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Abstract1

We study the spreading of entanglement produced by the time evolution of a2

local fermionic excitation created above the ground state of the XXZ chain.3

The resulting entropy profiles are investigated via density-matrix renormaliza-4

tion group calculations, and compared to a quasiparticle ansatz. In particular,5

we assume that the entanglement is dominantly carried by spinon excitations6

traveling at different velocities, and the entropy profile is reproduced by a7

probabilistic expression involving the density fraction of the spinons reach-8

ing the subsystem. The ansatz works well in the gapless phase for moderate9

values of the XXZ anisotropy, eventually deteriorating as other types of quasi-10

particle excitations gain spectral weight. Furthermore, if the initial state is11

excited by a local Majorana fermion, we observe a nontrivial rescaling of the12

entropy profiles. This effect is further investigated in a conformal field theory13

framework, carrying out calculations for the Luttinger liquid theory. Finally,14

we also consider excitations creating an antiferromagnetic domain wall in the15

gapped phase of the chain, and find again a modified quasiparticle ansatz with16

a multiplicative factor.17
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1 Introduction36

The non-equilibrium dynamics of integrable models has developed into a vast field of37

research [1]. Among the numerous aspects, the understanding of local relaxation and38

equilibration in closed quantum systems has become a central topic of investigation [2,3].39

In this respect, integrable systems show a rather peculiar behaviour, as the dynamics40

is characterized by the existence of stable quasiparticle excitations. This is intimately41

related to the extensive number of nontrivial conservation laws, which nevertheless allow42

for a local relaxation in a generalized sense [4].43

Starting from the early studies of this topic, it was identified that the spreading of44

entanglement must play a key role in our understanding of integrable dynamics. Ground45

states of homogeneous, local Hamiltonians have a low amount of entanglement, typically46

satisfying an area law [5]. However, considering the time evolution with respect to a differ-47

ent Hamiltonian as in the context of a global quantum quench [6], the rapid linear growth48

of entanglement was attributed to the ballistic propagation of entangled quasiparticle49

pairs [7]. These quasiparticles transmit entanglement over large distances, contributing to50

the buildup of an extensive entropy within any given subsystem, which signals the onset51

of some local thermalization. Specifically, in one-dimensional integrable chains it has been52

verified that the entanglement entropy accumulated in a subsystem actually plays the role53

of the thermal entropy as described by the generalized Gibbs ensemble [8–10].54

The global quench is the simplest representative of an initial state that has an extensive55

amount of energy above the ground state of the Hamiltonian governing the dynamics, thus56

acting as a reservoir of quasiparticle excitations. The interpretation, however, becomes57

more complicated if the initial state lies in the low-energy regime. A particular example58

is the local quench, where the final Hamiltonian is disturbed only locally with respect59

to the initial one, such as joining two initially separated quantum chains. At criticality,60

the entanglement spreading can be captured via conformal field theory (CFT) [11–13],61

predicting a slow logarithmic growth of the entropy, which was indeed observed in free-62

fermion chains [14]. However, despite signatures of the underlying quasiparticle dynamics,63

such as a light-cone spreading with the maximal group velocity, it is unclear how the64

individual quasiparticles contribute to the entropy.65

Yet another situation that has been studied intensively within CFT is the so-called local66

operator excitation [15–17]. Here the low-energy initial state is excited from the vacuum67

of the CFT by the insertion of a local primary operator, while the Hamiltonian is left68

untouched. The disturbance has then a linear propagation, increasing the entanglement69

of a segment only while passing through it, with a constant excess entropy determined70

by the quantum dimension of the local primary [15–17]. The calculations have been71

extended in various directions, considering fermionic [18] or descendant fields [19, 20],72

multiple excitations [21], as well as the effects of finite temperatures [22] or boundaries [23].73

Despite this increased attention, there have been much less studies on entanglement74

spreading after local excitations in integrable quantum chains. The CFT predictions have75

been tested on the critical transverse Ising [24] and XX chains [25], for various local76

operators that are lattice analogs of primary or descendant fields. On the other hand,77

entanglement spreading has also been considered in the non-critical ordered phase of the78
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Ising [26] and XY chains [27,28], starting from a domain-wall initial state excited by a local79

