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Abstract

We investigate the finite-size scaling of the lowest entanglement gap δξ in the
ordered phase of the two-dimensional quantum spherical model (QSM). The
entanglement gap decays as δξ = Ω/

√
L ln(L). This is in contrast with the purely

logarithmic behaviour as δξ = π2/ ln(L) at the critical point. The faster decay
in the ordered phase reflects the presence of magnetic order. We analytically
determine the constant Ω, which depends on the low-energy part of the model
dispersion and on the geometry of the bipartition. In particular, we are able to
compute the corner contribution to Ω, at least for the case of a square corner.

1 Introduction

In recent years the cross-fertilization between condensed matter and quantum information
fueled an impressive progress in our understanding of quantum many-body systems [1–4].
The entanglement spectrum (ES) has been the subject of intense investigation. Let us
consider a system in its ground state |Ψ〉 and a spatial bipartition of it as A ∪ Ā (see
Fig. 1). The reduced density matrix ρA = TrĀ|Ψ〉〈Ψ| of A can be written as

ρA = e−HA . (1)

Here HA is the so-called entanglement hamiltonian. The entanglement spectrum levels
ξi = − ln(λi), with λi the eigenvalues of ρA, are the “energies” of HA. Early works [5–7]
on entanglement spectra aimed at understanding the effectiveness of the density matrix
renormalisation group (DMRG) [8,9] to simulate one-dimensional systems.

Recently, an intense theoretical activity has been devoted to understand the ES in frac-
tional quantum Hall systems [10–21], topologically ordered systems [22–24], magnetically
ordered systems [21, 25–37], Conformal Field Theories (CFTs) [38–41], and systems with
impurities [42]. The entanglement gap (or Schmidt gap) δξ emerged as a natural quantity
to investigate. δξ is the gap of the entanglement hamiltonian, and it is defined as

δξ = ξ1 − ξ0, (2)

where ξ0 and ξ1 are the first two low-laying ES levels. For the standard energy gap, i.e.,
the gap of the physical hamiltonian, there exists a “universal” correspondence between
its scaling behaviour and ground state properties, such as the decay of correlation func-
tions [43]. Much less is known for the entanglement gap, although several results are
available. For instance, its behaviour at one-dimensional quantum critical points has been
investigated [5, 6, 11, 27, 28, 32, 44–46]. In CFTs it is well established that δξ decays loga-
rithmically as δξ ∝ 1/ ln(`) with ` the subsystem length [38]. Similar scaling is found in
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models that are solvable via the corner transfer matrix technique [44]. Higher-dimensional
models are uncharted territory. Interestingly, some explicit counterexamples show that
the closure of the entanglement gap in general does not signal criticality [21], also for
the momentum-space ES [47]. The scenario is different deep in ordered phases of matter.
For instance, the lower part of the ES of magnetically-ordered ground states that break
a continuous symmetry [29] is reminiscent of the Anderson tower-of-states [48–50]. This
has been verified in systems of quantum rotors [29], in the two-dimensional Bose-Hubbard
model in the superfluid phase [31] (see also [37]), and also in Heisenberg antiferromagnets
on the square [34] and on the kagome lattice [36]. In the tower-of-states scenario gaps in the
lower part of the ES decay as a power-law with the subsystem volume, with multiplicative
logarithmic corrections [29]. Higher ES gaps exhibit a slower decay [29,31,35].

Given the lack of general results, exactly solvable models can provide valuable insights
into the generic features of the entanglement gap. Here we investigate the entanglement
gap in the ordered phase of the two-dimensional quantum spherical model (QSM) [51–
55]. Despite its appealing simplicity, the QSM contains several salient features of generic
quantum many-body systems. The model is mappable to a system of free bosons with
an external constraint, implying that its properties can be studied with moderate cost.
Its classical version proved to be valuable to validate the theory of critical phenomena
and finite size scaling [56]. The ground-state phase diagram of the two-dimensional QSM
exhibits a paramagnetic (disordered) phase and a ferromagnetic (ordered) one, which
are divided by a continuous quantum phase transition. The universality class is that of
the three-dimensional classical O(N) vector model [57] in the large N limit [52, 53, 58].
Entanglement properties of O(N) models have been addressed in the past [59, 60] (see
also [61–64] for recent studies in the QSM). Here we consider a two-dimensional lattice of
linear size L. The typical bipartitions that we use are reported in Fig. 1. Figure 1 (a)
shows a bipartition with a straight boundary. The bipartition in Fig. 1 (b) contains a
square corner. The effects of corners in the scaling of entanglement-related quantities is
nontrivial, and it has been studied intensely in the last decade [4, 65–72].

Our main result is that in the ordered phase of the QSM, in the limit L, `x, `y → ∞
with the ratios ωx,y = `x,y/L (see Fig. 1) fixed the entanglement gap decays as

δξ =
Ω√

L ln(L)
+ . . . (3)

Here the dots denote subleading terms that we neglect. The constant Ω, which we deter-
mine analytically, depends on the low-energy properties of the model and on the geometry
of the bipartition. In particular, we analytically determine the corner contribution to Ω.
The “fast”, i.e., power-law behaviour as 1/

√
L in (3) reflects the presence of magnetic

order, whereas the logarithmic correction is similar to the critical behaviour [64] of δξ.
Finally, we should mention that Eq. (3) is different from the result derived in Ref. [29],
where it was shown that for O(N) models δξ ∝ (L ln(L))−1.

