.
In the Ωε1-background, the system localizes to 1d+ 0d system.

Hence, the resulting system is ADHM algebra Aε1,ε2 and bi-moduleMε1,ε2 of the algebra.
To study the bulk perspective, we need to study what degree of freedoms that M5-

brane support in the 5d spacetime Rt × C2
NC and how the M5-brane interacts with 5d

Chern-Simons theory. 5d CS theory is defined in the context of type IIa, and M5-brane
is mapped to a D4-brane. The local degree of freedom comes from D4-D6 strings, which
are placed on {·}×C ∈ Rt×C2

NC . These 2d degrees of freedom are actually coming from
4d N = 2 hypermultiplet, as the true intersection between D4 and D6 is C× Cε1 . In the
Ωε1-background, the 4d N = 2 hypermultiplet localizes to a β − γ system [11]. Hence, we
arrive at β − γ Vertex Algebra on C ⊂ C2

NC .

0 1 2 3 4 5 6 7 8 9

Geometry Rt Cε1 C2
NC Cε3 Rε2

1d TQM ×
2d βγ × ×
5d CS × × × × ×

Table 2: Bulk perspective

The β − γ system minimally couples to 5d Chern-Simons theory via∫
C
β(∂̄ +A?)γ (60)

The observables to be compared with those of field theory side: b[zn] and c[zn] can be
naturally compared with the modes of β and γ: ∂nz β, ∂nz γ, and the Koszul duality manifests
itself by the coupling between two types of observables:∫

{0}
∂k1z2 β · b[z

k1 ] +

∫
{0}

∂k2z2 γ · c[z
k2 ] (61)

where z = z2, and the integral on a point is merely for a formal presentation.
The following figure depicts the entire bulk and boundary system including the line

and the surface defect, and describes how all the ingredients are coupled.
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Figure 6: 5d Chern-Simons(Rt × C2
NC), 1d generalized Wilson line defect(Rt), and 2d

surface defect(C ⊂ C2
NC).

As explained in section §2.5, we need to make sure if the introduction of the 2d system
is quantum mechanically consistent, or anomaly free. Imposing the anomaly cancella-
tion condition of 5d, 2d, 1d coupled system, we should be able to derive the bi-module
commutation relations defined in the field theory side. This is the content of §5.

3 M2-brane algebra and M5-brane module

In this section, we will provide a representative commutation relation for the algebra Aε1,ε2[
a, a′

]
= a0 + ε1a1 + ε21a2 + . . . , where a, a′, ai ∈ Aε1,ε2 (62)

and a representative commutation relation for the algebra Aε1,ε2 and the bi-moduleMε1,ε2

for Aε1,ε2 .

[a,m] = m0 + ε1m1 + ε21m2 + . . . , where a ∈ Aε1,ε2 , m,mi ∈Mε1,ε2 (63)

We first recall the notation for a typical element of Aε1,ε2 and Mε1,ε2 :

t[m,n] =
1

ε1
TrS(XmY n) =

1

ε1ε2
IS(XmY n)J ∈ Aε1,ε2

b[zm] =
1

ε1
IY mϕ̃ ∈Mε1,ε2

c[zn] =
1

ε1
ϕY nJ ∈Mε1,ε2

(64)

For the convenience of later discussions, we also introduce the notation:

T [m,n] =
ε2
ε1
TrS(XmY n) =

1

ε1
IS(XmY n)J ∈ Aε1,ε2 (65)

Our final goal is to reproduce the Aε1,ε2 algebra from the anomaly cancellation of 1-loop
Feynman diagrams in 5d Chern-Simons theory. So, it is important to have commutation
relations that yieldO(ε1) term in the right hand side, where ε1 is a loop counting parameter
in 5d CS theory.

3.1 M2-brane algebra

Since we have not provided a concrete calculation until now, let us give a simple computa-
tion to give an idea of ADHM algebra and its bi-module. It is useful to recall G = U(N),
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Ĝ = U(K) ADHM algebra, which serves as a practice example, and at the same time
as an example that explains the non-triviality of G = U(N), Ĝ = U(1) ADHM algebra,
compared to K > 1 cases.

It was shown in [18] that following commutation holds for G = U(N), Ĝ = U(K)
ADHM algebra.

[t[1, 0], t[0, 1]] = ε1t[0, 0]t[0, 0] or [IXJ, IY J ] = ε1(IJ)(IJ) (66)

This does not work for Ĝ = U(1). It is instructive to see why.

[TrX, TrY ] = [Xi
i , Y

j
j ] = δijδ

j
i ε1 = δijε1

= Nε1
(67)

Multiplying both sides by ε22/ε
2
1, we can convert it into T [m,n] basis:

[T [1, 0], T [0, 1]] = ε2T [0, 0] (68)

The RHS of (68) is different from (66) crucially in its dependence on ε1. The RHS of
(68) is O(ε01), but that of (66) is O(ε1). While it was sufficient to consider this simple
commutator to see the ε1 deformation of the algebra for Ĝ = U(K) with K > 1, we need
to consider a more complicated commutator to see O(ε1) correction in the RHS.

In Appendix §A.1, we will derive a set of relations that will determine all other relations,
of which the simplest ones are:

[t[3, 0], t[0, 3]] = 9t[2, 2] +
3

2

(
σ2t[0, 0]− σ3t[0, 0]t[0, 0]

)
[t[2, 1], t[1, 2]] = 3t[2, 2]− 1

2

(
σ2t[0, 0]− σ3t[0, 0]t[0, 0]

) (69)

where
σ2 = ε21 + ε22 + ε1ε2, σ3 = −ε1ε2(ε1 + ε2) (70)

To compare the commutation relation to that from 5d Chern-Simons calculation, we
need to make sure if the parameters of ADHM algebra Aε1,ε2 are the same as those in 5d
CS theory. From [18], the correct parameter dictionary14 is

(ε1)ADHM = (ε1)CS ,

(
ε2 +

1

2
ε1

)
ADHM

= (ε2)CS (71)

Hence, the commutation relation that we are supposed to match from the 5d computation
is

[t[2, 1], t[1, 2]] = 3t[2, 2]− 1

2

((
ε22 +

3

4
ε21
)
t[0, 0] +

(
ε1ε

2
2 −

ε31
4

)
t[0, 0]t[0, 0]

)
(72)

There is one term in the RHS of (72) that is in O(ε1) order:

[t[2, 1], t[1, 2]] = O(ε01)− 1

2
ε1ε

2
2t[0, 0]t[0, 0] +O(ε21) (73)

We will try to recover the O(ε1) term from 5d Feynman diagram calculation15 in section
§4; the general argument that gauge anomaly cancelation leads to the Koszul dual algebra
commutation relation is given in §2.5.

14We thank Davide Gaiotto, who pointed out this subtlety.
15The basis used in the Feyman diagram computation is T [m,n], not t[m,n]. However, the change of

basis does not affect any computation because the O(ε1) term in (73) is quadratic in t.
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3.2 M5-brane module

We will use the commutation relations (33), (34), (59) to compute the commutators be-
tween a ∈ Aε1,ε2 and m ∈ Mε1,ε2 , which are defined in (30), (57). When one tries to
compute some commutators, one immediately notices some normal ordering ambiguity in
a general module element m, which can be seen in following example.

[IXJ, (Iϕ̃)(ϕJ)] =
[
IiX

i
jJ

j , Iaϕ̃
aϕbJ

b
]

(74)

Assuming that the order of letters is consistent with the order of fields in the real line Rt,
it is obvious that we need to place ϕ̃aϕb together, as they are defined at a point {0} ∈ Rt16.
However, it is ambiguous whether we put Ia, J

b in the right or left of ϕ̃aϕb, as Ia, J
b are

living on Rt. We will try to fix this ambiguity to prepare a concrete calculation.
Considering following normal ordering when writing a module element (IY ϕ)(ϕJ) will

be enough to fix the ambiguity.

|ϕ̃jϕk|IiJkY i
j (75)

We simply choose other letters like X,Y, I, J to be placed on the right side of ϕ and ϕ̃.
Still, there is an ordering ambiguity. For instance between two words:

|ϕ̃ϕ|IJY vs |ϕ̃ϕ|JIY (76)

We simply choose an alphabetical order to arrange letters. In other words, we use the
commutation relations until the letters in the word has a alphabetical order. When the
word has an alphabetical order, we contract the gauge indices to form a single-trace word,
and omit the gauge indices. For instance,

(ϕ̃ϕ) :=|ϕ̃jϕj |
(IY ϕ̃)(ϕJ) :=|ϕ̃jϕl|IkJ lY k

j

(Iϕ̃)(ϕJ)(IJ) :=|ϕ̃jϕk|IjJkIiJ i
(77)

As a consequence, some more steps are needed for the following:

|ϕ̃jϕk|IiIjJkJ i (78)

That is, we need to commute Ii through Jk to contract with J i. While doing this, we
necessarily use [Ii, J

k] = ε1δ
k
i + JkIi, which produces two terms.

Having fixed the ordering ambiguity, there is a few things to keep in mind additionally:

• We use F-term relation and the basic commutation relation between X and Y in
maximum times to get rid of X’s in the word, since the module only consists of ϕ,
ϕ̃, I, J , Y .

• To use F-term relation, we first need to pull the target XY(or YX) pair to the right
end, not to ruin the gauge invariance, and pull it back to the original position in the
word.

• To use the superpotential relations(Xϕ = ε1∂ϕ̃ or Xϕ̃ = ε1∂ϕ), we need to bring X
right next to ϕ or ϕ̃.

16Recall that ϕ, ϕ̃ are chiral multiplet scalars that are localized at the interface(between the line and
the surface). In the Ωε1 -background, the interface localizes to a point. Hence, ϕ, ϕ̃ are localized to be at
a point on the line.
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Given the prescription, we would like to find a ∈ Aε1,ε2 and m ∈ Mε1,ε2 such that
the value of [a,m] contains O(ε1) terms. To illustrate the prescription, let us consider
following simple example, which will not produce O(ε1) term.

Example: [IXJ, (IY ϕ̃)(ϕJ)]

It is much clear and convenient to use closed word version for the algebra element. We
will recover the open word at the end by simply multiplying ε2 on the closed words.