Majorana operator. Remarkably, the emerging profile of the excess entropy was shown to80

be captured by a simple probabilistic quasiparticle ansatz [28]. Indeed, taking into account81

the dispersive spreading of quasiparticles, only a certain fraction of the initially localized82

excitation will cross the subsystem boundary located at a certain distance. Interpreting83

this quasiparticle fraction as the probability of finding the excitation within the subsystem,84

the excess entropy is simply given by a binary expression [28].85

Here we aim to extend the quasiparticle description of entanglement spreading to lo-86

cal fermionic excitations in the XXZ chain. Being a Bethe ansatz integrable interacting87

model [29, 30], its quasiparticle content is much more complex than in the free-fermion88

systems considered so far. Nevertheless, since our local excitations probe the low-energy89

physics, it seems reasonable that the dominant weight is carried by low-lying spinon ex-90

citations, which we shall assume to build our quasiparticle ansatz. Compared against91

the profiles of the excess entropy, as obtained from density-matrix renormalization group92

(DMRG) calculations [31–33], we observe a good agreement after a local fermion creation93

for moderate values of the interaction. For larger interactions in the gapless phase, one94

finds deviations that can be attributed to different types of quasiparticles with higher95

energy.96

We also study the profiles after a local Majorana excitation, which seem to be given by97

a simple rescaling of the spinon ansatz. This result is supplemented by CFT calculations98

carried out for the Luttinger liquid theory, which describes the low-energy physics of the99

XXZ chain. We find that, due to the left-right mixing of the chiral bosonic modes, the100

asymptotic excess entropy is doubled for the Majorana excitation, although with a very101

slow convergence towards this value. Finally, in the gapped phase of the chain we study102

the excess entropy profile after a local Majorana operator that excites an antiferromagnetic103

domain wall. Here our numerical results suggest that the spinon ansatz is multiplied by a104

nontrivial factor, related to the ground-state entropy.105

The rest of the manuscript is structured as follows. In section 2 we introduce the106

XXZ chain and discuss its low-lying excitations. Section 3 is devoted to the study of107

entanglement spreading after local excitations in the gapless phase: we first introduce a108

quasiparticle ansatz for the excess entanglement, followed by our numerical studies of a109

fermion creation as well as a Majorana excitation. Our results for the gapless regime are110

complemented by a calculation of the Rényi entropy within a CFT framework in section 4.111

Finally, in section 5 we consider entanglement and magnetization profiles after a domain-112

wall excitation in the gapped regime. Our closing remarks are given in section 6, followed113

by an appendix containing the details of the CFT calculations.114

2 XXZ chain and low-energy excitations115

We consider an XXZ chain of length L with open boundary conditions that is given by116

the Hamiltonian117

H = J

L/2−1∑
j=−L/2+1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjS

z
j+1

)
, (1)

where Sαj = σαj /2 are spin-1/2 operators acting on site j, and ∆ is the anisotropy. The118

energy scale is set by the coupling J which we fix at J = 1. The XXZ Hamiltonian (1)119

conserves the total magnetization Sz in z-direction and we will be interested in its ground120

state in the zero-magnetization sector Sz = 0. Equivalently, the XXZ spin chain can be121
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rewritten in terms of spinless fermions by performing a Jordan-Wigner transformation,122

which brings (1) into the form123

H =

L/2−1∑
j=−L/2+1

[
1

2
(c†jcj+1 + c†j+1cj) + ∆

(
c†jcj −

1

2

)(
c†j+1cj+1 −

1

2

)]
, (2)

where c†j (cj) are fermionic creation (annihilation) operators, satisfying anticommutation124

relations {ci, c†j} = δij . One then has a half-filled fermionic hopping chain with nearest-125

neighbour interactions of strength ∆. For |∆| ≤ 1 the system is in a critical phase with126

gapless excitations above the ground state, whereas a gap opens for |∆| > 1. The case127

∆ = 1 corresponds to the isotropic Heisenberg antiferromagnet.128

In the following we give a short and non-technical introduction to the construction129

of the ground state and low-lying excited states of the XXZ chain. To keep the discus-130

sion simple, we shall rather consider a periodic chain, and focus on the behaviour in the131

thermodynamic limit L → ∞. The exact eigenstates of the XXZ chain can be found132

from Bethe ansatz [29, 30]. These are constructed as a superposition of plane waves, the133

so-called magnons, labeled by their rapidities λi which provide a convenient parametriza-134

tion of the quasimomenta. The allowed values of the rapidities follow from the Bethe135

equations, with real solutions corresponding to spin-wave like states. Complex solutions136

organize themselves into strings and correspond to bound states.137

For |∆| < 1 the half-filled ground state is obtained by occupying all the allowed138

vacancies of the L/2 real rapidities, thus forming a tightly packed Fermi sea. Low-energy139

excitations in the Sz = 1 sector are called spinons and are created by removing a rapidity.140