The manuscript is organised as follows. In section 2 we introduce the QSM. In section 3
we review the finite-size scaling of the ground-state two-point correlation functions. In
section 4 we briefly overview the calculation of the entanglement gap in the QSM. Section 5
is devoted to the derivation of our main results. In section 6 we provide numerical checks.
We conclude in section 7. In A we report some technical derivations.
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Figure 1: Bipartition of the system as A ∪ Ā used in this work. The lattice has L × L
sites and periodic boundary conditions in both directions are used. (a) Bipartition with
smooth boundary. (b) Bipartition with a corner. We define the aspect ratios ωx = `x/L
and ωy = `y/L.

2 Quantum Spherical Model

The quantum spherical model [52–54] (QSM) on a two dimensional cubic lattice of volume
V = L2, with L being the lattice linear size, is defined by the hamiltonian

H =
g

2

∑
n

p2 − J
∑
〈n,m〉

snsm + (µ− 2)
∑
n

s2
n. (4)

Here, n = (nx, ny) denotes a generic lattice site, and 〈n,m〉 a lattice bond joining two
nearest-neighbour sites. We set J = 1 in (4). The spin si and momenta pi variables
satisfy standard bosonic commutation relations

[pn, pm] = [sn, sm] = 0, [sn, pm] = iδnm. (5)

Here we refer to the parameter g as the quantum coupling. Indeed, in the limit g → 0
the model reduces to the classical spherical model [73,74]. The spherical parameter µ is a
Lagrange multiplier that fixes the global magnetization as∑

n

〈s2
n〉 = V, (6)

To diagonalize the QSM hamiltonian (4), one can exploit its translational invariance. First,
one performs a Fourier transform as

pn =
1√
V

∑
k

e−inkπk , sn =
1√
V

∑
k

einkqk, (7)

where the sum is over k = (kx, ky) in the first Brillouin zone ki = 2π/Lj, with j ∈
[−L/2, L/2] integer. In Fourier space one obtains

H =
∑
k

g

2
πkπ−k + Λ2

k qkq−k. (8)

The single-particle dispersion relation is given as

Λk =
√
µ+ ωk with ωk = 2− cos kx − cos ky (9)

To fully diagonalise (8) we introduce the new bosonic ladder operators bk and b†k as

qk = αk

bk + b†−k√
2

, πk =
i

αk

b†k − b−k√
2

, (10)
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where α2
k =

√
g/2Λ−1

k . Now, the hamiltonian (8) is fully diagonal, and it reads as

H =
∑
k

Ek(b†kbk + 1/2), with Ek =
√

2gΛk. (11)

For the following, it is useful to consider the ground-state two-point correlation functions
〈snsm〉 and 〈pnpm〉. They are given as [54]

Snm = 〈snsm〉 =
1

2V

∑
k

ei(n−m)·kα2
k (12)

Pnm = 〈pnpm〉 =
1

2V

∑
k

e−i(n−m)·kα−2
k (13)

Knm = 〈snpm〉 =
i

2
δnm (14)

Importantly, the trivial identity holds

Pnm =
1

g

∫
dµ Snm. (15)

By using (12), the spherical constraint (6) can be rewritten as

2

g
=

1

V

∑
k

1

Ek
=

2

g
Snn. (16)

Eq. (16) is the so-called gap equation in the context of the large-N model [75]. A crucial
observation is that the correlator (12) exhibits a singularity for k = 0. This zero mode
will play a crucial role in the behaviour of the entanglement gap.

In two dimensions at zero temperature the QSM exhibits a second-order phase transi-
tion at a critical value gc. The value of gc is known analytically as

gc =
π4

2
K−4

(
1/2− 1/

√
2
)
' 9.67826. (17)

For g < gc the QSM exhibits a magnetically ordered phase, which is the focus of this
work. At g > gc the ground state is paramagnetic. Different phases are associated with
different behaviour of the spherical parameter µ. In the paramagnetic phase one has that
µ is finite nonzero. On the other hand, µ = 0 at critical point, and in the ordered phase.
The different phases of the model correspond to different finite-size scaling behaviours of
µ. In the paramagnetic phase one has µ = O(1). At the critical point one can show that
µ = O(1/L2). In the ordered phase µ = O(1/L4). The critical behaviour at gc is in the
universality class of the three-dimensional N -vector model [53] at large N .

3 Spin and momentum correlators

Here we summarise the finite-size scaling of the spin-spin correlation function Snm (cf. (12))
and the momentum correlation function Pnm (cf. (13)). Let us focus first on the spin cor-
relator. We are interested in the limit L → ∞. We can decompose the correlator as

Snm = S(th)
nm + S(L)

nm + . . . (18)
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Figure 2: Spherical parameter µ at the critical point at gc ' 9.67 and in the ordered
phase at g = 3. Symbols are exact numerical results. The lines are analytical results in
the large L limit.