[TrX, (IY ϕ̃)(ϕJ)] = (X) · (IY ϕ̃)(ϕJ)− (IY ϕ̃)(ϕJ) · (X) (79)

Compute the first term:

X0
0 |ϕ̃bϕc|IaY a

b J
c =|ϕ̃bϕ|Ia(ε1δab + Y a

b X
0
0 )Jc

= ε1|ϕ̃bϕc|IbJc + (IY ϕ̃)(ϕJ) · (X)
(80)

So,
[TrX, (IY ϕ̃)(ϕJ)] = ε1|ϕ̃bϕc|IbJc

= ε1(Iϕ̃)(ϕJ)
(81)

After normalization, by multiplying ε2
ε31

both sides, we get

[T [1, 0], b[z]c[1]] = ε2b[1]c[1] (82)

There is no O(ε1) correction. So, we need to work harder.
The first bi-module commutator that has an ε1 correction with some non-trivial de-

pendence on ε2 is
[
TrS(X2Y ), (IY ϕ̃)(ϕJ)

]
. After properly normalizing it, we have

[T [2, 1], b[z]c[1]] =

(
− 5

3
ε2T [0, 1] + ε22b[1]c[1]

)
+ ε1

(
−ε2b[1]c[1]T [0, 0] +

4

3
ε2b[1]c[1]

)
+ ε21

(
− 4

3
b[1]c[1]T [0, 0]

)
+ ε31

(
− 1

3
b[1]c[1]b[1]c[1]

)
(83)

Here, we used the re-scaled basis T [m,n] for Aε1,ε2 . This is a better choice to be coherent
with the form of the bi-module elements, since b[zn] = IY nϕ̃ and c[zn] = ϕY nJ explicitly
depend on I and J . 17We have shown the proof in Appendix §A.2.

4 Perturbative calculations in 5d U(1) CS theory coupled to
1d QM

In this section, we will provide a derivation of the G = U(N), Ĝ = U(1) ADHM algebra
Aε1,ε2 using the perturbative calculation in 5d U(1) CS. We will see the result from the

17Similar to the algebra case, there might be a shift in parameters ε1 and ε2 in 5d CS side; here, we
simply assumed that there is no shift: (ε1)5d = (ε1)1d−2d, (ε2)5d = (ε2)1d−2d. If there were a shift in the
ε2 dictionary, the tree level term may be a potential problem.
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perturbative calculation matches with the expectation (73). The strategy, which we will
spell out in detail in this section, is to compute the O(ε1

1) order gauge anomaly of various
Feynman diagrams in the presence of the line defect from M2 brane(R1×{0} ⊂ R1×C2

NC).
Imposing a cancellation of the anomaly for the 5d CS theory uniquely fixes the algebra
commutation relations.

Purely working in the weakly coupled 5d CS theory, we will derive the representative
commutation relations of the ADHM algebra (73):

• Algebra commutation relation

[t[2, 1], t[1, 2]] = . . .+ ε1ε
2
2t[0, 0]t[0, 0] + . . . (84)

where t[n,m] is a basis element of Aε1,ε2 .

As we commented in §3.1, the algebra basis used in the Feynman diagram computation
is T [m,n], which is related to t[m,n] by rescaling with ε2. The effect of the change of
basis is trivial in (84), so we will interchangeably use t[m,n] and T [m,n] without loss of
generality.

4.1 Ingredients of Feynman diagrams

To set-up the Feynman diagram computations, we recall the 5d U(1) Chern-Simons theory
action on Rt × C2

NC .

S =
1

ε1

∫
Rt×C2

NC

dz1dz2

(
A ?ε2 dA+

2

3
A ?ε2 A ?ε2 A

)
(85)

with |ε1| �|ε2| � 1. In components, the 5d gauge field A can be written as

A = Atdt+Az̄1dz̄1 +Az̄2dz̄2 (86)

with all the components are smooth holomorphic functions on R1 × C2
NC .

Now, we want to collect all the ingredients of the Feynman diagram computation. It
is convenient to rewrite (85) as

S =
1

ε1

∫
R1×C2

NC

dz1dz2

(
AdA+

2

3
A(A ?ε2 A)

)
(87)

(87) is equivalent to (85) up to a total derivative. From the kinetic term of the Lagrangian,
we can read off the following information:

• 5d gauge field propagator P is a solution of

dz1 ∧ dz2 ∧ dP = δt=z1=z2=0. (88)

That is,

P (v1, v2) = 〈A(v1)A(v2)〉 =
z̄12dw̄12dt12 − w̄12dz̄12dt12 + t12dz̄12dw̄12

d5
12

(89)

where

vi = (ti, zi, wi), dij =
√
t2ij+|zij |2+|wij |2, tij = ti − tj (90)

21



SciPost Physics Submission

From the three point coupling in the Lagrangian, we can extract 3-point vertex. This
is not immediate, as the theory is defined on non-commutative background. Different
from U(N) CS, where the leading contribution of the 3-point vertex was AAA, the leading
contribution of the 3-point coupling of the U(1) gauge bosons starts fromO(ε2)A∂z1A∂z2A.
The reason is following:∫

dz ∧ dw ∧A ∧ (A ?ε2 A)

=

∫
A ∧ ((Atdt+Az̄dz̄ +Aw̄dw̄) ? (Atdt+Az̄dz̄ +Aw̄dw̄))

=

∫
dz ∧ dw ∧A ∧ [dt ∧ dz̄ (At ? Az̄ −Az̄ ? At) + . . .]

=

∫
dz ∧ dw ∧A ∧ [dt ∧ dz̄ (0 + 2ε2 (∂zAt∂wAz̄ − ∂wAt∂zAz̄)) + . . .]

= 2ε2

∫
dz ∧ dw ∧A ∧ [dt ∧ dz̄(∂zAt∂wAz̄ − ∂wAt∂zAz̄)] +O(ε22)

(91)

Note that for U(N) case, SU(N) Lie algebra factors attached to each A prevents the O(ε02)
term to vanish. Still, U(1) ⊂ U(N) part of A contributes as O(ε2), but it can be ignored,
since we take ε2 � 1.

Hence, in U(1) CS, the 3-point A∂zA∂wA coupling contributes as

• Three-point vertex I3pt:
I3pt = ε2dz ∧ dw (92)

Now, we are ready to introduce the line defect into the theory and study how it couples
to 5d gauge fields. Classically, t[n1, n2] couples to the mode of 5d gauge field by∫

R
t[n1, n2]∂n1

z1 ∂
n2
z2 Adt (93)

The last ingredient of the bulk Feynman diagram computation comes from the interaction
(93).

• One-point vertex IA1pt:

IA1pt =

{
t[n1, n2]δt,z1,z2 if ∂n1

z1 ∂
n2
z2 A is a part of an internal propagator

t[n1, n2]∂n1
z1 ∂

n2
z2 A if ∂n1

z1 ∂
n2
z2 A is an external leg

(94)

Lastly, the loop counting parameter is ε1. Each of the propagator is proportional to
ε1 and the internal vertex is proportional to ε−1

1 . Hence, 0-loop order(O(ε1
0)) Feynman

diagrams may contain the same number of internal propagators and internal vertices and
1-loop order(O(ε1)) diagrams may contain one more internal propagators than internal
vertices.

Until now, we have collected all the components of the 5d perturbative computation
(89), (92), (93), and (94). With these, let us see what Feynman diagrams have non-zero
BRST variations and how the cancelation of BRST variations of different diagrams leads
to the ADHM algebra Aε1,ε2 .

4.2 Feynman diagram

The goal of this section is derive the O(ε1)-term of [t[2, 1], t[1, 2]] by Feynman diagrams.
We interpret the commutator [t[2, 1], t[1, 2]] as the following difference between two tree
level diagrams
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Figure 7: There is no internal propagators, but just external ghosts for 5d gauge fields,
which directly interact with 1d QM. The minus sign in the middle literally means that we
take a difference between two amplitudes. In the left diagram t[1, 2] vertex is located at
t = 0 and t[2, 1] is at t = ε. In the right diagram, t[1, 2] is at t = −ε and t[2, 1] at t = 0.

The amplitude of the diagram is

[t[2, 1], t[1, 2]] ∂2
z1∂z2A1∂z1∂

2
z2A2 (95)

so the BRST variation of the amplitude is proportional to

[t[2, 1], t[1, 2]] ∂2
z1∂z2A1∂z1∂

2
z2c2 + [t[2, 1], t[1, 2]] ∂2

z1∂z2c1∂z1∂
2
z2A2 (96)

Note that the BRST variation on A fields is QBRSTA = ∂c. At O(ε1) level, this diagram
will cancel all anomalies coming from one-loop diagrams with two external legs coupled
to ∂2

z1∂z2A and ∂z1∂
2
z2A respectively. Let’s enumerate those diagrams, there are two types

of diagrams:

(1) See figure 8.

Figure 8: A diagram, which has a vanishing amplitude.

(2) See figure 9.
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Figure 9: The vertical solid line represents the time axis, where 1d topological defect is
supported. Internal wiggly lines stand for 5d gauge field propagators Pi, and the external
wiggly lines stand for 5d gauge field A.

For the first diagram, we claim that the amplitude is always zero. This can be seen as
follows. Let U(1) act on z and w by rotation with weight 1, then propagators has weight
−2. For the interaction vertex, it contains integration measure dz ∧ dw together with ∂z
and ∂w in the interaction term so the total weight of the interaction vertex is zero. Each
external leg is of weight 3. Hence the total weight of the amplitude is −2 −m − n < 0,
i.e. it’s not invariant under the U(1)-rotation symmetry, so the amplitude must be zero.

For the second diagram, we will follow the approach shown in [30] and show that the
diagram has a non-vanishing amplitude if and only if m = n = r = s = 0. And in the case
that it’s non-zero, it has a non-vanishing gauge anomaly consequently, under the BRST
variation QBRSTA = ∂c.

Let’s do the same analysis on the second diagram as the first one, i.e. let U(1) act on z
and w by rotation with weight 1, then the total weight of the amplitude is −n−m− r−s.
Hence the diagram is nonzero only if m = n = r = s = 0. In the following discussion, we
will focus on he case m = n = r = s = 0.

We first integrate over the first vertex (P1 ∂2
z∂wA P2) and then integrate over the

second vertex(P2 ∂z∂
2
wA P3).