This creates two holes in the Fermi sea, with all the remaining rapidities moving slightly141

with respect to their ground-state values, and the energy difference can be calculated from142

this back-flow effect. In the thermodynamic limit, the result can be found analytically and143

written directly in terms of the quasimomenta q1 and q2 of the two spinons as [29]144

∆E = εs(q1) + εs(q2) , (3)

where the spinon dispersion relation in the gapless regime with ∆ = cos(γ) is given by145

εs(q) =
π

2

sin(γ)

γ
sin(q) . (4)

Note that spinons are always excited in pairs, with the individual momenta confined to146

0 ≤ q1,2 ≤ π. The total momentum is then given by q1 + q2, and due to the additivity147

of (3) one actually has a band of excitation energies. In particular, the lower edge of the148

two-spinon band is obtained by setting q2 = 0 or q2 = π, and thus simply corresponds to149

shifting the dispersion in (4) for q > π. The group velocity of the spinons can be directly150

obtained from the derivative of the dispersion151

vs(q) =
dεs(q)

dq
=
π

2

sin(γ)

γ
cos(q) . (5)

Further low-energy excitations with Sz = 1 can be created by removing a single rapidity152

from the real axis and placing it onto the Imλ = π axis. The energy of this particle-hole153

excitation can be obtained, similarly to the spinon case, from the back-flow equations of154

the rapidities and yields the dispersion [29]155

εph(q) = π
sin(γ)

γ

∣∣∣sin(q
2

)∣∣∣√1 + cot2

(
π

2

(
π

γ
− 1

))
sin2

(q
2

)
. (6)
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However, in contrast to spinons, particle-hole excitations are not composite objects and156

their momentum range is thus 0 ≤ q < 2π. Note that these spin-wave like excitations157

are only physical for −1 < ∆ < 0, i.e. in case of attractive interactions. For low mo-158

menta q → 0, the dispersion relation Eq. (6) approaches the one for spinons in Eq. (4).159

The group velocities of particle-hole excitations are obtained by taking the derivative of160

εph(q). Interestingly, it was found that the maximum particle-hole velocity can exceed161

the maximum spinon velocity only if the anisotropy satisfies ∆ < ∆∗ ≈ −0.3, which was162

demonstrated in a particular quench protocol [34].163

Finally, we consider the gapped phase where we focus exclusively on the antiferromag-164

netic regime ∆ > 1, with the standard parametrization ∆ = coshφ. For even L the ground165

state has Sz = 0 and is again given by L/2 magnons with real rapidities. However, the166

allowed number of vacancies is now L/2 + 1, which allows to construct a slightly shifted167

Fermi sea. In the Ising limit ∆→∞, this yields an exact twofold degenerate ground state,168

given by the linear combinations of the two Néel states169

|ψ±〉 =
|↑↓↑↓ . . .〉 ± |↓↑↓↑ . . .〉√

2
. (7)

For finite ∆, the two states |ψ±〉 constructed this way are only quasi-degenerate, with an170

energy difference decaying exponentially in the system size L. Considering the thermody-171

namic limit one can write172

|ψ±〉 =
|ψ↑〉 ± |ψ↓〉√

2
, (8)

where |ψ↑〉 and |ψ↓〉 correspond to ground states with spontaneously broken symmetry,173

displaying antiferromagnetic ordering. In fact, the bulk expectation value of the staggered174

magnetization can be calculated analytically as [35,36]175

〈ψ↑|σzj |ψ↑〉 = −〈ψ↓|σzj |ψ↓〉 = (−1)j
∞∏
n=1

tanh2(nφ) . (9)

The low-lying excitations in the gapped phase are given again by spinons, by creating176

two holes in the Fermi sea. The excitation energy is still given by Eq. (3), with the177

dispersion in the gapped phase obtained as [29]178

εs(q) =
sinh(φ)

π
K(u)

