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Abstract

Scattering off the edge of a composite particle or finite–range interaction can
precede that off its center. An effective theory treatment with pointlike parti-
cles and contact interactions must find that the scattered experimental wave is
slightly advanced, in violation of causality (the fundamental underlying theory
being causal). In practice, partial–wave or other projections of multivariate
amplitudes exponentially grow with Im(E), so that analyticity is not suffi-
cient to obtain a dispersion relation for them, but only for a slightly modified
function (the modified relations additionally connect different J). This can
limit the precision of certain dispersive approaches to compositeness based on
Cauchy’s theorem. Awareness of this may be of interest to some dispersive
tests of the Standard Model with hadrons, and to unitarization methods used
to extend electroweak effective theories. Interestingly, the Inverse Amplitude
Method is safe (as the inverse amplitude has the opposite, convergent behav-
ior allowing contour closure). Generically, one-dimensional sum rules such as
for the photon vacuum polarization, form factors or the Adler function are
not affected by this uncertainty; nor are fixed-t dispersion relations, cleverly
constructed to avoid it and whose consequences are solid.
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1 Introduction

Dispersive methods are widely used in nuclear and particle scattering [1] and essential
to constrain physics beyond the Standard Model [2]. Often due to the nonperturbativ-
ity of strong interactions and the difficulty in calculating therewith, or to ignorance of
any underlying theory extending the electroweak Standard Model, amplitudes may not
always be tractable from first principles for all energies. Dispersive approaches then allow
to constrain the amplitudes with all the information known ab initio without access to
the underlying Lagrangian dynamics. These constraints are powerful but by no means
lead to unique amplitudes. External information is necessary to gain complete ampli-
tudes (whether experimental data, knowledge of subtraction constants from an Effective
Lagrangian, or of asymptotic high–energy behavior from other considerations, such as in
ππ scattering [3].)

We should distinguish two types of dispersive approaches, with the divide being ba-
sically the dimensionality of the problem. The first type typically includes integral rep-
resentations for functions or correlators of one Lorentz invariant variable s, often used as
sum rules [4]. These provide crucial tests of many aspects of the Standard Model involving
the strong interactions. Starting points in their derivation are usually unitarity and com-
pleteness (section 3) such as the use of the optical theorem for the amplitude’s imaginary
part for physical energies in terms of both elastic and inelastic cross–sections,

Im{M(i→ X → i)} = 2ECM |pCM |
∑
X

σ(i→ X) . (1)

(CM refers to the center of mass throughout.) These principles are enough to obtain
spectral representations for the functions of interest. Additionally, one can use causality
in the form of analiticity in the complex s plane, to relate such functions in different
processes.

The second type (section 2), in which we concentrate, involves multivariate functions
(thus, more than one propagating particle is involved) and has a stronger focuse on causal-
ity through Cauchy’s theorem, an identity for analytic functions in a complex plane do-
main:

tJ(E) =
1

2πi

∮
C
dE′

tJ(E′)

E′ − E
E ∈ C , (2)

here exemplified for a partial-wave scattering amplitude as function of the energy E (with
identical expressions for t(E, θ) or other scattering amplitudes). Alternatively to partial
waves, one can think of fixed-angle scattering, fixed-t scattering, and multiparticle scat-
tering. The description of many processes (such as Compton scattering, Deeply Virtual
Compton Scattering, meson production, meson-meson scattering, and also extensions of
the electroweak standard model in WL −WL scattering) is often reinforced by the use of
this type of dispersion relations. The needed analyticity in E follows from causality along
a well–known line of thought [5], here simplified. The scattering amplitude as a function
of energy is the Fourier transform of that which is function of time τ ,

tJ(E) =

∫ ∞
−∞

t̂J(τ)eiEτdτ . (3)
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Figure 1: Left: the phase advance of a ray scattered from r = R over one scattered
from the center is R(sinα − sin(α − θ)). Right: scattering from anywhere in the striped
half sphere leads scattering from the center of the circumference and displays apparent
violation of causality (the same holds at each plane parallel to the one depicted, only with
diminished R).

If the incoming wavepacket hits a pointlike target at τ = 0, causality entails that
t̂J(τ) = 0 for τ < 0. Therefore, as the integrand vanishes for earlier times, the lower
integration limit can be set to 0. Extension of tJ(E) to the complex plane allows to write

tJ(E) =

∫ ∞
0

t̂J(τ)eiRe{E}τe−Im{E}τdτ . (4)

The last exponential ensures convergence in the upper half–E complex plane, and an
analytic tJ(E) (Titchmarsh’s theorem makes the statement rigorous) that is well behaved
for Im{E} → +∞, allowing use of Cauchy’s theorem by closing an infinite semicircular
contour.