The first term is the leading term in the large L limit. Note that the first term depends
on L because µ depends on L. The second term in (18) is the first subleading correc-
tion in powers of 1/L. The dots denote more subleading terms that we neglect. The
thermodynamic contribution is given as

S(th)
nm =

√
gc

2
√

2(2π)2

∫
dk
eik(n−m)

√
µ+ ωk

, (19)

The finite-size part has the surprisingly simple form [64] as

S(L)
nm =

√
g

4π

∞∑′

l,l′=−∞

e−
√

2µFll′ (n,m)

Fll′(n,m)
. (20)

Here we defined

Fll′(n,m) =
√

(lL+ nx −mx)2 + (l′L+ ny −my)2. (21)

The prime in the sum means that one has to remove the term with (l, l′) = (0, 0). Eq. (20)
holds in the limit L → ∞ and µ → 0, i.e., for g ≤ gc. The correlators Snm depend only
on nx − mx and ny − my, reflecting translation invariance. Moreover, the infinite sums
in l, l′ enforces that Snm is periodic along the two directions, i.e., it is invariant under

ny −my → ny −my ± L and nx −mx → nx −mx ± L. Interestingly, S(L)
nm is singular if

either ωy = 1 or ωx = 1 (see Fig. 1 (a)), whereas no singularity occurs for ωx < 1 and
ωy < 1, i.e, in the presence of a bipartition with a corner (see Fig. 1 (b)). Let us consider
the case ωy = 1. Now the terms with l = 0 and l′ = ±1 in (20) are singular in the limit
nx−mx → 0 and ny−my → ±1. Terms with |l′| > 1 or |l| > 1 in (20) are not singular, and
do not affect the singularity structure of Snm. These singularity will play an important
role in section 5.

Similar to (18), we can decompose the momentum correlator as

Pnm = P(th)
nm + P(L)

nm + . . . (22)
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Here we defined

P(th)
nm =

1

4
√

2gπ2

∫ π

−π
dkeik(n−m)√µ+ ωk. (23)

The finite-size part P(L)
nm has the same structure as (20), and it reads as

P(L)
nm = − 1

4π
√
g

∞∑′

l,l′=−∞
e−
√

2µFll′ (n,m)
[ 1

F 3
ll′(n,m)

+

√
2µ

F 2
ll′(n,m)

]
, (24)

with Fll′(n,m) as defined in (21). Eq. (23) and Eq. (24) are obtained from Eq. (19) and
Eq. (20) by using (15). As for Eq. (20), the finite-size term (24) is singular if subsystem
A spans the full lattice in one of the two directions, i.e., if ωy = 1 or ωy = 1 (see Fig. 1).
For ωy = 1 the singularity occurs for l = 0 and l′ = ±1 in the limit nx − mx → 0 and
ny −my → ±1. Finally, the first term has a stronger singularity than the second one.

3.1 Spherical parameter

Let us discuss the finite-size scaling of the spherical constraint µ (cf. (16)) in the ordered
phase of the QSM. For g ≤ gc the spherical parameter vanishes in the thermodynamic
limit. At the critical point one has the behaviour [64] µ ∝ γ2

2/(2L
2), with γ2 a universal

constant. To derive the behaviour of µ in the ordered phase we use Eq. (12) in the gap
equation (16). We obtain

1
√
g

=
1

2
√

2(2π)2

∫
dk
√
ωk
−
√
µ

2
√

2π
+

1

4πL

∞∑′

l,l′=−∞

e−
√

2µL
√
l2+l′2

√
l2 + l′2

(25)

As it clear from the exponent in the last term in (25) the scaling as µ ∝ 1/L2 at criticality
implies that terms with large l, l′ are exponentially suppressed. On the other hand, for
µ ∝ 1/L4 this is not the case because the term in the exponent in (25) is O(1/L). First,
we anticipate that the second term in (25) is O(1/L2), and it is subleading. To extract the
leading behaviour of µ we use the very elegant identity involving the function K(σ, d, y)
defined as [76]

K(σ, d, y) =
∑′

l(d)

Kσ(2y|l|)
(y|l|)σ

, |l| = (l21 + l22 + · · ·+ l2d)
1
2 . (26)

Here the sum is over the d-dimensional vector of integers li ∈ (−∞,∞), Kσ(z) is the
modified Bessel function of the second kind, and y > 0 and σ are real parameters. We are
interested in the case d = 2 and σ = 1/2 (cf. (25)). One can show that [76]

K =
1

2
π

d
2 Γ
(d

2
− σ

)
y−d +

1

2
π2σ− d

2C(σ, d)y−2σ − 1

2
Γ(−σ)

+
1

2
π2σ− d

2 Γ
(d

2
− σ

)
y−2σ

∑′

l(d)

[(
|l|2 +

y2

π2

)σ− d
2 − |l|2σ−d

]
. (27)

The constant C(σ, d) for d = 2 reads as

C(σ, 2) = 4Γ(1− σ)ζ(1− σ)β(1− σ), (28)

where ζ(x) is the Riemann zeta function, and β(x) is the analytic continuation of the
Dirichlet series

β(x) =

∞∑
l=0

(−1)l

(2l + 1)x
. (29)
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To apply (27) we fix y =
√
µ/2L. In the limit µ→ 0 the leading behaviour of K is given

by the first term on the right hand side in (27). After using that in (25) we obtain

1
√
g

=
1

8π2
√

2

∫
dk
√
ωk

+
1

2
√

2µL2
. (30)

In (30) we are neglecting vanishing terms in the limit L → ∞. The second term in (30)
is also simply obtained by isolating the term with k = 0, i.e., the zero mode, in the sum
in (16). It is now clear that we can parametrize µ as

µ =
γ2

4

L4
. (31)

After substituting in (30), we obtain that

γ4 =
[2
√

2
√
g
− 1

4π2

∫
dk
√
ωk

]−1
(32)

Note that the constant γ4 is not universal, as it is clear from the explicit dependence
on g. This is expected, and it is in contrast with the result at the critical point, where
µ = γ2

2/(2L
2), with γ2 universal.