√
1− u2 cos2(q) , (10)

where the complete elliptic integral of the first kind reads179

K(u) =

∫ π/2

0

dp√
1− u2 sin2(p)

(11)

and the elliptic modulus u satisfies180

φ = π
K(
√

1− u2)

K(u)
. (12)

The spinon velocity is obtained from the derivative of (10) and reads181

vs(q) =
sinh(φ)

π
K(u)

u2 sin(q) cos(q)√
1− u2 cos2(q)

. (13)
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3 Entanglement dynamics in the gapless phase182

The goal of this section is to study the entanglement dynamics after a particular class of183

excitations. Namely, we first initialize the chain in its gapless ground state |ψ0〉, which184

is then excited by an operator that is strictly local in terms of the creation/annihilation185

operators c†j and cj appearing in the fermionic representation (2) of the XXZ chain. The186

system is then let evolve freely and we are interested in the emerging entanglement pattern187

in the time-evolved state |ψ(t)〉. For a bipartition into a subsystem A and the rest of the188

chain B, this is characterized by the von Neumann entropy189

S(t) = −Tr [ρA(t) ln ρA(t)] , (14)

with the reduced density matrix ρA(t) = TrB ρ(t) and ρ(t) = |ψ(t)〉 〈ψ(t)|. In particular,190

we consider the bipartition A = [−L/2 + 1, r] and B = [r+ 1, L/2] and study the entropy191

profiles192

∆S = S(t)− S(0) (15)

along the chain by varying r, where r = 0 corresponds to the half-chain. Note that by193

subtracting the ground-state entropy S(0), we aim to extract information about the excess194

entanglement created by a local excitation.195

In the following subsections we first introduce an intuitive picture for the description of196

the entanglement spreading in terms of the low-lying quasiparticle excitations introduced197

in Sec. 2. We then proceed to the numerical study of the entanglement profiles after198

exciting the ground state with a fermionic creation operator, and compare the results to199

our quasiparticle ansatz. In the last part we consider an excitation created by a local200

Majorana fermion operator.201

3.1 Entanglement spreading in the quasiparticle picture202

Let us consider an excitation above the ground state of the XXZ chain by acting with a203

fermion creation operator c†j . To capture the dynamics, one would have to first decompose204

the initial local excited state in the eigenbasis of the Hamiltonian. As discussed in the205

previous section, these eigenstates are described by quasiparticles parametrized by their206

rapidities or quasimomenta. The entanglement properties of various eigenstates in the207

XXZ chain were studied before in [37, 38], whereas a systematic CFT treatment of low-208

energy excitations was introduced in [39, 40]. In the framework of free quantum field209

theory, a surprisingly simple result on quasiparticle excitations was recently found in210

[41, 42]. Namely, the excess entanglement measured from the ground state was found to211

be completely independent of the quasiparticle momenta, depending only on the ratio p212

of the subsystem and full chain lengths. Moreover, for quasiparticles described by a single213

momentum, the excess entropy is given by a binary formula ∆S = −p ln p−(1−p) ln(1−p),214

which allows for a simple probabilistic interpretation. Indeed, the ratio p is just the215

probability of finding the quasiparticle within the subsystem.216

Motivated by these results, we now put forward a simple ansatz for the spreading of217

entanglement after the local excitation. Under time evolution, the quasiparticles involved218

in the decomposition of the initial state spread out with their corresponding group ve-219

locities. However, our main assumption is that their contribution to entanglement is still220

independent of the momentum. Furthermore, we shall also assume that the dominant221

part of the entanglement is carried by the lowest-lying spinon modes, and that a spatially222

localized excitation translates to a homogeneous distribution of the momenta in the initial223

state. Under these assumptions we expect that the entanglement profile at time t � 1224
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and distance r � 1 from the excitation, in the space-time scaling limit ζ = r/t fixed, is225

determined exclusively via226

N =

∫ π

0

dq

π
Θ(vs(q)− ζ) , (16)

where Θ(x) is the Heaviside step function and vs(q) is the spinon velocity. In fact, this is227

nothing else but the fraction of the spinon modes with sufficient velocity to arrive at the228

subsystem. The simple probabilistic interpretation of the entanglement then leads to the229

binary entropy formula for the profile230

∆S = −N ln(N )− (1−N ) ln(1−N ) . (17)