In section 2 we discuss the resulting dispersion relation and an example numeric eval-
uation of the uncertainty introduced by slightly relaxing causality for tJ(τ) nonvanishing
at times a bit earlier than τ = 0. But first, in subsection 1.1 we recall the basic discus-
sion [6]; a more rigorous treatment of the underlying theory can be found in Nussenzveig’s
book [7]. Because the numeric consequences of this apparent violation of causality are
not computable in a straightforward manner, as they depend on target structure and un-
derlying interaction, our goal is limited to unveiling it as an uncertainty in the resulting
dispersion relations for multivariate scattering amplitudes.

1.1 Advanced scattering for composite objects

For simplicity, take a beam of pointlike objects (photons serve as example) scattering an
angle θ, with x = cos θ, off a composite target 1 as depicted in fig. 1.

The scattering can happen at a distance R from the target’s center of mass, at a point
with visual therefrom forming an angle β ≡ α+ π/2 with the direction of incidence. The
target softness and underlying interaction details determine the probability of such scat-
tering configuration, P (R,α; θ). In the usual asymptotic analysis, R and α are implicitly
integrated over and only the dependence with θ remains; this carries over to the Effective
Theory where R = 0. Nevertheless, at order R, we have an apparent violation of causality
because the scattering off R can appear at τ = +∞ with a phase ahead of the scattering
from the center. As shown in its left plot (limited to plane geometry, since planes parallel
to that in the figure only differ in a decreased R), off–center scattering advances the phase

1The target should not be thought of as a rigid ball: it is enough that any surface at distance R from
its center scatters the projectile towards an angle θ 6= 0. This is certainly the case for hadrons.
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due to the path difference

R (sinα− sin(α− θ)) = 2R sin

(
θ

2

)
cos

(
α− θ

2

)
. (5)

The advanced wave could have scattered from any point with angle to the visual β ∈
(θ/2, π + θ/2); its 2R sin(θ/2) maximum occurs in the middle of that β interval. Because
of this path difference the scattered amplitude does not vanish for τ < 0; t̂J(τ) = 0 is only
guaranteed for τ < −2R

c sin θ
2 . (Subsequently, c = 1 is set.) Of course, this inequality is

smeared by the target’s softness so that R is distributed, but to discuss uncertainties in
R = 0 computations it is sufficient to use a typical R.

That the scattering amplitude tJ or similar is still analytic can be read off Eq. (4). The
lower integration limit then needs to be set to −2Rc sin(θ/2) < 0 since the time-dependent
amplitude only vanishes for earlier times. This change does not affect the convergence
at τ → ∞, so that the resulting tJ(E) is still analytic in the upper-energy plane; but
it grows (exponentially) for increasingly positive Im(E). That is, a finite target yields
an analytic function but a nonconvergent contour integral. Only when the signal can be
arbitrarily advanced, and τ → −∞ needs to be taken in the time integration, is analyticity
completely lost.

This advanced-wave phenomenon for composite objects requires multidimensional ge-
ometry. In one dimension, although an interaction may be triggered upstream of the center
of mass, the outgoing signal still has to go through that center of mass in its propagation,
so it will not get ahead of the wave nominally scattered at the center of the system. This is
why dispersion relations based on forward scattering, or for intrinsically one-dimensional
problems such as propagators or current-current correlators i

∫
d4xeiq·x〈0|T (J(x)J(0)†)|0〉

are unaffected.
On the other hand, any scattering process in 2 or greater dimension, where one or

both objects are of finite size, or where the interaction is finite range, will suffer from that
exponential behaviour in the complex plane and care with the formulation of dispersion
relations will be needed. Examples include: photon-hadron scattering, hadron-hadron
scattering, photon-atom scattering, nuclear scattering, etc.

2 Causality–driven dispersion with more than one variable:
ππ, (or WLWL) elastic scattering

We examine quasiGoldstone-boson scattering as an example of a dispersion relation even-
tually taking microscopic–physics dependent corrections, and amenable to clear Effective
Field Theory treatment. We have in mind two possible physical systems: ππ scattering,
interesting because of the much extant data and many existing analysis, and of importance
at the precision frontier, and longitudinal W/Z scattering, of interest for searches of new
physics at the energy frontier. When we speak of “Effective Theory” we have either of
the two relevant theories for these physical systems, Chiral Perturbation Theory [8] or
Higgs Effective Field Theory [9] that hide in local fields (in a multipole-like expansion)
any compositeness of underlying renormalizable theories.

The kinematic variables are Mandelstam’s invariants s, u, and t = −(1−x)(s−4m2)/2.
Since s = E2

CM, its extension to the complex plane sees its phase linked to that of the
energy by θs = 2θE .

Because of Eq. (4), the amplitude is analytic for ImE > 0 or θE ∈ (0, π), and thus,
in the entire complex s-plane except for cuts (and eventually poles, though not for ππ
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scattering) on the real axis. With τ > 0, the factor e−Im{E}τ damps the amplitude over
the large semicircle Im{E} � 0 and therefore over the entire circle |Im{s}| � 0.