First vertex(P1 ∂
2
z∂wA P2)

First, we focus on computing the integral over the first vertex:

ε1ε
2
2

∫
v1

dw1 ∧ dz1 ∧ ∂z1P1(v0, v1) ∧ ∂z2∂w1P2(v1, v2)(z2
1w1∂

2
z1∂w1A) (97)

Note that ∂z1 and ∂w1 comes from the three point coupling at v1:

ε2A ∧ ∂z1A ∧ ∂w1A (98)

And ∂z2 comes from the 3-pt coupling at v2:

ε2A ∧ ∂z2A ∧ ∂w2A (99)

We will consider ∂w2 later when we treat the second vertex.
The factor z2

1w1∂
2
z1∂w1A is for the external leg attached to v1, which is c[2, 1]. Basically,

this is an ansatz, and we can start without fixing m,n in c[m,n]. However, we will see
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that the integral converges to a finite value only with this particular choice of (m,n). For
a simple presentation, we will drop ∂2

z1∂w1A, and recover it later.
After some manipulation, which we defer to Lemma 1 in Appendix B.1, (97) becomes

−
∫
v1

dt1dz1dz̄1dw1dw̄1
|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

d5
01d

9
12

(100)

The integral 100 can be further simplified by using the typical Feynman integral technique,
which can be found in Lemma 2 in Appendix B.1. We are left with

z̄2(w̄2dt2 − t2dw̄2)

(
c1

d5
02

+
c2w

2
2

d7
02

+
c3z

2
2

d7
02

+
c4z

2
2w

2
2

d9
02

)
(101)

with ci being a constant. Note that all the terms in the parenthesis has a same order of
divergence. So, it suffices to focus on the first term to check the convergence of the full
integral(we still need to do v2 integral below.)

We will explicitly show the calculation for the first term, and just present the result
for the second, third and fourth term in (194). They are all non-zero and finite. We will
denote the first term as P, which is 1-form.

Second vertex(P ∂2
z1∂z2A P3)

Now, let us do the integral over the second vertex(v2). The remaining things are or-
ganized into ∫

v2

P ∧ ∂w2P3(v2, v3) ∧ dz2 ∧ dw2(z2w
2
2∂z2∂

2
w2
A) (102)

where we dropped forms related to v3, as we do not integrate over it. ∂w2 comes from the
3-pt coupling at v2:

ε2A ∧ ∂z2A ∧ ∂w2A (103)

The factor z2w
2
2∂z2∂

2
w2
A is for the external leg attached to v2, which corresponds to c[1, 2].

Again, this is an ansatz. We will see that only this integral converges and does not vanish
below. We will drop ∂z2∂

2
w2
A and recover it later.

The integral (102) is simplified to∫
v2

−|z2|2|w2|4

d5
02d

7
23

dt2dz̄2dw̄2dw2dz2 (104)

The intermediate steps can be found in Lemma 3 in Appendix B.1.
Now, it remains to evaluate the delta function at the third vertex, and use Feynman

technique to evaluate the integral. By Lemma 4 in Appendix B.1, we are left with

(const)ε1ε
2
2t[0, 0]t[0, 0]∂2

z1∂z2A1∂
1
z1∂

2
z2A2 (105)

The BRST variation of the amplitude is

(const)ε1ε
2
2t[0, 0]t[0, 0]∂2

z1∂z2A1∂
1
z1∂

2
z2c2 (106)

This indicates that the theory is quantum mechanically inconsistent, as it has a Feynman
diagram that has non-zero BRST variation. However, as long as there is another diagram
whose BRST variation is proportional to the same factors we can cancel the anomaly.

Hence, imposing BRST invariance of the sum of Feynman diagrams, we bootstrap the
possible 1d TQM that can couple to 5d U(1) CS.

An obvious choice is the tree level diagrams where (∂z1A)(∂z2A) appears explicitly:
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By equating (106) and (96), we get

[t[2, 1], t[1, 2]] = ε1ε
2
2t[0, 0]t[0, 0] + . . . (107)

So, we have reproduced the O(ε1) part of the ADHM algebra Aε1,ε2 commutation relation
from the Feynman diagram computation:

[t[2, 1], t[1, 2]]ε1 = ε1ε
2
2t[0, 0]t[0, 0] (108)

where [−,−]ε1 is the O(ε1)-part of the commutator.

5 Perturbative calculations in 5d U(1) CS theory coupled to
2d βγ

In this section, we will provide a bulk derivation of the ADHM algebra Aε1,ε2 action on
the bi-module Mε1,ε2 of the ADHM algebra Aε1,ε2 using 5d Chern-Simons theory. The
strategy is similar to that of the previous section. We will compute the O(ε1

1) order
gauge anomaly of various Feynman diagrams in the presence of the line defect from M2
brane(R1 ×{0} ⊂ R1 ×C2

NC), and at the same time the surface defect from M5 brane on
({0} × C ⊂ R1 × C2

NC). Imposing a cancellation of the anomaly for the 5d gauge theory
uniquely fixes the algebra action on the bi-module.

We will confirm the representative commutation relation between ADHM algebra and
its bi-module (109) using the Feynman diagram calculation in 5d Chern-Simons, 1d topo-
logical line defect, and 2d βγ coupled system.

• The algebra and the bi-module commutation relation[
t[2, 1], b[z1]c[z0]

]
ε1

= ε1ε2 t[0, 0]c[z0]b[z0] + ε1ε2 c[z
0]b[z0] (109)

where c[zn] and b[zm] are elements of the bi-module.

5.1 Ingredients of Feynman diagrams

The generators of the 0d bi-module b[zn], c[zm] couple to the mode of β, γ through∫
{0}

∂k1z2 β · b[z
k1 ] +

∫
{0}

∂k2z2 γ · c[z
k2 ] (110)

where z = z2. The coupling is defined at a point, so the integral is only used for a formal
presentation.

From the coupling, we learn another ingredient of the 5d-2d Feynman diagram com-
putation:

• One-point vertices from (110):

Iβ1pt =

{
b[zk]δz2 if ∂kz2β is a part of an internal propagator

b[zk]∂kz2β if ∂kz2β is an external leg
,

Iγ1pt =

{
c[zk]δz2 if ∂kz2γ is a part of an internal propagator

c[zk]∂kz2γ if ∂kz2γ is an external leg

(111)

In the case of multiple β, γ internal propagators flowing out, we prescribe to keep
only one δz2 function.
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The βγ−system also couples to 5d Chern-Simons theory in a canonical way:

1

ε1

∫
Cz2

β(∂z̄2 −Az̄2?ε2)γ (112)

from which we read off the last ingredients of the perturbative computation:

• The βγ propagator Pβγ = 〈βγ〉 is a solution of

∂z̄2Pβγ = δz2=0 (113)

That is,

Pβγ = 〈βγ〉 ∼ dz2

z2
(114)

• The normalized three-point(β,A5d, γ) vertex :

IβAγ3pt = 1 (115)

Note that we are taking the lowest order vertex in the Moyal product expansion of (112),
and normalize the coefficient to 1, for simplicity, in the following computation. Each βγ
propagator contributes ε1, and each βAγ vertex contributes ε1

−1.
Recall that there was the gauge anomaly in the 5d CS theory in the presence of

the topological line defect. Similarly, the bi-module coupled with βγ-system provides an
additional source of the 5d gauge anomaly, since βγ system has the non-trivial coupling
(112) with the 5d CS theory and is charged under the 5d gauge symmetry. For the
entire 5d-2d-1d coupled system to be anomaly-free, the combined gauge anomaly should
be canceled. The bulk anomaly cancellation condition beautifully fixes the action of the
algebra on the bi-module.

The simplest example involving the bi-module is akin to the first example of §4; notice
the similarity between Fig 2 and Fig 11. As a result, the calculation in this section
resembles that of §4.2.

From the ingredients provided above, we can interpret the commutator
[
t[2, 1], b[z1]c[z0]

]
as the difference between two tree level diagrams:

Figure 10: Feynman diagrams representing the commutator [t[2, 1], b[z1]c[z0]]. The vertical
straight lines are time axis, and βγ lives on the gray planes. βγ only flows out of the time
axis, but not flowing along the time axis. Note that there is no internal propagators of
any sort. All types of lines are external legs, they are modes of β, γ, A.

As Fig 10 does not involve any loops, the amplitude is simply[
t[2, 1], b[z1]c[z0]

]
(∂2
z∂wA)(∂wβ)γ (116)
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and its BRST variation is proportional to[
t[2, 1], b[z1]c[z0]

]
(∂2
z∂wc)(∂wβ)γ (117)

At O(ε1) level, it will cancel the anomalies coming from all possible one-loop Feynman
diagrams with three external legs coupled to ∂2

z∂wA, γ, and ∂wβ, respectively, so the only
possibilities are Figure 11 and Figure 12, which we will call the diagram I and the diagram
II, respectively.

Figure 11: The Feynman diagram I. The vertical straight lines are the time axis, and
the gray plane is where βγ-system is living. The internal horizontal straight lines are
βγ propagators and the external slant straight lines are modes of βγ. Note that no βγ
propagates along the time axis. The βAγ three point vertex is restricted to the βγ-plane,
but the AAA three point vertex can be anywhere in the bulk.

Figure 12: The Feynman diagram II.

Before we start doing concrete computations, we make a similar analysis to ADHM
algebra case, i.e. let U(1) rotates the z and w coordinates with weight 1, then β − γ
propagator has weight 0, Chern-Simons propagator has weight −2 and all interaction
vertices have weight zero. It follows that the Feynman diagram I has total weight −m−n,
and the Feynman diagram II has total weight 0. Hence the amplitudes for the Feynman
diagram I is nonzero only if m = n = 0, so in the later discussions we will impose the
condition that m = n = 0.
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5.2 Feynman diagram I

In this subsection, we will show that the amplitude for Fig 11 is

(const) ε1 ∂
2
z∂wA∂zβ γ c[z

0]b[z0]t[0, 0] (118)

The factor z2
2w2∂

2
z2∂w2A is for the external leg attached to the top 3-point vertex, v2. The

factor corresponds to t[2, 1]. For the convenience of presentation, We will drop ∂2
z2∂w2A

and recover it in the final result.
Along the way, we also show that the constant factor in front of (118) is finite only if

the external legs are ∂2
z∂wA∂zβγ. For simplicity, we will abbreviate the leg factors during

the computation.