4 Entanglement gap in the QSM

Here we briefly review how to calculate the entanglement gap in the QSM. Entanglement
properties of the QSM are derived from the two-point correlation functions (12) and (13)
because the model can be mapped to free bosons (see Ref. [7] for a review). We first define
the correlation matrix C restricted to subsystem A as

CA = SA · PA, (33)

with SA and PA defined in (12) and (13), with n,m ∈ A. Since the QSM is mapped to
free-bosons, the reduced density matrix of a subsystem A is a quadratic operator, and it
is written as [7]

ρA = Z−1e−HA , HA =
∑
k

εkb
†
kbk. (34)

Here HA is the so-called entanglement hamiltonian, εk are single-particle entanglement
spectrum levels, and bk are free-bosonic operators. Z is a normalization factor. The
eigenvalues ek of CA are obtained from the εk as

√
ek =

1

2
coth

(εk
2

)
. (35)

The entanglement spectrum, i.e., the spectrum of HA is obtained by filling in all the
possible ways the single-particle levels εk. The lowest ES level is the vacuum state. Thus,
the lowest entanglement gap δξ (Schmidt gap) is

δξ = ε1, (36)

with ε1 the smallest single-particle ES level, or equivalently, the largest e1 (cf. Eq. (35)).
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5 Scaling of the entanglement gap in the ordered phase of
the QSM

In this section we investigate the scaling of the entanglement gap for g < gc, i.e., in the
ordered phase of the QSM. First, it has been numerically observed in Ref. [64] that for
g < gc, in the limit L→∞ the flat vector |1〉 defined as

|1〉 =
1√
|A|

(1, 1, . . . , 1), (37)

with |A| = `x`y, is the right eigenvector of CA corresponding to the largest eigenvalue e1,
i.e., the zero-mode eigenvector. Moreover, |1〉 is also eigenvector of the matrix SA. It is
interesting to investigate the structure of the associated eigenvalue. This is calculated as

〈1|S|1〉 =
1

|A|
∑

n,m∈A
Snm. (38)

After using (18), it is straightforward to numerically check that the thermodynamic part
of the correlator S(th) for large L gives a subleading term as L ln(L) in (38) (see section 6).
The leading contribution is given by the finite-size part of the correlator S(L), and it is
O(L2). An important observation is that due to the scaling as µ = γ2

4/L
4, the dependence

on the coordinates n,m in (20) can be neglected. Thus, a straightforward calculation
yields

〈1|S|1〉 =

√
gωxωyL

2

2
√

2γ4

. (39)

One should observe that Eq. (39) is exactly the contribution of k = 0 in the sum in (12).
Physically, this means that in the ordered phase of the QSM for g < gc the leading
behaviour of the eigenvalue of SA associated with the flat vecto is simply obtained by
isolating the term with k = 0 in (12). This happens because of the “fast” decay as
µ ∝ 1/L4. This is not the case at the critical point [64], where µ ∝ 1/L2. Moreover, this
result suggests that one can decompose the correlator S as

S = s0|1〉〈1|+ . . . , with s0 = 〈1|S|1〉. (40)

Here s0 ∝ L2, and the dots are subleading terms that we neglect. By using (40) and the
fact that P is finite in the limit L→∞, it is straightforward to show that the eigenvalue
e1 of CA = PA · SA in the limit L→∞ is given as (see [77] and [64])

e1 = 〈1|S|1〉〈1|P|1〉. (41)

Here we have

〈1|P|1〉 =
1

|A|
∑

n,m∈A
Pnm. (42)

To proceed we now show that the expectation value 〈1|P|1〉 decays as ln(L)/L, i.e., with
a multiplicative logarithmic correction. Note that the same scaling behaviour is observed
at the critical point [64]. The derivation requires minimal modifications as compared with
the critical case, and it is reported in A. The main ingredients are standard tools in the
finite-size scaling theory, such as Poisson’s summation formula and the Euler-Maclaurin
formula.

Let us discuss the final result. Clearly, we can treat the contribution of the thermody-
namic part (cf. (23)) and the finite-size part (cf. (24)) separately. Similar to what happens
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at the critical point [64], the finite-size part contributes only if the boundary between the
two subsystems is straight. For simplicity we consider the bipartition with ωx = 1/p and
ωy = 1/q, with p, q ∈ N. Note that for ωy < 1 the boundary between the two subsys-
tems is not straight, i.e., it has square corner. One obtains the generic thermodynamic
contribution as

〈1|P(th)|1〉 =

p−1∑
p′=0

q−1∑
q′=0

∫ 1/p

0
dkx

∫ 1/q

0
dky sin2(π(kx + p′/p)) sin2(π(ky + q′/q))ηp′,q′(kx, ky). (43)

The function ηp′,q′(kx, ky) reads as

ηp′,q′(kx, ky) =
4

π3√g

[ q

(kx + p′/p)2
+

p

(ky + q′/q)2
+ pψ′(1 + ky + q′/q)

+
q

1 + kx + p′/p
+

q

2(1 + kx + p′/p)2

q

6(1 + kx + p′/p)3
+ . . .