Cauchy’s theorem becomes the integral fixed-t dispersion relation

T (s, t, u) =
1

π

(∫ ∞
4m2

+

∫ t<0

−∞

)
ds′

Im{T (s′, t, u)}
s′ − s− iε

, (6)

that can be subtracted as needed and allows to proceed from the amplitude over the
physical s > 4m2 (right cut) and unphysical s < 0 (left cut) to complex s. There are
similar relations for amplitudes at fixed scattering angle T (E, θ) and for the partial–wave
projected amplitudes tJ : this last one, with n subtractions, is the well known

tJ(s) =
n−1∑
k=0

t
(k)
J (0)

k!
sk +

sn

π

(∫ ∞
4m2

+

∫ 0

−∞

)
dz

zn
Im{tJ(z)}
z − s− iε

(7)

valid for point particles with contact interactions. But if the interaction occurs with the
CM of the two pions separated a finite range R, from Eq. (4) with a lower limit that is
not 0 but the advanced time of subsec. 1.1, the amplitude may pick up a phase-advance
contribution proportional to e−2iR

√
s−4m2 sin(θ(s,t)/2) for each R layer scattering ahead of

the CM in the direction of θ.
At large ImE > 0 such factors diverge: the standard application of Cauchy’s theorem

with a circular contour at infinity is in question because the integral over the semicircle
at infinity can then also diverge. An exception does of course happen when the expo-
nential contribution carrying R is suppressed by the sin(θ) vanishing at forward angles:
there, Regge kinematics showing a power-law, and not a rotating phase, dominates hadron
scattering (and experimental data shows a smooth cross section). The possible unchecked-
exponential amplitude growth requires an imaginary part of s, so it is not easily seen in
the data at real s (it could perhaps be tested with an appropriately constructed sum rule,
but this exceeds our present effort). In any case, forward dispersion relations do not suffer
an uncertainty since they are formulated for θ = 0 and the exponential factor becomes
just a troubleless unit factor. For other angles, or for the partial waves, the standard
dispersion relation is not guaranteed.

The exponential, with sin(θ/2) =
√

(1− x)/2, is an irrelevance [7] for fixed t since it
becomes a fixed constant exp(2iR

√
|t|) so that Eq. (6) is still valid. In addition to for-

ward dispersion relations, fixed-t dispersion relations are adequate with composite objects,
which is a classic result.

But upon proceeding to a fixed reference frame and fixing the angle 2 (except for
forward (θ = 0 = t) dispersion relations) or, for the partial waves, its conjugate variable
J , modification is required.

2This was observed early on by Gell-Mann, Goldberger and Thirring, see discussion around Eq.(4.15)
of their 1954 work [10].
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2.1 Use of auxiliary functions to obtain information on the physical
amplitude

Standard use of Cauchy’s theorem requires a function with good behavior for ImE � 0.
One possibility is to introduce an auxiliary function for which the diverging exponential
behaviour is not present. Then the dispersion relation can be written for it, and afterwards
one can try to extract information on the physical amplitude from such relation. One
auxiliary function that can be chosen (not a scattering amplitude) is the modified

T (s, t, u)→ e2iR
√
s−4m2 sin(θ(s,t)/2)T (s, t, u) . (8)

The square root in Eq. (8) adds to the right discontinuity in the resulting dispersion
relation which replaces Eq. (7). At finite R, the auxiliary partial wave projections are

t′J(s)=

∫ 1

−1
dx
PJ(x)

64π
e

2iR
√
s−4m2

√
1−x
2 T (s, t(x), u(x)) (9)

where, for a moment, we only keep one order in R

e
2iR
√
z−4m2

√
1−x
2 ' 1 + 2iR

√
z − 4m2

√
1− x

2
. (10)

The Left Hand Side of Eq. (7) then takes a correction tJ(s) → tJ(s) + ∆t′J(s) (with
poles taken as 1

z−(s+iε) ; minimum additional discussion on Schwarz’s reflection principle is

deferred to appendix A):

∆t′J(s) = 2R
sn

π

[∫ ∞
4m2

dz

√
z − 4m2

zn(z − s)

∞∑
L=0

AJLRe{tL(z)}

+

∫ 0

−∞
dz

√
z − 4m2

zn(z − s)

∞∑
L=0

AJLIm{tL(z)}

]
+
n−1∑
k=0

t̃
(k)
J (0)

sk

k!

(11)

which is actually dependent on partial waves of different angular momentum through the
(asymmetric) matrix

AJL =
2L+ 1

2

∫ 1

−1
dxPJ(x)PL(x)

√
1− x

2
. (12)

Since
√

1−x
2 is of slow variation, one expects that very different J and L are weakly

coupled by the cancellations among Legendre polynomials. The diagonal AJ=L elements
are between 0.6 and 2

3 while the off-diagonal ones fall rather quickly with J−L, for example,

A02 ' −0.095. In turn, the subtraction constants in Eq. (11) are t̃
(k)
J = t

(k)′

J − t(k)
J and

carry R–dependence. When ignoring R and employing dispersion relations with data fits,
the R = 0 subtraction constants are probably absorbing part of the total uncertainty, so

we can use what is left of them, the t̃
(k)
J , to minimize it.