In particular, for the gapless case considered here, inserting the expression (5) of the spinon231

velocity into (16), the spinon fraction can immediately be found as232

N =
1

π
arccos

(
ζ

v

)
, (18)

where v = vs(0) denotes the maximal spinon velocity.233

In summary, our simplistic ansatz (17) provides an interpretation of the excess entropy234

based on the dispersive dynamics of the quasiparticle modes, where N is the fraction of235

the initially localized excitation that arrives at the subsystem. In fact, the very same236

ansatz has recently been suggested for the description of entanglement spreading after local237

fermionic excitations in the XY chain, finding an excellent agreement with numerics [28].238

Note, however, that the XY chain is equivalent to a free-fermion model and thus all239

the single-particle modes can exactly be included in N . In contrast, for the interacting240

XXZ chain, restricting ourselves to the spinon modes should necessarily introduce some241

limitations to the quasiparticle ansatz, as demonstrated in the following subsection.242

3.2 Local fermionic excitation243

We continue with the numerical study of the excitation produced by the fermionic creation244

operator c†j . The fermion operators are related to the spin variables via the Jordan-Wigner245

transformation246

c†j =

 j−1∏
l=−L/2+1

σzl

σ+
j , cj =

 j−1∏
l=−L/2+1

σzl

σ−j , (19)

where σαj are the Pauli matrices and σ±j =
(
σxj ± iσ

y
j

)
/2. For simplicity, we shall only247

consider the case where the excitation is created by c†1 in the middle of the chain. The248

time-evolved state after the excitaiton is then given by249

|ψ(t)〉 = N−1/2e−iHtc†1 |ψ0〉 , (20)

where |ψ0〉 is the ground state and the normalization is given by250

N = 〈ψ0| c1c
†
1 |ψ0〉 = 1/2 (21)

as the ground state is half filled. The time evolution is actually implemented via time-251

dependent DMRG (tDMRG) [43,44] in the spin-representation of the XXZ chain, by first252

carrying out the ground-state search and applying the string operator (19) onto the MPS253

representation of |ψ0〉. The calculations were performed using the ITensor C++ library [45]254
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and a truncated weight of 10−9.255

256
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Figure 1: Excess entropy profiles ∆S obtained from tDMRG simulations at different times
(symbols), after the excitation c†1 in a chain of length L = 300. The scaled profiles are
plotted against ζ = r/t and compared to the quasiparticle ansatz (red lines) in Eq. (17).
The dashed black lines denote the maximum velocity of the particle-hole excitations,
derived from Eq. (6).

The results of our simulations are shown in Fig. 1 for various interaction strengths257

∆. The different symbols correspond to snapshots of the entropy profile ∆S at different258

times, plotted against the scaled distance ζ = r/t. The quasiparticle ansatz (17) computed259

using the spinon fraction (18) is shown by the red solid lines. For moderate values of |∆|,260

one observes a very good agreement with the numerical profiles, except for a peak around261

ζ = 0. Note that this peak rises above the maximum value ln(2) that can be obtained262
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from the spinon ansatz. A closer inspection for r = 0 indicates that the entropy peak also263

converges to a finite value for large times, with a nontrivial dependence on ∆. Moreover,264

one can also observe a slight broadening of the peak for larger ∆. However, the precise265

origin of the peak cannot be understood within our simple quasiparticle ansatz.266

Systematic deviations from (17) also occur for larger ∆, especially in the attractive267

regime. Indeed, for ∆ = −0.5 one already observes that the edges of the profile obtained268

from numerics fall slightly outside of the spinon edge, whereas the bulk profile still shows269

a good agreement. For ∆ = −0.8 the mismatch becomes more drastic both in the bulk270

and around the edges, signaling the breakdown of the naive spinon ansatz. Clearly, for271

strong attractive interactions the local excited state should have significant overlaps with272

other quasiparticle excitations of the XXZ chain. In fact, as discussed in Sec. 2, in this273

regime the maximum velocity of particle-hole excitations exceeds the spinon velocity and274

matches perfectly the edges of the profile, as indicated by the black dashed lines in Fig. 1.275

Hence, the entropy spreading should be determined by the coexistence of the spinon and276

particle-hole excitations, allowing to reach values beyond ln(2). Presumably, improving277

the ansatz (17) would require the knowledge of the overlaps with the different families278

of quasiparticles. Finally, it should be noted that, even though the edge locations of the279

profile seem to be captured, significant deviations in the bulk also occur for large repulsive280

interactions (see ∆ = 0.8 in Fig. 1), which might be due to bound-state contributions.281