] ln(L)

L
. (44)

The dots in the brackets denote terms with higher powers of 1/(kx + p′/p). These can
be derived systematically by using the Euler-Maclaurin formula. The function ψ′(x) is
the first derivative of the digamma function ψ(x) with respect to x. The behaviour as
ln(L)/L is clearly visible in (44). Similar to the critical point [64], ηp′,q′ is determined by
the low-energy part of the dispersion of the QSM. Finally, let us consider the finite-size
contribution (24). From (24) it is clear that the finite-size correlator is regular for ωy < 1
and ωx < 1, whereas it exhibits a singularity for ωy = 1 or ωx = 1, i.e., for the case of
straight boundary (see Fig 1 (b)). For the straight boundary this gives a contribution as
ln(L)/L, whereas it can be neglected if a corner is present. Again, this is exactly the same
at the critical point [64]. The derivation of the singular contribution, which is present only
for straight boundary, is reported in A.2. The final result reads

〈1|P(L)|1〉 = − 1
√
gπ

ln(L)

L
. (45)

The minus sign in (45) implies that the presence of corners increases the prefactor of the
logarithmic growth of e1. After putting together Eq. (41), Eq. (39), Eq. (43) and Eq. (45),
one obtains that

e1 = Ω′L ln(L), (46)

where the constant Ω′ encodes information about the geometry of the bipartition and the
model dispersion. In Eq. (46) we neglect subleading terms in the limit L→∞. From (46),
after using (35) one obtains that

δξ =
Ω√

L ln(L)
, with Ω =

1√
Ω′
. (47)

Few comments are in order. First, in the ordered phase δξ vanishes in the thermodynamic
limit as a power law with L, except for a logarithmic correction. This is different at the
critical point, where [64] δξ = π2/ ln(L). The power-law decay of the entanglement gap in
symmetry-broken phases has been also numerically observed in magnetic spin systems [34,
36] and in the ordered phase of the two-dimensional Bose Hubbard model [31]. Note,
however, that even with state-of-the-art numerical methods it is challenging to observe
the logarithmic correction. Finally, in Ref. [29] it has been suggested that in the presence
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Figure 3: Flat-vector expectation value 〈1|S|1〉 of the spin-spin correlator in the ordered
phase of the QSM. The behaviour as 〈1|S|1〉 ∝ L2 is clearly visible. The dashed-dotted
lines are the theory predictions (39). We show results for different aspect ratios ωy, ωx (see
Fig. 1) and quantum coupling g. The inset show the contribution of the thermodynamic
part of the correlator S(th) (cf. (18)) for g = 5. The behaviour as 〈1|S(th)|1〉 ∝ L ln(L) is
clearly visible.

of continuous symmetry breaking the gaps in the lower part of the entanglement spectrum
are

δξ ∝ (L ln(L))−1. (48)

This different from (47) (note the square root in (47)). The unexpected square root in
Eq. (47) could be explained by the way in which in the QSM the spherical constraint
is enforced (cf. (16)). Further study would be needed to clarify this issue. Finally, it is
interesting to understand the behaviour of δξ as the critical point is approached from the
ordered side of the transition. A natural scenario is that upon approaching the transition
the 1/

√
L is “gapped” out and it gives an extra 1/

√
ln(L), which allows to recover the

expected result [64] δξ ∝ 1/ ln(L).

6 Numerical results

In this section we provide numerical evidence supporting the analytic result derived in
section 5. Let us start discussing the finite-size scaling of the expectation value 〈1|S|1〉.
We report numerical data in Fig. 5, for fixed g = 3 (circles) and g = 5 (squares). We only
show data for the bipartition with straight boundary ωy = 1

(see Figure 1 (a)) and for ωx = 1/2. The expected behaviour as 〈1|S|1〉 ∝ L2 is visible.
The dashed-dotted line in the figure is the analytic result in Eq. (39), which is in perfect
agreement with the numerical data. Again, we should stress that Eq. (39) originates
only from the finite-size part S(L) (cf. (18)). However, it is interesting to investigate the
finite-size scaling of the flat-vector expectation value calculated using the thermodynamic
contribution S(th). We report this analysis in the inset of Fig. 5 plotting 〈1|S(th)|1〉/L
versus L. Data are for g = 5. Interestingly, the figure shows that 〈1|S(th)|1〉 ∝ L ln(L).
This confirms that at the leading order in L the expectation value 〈1|S|1〉 is dominated by
the contribution of the zero mode. Finally, we should mention that it would be interesting

10
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Figure 4: Rescaled flat-vector expctation value 〈1|P|1〉L of the momentum operator in the
ordered phase of the QSM. We show data for several bipartitions with aspect ratios ωx, ωy
(see Fig. 1). For ωy < 1 the boundary between the two subsystems is not smooth (see
Fig. 1 (b)). Symbols are exact numerical results. The dashed-dotted lines are analytic
predictions from (43) and (45).

to clarify the origin of the logarithmic divergence of the thermodynamic contribution.
Let us now discuss the flat-vector expectation value of the momentum correlator