First vertex

First, we focus on computing the integral over the first vertex:∫
v1

∂z1P1(v0, v1) ∧ (w1dw1) ∧ (z2
1dz1) ∧ ∂w1P2(v1, v2) (119)

Note that ∂z1 and ∂w1 comes from the three point coupling at v1:

ε2A ∧ ∂z1A ∧ ∂w1A (120)

In Lemma 5 in Appendix B.2, we showed how to evaluate (119) and arrive at following
expression.

−
∫ 1

0
dx
√
x(1− x)

7
∫
v1

[dV1]
(|z1|2 + x2|z2|2)2(|w1|2 + x2|w2|2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7
(121)

where [dV1] is an integral measure for v1 integral. We see from (121) that it was necessary
to choose c[m,n], βn to be c[2, 1], β1. Otherwise, the numerator of (121) would contain
holomorphic or anti-holomorphic dependence on z1 or w1, and this makes the z1 or w1

integral to vanish.
Also, we can drop terms proportional to |z2|2, since there is a delta function at the

second vertex that evaluates z2 = 0. So, (121) simplifies to

−
∫ 1

0
dx
√
x(1− x)

7
∫
v1

[dV1]
|z1|4(|w1|2 + x2|w2|2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7
(122)

This is evaluated to
c1t2
d3

02

+
c2t2|w2|2

d5
02

(123)

where c1 and c2 are 1-forms of v2. Let us call them as P1
02 and P2

02 respectively.

Second vertex

Now, compute the second vertex integral, using the above computation:∫
v2

(P1
02 + P2

02) ∧ dw2
1

w2
(w2)δ(z2 = 0, t2 = ε)

= ε1

∫ ( c1

r5
+
c2

r3

)
rdrdθ

= 4π4ε1

(
1

43200|ε|
+

1

57600|ε|3

) (124)
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We can re-scale ε to be 1, so the integral converges. Reinstating Gamma function factors,
we finally obtain

(const) =
Γ(7)

Γ(7/2)Γ(7/2)
4π4

(
1

43200
+

1

57600

)
=

112π

3375
(125)

Hence, the amplitude for the Feynman diagram is

(const)ε1ε2t[0, 0]b[z0]c[z0](∂2
z∂wA)(∂wβ)γ (126)

Its BRST variation is

(const)ε1ε2t[0, 0]b[z0]c[z0](∂2
z∂wc)(∂wβ)γ (127)

By equating (127) and (117), we reproduce from the 5d gauge theory (with βγ-system)
calculation part of the algebra action on the bi-module, which is[

t[2, 1], b[z1]c[z0]
]

= ε1ε2t[0, 0]b[z0]c[z0] + . . . (128)

5.3 Feynman diagram II

In this subsection we will reproduce the remaining O(ε1)-term in (109)[
t[2, 1], b[z1]c[z0]

]
ε1

= . . .+ ε1ε2b[z
0]c[z0] + . . . (129)

using the Feynman diagram II, see Figure 12.
The amplitude for the diagram is

(const)ε2ε1b[z
0]c[z0] (130)

since there are 4 internal propagators(ε41) and 3 internal vertices(ε−3
1 ), one of which is

A∂A∂A type vertex(ε2). We will explicitly show that (const) does not vanish and hence
the diagram has non-zero BRST variation, which completes the RHS of (128).

First vertex(Pβγ ∂w1β ∂z2P12)

First, we focus on computing the integral over the first vertex:∫
v1

1

w1
(w1dw1)δ(t1 = 0, z1 = 0) ∧ ∂z2P12(v1, v2) (131)

Note that ∂w2 comes from the three point coupling at v2:

ε2A ∧ ∂z2A ∧ ∂w2A (132)

This integral evaluates to

−2π(t2dz̄2 + z̄2dt2)z̄2

5
√
t22+|z2|2

5 (133)

We presented the details in Lemma 6. in Appendix B.3.

Third vertex(Pβγ γ ∂w2P23)

Second, we focus on computing the integral over the third vertex:∫
v3

1

w3
(dw3)δ(t3 = 0, z3 = 0) ∧ ∂w2P (v2, v3) (134)
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Note that ∂w2 comes from the three point coupling at v2:

ε2A ∧ ∂z2A ∧ ∂w2A (135)

This integral evaluates to

−(t2dz̄2 − z̄2dt2)
2π

15w2
2

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)
(136)

We presented the details in Lemma 7. in Appendix B.3.

Second vertex(∂z2P12 ∂
2
z2∂w2A ∂w2P23)

Now, combine (133) and (136), and compute the second vertex integral; here zn2w
m
2 denotes

the external gauge boson leg.∫
v2

dw2 ∧ dz2 ∧ (t2dz̄2 − z̄2dt2) ∧ (t2dz̄2 + z̄2dt2)z̄2

× 4π2zn2w
m
2

75w2
2

√
t22+|z2|2

5

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)

=

∫
v2

dw2 ∧ dz2 ∧ dz̄2 ∧ dt2
4π2t2|z2|2

75w2

√
t22+|z2|2

5

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)
(137)

We inserted (n,m) = (2, 1) for the external gauge boson leg. Then, z2
2 pairs with z̄2

2 ,
and w2 combines with 1/w2

2 to yield 1/w2. Since we do not have dw̄2, the integral is
holomorphic integral. If (n,m) were other values, the integral will simply vanish.

In Lemma 8. in Appendix B.3, we show that (137) is convergent, and bounded as

c1 < (137) < c2 (138)

where c1, c2 are some finite constants.
Hence, the amplitude for the Feynman diagram is

(const)ε1ε2b[z
0]c[z0](∂2

z∂wA)(∂wβ)γ (139)

Its BRST variation is therefore non-vanishing:18

(const)ε1ε2b[z
0]c[z0](∂2

z∂wc)(∂wβ)γ (140)

This completes the remaining part of the algebra-bi-module commutation relation (??):[
t[2, 1], b[z1]c[z0]

]
ε1

= ε1ε2t[0, 0]b[z0]c[z0] + ε1ε2b[z
0]c[z0] (141)

6 Conclusion

In this paper, we studied the simplest possible configurations of M2 and M5 brane in the
Ω−deformed and topologically twisted M-theory. In particular, we showed the operator
algebra living on M2 brane acts on the operator algebra on M5 brane and computed the

18We hope there is no confusion between the ghost for the 5d gauge field ∂2
z∂wc and the module element

c[z0].

31



SciPost Physics Submission

simplest commutators. As the M2 and M5 branes are embedded in Ω−deformed and topo-
logically twisted M-theory, the field theories on the branes have twisted holographic duals
in the twisted supergravity. The dual side is interestingly captured by 5d non-commutative
Chern-Simons theory coupled to a topological line defect and a vertex operator algebra.
By computing several Feynman diagrams and imposing BRST invariance of the coupled
system, we demonstrated that the gravity dual computation can reproduce the operator
algebra commutator in the field theory. Lastly, we would like to end the paper with some
open questions for future research.

First of all, the derivation of 5d Chern-Simons theory as a localization of Ω−deformed
and topologically twisted 11d supergravity is via type IIA/M-theory relation. We wonder
how one can derive 5d Chern-Simons theory by a direct localization of 11d supergravity.
We hope to study this point in future.

Second, the system we are considering in this work is the simplest configuration be-
long to the more general framework [19]. We can introduce more M2i-branes on Rt ×Cεi
and M5I -branes on C × Cj × Ck, where i ∈ {1, 2, 3}, (j, k) ∈ {(1, 2), (2, 3), (3, 1)}, and
I = {1, 2, 3}\{j, k}. Using the M-theory / type IIB duality, we can map the most
general configuration to “GL-twisted type IIB” theory [53], where each M2-brane maps
to (1, 0), (0, 1), (1, 1) 1-brane, respectively, and each M5-brane maps to D3-brane whose
boundary is provided by (1, 0), (0, 1), (1, 1) 5-branes.

At the corner of the tri-valent vertex, so-called Y-algebra [28], which comes form D3-
brane boundary degree of freedom [54,55], lives. This Vertex Algebra is the most general
version of our toy model βγ system, and is labeled by three integers N1, N2, N3, each of
which is the number of D3-branes on three corners of the trivalent graph. So, in principle,
one can extend our analysis related to the M5-brane into Y-algebra Vertex Algebra. The
Koszul dual object of the the Vertex Algebra was called as universal bi-module BN1,N2,N3

ε1,ε2

in [19].
Moreover, our ADHM algebra from M21-brane has its triality image at M22-brane

and M23-brane. It was proposed in [19] that there is a co-product structure in M2i-
brane algebras in the Coulomb branch algebra language19. Hence, one can generalize our
analysis related to the M2-brane into the most general algebra, obtained by fusion of three
M2i-brane algebra. This was called as universal algebra An1,n2,n3

ε1,ε2 in [19].
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A Algebra and bi-module computation

In this appendix we derive some of the commutation relations for the algebra Aε1,ε2 and
the bi-module Mε1,ε2 .

A.1 Algebra

In this subsection we will take a closer look at the algebra Aε1,ε2 . We begin with a formal
definition of the truncated version of the algebra: the C[ε±1 , ε2]-algebra A(N) is generated
by {Xi

j , Y
i
j , Ii, J

j |1 ≤ i, j ≤ N} with relations

←−−−−
[X,Y ]ij + IjJ

i = ε2δ
i
j , [Xi

j , Y
k
l ] = ε1δ

i
lδ
k
j , [J j , Ii] = ε1δ

j
i , [Xi

j , X
k
l ] = [Y i

j , Y
k
l ] = 0

IiJ
jS(XnY m)ij = (IS(XnY m)J)

(142)

where
←−−−−−−−−
f(X,Y, I, J) means rearranging the expression f(X,Y, I, J) in the order I < J <

X < Y , (· · · ) means fully contracting all indices, the symbol S means symmetrization.

Similarly we define
−−−−−−−−→
f(X,Y, I, J) as rearranging the expression f(X,Y, I, J) in the order

Y < X < I < J . The ADHM algebra Aε1,ε2 is the large N limit of A(N) where the limit is
taken in the sense of the procedure in section 2.6. The first relation is the F-term relation,
and the following lemma is an obvious consequence of the F-term relation:

Lemma 1.
(IS(XnY m)J) = ε2(S(XnY m)) (143)

From now on we will use tn,m to denote (S(XnY m))/ε1, note that these generators are
denoted by t[n,m] in the rest of this paper, but here we use the subscript to make the
presentation more compact. The following is clear

Lemma 2.