3.3 Local Majorana excitation282

As a second example, we are going to consider local Majorana excitations, given in terms283

of the spin variables via284

m2j−1 =

 j−1∏
l=−L/2+1

σzl

σxj , m2j =

 j−1∏
l=−L/2+1

σzl

σyj , (22)

and satisfying the anticommutation relations {mk,ml} = 2δkl. Majorana operators are285

Hermitian and related to the fermion creation/annihilation operators as m2j−1 = cj + c†j286

and m2j = i
(
cj − c†j

)
. Focusing again on an excitation m1 in the middle of the chain, the287

time-evolved stated is now given by288

|ψ(t)〉 = e−iHtm1 |ψ0〉 . (23)

The entanglement profiles ∆S obtained from tDMRG simulations of (23) are depicted289

in Fig. 2 for four different values of ∆. To visualize the spreading of the profile, we now plot290

the unscaled data against the location of the subsystem boundary. For ∆ = 0, the profile291

looks similar to that of the corresponding c†1 excitation and is indeed perfectly reproduced292

by the quasiparticle ansatz (17). However, in the interacting case ∆ 6= 0, one observes293

a marked difference when compared to the corresponding panels in Fig. 1. Namely, the294

profiles in Fig. 2 clearly exceed the value ln(2), indicated by the dashed horizontal lines,295

which is the maximum of the ansatz (17). Nevertheless, we observe that the profiles after296

the m†1 excitations can be well described by a simple rescaling of the spinon ansatz (17),297

as shown by the solid lines in Fig. 2. The constant factor multiplying the ansatz is chosen298

such that the maxima of the profiles at r = 0 are correctly reproduced. Note also that the299

central peak observed for the c†1 excitation in Fig. 1 is missing for the Majorana excitation.300
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Figure 2: Excess entropy profiles ∆S as a function of r at times t = 10, 30, 60, 80 (red,
green, blue, magenta) after the Majorana excitation m1 for four different values of ∆ and
L = 200. The red dashed lines indicate the value ln(2). The black solid lines show the
spinon ansatz Eq. (17) for t = 80, multiplied by a constant to match the maxima of the
profiles.

To better understand the behaviour of the maxima, on the left of Fig. 3 we plot the301

time evolution of the excess entropy ∆S in the middle of the chain (r = 0) with L = 200302

and for various ∆. One observes that the asymptotic value of the excess entropy grows303

with increasing |∆|, approaching its maximum very slowly in time. In fact, for even larger304

times the entropy starts to decrease again as one approaches vt ≈ L, when the fastest305

spinons leave the subsystem after a reflection from the chain end. This is demonstrated306

on the right of Fig. 3 by repeating the calculations for a smaller chain with L = 50. The307

emergence of a plateau is clearly visible, which then immediately repeats itself for vt > L308

due to the symmetry of the geometry, with the spinons reflected from the other end of the309

chain entering the subsystem again. However, the question why the height of the plateau310

depends on the interaction strength ∆ can only be answered via a more involved CFT311

analysis of the problem, which is presented in the next section.312

4 Entanglement after local excitations in CFT313

The low-energy physics of the gapless XXZ chain can be captured within quantum field314

theory via the bosonization procedure [46]. Using the fermionic representation (2) of the315

chain, one introduces the Heisenberg operators c(x, τ) = eτHcx e−τH , where x is the spatial316

coordinate along the chain and we introduced the imaginary time τ = it. Linearizing the317

dispersion around the Fermi points, one can approximate318

c(x, τ) ' eikF xψ(x, τ) + e−ikF xψ̄(x, τ) , (24)
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Figure 3: Left: Entropy growth in the middle of the chain r = 0, after the Majorana
excitation m1 for different values of ∆ and L = 200. The red dashed line indicates the
value ln(2). Right: ∆S for a smaller chain with L = 50 against the scaled time vt for the
same ∆ values.

where ψ(x, τ) and ψ̄(x, τ) are the right and left-moving components of a fermion field.319

The phase factors with the Fermi momentum, where kF = π/2 for a half-filled chain,320

are included to ensure that the chiral fermions are described by slowly varying fields.321

Introducing the complex coordinates w = vτ − ix and w̄ = vτ + ix, where v denotes the322