〈1|P|1〉. In contrast with the spin correlator, both the thermodynamic and the finite-
size part (cf. (22)) contribute to the leading behaviour at large L. Our numerical data are
reported in Fig. 6. In the figure we plot 〈1|P|1〉L versus L. We show data for ωx = 1/2,
ωy = 1 and ωy = 1/2. Note that for ωy = 1 the boundary between A and its complement
is straight. The numerical data in Fig. 6 confirm the expected behaviour as ln(L)/L in
Eq. (43) and Eq. (45). For ωy = 1 the prefactor of the logarithm is obtained by summing
Eq. (43) and Eq. (45), whereas in the presence of a square corner only Eq. (43) has to
be considered. Finally, we discuss the largest eigenvalue e1 of the restricted correlation
matrix CA (cf. (33)). The entanglement gap δξ is obtained from e1 via Eq. (35). Note
that the vanishing of δξ is reflected in a diverging e1. We show numerical data for e1/L in
Fig. 6 plotted versus L. We consider several aspect ratios ωx and ωy, focusing on g = 5.
In all the cases the data exhibit the behaviour e1 = Ω′L ln(L). The constant Ω′, which
depends on the geometry and on low-energy properties of the QSM is obtained by com-
bining Eq. (41) with Eq. (39) (43) (45). The analytic predictions are reported in Fig. 6 as
dashed-dotted lines and are in perfect agreement with the numerical data. This implies
that the entanglement gap δξ satisfies (47).

7 Conclusions

We investigated the entanglement gap in the magnetically ordered phase of the two-
dimensional QSM. Our main result is that the entanglement gap decays as δξ = Ω/

√
L ln(L).

We analytically determined the constant Ω, which depends on the geometry of the bipar-
tition and on the low-energy physics of the model.

There are several intriguing directions for future work. First, it would be interesting
to explore whether is possible to extend our results to the N -vector model at finite N .
An interesting question is whether the discrepancy with the results of Ref. [29] can be

11
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Figure 5: Largest eigenvalue e1 of the correlation matrix C restricted to A. We plot e1/L
versus L. Note the logarithmic scale on the x-axis. Symbols are exact numerical data.
The dashed-dotted lines are analytic predictions. Note that for ωy the boundary between
the two subsystems has a corner (see Fig. 1 (b)).

attributed to the large N limit. Furthermore, it is important to understand how the scaling
of the entanglement gap depends on dimensionality. This issue could be easily addressed
because the QSM is exactly solvable in any dimension. Another intriguing direction is to
further investigate the role of corners. For instance, it would be interesting to investigate
the dependence of the entanglement gap on the corner angle. It would be also interesting
to investigate how the outlined scenario is affected by long-range interactions. This should
be straightforward because the QSM is exactly solvable also in the presence of long-range
interactions. An exciting possibility is to investigate what happens to the entanglement
gap in the presence of disorder [78–81]. Finally, a very interesting direction is to study δξ
after a quantum quench. This could be addressed using the results of Ref. [82].
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A Derivation of the expectation value 〈1|P|1〉

In this appendix we derive the large L behaviour of the expectation value of the mo-
mentum correlator with the flat vector 〈1|P|1〉 (cf. (42)). We consider the leading, i.e,
the thermodynamic limit, as well as the first subleading contributions. The main goal is
to show that the expectation value exhibits a multiplicative logarithmic correction. Two
types of contributions are present. One originates from the thermodynamic limit of the
correlator, whereas the second one is due to the first subleading. The latter is present only
for straight boundary between the two subsystems (see Fig. 1).
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A.1 Thermodynamic contribution

Here derive the thermodynamic contribution, which is given as 〈1|P(th)|1〉. Here |1〉 is the
flat vector in region A, i.e,

|1〉 =
1√
|A|

(1, 1, . . . , 1), |A| = `x`y. (49)

The momentum correlation reads

P(th)
nm =

1

4
√

2gπ2

∫ π

−π
dkeik(n−m)√µ+ ωk. (50)

After performing the sum over n and m in (50), and after changing variables to k′x =
Lωxkx/π and k′y = Lωyky/π, we obtain

〈1|P(th)|1〉 =
2
√

2
√
gL4ω2

xω
2
y

∫ Lωx/2

0
dkx

∫ Lωy/2

0
dky

sin2(πkx) sin2(πky)

sin2
(

π
Lωx

kx
)

sin2
(

π
Lωy

ky
)

×
[
µ+ 2− cos

( 2π

Lωx
kx
)
− cos

( 2π

Lωy
ky
)] 1

2
. (51)

To extract the large L behaviour of (51) it is useful to split the integration domains
[0, Lωx/2] and [0, Lωy/2] to write

〈1|P(th)|1〉 =
2
√

2
√
gL4ω2

xω
2
y

L/2−1∑
lx=0

L/2−1∑
ly=0

∫ (lx+1)ωx

lxωx

dkx

∫ (ly+1)ωy

lyωy

dky

× sin2(πkx) sin2(πky)

sin2
(

π
Lωx

kx
)

sin2
(

π
Lωy

ky
)[µ+ 2− cos

( 2π

Lωx
kx
)
− cos

( 2π

Lωy
ky
)] 1

2
. (52)

We now restrict ourselves to the case with ωx = 1/p and ωy = 1/q, with p, q positive
integers. After a simple shift of the integration variables as kx → kx − lxωx and ky →
ky − lyωy, one obtains