[t0,0, tn,m] = 0 , [t1,0, tn,m] = mtn,m−1 , [t0,1, tn,m] = ntn−1,m

[t2,0, tn,m] = 2mtn+1,m−1 , [t1,1, tn,m] = (m− n)tn,m , [t0,2, tn,m] = −2ntn−1,m+1
(144)

This means that t0,0 is central, the linear span of t2,0, t1,1, t0,2 is isomorphic to sl2, and
the linear span of tm,n with m+ n = L is a representation of sl2 of spin L/2.

Lemma 3.

←−−−−−
[X,Y n]ij = nε2(Y n−1)ij −

∑
a+b=n−1

←−−−−−−−−−
(IY a)j(Y

bJ)i (145)

−−−−−→
[X,Y n]ij = nε2(Y n−1)ij −

∑
a+b=n−1

−−−−−−−−−→
(IY a)j(Y

bJ)i (146)

In particular
−−−−→
[X,Y ]ij =

←−−−−
[X,Y ]ij.

Lemma 4.

(Y nXY m)ij −
←−−−−−−−−
(Y nXY m)ij = −ε1

∑
a+b=n−1

(Y a+m)ij(Y
b) (147)

(Y nXY m)ij −
−−−−−−−−→
(Y nXY m)ij = ε1

∑
a+b=m−1

(Y a)(Y b+n)ij (148)
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Combine Lemma 3 and 4, we immediately see that

[X,Y n]ij =
←−−−−−
[X,Y n]ij − (Y nX)ij +

←−−−−−
(Y nX)ij

= nε2(Y n−1)ij −
∑

a+b=n−1

←−−−−−−−−−
(IY a)j(Y

bJ)i + ε1
∑

a+b=n−1

(Y a)ij(Y
b)

= nε2(Y n−1)ij −
∑

a+b=n−1

−−−−−−−−−→
(IY a)j(Y

bJ)i + ε1
∑

a+b=n−1

(Y a)ij(Y
b)

(149)

Proposition 1.
←−−−−−−−−−
(IY a)j(Y

bJ)i =
−−−−−−−−−→
(IY a)j(Y

bJ)i + ε1(Y a)ij(Y
b)− ε1(Y a)(Y b)ij (150)

Proof.
←−−−−−−−−−
(IY a)j(Y

bJ)i −
−−−−−−−−−→
(IY a)j(Y

bJ)i = IlJ
m(Y a)lj(Y

b)im − (Y a)lj(Y
b)imIlJ

m

= [IlJ
m, (Y a)lj(Y

b)im]

= [−
←−−−−−
[X,Y ]ml , (Y

a)lj(Y
b)im]

= (Y a)lj(Y
b)im
−−−−−→
[X,Y ]ml −

←−−−−−
[X,Y ]ml (Y a)lj(Y

b)im

=
−−−−−−−−−−→
(Y b[X,Y ]Y a)ij −

←−−−−−−−−−−
(Y b[X,Y ]Y a)ij

where in the third line we used the F-term relation and in the fourth line we used the
equation

−−−−−→
[X,Y ]ml =

←−−−−−
[X,Y ]ml (cf. Lemma 3). Then the result follows from Lemma 4.

Proposition 2.

(Y c)ik
←−−−−−−−−−−
(IY a)j(Y

bJ)k =
←−−−−−−−−−−−
(IY a)j(Y

b+cJ)i + ε1(Y a+c)ij(Y
b)− ε1(Y a)ij(Y

b+c) (151)
−−−−−−−−−→
(IY a)k(Y

bJ)i(Y c)kj =
−−−−−−−−−−−→
(IY a+c)j(Y

bJ)i + ε1(Y a)(Y b+c)ij − ε1(Y a+c)(Y b)ij (152)

Proof.

(Y c)ik
←−−−−−−−−−−
(IY a)j(Y

bJ)k = (Y c)ik

(−−−−−−−−−−→
(IY a)j(Y

bJ)k + ε1(Y a)kj (Y
b)− ε1(Y a)(Y b)kj

)
=
−−−−−−−−−−−→
(IY a)j(Y

b+cJ)i + ε1(Y a+c)kj (Y
b)− ε1(Y a)(Y b+c)kj

=
←−−−−−−−−−−−
(IY a)j(Y

b+cJ)i + ε1(Y a+c)ij(Y
b)− ε1(Y a)ij(Y

b+c)

where we used Proposition 1 to move the direction of arrows back and forth.

Proposition 3.

(XY m)

ε1
= t1,m +

1

m+ 1

m−1∑
k=0

(k + 1)(Y k)(Y m−1−k) (153)

(Y mX)

ε1
= t1,m −

1

m+ 1

m−1∑
k=0

(k + 1)(Y k)(Y m−1−k) (154)

Proof.

(m+ 1)
(XY m)

ε1
− (m+ 1)t1,m =

1

ε1

∑
a+b=m

([X,Y a]Y b)

=
∑

r+s+t=m−1

(Y r)(Y s+t)

Similar for the other one.
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The Key Commutation Relation

There is a SL2-symmetry on the algebra A(N) under which (X,Y ) transforms as a
vector. We will use the following particular transform

φα : X 7→ X , Y 7→ Y + αX

where α is a formal parameter. Consider

A :=
∑

a+b=n−1

(([Y a, X]Y bX) + (XY a[X,Y b])) =
d

dα
φα ((XY n) + (Y nX))− 2n(XY n−1X)

(155)

This leads to

3A+ 2n([X,Y n−1X]) + 2n([XY n−1, X]) = 3
d

dα
φα ((XY n) + (Y nX))− 2ε1[t3,0, t0,n]

= 6nε1t2,n−1 − 2ε1[t3,0, t0,n]
(156)

It follows that

= 3nt2,n−1 −
3A

2ε1
− n

ε1
([X,Y n−1X])− n

ε1
([XY n−1, X])

= 3nt2,n−1 −
3A

2ε1
+ n

∑
a+b=n−2

(
(XY a)(Y b)− (Y a)(Y bX)

)
= 3nt2,n−1 −

3A

2ε1
+ n

∑
a+b=n−2

[(XY a), (Y b)] + 2nε1
∑

u+v+w=n−3

u+ 1

u+ v + 2
(Y u)(Y v)(Y w)

= 3nt2,n−1 −
3A

2ε1
+ ε21

n(n− 1)(n− 2)

2
t0,n−3 + nε1

∑
u+v+w=n−3

(Y u)(Y v)(Y w)

(157)
We have following assertion which will be proven in the end of this subsection

Lemma 5.

A =ε2(ε1 + ε2)

n−3∑
m=0

(m+ 1)(n− 2 +m)(Y m)(Y n−3−m)− ε2(ε1 + ε2)

(
n

3

)
(Y n−3)

+ ε21

(
n

3

)
(Y n−3) +

2nε21
3

∑
u+v+w=n−3

(Y u)(Y v)(Y w)

(158)

Plug it into the equation 157 and we obtain the following

Proposition 4 (The Key Commutation Relation). Let σ2 = ε21 + ε22 + ε1ε2 and σ3 =
−ε1ε2(ε1 + ε2), then

[t3,0, t0,n] = 3nt2,n−1 +
3σ2

2

(
n

3

)
t0,n−3 +

3σ3

2

n−3∑
m=0

(m+ 1)(n− 2 +m)t0,mt0,n−3−m (159)

Proposition 4 together with Lemma 2 actually determine all the other commutation rela-
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tions as following: first of all we have

[t3,0, tn,m] =
1

2nm!
(
n+m
m

)adnt2,0([t3,0, t0,n+m])

= 3mtn+2,m−1 +
3σ2

2

(
m

3

)
tn,m−3

+
3σ3

2

m−3∑
b=0

n∑
a=0

(a+ 1)(n− a+ 1)

(
a+b+1
a+1

)(
m+n−a−b−2

n−a+1

)(
n+m
m

) ta,btn−a,m−3−b

then for a + b = 3, [ta,b, tn,m] is obtained by applying adt0,2 to [t3,0, tn′,m′ ]. Suppose that
[ta,b, tn,m] is obtained for all a + b ≤ k and all pairs (n,m), then [tk+1,0, tn,m] can be
obtained by applying adt3,0 to [tk−1,1, tn,m]. Hence the general [ta,b, tn,m] is obtained by
induction on k.
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Proof of Lemma 5.

A =
∑

a+b=n−1

(([Y a, X]Y bX) + (XY a[X,Y b]))

=
∑

a+b=n−1

( ∑
s+t=a−1

←−−−−−−−−−−−
(IY s+b)i(Y

tJ)jXi
j − aε2(Y n−2X)− ε1

∑
s+t=a−1

(Y t)(Y s+bX)

)

+
∑

a+b=n−1

(
bε2(XY n−2) + ε1

∑
s+t=b−1

(XY s)(Y t+a)−
∑

s+t=b−1

Xi
j

←−−−−−−−−−−−
(IY s)i(Y

t+aJ)j

)

=
∑

a+b=n−1

( ∑
s+t=a−1

IkJ
l
−−−−−−−−→
(Y s+bXY t)kl − aε2(Y n−2X)− ε1

∑
s+t=a−1

(Y t)(Y s+bX)

)

+
∑

a+b=n−1

(
bε2(XY n−2) + ε1

∑
s+t=b−1

(XY s+a)(Y t)−
∑

s+t=b−1

IkJ
l
←−−−−−−−−−
(Y sXY t+a)kl

)

=ε2

(
n

2

)
([X,Y n−2]) + ε1

∑
r+s+t=n−2

(
(XY r+s)(Y s)− (Y t)(Y r+sX)

)
+

∑
r+s+t=n−2

IkJ
l
←−−−−−−−−−−−
(Y r[Y s, X]Y t)kl − ε1ε2

∑
r+s+t+u=n−3

(Y r+s+t)(Y u)

− ε1ε2
∑

r+s+t=n−3

(r + t+ 2)(Y r+s)(Y t)

=
∑

r+s+t+u=n−3

IkJ
l
←−−−−−−−−−−−−−
(IY r+s)l(Y

t+uJ)k −
∑

r+s+t=n−2

sε2IkJ
l
←−−−−−−−−
(Y r+s+t−1)kl

+ ε1
∑

r+s+t=n−2

(
(XY r+s)(Y t)− (Y t)(Y r+sX)