That the partial waves are mixed is a phenomenon seen before, in the context of the
Roy or the Baacke-Steiner equations [11,12]. The difference is that the Roy equations are
obtained to eliminate the left cut in terms of the right cut of crossed channels, employing
crossing; they relate the amplitude in several isospin channels, additionally to several an-
gular momenta, so they are not strictly speaking dispersion relations, though they feature
integrals along the right cut. In Eq. (11) even with the left cut untouched, the partial
waves are mixed for the physical scattering amplitude (because the auxiliary function that
satisfies a dispersion relation exactly differs by an angle-dependent exponential) 3.

3It is worth remarking here that the Roy and Steiner equations are derived from fixed-t dispersion
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Figure 2: Real part of the ππ t0 partial–wave amplitude [3] employed to compute the
right cut in Eq. (11).

2.2 A worked numerical example in pion scattering

Let us show the typical size of the uncertainty induced by Eq. (11) in the ππ case if a plain
dispersion relation for tJ is invoked without support from fixed-t dispersion relations: for
this we limit ourselves to the right–cut integral from 4m2 on, where the scalar amplitude
is well known [3]. We plot its real part, with characteristic dragon shape, in figure 2.
For a quick estimate we adopt as effective range of the interaction R ' m−1

σ ' 2 GeV−1

(compare with 0.79 fm ' 4 GeV−1 for the pion scalar radius [14] appropriate for J = 0
or with 1/mρ = 0.26 fm for the vector one, J = 1). The first two terms in the expansion
are not representative of the exponential in Eq. (10) at energies much beyond threshold,
so we limit ourselves to that area. The outcome is plot in figure 3. We have chosen n = 1

Figure 3: Numerical computation of Eq. (11) (only the right cut with one subtraction,
with constant chosen to cancel the effect at threshold), to be understood as a theoretical
uncertainty in the real and imaginary parts, respectively, of Eq. (6).

and used this one subtraction to make the uncertainty vanish at threshold. However, the
uncertainty band quickly grows with E.

Therefore, we proceed to reanalyzing the full exponential. We then find, up to J = 2

relations, so they are not subject to corrections either, as long as the conditions for the convergence of the
partial wave series are satisfied [13].
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Figure 4: Numerical estimate of Eq. (13) (only the right cut with two subtractions, chosen
above threshold); we plot the theoretical uncertainty on the modulus of t.

(the effect of the d–wave is small, but we include it nevertheless),

∆t′0(s) =

n−1∑
k=0

t̃
(k)
J (0)

sk

k!
+ iIm [t0(F0(s)− 1) + t2F2(s)] +

sn

π

(
PV

∫ ∞
4m2

+

∫ 0

−∞

)
dz

zn
Im (t0(F0(z)− 1) + t2F2(z))

(13)

with FJ(s) ≡ (2J+1)
2

∫ 1
−1 dxe

2iR
√
s−4m2

√
(1−x)/2PJ(x), and PV the principal value integral.

An example numerical computation of Eq. (13), twice subtracted, is seen in fig. 4. Once
more, the uncertainty induced is not negligible, because R is quite large (the compositeness
scale, R−1, is comparable to the scattering energies).

These considerations have only provided the difference between the right hand cut
of a standard partial wave dispersion relation and an R-modified one; it is far from our
intention to attempt an equivalent computation of the left hand cut, that is notoriously
difficult; only known with some confidence in the nonrelativistic approximation [15]; and
whose contribution in the resonance region of energy of interest for the LHC, deep in the
right hand cut, is suppressed anyway by the structure of the dispersion relation. Given
the uncertainty in the left hand cut, that it is eventually constrained by crossing from a
set of different reactions and partial waves, it is reasonable to assume that the uncertainty
induced by it will add up linearly to that of the right-hand cut,

∆t(s) = |∆LCt(s)|+ |∆RCt(s)|

so that the uncertainty induced by the right cut, already sizeable, is a lower bound on the
total uncertainty.

These plots do not mean that a parametrization of experimental data needs to be
so uncertain; they should be interpreted as the uncertainty when using a partial-wave
dispersion relation to describe data, absent an underlying fixed-t dispersion relation to
shore up the computation.