〈1|P(th)|1〉 =
2
√

2p2q2

√
gL4

p−1∑
p′=0

q−1∑
q′=0

L/(2p)−1∑
lx=0

L/(2q)−1∑
ly=0

∫ 1/p

0
dkx

∫ 1/q

0
dky

× sin2(π(kx + lx + p′/p)) sin2(π(ky + ly + q′/q))

sin2
(pπ
L (kx + lx + p′/p)

)
sin2

( qπ
L (ky + ly + q′/q)

)
×
[
µ+ 2− cos

(2pπ

L
(kx + lx + p′/p)

)
− cos

(2qπ

L
(ky + ly + q′/q)

)] 1
2
. (53)

We now focus on the behaviour at g < gc. We set µ = γ4/L
4 (cf. (31)), and we expand (53)

in the limit L→∞. This gives

〈1|P(th)|1〉 =

4
√
gπ3L

p−1∑
p′=0

q−1∑
q′=0

L/(2p)−1∑
lx=0

L/(2q)−1∑
ly=0

∫ 1/p

0
dkx

∫ 1/q

0
dky

sin2(π(kx + p′/p)) sin2(π(ky + q′/q))

(kx + lx + p′/p)2(ky + ly + q′/q)2

×
[ γ4

2π2L2
+ p2(kx + lx + p′/p)2 + q2(ky + ly + q′/q)2

] 1
2
. (54)
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Here we used the periodicity of the trigonometric functions. The term γ4/L
2 can be

neglected for L→∞. Importantly, as a result of the large L limit, Eq. (54) depends only
on the low-energy part of the dispersion of the QSM, although it contains non-universal
information. We now have to determine the asymptotic behaviour of the sum over lx, ly
in (54), i.e., of the function ηp′,q′(kx, ky) defined as

ηp′,q′(kx, ky) =
4

√
gπ3L

L/(2p)−1∑
lx=0

L/(2q)−1∑
ly=0

[p2(kx + lx + p′/p)2 + q2(ky + ly + q′/q)2]
1
2

(kx + lx + p′/p)2(ky + ly + q′/q)2
. (55)

The asymptotic behaviour of η in the limit L → ∞ can be obtained by using the Euler-
Maclaurin formula. Given a function f(x) this is stated as

x2∑
x=x1

f(x) =

∫ x2

x1

f(x)dx+
f(x1) + f(x2)

2
+

1

6

f ′(x2)− f ′(x1)

2!
+ . . . (56)

In (56) the dots denote terms with higher derivatives of f(x) calculated at the integration
boundaries x1 and x2. These can be derived to arbitrary order. To proceed, we first isolate
the term with either lx = 0 or ly = 0 in (55). The remaining sum after fixing lx = 0 or
ly = 0 can be treated with (56). We define this contribution to the large L behaviour of
ηp′,q′ as η0, which is given as

η0 =
4
√
gπ3

[ q

(kx + p′/p)2
+

p

(ky + q′/q)2

] ln(L)

L
. (57)

In the derivation of (57) we neglected the boundary terms in (56) because they are sub-
leading.

We are now left with the sums over lx ∈ [1, L/(2p)] and ly ∈ [1, L/(2q)] in (55). These
be calculated again by using (56). We first apply (56) to the sum over lx. We have two
contributions. The first one is obtained after evaluating the integral in (56) at x2 = L/(2p).
After expanding the result for L→∞, we obtain the contribution η1 given as

η1 =

L/(2q)∑
ly=1

4p
√
gπ3(ky + ly + q′/q)2

ln(L)

L
. (58)

Note the term ln(L)/L in (58). The sum over ly in (58) can be performed exactly to obtain
in the large L limit

η1 =
4
√
gπ3

pψ′(1 + ky + q′/q)
ln(L)

L
. (59)

Here ψ′(z) is the first derivative of the digamma function ψ(z) with respect to its argument.
The second contribution is obtained by evaluating the integral in (56) at x1 = 1. The
remaining sum over ly cannot be evaluated analytically. However, one can, again, treat the
sum over ly with (56). After neglecting the boundary terms in (56), which are subleading
for large L, and after evaluating the integral in (56) at x2 = L/(2q), we obtain the
contribution η2 as

η2 =
4
√
gπ3

q

1 + kx + p′/p

ln(L)

L
. (60)

Having discussed the contribution which derives from approximating the sum over lx
in (55) with the integral in (56), we finally focus on effect of the boundary terms in (56).
Let us consider the first boundary term (first term in the second row in (56)). A term
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as ln(L)/L is obtained by fixing lx = 1, other contributions being subleading. After
performing the sum over ly one obtains the first boundary contribution ηb1 as

ηb1 =
2
√
gπ3

q

(1 + kx + p′/p)2

ln(L)

L
. (61)

Similarly, the second boundary term (last term in (56)) gives

ηb2 =
2

3
√
gπ3

q

(1 + kx + p′/p)3

ln(L)

L
. (62)

Note that boundary terms in (56) are expected to be small. Specifically, the k-th term
is suppressed as 1/(k + 1)!. The final result for η(kx, ky, p, p

′, q, q′) is obtained by putting
together (57)(59) (60)(61)(62) to obtain

ηp′,q′(kx, ky) = η0 + η1 + η2 + ηb1 + ηb2. (63)