)
=ε2(ε1 + ε2)

n−3∑
m=0

(m+ 1)(n− 2 +m)(Y m)(Y n−3−m)− ε2(ε1 + ε2)

(
n

3

)
(Y n−3)

+ ε1
∑

r+s+t=n−2

(
(XY r+s)(Y t)− (Y t)(Y r+sX)

)
=ε2(ε1 + ε2)

n−3∑
m=0

(m+ 1)(n− 2 +m)(Y m)(Y n−3−m)− ε2(ε1 + ε2)

(
n

3

)
(Y n−3)

+ ε21
∑

r+s+t=n−2

[t1,r+s, (Y
t)] + 2ε21

∑
u+v+w=n−3

(u+ 1)(Y u)(Y v)(Y w)

=ε2(ε1 + ε2)
n−3∑
m=0

(m+ 1)(n− 2 +m)(Y m)(Y n−3−m)− ε2(ε1 + ε2)

(
n

3

)
(Y n−3)

+ ε21

(
n

3

)
(Y n−3) +

2nε21
3

∑
u+v+w=n−3

(Y u)(Y v)(Y w)

(160)
Some explanation: from 5th equality to 6th equality, the essential computation is the
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following:∑
r+s+t+u=n−3

IkJ
l
←−−−−−−−−−−−−−
(IY r+s)l(Y

t+uJ)k =
∑

r+s+t+u=n−3

IkJ
lIiJ

j(Y r+s)il(Y
t+u)kj

=
∑

r+s+t+u=n−3

IkIiJ
jJ l(Y r+s)il(Y

t+u)kj + ε1
∑

r+s+t+u=n−3

IkJ
jδli(Y

r+s)il(Y
t+u)kj

=
∑

r+s+t+u=n−3

IkJ
jIiJ

l(Y r+s)il(Y
t+u)kj − ε1

∑
r+s+t+u=n−3

IkJ
lδji (Y

r+s)il(Y
t+u)kj

+ ε1
∑

r+s+t+u=n−3

IkJ
jδli(Y

r+s)il(Y
t+u)kj

= ε2(ε1 + ε2)
∑

r+s+t+u=n−3

(Y r+s)(Y t+u)− ε2ε1
(
n

3

)
(Y n−3)

(161)

Then we define m = r+ s, then there are m+ 1 ways of decomposing m as r+ s, similarly
there are n− 3−m+ 1 ways of decomposing n− 3−m as t+ u, hence the result can be
simplified to

ε2(ε1 + ε2)
n−3∑
m=0

(m+ 1)(n− 2 +m)(Y m)(Y n−3−m)− ε2ε1
(
n

3

)
(Y n−3) (162)

A.2 Bi-module

The simplest algebra, bi-module commutator that has ε1 correction in the RHS is

[T [2, 1], b[z]c[1]] =

(
− 5

3
ε2T [0, 1] + ε22b[1]c[1]

)
+ ε1

(
−ε2b[1]c[1]T [0, 0] +

4

3
ε2b[1]c[1]

)
+ ε21

(
− 4

3
b[1]c[1]T [0, 0]

)
+ ε31

(
− 1

3
b[1]c[1]b[1]c[1]

)
(163)

We will prove it in this section.
Let us expand the LHS.[

S(X2Y ), (IY ϕ̃)(ϕJ)
]

=
1

3
(XXY +XYX + Y XX) · (IY ϕ̃)(ϕJ)

− 1

3
(IY ϕ̃)(ϕJ) · (XXY +XYX + Y XX)

(164)
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Compute the first term:

(XXY ) · (IY ϕ̃)(ϕJ) = X0
1X

1
2 |ϕ̃bϕc|IaY a

b J
cY 2

0 +X0
1X

1
2 |ϕ̃bϕcϕ̃2ϕ0|IaY a

b J
c

=|ϕ̃bϕc|IaX0
1 (ε1δ

1
b δ
a
2 + Y a

b X
1
2 )JcY 2

0 + ε1X
0
1 |ϕ̃b(δ1

cϕ0 + δ1
0ϕc)|IaY a

b J
c

=ε1|ϕ̃bϕc|I2X
0
b J

cY 2
0 + ε1|ϕ̃bϕc|Ia(ε1δ0

b δ
a
1 + Y a

b X
0
1 )X1

2J
cY 2

0 + ε1|ϕ̃bϕ0|IaX0
c Y

a
b J

c

+ ε1|ϕ̃bϕc|Ia(X)Y a
b J

c

=ε1(−ε1)(IY J) + ε1|ϕ̃0ϕc|I1J
cX1

2Y
2

0 + (IY ϕ̃)(ϕJ)(X2Y ) + (−ε1)ε1(IY J)

+ ε1|ϕ̃bϕc|Ia(ε1δab + Y a
b (X))Jc

=− ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + (IY ϕ̃)(ϕJ) · (XXY )− ε21ε2(Y )

+ ε21(Iϕ̃)(ϕJ) + ε1(IY ϕ̃)(ϕJ)(X)

=− 2ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + (IY ϕ̃)(ϕJ) · (XXY ) + ε21(Iϕ̃)(ϕJ)

+ ε1(IY ϕ̃)(ϕJ)(X)

(165)

So,
[(XXY ), (IY ϕ̃)(ϕJ)] =− 2ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + ε21(Iϕ̃)(ϕJ)

+ ε1(IY ϕ̃)(ϕJ)(X)
(166)

Next,

(XYX) · (IY ϕ̃)(ϕJ) = X0
1Y

1
2 |ϕ̃bϕc|Ia(ε1δ2

b δ
a
0 + Y a

b X
2
0 )Jc

=ε1|ϕ̃2ϕc|I0X
0
1Y

1
2 J

c + ε1|ϕ̃2ϕcϕ̃
1ϕ2|I0X

0
1J

c+|ϕ̃bϕc|IaX0
1Y

1
2 Y

a
b X

2
0J

c

+|ϕ̃bϕcϕ̃1ϕ2|IaX0
1Y

a
b X

2
0J

c

=ε1(IXY ϕ̃)(ϕJ) + ε1(−ε1)((ϕ̃ϕ)(IJ) + (Iϕ̃)(ϕJ))

+|ϕ̃bϕc|Ia(ε1δ0
b δ
a
1 + Y a

b X
0
1 )JcY 1

2 X
2
0 + (−ε1)(|ϕ̃bϕ2|IaY a

b X
2
0J

0+|ϕ̃bϕc|IaY a
b J

c(X))

=ε1(IXY ϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(IJ)− ε21(Iϕ̃)(ϕJ) + ε1|ϕ̃0ϕc|I1J
cY 1

2 X
2
0

+ (IY ϕ̃)(ϕJ)(XYX)− ε1|ϕ̃bϕ2|Ia(−ε1δa0δ2
b +X2

0Y
a
b )J0 − ε1(IY ϕ̃)(ϕJ)(X)

=ε1(IXY ϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(IJ)− ε21(Iϕ̃)(ϕJ) + ε1|ϕ̃0ϕc|I1J
c(−ε1Nδ1

0 +X2
0Y

1
2 )

+ (IY ϕ̃)(ϕJ)(XYX) + ε21(ϕ̃ϕ)(IJ)− ε1(−ε1)(IY J)

=ε1(IXY ϕ̃)(ϕJ)− ε21(Iϕ̃)(ϕJ)− ε21N(Iϕ̃)(ϕJ)− ε21(IY J) + ε21(IY J)

+ (IY ϕ̃)(ϕJ)(XYX)

=ε1(IXY ϕ̃)(ϕJ)− ε21(Iϕ̃)(ϕJ)− ε21N(Iϕ̃)(ϕJ) + (IY ϕ̃)(ϕJ)(XYX)

(167)
So,

[(XYX), (IY ϕ̃)(ϕJ)] = ε1(IXY ϕ̃)(ϕJ)− ε21(Iϕ̃)(ϕJ)− ε21N(Iϕ̃)(ϕJ) (168)
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Next,

(Y XX) · (IY ϕ̃)(ϕJ) = Y 0
1 |ϕ̃bϕc|IaX1

2 (ε1δ
2
b δ
a
0 + Y a

b X
2
0 )Jc

=ε1Y
0

1 |ϕ̃2ϕc|I0X
1
2J

c + Y 0
1 |ϕ̃bϕc|Ia(ε1δ1

b δ
a
2 + Y a

b X
1
2 )X2

0J
c

=ε1(−ε1)(IY J) + ε1Y
0

1 |ϕ̃1ϕc|IaXa
0J

c+|ϕ̃bϕcϕ̃0ϕ1|IaY a
b X

1
2X

2
0J

c + (IY ϕ̃)(ϕJ)(Y XX)

=− ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + ε1(−Nε1)(Iϕ̃)(ϕJ)

+ ε1|ϕ̃1ϕcϕ
0ϕ1|IaXa

0J
c+|ϕ̃bϕcϕ0ϕ1|Ia(−ε1δa2δ1

b +X1
2Y

a
b )X2

0J
c + (IY ϕ̃)(ϕJ)(Y XX)

=− ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ)−Nε21(Iϕ̃)(ϕJ) + ε1(−ε1)(ϕ̃ϕ)(Iϕ̃)(ϕJ)

+ ε1(−ε1)(ϕ̃ϕ)(IJ)− ε1|ϕ̃1ϕcϕ̃
0ϕ1|I2X

2
0J

c

+ (−ε1)(|ϕ̃bϕc|IaY a
b J

c(X)+|ϕ̃0ϕc|IaY a
2 X

2
0J

c) + (IY ϕ̃)(ϕJ)(Y XX)

=− ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ)−Nε21(Iϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(IJ)

− ε1(−ε1)(Iϕ̃)(ϕJ)− ε1(−ε1)(ϕ̃ϕ)(IJ)− ε1(IY ϕ̃)(ϕJ)(X)

− ε1(−ε1N)(Iϕ̃)(ϕJ)− ε1(−ε1)(IY J) + (IY ϕ̃)(ϕJ)(Y XX)

=ε1(IXY ϕ̃)(ϕJ)− ε1(IY ϕ̃)(ϕJ)(X) + ε21(Iϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)

+ (IY ϕ̃)(ϕJ)(Y XX)

(169)
So,

[(Y XX), (IY ϕ̃)(ϕJ)] =ε1(IXY ϕ̃)(ϕJ)− ε1(IY ϕ̃)(ϕJ)(X) + ε21(Iϕ̃)(ϕJ)

− ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)
(170)

Collecting above, we have[
S(X2Y ),(IY ϕ̃)(ϕJ)

]
=

1

3

(
− 2ε21ε2(Y ) + ε1(IXY ϕ̃)(ϕJ) + ε21(Iϕ̃)(ϕJ)

+ ε1(IY ϕ̃)(ϕJ)(X) + ε1(IXY ϕ̃)(ϕJ)− ε21(Iϕ̃)(ϕJ)− ε21N(Iϕ̃)(ϕJ)

+ ε1(IXY ϕ̃)(ϕJ)− ε1(IY ϕ̃)(ϕJ)(X) + ε21(Iϕ̃)(ϕJ)− ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)

)
= ε1(IXY ϕ̃)(ϕJ)− 2

3
ε21ε2(Y )− 1

3
ε21N(Iϕ̃)(ϕJ)− 1

3
ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)

+
1

3
ε21(Iϕ̃)(ϕJ)

(171)
We are not done yet, since (IXY ϕ̃)(ϕJ) is reducible by the F-term relation.