2.3 Additional comments on WLWL scattering

Future WLWL scattering data at the high-energy frontier could be influenced by a compos-
ite Higgs sector or other strongly interacting new physics [17]. This could be tested against
a fixed-angle or a partial-wave dispersion relation such as Eq.(7): a failure thereof would
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be indicative of the compositeness of the Goldstone bosons ωi ∼W i
L, and reveal a scale R

that might otherwise go unnoticed in the absence of a direct resonant manifestation.
More realistically, and as has been the case in hadron physics, the underlying scale

would first appear in other, less data-demanding analysis. Hints on the scale of com-
positeness will appear, if this is how the electroweak sector works, in separations from
the Standard Model in EFT couplings following specific patterns. But then, even if that
compositeness size times the transfered energy R×E may be small at an accelerator with
insufficient resolution to probe the WL size, when closing the Cauchy contour in the com-
plex plane, the exponent R×Im(E) becomes arbitrarily large. Certain dispersion relations
then fail due to the presence of an underlying structure even when this may not yet be
probed at available energy.

This scale of compositeness can be unrelated to the range of interaction if the mass
of the force carrier is very dissimilar to the mass of the source (e.g. the pion and the
nucleon). Our considerations apply to two different scenarios: (a) finite range interactions
with pointlike particles, and (b) apparently zero range interactions (local delta functions)
when the object is composite at any scale (no matter how small, ImE ×R will eventually
grow beyond order one for large enough imaginary energy).

Finally, the discussion in this section has been strictly kept at the level of S-matrix
theory to maintain generality. One may wish to see how the exponential factor obstructing
the application of Cauchy’s theorem in various settings arises within the particular but
important case of a quantum field theory. To expose it, a worked example is given in
appendix B. But S-matrix theory applies in more general scenarios (string theory, nonrel-
ativistic quantum mechanics with fixed particle number, and others).

3 One-dimensional spectral representations (such as in the
muon’s g − 2)

Spectral dispersive approaches driven by unitarity and completeness that do not require
analytic extension far into the complex plane with contours at infinity are not immediately
affected by the finite size of the objects under study; neither are essentially univariate
problems as advanced at the end of subsection 1.1. In this section we establish that the
trouble with large ImE seen in multivariate scattering amplitudes is absent from these
scattering-angle free amplitudes.

A case in point that illustrates both observations is the hadron vacuum polarization

contribution to the magnetic moment of the muon. The muon’s Landé g factor is
→
µ=

g
e}
2m

→
S

}
= g

µB
}
→
S with µB analogous to the Bohr magneton but using the muon’s mass

m = 105 MeV instead. Among other corrections to the Dirac value g = 2, those from the
strong interactions arise at lowest order from the typical diagram in figure 5.

X





Figure 5: Vertex diagram correcting the
muons magnetic moment. X represents
the photon vacuum polarization which in-
cludes strongly interacting intermediate
states.

The γ polarization in the diagram includes intermediate ππ states (and more massive
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hadrons). It appears in the propagator4′F (x−y) = 〈0|T (A(x)A(y))|0〉 (Minkowski indices
omitted) with time ordering

T (A(x)A(y)) = θ(x0 − y0)A(x)A(y) + θ(y0 − x0)A(y)A(x) . (14)

The standard treatment [1,16] proceeds by inserting a complete set of states
∑
|s〉〈s| = 1

with the quantum numbers of the photon field, and exploiting Poincaré invariance to define
a spectral density function

(2π)−3ρ(p2) ≡
∑
s

δ(ps − p)|〈0|A(0)|s〉|2 . (15)

Extracting the one–photon state by ρ(p2) = δ(p2) + σ(p2), one obtains the propagator’s
Lehmann representation

(2π)4 4′F (k2) =
−1

k2 + iε
+

∫
da2 σ(a2)

a2 − k2 − iε
(16)

with its typically dispersive form, integrating over a spectral density over the real axis.
To obtain that form [16], the causality condition

[Afree(x), Afree(y)] = 0 if (x− y)2 < 0 (17)

has been invoked for the free fields, related to the iε prescription in the free propagator
contained in Eq. (16). Causality appears factorized, satisfied independently of the spectral
density (what intermediate states there are and whether they are composite). In fact, the
vacuum expectation value of the commutator for the interacting fields is a convolution
over a

〈0|[Aµ(x), Aν(y)]|0〉 =

∫ ∞
0

da2ηµνρ(a2)

×
∫

d4p

(2π)3
θ(p0)δ(p2 − a2)[e−ip(x−y) − eip(x−y)] ; (18)

the factor in the first line carries the spectral density, and the one in the second line
enforces causality for any a independently of that density. The propagation of the photon,
happening along a straight line, is not altered by any finite radius of intermediate states
since forward scattering cannot be advanced by it.