A.2 Finite-size contribution

In this section we derive the leading behaviour in the large L limit of 〈1|P(L)|1〉. Interest-
ingly, we show that in the presence of a straight boundary between the two subsystems (see
Fig. 1) one has the behaviour 〈1|P(L)|1〉 ∝ ln(L)/L. On the other hand, in the presence of
corners the multiplicative logarithmic correction is absent. The finite-size correlator reads
as (cf. (24))

P(L)
nm = − 1

4
√
gπ

∞∑′

l,l′=−∞
e−
√

2µ
√

(lL+nx−mx)2+(l′L+ny−my)2

×
[ 1

[(lL+ nx −mx)2 + (l′L+ ny −my)2]3/2
+

√
2µ

(lL+ nx −mx)2 + (l′L+ ny −my)2

]
.

(64)

Crucially, if ωx < 1 and ωy < 1, the denominators in (64) are never singular. This
implies that the logarithmic correction is not present, which can be straightforwardly
checked numerically. Let us now consider the situation with ωx < 1 and ωy = 1. Now, a
singularity appears in the limit L → ∞ for l = 0 and l′ = ±1. We numerically observe
that only the first term in (64) gives rise to a singular behaviour. Thus, we neglect the
second term and fix l = 0, obtaining

〈1|P(L)|1〉 = − 1

4
√
gπL2ωx

∞∑′

l′=−∞

Lωx∑
nx,mx=0

L−1∑
ny ,my=0

e−
√

2µ
√

(nx−mx)2+(l′L+ny−my)2

((nx −mx)2 + (l′L+ ny −my)2)3/2

(65)

Only the differences nx−mx and ny−my appear in (65). Thus, it is convenient to change
variables to x = nx −mx and y = ny −my, to obtain

〈1|P(L)|1〉 = − 1

4
√
gπL2ωx

∞∑′

l′=−∞

Lωx∑
x=−Lωx

L−1∑
y=−(L−1)(

Lωx + 1− |x|
)

(L− |y|) e
−
√

2µ
√
x2+(l′L+y)2

(x2 + (l′L+ y)2)3/2
. (66)
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Again, the singular behaviour occurs for x ≈ 0 and y ≈ −lL, with l′ = ±1. In this limit
we can neglect the exponential in (67) because it is regular. Thus, we obtain

〈1|P(L)|1〉 = − 1

4
√
gπL2ωx

∞∑′

l′=−∞

Lωx∑
x=−Lωx

L−1∑
y=−(L−1)

(Lωx + 1− |x|)(L− |y|)
(x2 + (l′L+ y)2)3/2

. (67)

To proceed, let us now consider the case with l = 1. It is clear that the contribution
from l = −1 is the same. We can restrict the sum over x in (67) to x > 0 because of the
symmetry x → −x. We also restrict to y < 0 because the singularity in (67) occurs for
y < 0. We now have

〈1|P(L)|1〉 =
1

2
√
gπL2ωx

Lωx∑
x=0

L−1∑
y=0

(Lωx + 1− x)(y − L)

(x2 + (L− y)2)3/2
. (68)

Now the strategy is to treat the sum (68) by using the Euler-Maclaurin formula (56). For
instance, one can first apply (56) to the sum over x. One obtains that the leading term in
the large L limit is obtained by evaluating the integral in (56) at ωxL. One can also verify
that the boundary terms in (56) can be neglected. A straightforward calculation gives

〈1|P(L)|1〉 = − 1
√
gπ

ln(L)

L
, (69)

where the contribution of l = −1 in (67) has been taken into account.
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[11] A. M. Läuchli, E. J. Bergholtz, J. Suorsa and M. Haque, Disentangling entanglement
spectra of fractional quantum hall states on torus geometries, Phys. Rev. Lett. 104,
156404 (2010), doi:10.1103/PhysRevLett.104.156404.

[12] M. Haque, O. Zozulya and K. Schoutens, Entanglement entropy in fermionic laughlin
states, Phys. Rev. Lett. 98, 060401 (2007), doi:10.1103/PhysRevLett.98.060401.

[13] R. Thomale, A. Sterdyniak, N. Regnault and B. A. Bernevig, Entanglement gap
and a new principle of adiabatic continuity, Phys. Rev. Lett. 104, 180502 (2010),
doi:10.1103/PhysRevLett.104.180502.

[14] M. Hermanns, A. Chandran, N. Regnault and B. A. Bernevig, Haldane statistics in
the finite-size entanglement spectra of 1/m fractional quantum hall states, Phys. Rev.
B 84, 121309(R) (2011), doi:10.1103/PhysRevB.84.121309.

[15] A. Chandran, M. Hermanns, N. Regnault and B. A. Bernevig, Bulk-edge
correspondence in entanglement spectra, Phys. Rev. B 84, 205136 (2011),
doi:10.1103/PhysRevB.84.205136.

[16] X.-L. Qi, H. Katsura and A. W. W. Ludwig, General relationship between the entan-
glement spectrum and the edge state spectrum of topological quantum states, Phys.
Rev. Lett. 108, 196402 (2012), doi:10.1103/PhysRevLett.108.196402.

[17] Z. Liu, E. J. Bergholtz, H. Fan and A. M. Läuchli, Edge-mode combinations in the
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