ε1|ϕ̃0ϕc|I1J
cX1

2Y
2

0 =ε1|ϕ̃0ϕc|I1J
c(X2

0Y
1

2 − (I0J
1 − ε2δ1

0))

=ε1(−ε1)(IY J)− ε1|ϕ̃0ϕc|(JcI1 − ε1δc1)I0J
1 + ε1ε2(Iϕ̃)(ϕJ)

=− ε21(IY J)− ε1|ϕ̃0ϕc|(I0J
c + ε1δ

c
0)I1J

1 + ε21(Iϕ̃)(ϕJ)

+ ε1ε2(Iϕ̃)(ϕJ)

=− ε21(IY J)− ε1(Iϕ̃)(ϕJ)(IJ)− ε21(ϕ̃ϕ)(IJ) + ε21(Iϕ̃)(ϕJ)

+ ε1ε2(Iϕ̃)(ϕJ)

(172)

40



SciPost Physics Submission

Plugging this into (171), we get[
S(X2Y ), (IY ϕ̃)(ϕJ)

]
= (−ε21(IY J)− ε1(Iϕ̃)(ϕJ)(IJ)− ε21(ϕ̃ϕ)(IJ) + ε21(Iϕ̃)(ϕJ)

+ ε1ε2(Iϕ̃)(ϕJ))− 2

3
ε21ε2(Y )− 1

3
ε21(ϕ̃ϕ)(Iϕ̃)(ϕJ)

− 1

3
ε21N(Iϕ̃)(ϕJ) +

1

3
ε21(Iϕ̃)(ϕJ)

(173)
After normalization, by multiplying ε2

ε31
both sides, and using the identity20

(ϕ̃ϕ)ε2 = (Iϕ̃)(ϕJ) (175)

we have

[T [2, 1], b[z]c[1]] =

(
− 5

3
ε2T [0, 1] + ε22b[1]c[1]

)
+ ε1

(
−ε2b[1]c[1]T [0, 0] +

4

3
ε2b[1]c[1]

)
+ ε21

(
− 4

3
b[1]c[1]T [0, 0]

)
+ ε31

(
− 1

3
b[1]c[1]b[1]c[1]

)
(176)

B Intermediate steps in Feynman diagram calculations

B.1 Intermediate steps in section 4.2

Lemma 1.
We will compute the following integral.

ε1ε
2
2

∫
v1

dw1 ∧ dz1 ∧ ∂z1P1(v0, v1) ∧ ∂z2∂w1P2(v1, v2)(z2
1w1∂

2
z1∂w1A) (177)

Computing the partial derivatives, we can re-write it as

ε1ε
2
2

(
z̄1

d2
01

w̄1

d4
12

(w1z1z̄2)

)
[P (v0, v1) ∧ dw1 ∧ z1dz1 ∧ P (v1, v2)] (178)

Note that we ignore all constant factors here. We see that

P (v0, v1) ∧ P (v1, v2) =
dz̄1dw̄1dt1
d5

01d
5
12

(z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2

− w̄01z̄12dt2 + t01z̄12dw̄2 − t01w̄12dz̄2)

(179)

20The identity can be derived using the F-term relation:

ϕ̃i
(

[X,Y ]ji + IiJ
j − ε2δji

)
ϕj = 0

(Y )− (Y ) + (Iϕ̃)(ϕJ)− ε2(ϕ̃ϕ) = 0

(Iϕ̃)(ϕJ) = ε2(ϕ̃ϕ)

(174)
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Including ∧dw1 ∧ (z1dz1)∧, we can simplify it:

P (v0, v1) ∧ P (v1, v2) ∧ (w1dw1) ∧ (z1dz1) = dz̄1dz1dw1dw̄1dt1
(
|z1|2|w1|2z̄2

)
×[

∂z̄0

(
z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2 − w̄01z̄12dt2 + t01z̄12dw̄2 − t01w̄12dz̄12

d5
01d

9
12

)
− ∂z̄0(z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2 − w̄01z̄12dt2 + t01z̄12dw̄2 − t01w̄12dz̄12)

d5
01d

9
12

] (180)

By integration by parts, the the integral over t1, z1, z̄1, w1, w̄1 of all the terms in the first
two lines vanishes.

So we are left with

−
∫
v1

dt1dz1dz̄1dw1dw̄1
|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

d5
01d

9
12

(181)

Lemma 2.

We can use Feynman integral technique to convert (181) to the following:∫
v1

∫ 1

0
dx

Γ(7)

Γ(5/2)Γ(9/2)

√
x3(1− x)7|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

((1− x)(|z1|2+|w1|2 + t21) + x(|z12|2+|w12|2 + t212))7

=

∫
v1

∫ 1

0
dx

(Γ factors)
√
x3(1− x)7|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

(|z1 − xz2|2+|w1 − xw2|2 + (t1 − xt2)2 + x(1− x)(|z2|2+|w2|2 + t22))7

(182)
Shift the integral variables as

z1 → z1 + xz2, w1 → w1 + xw2, t1 → t1 + xt2 (183)

Then the above becomes∫
v1

∫ 1

0
dx

Γ(7)

Γ(5/2)Γ(9/2)

√
x3(1− x)7|z1 + xz2|2|w1 + xw2|2z̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

× ((w̄1 + (x− 1)w̄2)dt2 − (t1 + (x− 1)t2)dw̄2)

(184)

Drop terms with odd number of t1 and terms that has holomorphic or anti-holomorphic
dependence on z1 or w1:∫

v1

∫ 1

0
dx

Γ(7)

Γ(5/2)Γ(9/2)

√
x3(1− x)9(|z1|2 + x2|z2|2)(|w1|2 + x2|w2|2)z̄2(w̄2dt2 − t2dw̄2)

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

(185)
After doing the v1 integral using Mathematica with the integral measure
dt1dz1dz̄1dz2dz̄2, we get

z̄2(w̄2dt2 − t2dw̄2)

(
c1

d5
02

+
c2w

2
2

d7
02

+
c3z

2
2

d7
02

+
c4z

2
2w

2
2

d9
02

)
(186)

Lemma 3.
We will compute the integral over the second vertex.∫

v2

P ∧ ∂w2P3(v2, v3) ∧ dz2 ∧ dw2(z2w
2
2∂z2∂

2
w2
A)

=

∫
v2

P ∧ w̄2(z̄23dw̄2dt2 − w̄23dz̄2dt2 + t23dz̄2dw̄2)

d7
23

∧ dw2 ∧ dz2

(187)
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Now, compute the integrand:

z̄2(w̄2dt2 − t2dw̄2)w̄2(z̄23dw̄2dt2 − w̄23dz̄2dt2 + t23dz̄2dw̄2)

d5
02d

7
23

∧ dw2 ∧ dz2

=
|z2|2|w2|4(t2 − t3 − t2)

d5
02d

7
23

dt2dz̄2dw̄2dw2dz2

=− |z2|2|w2|4t3
d5

02d
7
23

dt2dz̄2dw̄2dw2dz2 substitute t3 = ε, then,

=− |z2|2|w2|4ε
d5

02d
7
23

dt2dz̄2dw̄2dw2dz2

(188)

We can rescale ε→ 1, without loss of generality, then it becomes

−|z2|2|w2|4

d5
02d

7
23

dt2dz̄2dw̄2dw2dz2 (189)

Lemma 4.
Now, it remains to evaluate the delta function at the third vertex. In other words, substi-
tute:

w3 → 0, z3 → 0, t3 → ε = 1 (190)

Then, use Feynman technique to convert the above integral into

− Γ(6)

Γ(5/2)Γ(7/2)

∫ 1

0
dx

∫
v2

√
x3(1− x)5|z2|2|w2|4

(x(z2
2 + w2

2 + (t2 − 1)2) + (1− x)(z2
2 + w2

2 + t22))6

=− Γ(6)

Γ(5/2)Γ(7/2)

∫ 1

0
dx

∫
v2

√
x3(1− x)5|z2|2|w2|4

(z2
2 + w2

2 + (t2 − x)2 + x(1− x))6

=− Γ(6)

Γ(5/2)Γ(7/2)

∫ 1

0
dx

∫
v2

√
x3(1− x)5|z2|2|w2|4

(z2
2 + w2

2 + t22 + x(1− x))6

(191)

In the second equality, we shifted t2 to t2 + x.
After doing v2 integral, it reduces into

Γ(6)

Γ(5/2)Γ(7/2)

π

2880

∫ 1

0
dxx(1− x)2 =

Γ(6)

Γ(5/2)Γ(7/2)

π

2880
(192)

Finally, re-introduce all the omitted constants:

(FirstTerm) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2 π

2880
(193)

Similarly, we can compute all the others without any divergence.