Returning to the muon, the EM vertex coupling Γµ = γµF1(q2) + iσµνqν
2m F2(q2) leads to

g = 2(F1(0) +F2(0)) = 2(1 +F2(0)) so that F2 provides the anomalous magnetic moment,
and further standard manipulation [18] yields a correction

aµ =
α

π

∫
da2σ(a2)

∫ 1

0
du

[
(1− u)u2

(1− u) a
2

m2 + u2

]
. (19)

The spectral density therein provides the vacuum polarization as σ(a2) = Im{Πh}
a2

and
its hadron contribution can be obtained from a measurable cross–section via the optical
theorem (unitarity) σ(e−e+ → h) = 4πα

a2
Im{Πh(a2)}, which is the basis of modern analysis

of the muon’s g − 2 [19–21].
In the entire chain of reasoning, which leans on the completeness of the intermediate

states and unitarity, there is no room for small apparent violations of causality interfering
with the result in Eq. (19). The reason is that Cauchy’s theorem has not been employed
with a contour over the upper half of the s–complex plane where the exponential obstacle
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requiring modification as in Eq. (8) can appear. This applies to problems in more vari-
ables: at the level of a spectral representation, compositeness does not seem to present an
obstacle.

As for the use of analyticity, to close a contour in the complex plane is safe in univariate
problems. The geometry does not allow the scattering from the object’s leading side to
be advanced respect to the scattering at the center of mass. Thus, a vacuum polarization
function, the Adler function or the pion form factor, all functions of only one variable s,
can be extended between the timelike and spacelike domains, for example, which leads to
important tests of the Standard Model.

To conclude this example, tough other pieces of a complete calculation of the muon’s
g−2 might be subject to small finite range corrections, as they could involve multiparticle
kernels, the cornerstone extraction of its largest hadron contribution seems free from them.

4 Conclusion

We have shown how compositeness and more generally noncontact interactions introduce
corrections to dispersive approaches based on causality, an observation relevant for the
LHC program in which possible deviations from the Standard Model would suggest the
use of such dispersion relations to extrapolate to and make predictions about the new
physics scale [22], and where compositeness is of interest [23].

Such corrections (aspherical, mixing partial waves) vanish in the limit R → 0, see
Eq. (11), which is consistent with the literature on Effective Theories. In the limit that
the compositeness length vanishes, the resulting EFT is causal [24]. A strict Wigner
bound then appears constraining the phase shift δ to have nonnegative derivative [25].
For a composite object with typical radius R, the bound is relaxed to dδ/dk > −R.
Nevertheless, this still constrains the effective range expansion [26], though less strongly.

We suggest that this smearing of causality extends to higher energy approaches. Dis-
persion relations also constrain amplitudes; but for finite R, also less strongly so.

This can be the case for approaches that require closing a contour in the complex
s–plane to apply Cauchy’s theorem, because the finite range causes an obstruction. Dis-
persive approaches in which the integral over the physical cut appears as a consequence
of a one-dimensional spectral expansion are not affected by this observation, particularly
those addressing the hadron vacuum polarization necessary for the g − 2 of the muon.

One of the more widely used dispersive approaches, the Inverse Amplitude Method [27],
fairly uses a dispersion relation, since the function for which a contour is closed in the

complex s–plane is G =
t20
t (with t ' t0 + t1 + . . . being the expansion of the partial wave

amplitude in chiral perturbation theory). If the imaginary part of s is large, G ∼ s2e−2R
√
s

and the great semicircle integral in the Cauchy contour converges.
Likewise, approaches based on fixed–t dispersion relations can be used to obtain a dis-

persion relation for the partial waves as long as the partial wave expansion itself converges,
which is safe in certain kinematic regions.

In any case, even if the dispersion relation underlying a given approach to the amplitude
is convergent, one wonders how large would the modification be if, simultaneously, the
modified dispersion relation for t′J(s) defined in Eq. (9), which is certainly valid, is imposed.
That is, not only tJ in these safe cases has to satisfy an integral identity, but also the t′J
built from it. In fact, Eq. (8) is the minimal one in the sense that it removes only the
strictly needed exponential factor, but it is not unique; one can for example multiply it
by a polinomial in s, t and u and obtain a whole family of dispersion relations that should
be satisfied. This technique of introducing a polynomial for generality is widely used,
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for example in the context of the Omnès-Mushkelishvili relation, as in [14, 28, 29]. One
then needs to make sure that the convergence of the integral on the real axis is adequate,
subtracting as necessary. There is ample room for future investigation here.

The catch is that, both in these and the other, more affected dispersion relations, it is
not clear to us how our results can be moved from estimates of the introduced theoretical
uncertainty, which to our knowledge had never been numerically evaluated, to actual
computed corrections that improve predictions. Perhaps one could minimize the separation
from the modified dispersion relation using the amplitude parameters, simultaneously with
other constraints, but an important problem to solve is the spread in R of the wavepacket’s
interaction with the target. Further investigation appears necessary.

Perhaps one could construct a family of R-dependent dispersion relations, all of which
have to be satisfied by the partial wave amplitudes with decreasing level of confidence as
R increases, and optimize the fits to minimize the joint deviation from their satisfaction.
This might be useful outside the kinematic domain where fixed-t dispersion relations apply.