(Second Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2 π

5760

(Third Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2 π

8640

(Fourth Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2 π

20160

(194)

Hence, every terms in (186) are integrated into finite terms.
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B.2 Intermediate steps in section 5.2

Lemma 5.
We want to evaluate the following integral.∫

v1

∂z1P1(v0, v1) ∧ (w1dw1) ∧ (z2
1dz1) ∧ ∂w1P2(v1, v2) (195)

Substituting the expressions for propagators, we get∫
v1

|z1|2z1w1(w̄1 − w̄2)

d7
01d

7
12

(z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2 − w̄01z̄12dt2

+ t01z̄12dw̄2 − t01w̄12dz̄2)dz̄1dw̄1dt1dz1dw1

(196)

We already know that the terms proportional to w̄2 will vanish in the second vertex
integral, so drop them. Evaluating the delta function at v0, the above simplifies to∫

v1

|z1|2z1|w1|2

d7
01d

7
12

(− z̄1w̄12dt2 + z̄1t12dw̄2 − w̄1t12dz̄2 + w̄1z̄12dt2

− t1z̄12dw̄2 + t1w̄12dz̄2)dz̄1dw̄1dt1dz1dw1

(197)

Note that the integrand with the odd number of t1 vanishes, so∫
v1

|z1|2z1|w1|2

d7
01d

7
12

(−z̄1w̄12dt2 − z̄1t2dw̄2 + w̄1t2dz̄2 + w̄1z̄12dt2)dz̄1dw̄1dt1dz1dw1 (198)

Now, apply Feynman technique, and omit the Gamma functions, to be recovered at the
end.∫ 1

0
dx
√
x(1− x)

7
∫
v1

|z1|2|w1|2z1(−z̄1w̄12dt2 − z̄1t2dw̄2 + w̄1t2dz̄2 + w̄1z̄12dt2)

(x(|z1|2+|w1|2+|t1|2) + (1− x)(|z12|2+|w12|2+|t12|2))7

=

∫ 1

0
dx
√
x(1− x)

7
∫
v1

|z1|2|w1|2z1(−z̄1w̄12dt2 − z̄1t2dw̄2 + w̄1t2dz̄2 + w̄1z̄12dt2)

(|z1 − xz2|2+|w1 − xw2|2 + (t1 − xt2)2 + x(1− x)(|z2|2+|w2|2 + t22))7

(199)
Shift the integral variables as

z1 → z1 + xz2, w1 → w1 + xw2, t1 → t1 + xt2 (200)

Then the above becomes∫ 1

0
dx
√
x(1− x)

7
∫
v1

dz1dz̄1dw1dw̄1dt1(|z1|2 + x2|z2|2)(|w1|2 + x2|w2|2)(z1 + xz2)(
−(z̄1 + xz̄2)(w̄1 + (x− 1)w̄2)dt2 − (z̄1 + xz̄2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

+
(w̄1 + xw̄2)t2dz̄2 + (w̄1 + xw̄2)(z̄1 + (x− 1)z̄2)dt2
(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

) (201)

The terms with (anti)holomorphic dependence on complex coordinates drop:∫ 1

0
dx
√
x(1− x)

7
∫
v1

dz1dz̄1dw1dw̄1dt1(|z1|2 + x2|z2|2)(|w1|2 + x2|w2|2)(
−|z1|2t2dw̄2 + x|z1|2w̄2dt2 − x2|z2|2(x− 1)w̄2dt2
(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

+
−x2|z2|2t2dw̄2 + x2z2w̄2t2dz̄2 + x2|z2|2w̄2(x− 1)dt2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

) (202)
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We can be prescient again; using the fact that the second vertex is tagged with a delta
function δ(z2 = 0, t2 = ε) ∝ dz2dz̄2dt2, we can drop most of the terms.

−
∫ 1

0
dx
√
x(1− x)

7
∫
v1

[dV1]
(|z1|2 + x2|z2|2)(|w1|2 + x2|w2|2)(−|z1|2 − x2|z2|2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

= −
∫ 1

0
dx
√
x(1− x)

7
∫
v1

[dV1]
(|z1|2 + x2|z2|2)2(|w1|2 + x2|w2|2)t2dw̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))7

(203)
where [dV1] is an integral measure for v1 integral.

B.3 Intermediate steps in section 5.3

Lemma 6.
We will evaluate the following integral.∫

v1

1

w1
(w1dw1)δ(t1 = 0, z1 = 0) ∧ ∂z2P12(v1, v2) (204)

Substituting the expressions for propagators, we get∫
v1

z̄1 − z̄2

d7
12

(z̄12dw̄12dt12 − w̄12dz̄12dt12 + t12dz̄12dw̄12)dw1δ(t1 = z1 = 0)

=

∫
v1

z̄1 − z̄2

d7
12

(z̄2dw̄1dt2 + t2dz̄2dw̄1)dw1δ(t1 = z1 = 0)

= (t2dz̄2 + z̄2dt2)

∫
v1

z̄1 − z̄2√
t212+|z12|2+|w12|2

7dw̄1dw1δ(t1 = z1 = 0)

= (t2dz̄2 + z̄2dt2)

∫
dw1dw̄1

−z̄2√
t22+|z2|2+|w1 − w2|2

7

= − (t2dz̄2 + z̄2dt2)

∫
rdrdθ

z̄2√
t22+|z2|2 + r2

7 = −2π(t2dz̄2 + z̄2dt2)z̄2

5
√
t22+|z2|2

5

(205)

where the first equality comes from the fact that δ(t1 = z1 = 0) ∝ dt1dz1dz̄1.
Lemma 7.
We will evaluate the following integral.∫

v3

1

w3
(dw3)δ(t3 = 0, z3 = 0) ∧ ∂w2P (v2, v3) (206)
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Substituting the expressions for propagators, we get∫
v3

w̄2 − w̄3

w3d7
23

(z̄23dw̄23dt23 − w̄23dz̄23dt23 + t23dz̄23dw̄23)dw3δ(t3 = z3 = 0)

=

∫
v3

w̄2 − w̄3

w3d7
23

(−z̄2dw̄3dt2 + t2dz̄2dw̄3)dw3δ(t3 = z3 = 0)

=(t2dz̄2 − z̄2dt2)

∫
v3

w̄2 − w̄3

w3

√
t223+|z23|2+|w23|2

7dw̄3dw3δ(t3 = z3 = 0)

=(t2dz̄2 − z̄2dt2)

∫
dw3dw̄3

(w̄2 − w̄3)/w3√
t22+|z2|2+|w2 − w3|2

7

=(t2dz̄2 − z̄2dt2)

∫
dw3dw̄3

−w̄3/(w3 + w2)√
t22+|z2|2+|w3|2

7

=(t2dz̄2 − z̄2dt2)

∫
|w3|≤|w2|

dw3dw̄3

−w̄3

(
1− w3

w2
+ 1

2!
w2

3

w2
2
− . . .

)
w2

√
t22+|z2|2+|w3|2

7

+ (t2dz̄2 − z̄2dt2)

∫
|w3|≥|w2|

dw3dw̄3

−w̄3

(
1− w2

w3
+ 1

2!
w2

2

w2
3
− . . .

)
w3

√
t22+|z2|2+|w3|2

7

=(t2dz̄2 − z̄2dt2)

∫
|w3|≤|w2|

dw3dw̄3

(
0 +

−|w3|2

w2
2

√
t22+|z2|2+|w3|2

7 + 0 + 0 + . . .

)

=(t2dz̄2 − z̄2dt2)

∫ |w2|

0
rdrdθ

−r2

w2
2

√
t22+|z2|2 + r2

7

=− (t2dz̄2 − z̄2dt2)
2π

15w2
2

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)

(207)

Lemma 8.
We will evaluate∫

v2

dw2 ∧ dz2 ∧ dz̄2 ∧ dt2
4π2t2|z2|2

75w2

√
t22+|z2|2

5

(
2√

t22+|z2|2
3 −

5|w2|2 + 2t22 + 2|z2|2√
t22+|z2|2+|w2|2

5

)
. (208)

Assuming the w2 integral domain is a contour surrounding the origin of w2 plane or a path
that can be deformed into the contour, we may use the residue theorem for the first term
of (208). After doing w2 integral we have∫ ∞

ε
dt2

∫
Cz2

d2z2
4π2t2|z2|2

75
√
t22+|z2|2

5

2√
t22+|z2|2

3 =
2π3

225ε2
(209)

Combining with the other diagram with the second vertex in the t ∈ [−∞,−ε], we get

2π3

225ε2
−
(
− 2π3

225ε2

)
=

4π3

225ε2
(210)

Re-scaling ε→ 1, this is finite.
For the second term of (208), let us choose the contour to be a constant radius circle

so that r(θ) = R. We need to use an unconventional version of the residue theorem, as
the integrand is not a holomorphic function, depending on |w2|2. Let w2 = Reiθ, then for
a given integrand f(w2, w̄2), we have

I =

∫ 2π

0
d(Reiθ)f(Reiθ, Re−iθ) (211)
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Then, w2 integral is evaluated as

−
∫ 2π

0

d(Reiθ)

Reiθ
4π2t2|z2|2

75
√
t22+|z2|2

5

5R2 + 2t22 + 2|z2|2√
t22+|z2|2 +R2

5 = − 8π3it2|z2|2

75
√
t22+|z2|2

5

5R2 + 2t22 + 2|z2|2√
t22+|z2|2 +R2

5

(212)
Before evaluating z2 integral, it is better to work without R. using the following inequality
is useful to facilitate an easier integral:

0 <
8π3it2|z2|2

75
√
t22+|z2|2

5

(
5R2 + 2t22 + 2|z2|2√
t22+|z2|2 +R2

5

)
<

(8π3it2|z2|2)(2t22 + 2|z2|2)

75(t22+|z2|2)5
(213)

Here we used R ∈ Real+. The left bound is obtained by R →∞, and the right bound is
obtained by R→ 0. We only care the convergence of the integral. So, let us proceed with
the inequalities.

− 4π

192

8π3i

75

1

ε3
< −

∫ ∞
ε

dt2

∫
Cz2

d2z2
8π3it2|z2|2

75
√
t22+|z2|2

5

(
5R2 + 2t22 + 2|z2|2√
t22+|z2|2 +R2

5

)
< 0 (214)

After rescaling ε → 1, we have a finite answer. Combining with the other diagram with
the second vertex in the t ∈ [−∞,−ε], we get the left bound as

− 4π

192

8π3i

75
−
(

4π

192

8π3i

75

)
= − π4i

225ε3
(215)

After rescaling ε1 → 1, this is also finite.
Hence, combining with (210), we get the bound

4π3

225ε2
− π4i

225ε3
< (208) <

4π3

225ε2
(216)
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