The reader may wonder how the discussion herein is not widely presented: after all,
dispersion relations are supposed to be well established in QCD. A precis can for example
be found in the work of Oehme [30] who shows that the dispersion relations known before
the advent of gauge theories continue being valid in QCD. His discussion validates the
absence of quark and gluon anomalous thresholds due to confinement, but they would not
affect the amplitude far from the real axis anyway. Second, he establishes spectral repre-
sentations due to unitarity and completeness, as we have been discussing in section 3: here
the amplitude is expressed in terms of a spectral function, but not in terms of its imaginary
part. And finally, Oehme finds dispersion relations à la Kramers-Kronig, relating real and
imaginary parts of an amplitude within QCD, but these are forward dispersion relations
at zero scattering angle, where the exponential factor that we comment on becomes unity:
as we have argued, both fixed-t and forward dispersion relations are unaffected.

What Oehme does not address is dispersion relations that did not work before QCD,
so [7] continues being the relevant reference; and, particularly, he does not establish dis-
persion relations for partial-wave amplitudes. Therefore, his discussion does not impact
our observations.

In summary, dispersion relations fall in two classes: those mainly traceable to unitarity
and completeness (spectral representations), about which we make no comment; and those
derivable from causality by use of Cauchy’s theorem and the closing of a large circle in the
complex s-plane. These are affected if the scatterers are composite, because causality is
apparently violated in an effective theory in which their size is discarded, and need more
careful examination. Among these, forward- and fixed-t-dispersion relations are trouble-
free because the phase advance due to the back of the target does not grow with s. Other
types of dispersion relations, for example those for partial waves, may however carry an
R-related uncertainty.
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A Schwarz’s reflection principle in the derivation of Eq. (11)

Here we briefly discuss the discontinuities of the auxiliary function leading to Eq. (11).
There are two modifications to the usual discussion. The first is the appearance of the
square root

√
z − 4m2 coming from the exponent in Eq. (8). This together with the iR

factor of the first order Taylor expansion of the exponential exchanges the roles of the real
and imaginary parts of the original amplitude T .

The integral over a cut for a function with a discontinuity generically takes the form∫ ∞
4m2

(F+ − F−)dz

with the function respectively evaluated on the upper (+) and lower (−) edges of the cut.
The structure of our auxiliary function F is a product of a square root, whose cut

is chosen as usual in this field for positive s or z, so that arg(sqrt) ∈ (0, 2π), and the
scattering amplitude T that satisfies Schwarz’s reflection principle f(z) = f∗(z∗). Let us
call these two pieces f2 and f1 respectively, satisfying:
a) f2 is real along the positive real axis, but it is cut f2− = −f2+.
b) f1 is complex but satisfies Schwarz’s reflection principle so that its real part is contin-

uous across the cut and the imaginary part satisfies Imf1− = −Imf1+.
We can now addres the discontinuity across the right cut,

Disc(if1f2) = Disc(if2Ref1 − f2Imf1)

= 2if2Ref1 . (20)

Finally, below the cut of the square root, f2, is continuous, and any discontinuity comes
from the amplitude T (f1) alone, so the cut works as needed to establish Eq. (11).
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B A worked example showing the R-dependent exponential

Some readers may find useful to think about the size-dependent phase (that turns into
a growing exponential for imaginary energy, possibly obstructing the use of Cauchy’s
theorem) in terms of a full quantum formalism. One of the simplest examples is the
scattering of a scalar particle, with field φ1(x), from the bound state of two scalar particles
φ2(x) and φ3(x), all distinguishable for simplicity. The Lagrangian density relevant for
that scattering can be taken as

Lsc =
1

2

3∑
i=1

(
miφ

2
i + ∂µφi∂

µφi
)
+φ2

1(g2φ
2
2 + g3φ

2
3). (21)

This is supplemented by an unspecified nonperturbative, perhaps confining, interaction be-
tween φ2 and φ3 whose only role is to provide a 2−3 bound state |ψ23〉 of two particles. This
bound state is taken to have particle 2 in a wavepacket spread around X2 = (0, 0,−R/2)
and likewise particle 3 around X3 = (0, 0,+R/2) = −X2.

To exemplify, we take two equal Gaussian wavepackets

〈x2x3|ψ23〉 =
1

(π3a6)1/2
e−

(x2−X2)
2+(x3−X3)

2

2a2 (22)

so that Fourier transforming to momentum space allows us to write the second-quantized
state as

|ψ23〉 =

∫
d3q2

(2π)3/2

d3q3

(2π)3/2

√
a6

π3
e−

a2

2
(q2

2+q2
3)

e−iq2·X2e−iq3·X3a†q2b
†
q3 |0〉 . (23)

(Obviously, a† and b† are the particle creation operators associated with the fields φ2 and

φ3, satisfying usual commutation relations, [aq, a
†
k] = (2π)3δ(3)(q−k) and similarly for b).

Of note in Eq. (23) is the phase factor e−iq2·X2e−iq3·X3 = e−
iR
2

(q3−q2)z that comes from the
Fourier transform of the extended object. In an effective theory of small R, or multipole
expansion R → 0, it could be neglected. But for a finite-sized object it will lead to the
exponential factor discussed in section (2).

The model setup for this example scattering process is captured in figure (6).
Denoting the momentum modes of the field φ1 by c and c†, the part of the Lagrangian

in Eq. (21) responsible for the two connected Born scattering diagrams in first order
perturbation theory over g2 ∼ g3 is

V := 4

(
4∏
i=1

∫
d3ki
(2π)3

)
(2π)3δ(3)(k2 − k1 + k4 − k3)

c†k1ck2(g2a
†
k3
ak4 + g3b

†
k3
bk4) . (24)

To proceed, we need to specify the scattering kinematics. The momentum transfer
from the projectile is ∆ := |q1 − q′1|. If the total mass of the 23 bound state is taken to
be M , the target recoils with velocity v = ∆√

M2+∆2
. This takes it to a boosted state that

can be approximated by

〈ψ23|K†v =

∫
d3q′2

(2π)3/2

d3q′3
(2π)3/2

√
a6

π3
e−

a2

2
(q′22+q′23)

〈0| bqB3 aqB2
e+ iR

2
(q′3−q′2)z (25)
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1 2 3

R
Forward

Backward

+

Figure 6: Forward and backward scattering of a scalar particle 1 off the bound state
formed by distinguishable particles 2 and 3, also scalar, and the two connected scattering
diagrams in Born approximation to the Lagrangian in Eq. (21).

where the boosted momenta are given by the usual Lorentz transformation, for example,
that of particle 2,

qB2 =
1

M

(
E′2∆ + q′2

√
M2 + ∆2

)
. (26)

A change of variables from qBi to q′i takes the boost off the field quanta to expose it in the
wavefunction (which is then Lorentz contracted).

We can now collect all the pieces to mount the scattering amplitude in first order
perturbation theory, yielding the scattering of particle 1 (in an eigenstate of momentum)
off the 23 bound state (that is pushed to a boosted frame),

M ∝
(
〈q′1| ⊗ 〈ψ23|K†v

)
V (|ψ23〉 ⊗ |q1〉)

=

∫
d3qB2
(2π)3

d3qB3
(2π)3

d3q2

(2π)3

d3q3

(2π)3
4
a6

π3
e−

a2

2
(q22+q23−q

′2
2 −q

′2
3 )

e−iX3·(q3−q2)e+iX3·(q′3−q′2) · (2π)6[
g2 δ

(3)(q′3 − q3) δ(3)((q1 − q′1)− (q′2 − q2))

+ g3 δ
(3)(q′2 − q2) δ(3)((q1 − q′1)− (q′3 − q3))

]
.

(27)

Evaluating the phase factor Φ in the third line of the integrand with the momentum
conservation delta distributions yields

Φ = g2 e
−iX3·(q3−q′3)

∣∣∣
q3=q′3

e−iX3·(q′2−q2)
∣∣∣
q′2−q2=q1−q′1

+ g3 e
−iX3·(q′2−q2)

∣∣∣
q2=q′2

e−iX3·(q3−q′3)
∣∣∣
q′3−q3=q1−q′1

(28)

so that two of the exponentials become simply unity and two become evaluated in the
external momenta of the scattered particle 1, so they factor out of the integration.

This multiplicative complex factor (the rest of the matrix element in Eq. (27) is purely
real) is then

Φ = g2e
−iX3·(q1−q′1) + g3e

+iX3·(q1−q′1) . (29)
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The phases can be interpreted as the diffraction of the quantum beam by the finite sized
target. In the collinear kinematics of figure 6, this is

Φ = g2e
−iR

2
∆ + g3e

+iR
2

∆ (30)

or, more generally, noting that ∆z =
√
|t| and with t = − s−4m2

2 (1− x),

Φ = g2e
−iR
√
s−4m2

2

√
1−x
2 + g3e

+iR
√
s−4m2

2

√
1−x
2 . (31)

The factor with g2 corresponds to scattering by the leading particle that the beam finds
before the center of mass, and is analogous to the factor that we found earlier in subsec-
tion 1.1 for a spherical shell.

When extending s to the complex plane, s → sR + isI , it yields an exploding con-
tribution ∼ e+sI that makes the closing of a great circle over the upper half plane C+

unfeasible. Thus, dispersion relations in the complex s-plane are not generically granted
except for fixed t, including forward t = 0 = θ scattering; in other cases, such as when
attempting a dispersive analysis of partial waves, one needs to multiply the scattering am-
plitude by a small enough compensating exponential factor and write a dispersion relation
for the modified amplitude. This procedure seems to introduce a theoretical uncertainty,
associated to the soft physics of the target, that is very difficult to reduce.
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