Fermi velocity, they can be written in a bosonized form [46]323

ψ(w) =
1√
2π

e−i
√

4πϕ(w) , ψ̄(w̄) =
1√
2π

ei
√

4πϕ̄(w̄) , (25)

where ϕ(w) and ϕ̄(w̄) are the chiral boson fields. In terms of the new bosonic variables324

φ = ϕ+ ϕ̄ , θ = ϕ− ϕ̄ , (26)

one can show that the bosonized form of the XXZ chain (2) is described by the Luttinger325

liquid Hamiltonian [47]326

HLL =
v

2

∫
dx
[
K(∂xθ)

2 +K−1(∂xφ)2
]
. (27)

Apart from the velocity v, the Hamiltonian (27) is characterized by the Luttinger param-327

eter K. Both of them can be fixed from the exact Bethe ansatz solution as328

v =
π

2

sin(γ)

γ
, K =

1

2

(
1− γ

π

)−1
, (28)

with the usual parametrization ∆ = cos(γ). Note that v = vs(0) is just the maximum of329

the spinon velocity (5).330

In CFT language, the Luttinger liquid corresponds to a free compact boson field theory.331

In order to study entanglement evolution after local operator excitations, we shall thus332

use the framework developed for a generic CFT [15, 16]. In the following we summarize333

the main steps of the procedure. Let us consider the state334

|ψ〉 = N−1/2O(−d) |0〉 (29)

excited from the CFT vacuum |0〉 by insertion of the local operator O(−d), where N335

accounts for the normalization of the state. For the sake of generality, we consider the336
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situation where the excitation is inserted at a distance d measured from the center of the337

chain. After time evolution, the density matrix reads338

ρ(t) = N−1e−iHte−εHO(−d) |0〉 〈0| O†(−d)e−εHeiHt, (30)

where ε is a UV regularization that is required for the state to be normalizable. Working339

in a Heisenberg picture, the time evolution can be absorbed into the operators, and the340

state can be represented as341

ρ(t) =
O(w2, w̄2) |0〉 〈0| O†(w1, w̄1)

〈O†(w1, w̄1)O(w2, w̄2)〉
, (31)

where the complex coordinates of the operator insertions are given by342

w1 = −i(vt− d) + ε , w̄1 = −i(vt+ d) + ε ,

w2 = −i(vt− d)− ε , w̄2 = −i(vt+ d)− ε .
(32)

It should be stressed that the w̄j coordinates are actually not the complex conjugates of343

wj , as we are assuming τ = it to be real, such that we can work with Euclidean spacetime.344

With the expression (31) at hand, one can proceed to construct the path-integral345

representation of the reduced density matrix, by opening a cut at τ = 0 along the spatial346

coordinates of the subsystem A. The Rényi entropy347

Sn(t) =
1

1− n
ln Tr [ρnA(t)] (33)

for integer n can then be obtained by applying the replica trick [48], i.e. sewing together348

n copies of the path integrals cyclically along the cuts. In turn, one can express the349

excess Rényi entropy ∆Sn = Sn(t)− Sn(0) via correlation functions of the local operator350

as [15,16]351

∆Sn =
1

1− n
log

[
〈O†(w1, w̄1)O(w2, w̄2) . . .O(w2nw̄2n)〉Σn

〈O†(w1, w̄1)O(w2, w̄2)〉nΣ1

]
, (34)

where Σn denotes the n-sheeted Riemann surface, with w1, . . . , w2n and w̄1, . . . , w̄2n being352

the replica coordinates of the insertion points (32).353

Although the expression (34) for the excess Rényi entropy is very general, the calcu-354

lation of 2n-point functions on the complicated Riemann surface Σn may become rather355

involved. However, if the subsystem A is given by a single interval 0 ≤ x ≤ ` in an infinite356

chain, the geometry can be simplified by the conformal transformation357

z =

(
w

w + i`

)1/n

, z̄ =

(
w̄

w̄ − i`

)1/n

, (35)

which maps the n-sheeted surface onto a single Riemann sheet. This transformation leads358

to the holomorphic coordinates of the operator insertions359

z2j−1 = e2πij/n

(
d− vt− iε

`+ d− vt− iε

)1/n

, z2j = e2πij/n

(
d− vt+ iε

`+ d− vt+ iε

)1/n

, (36)

while the anti-holomorphic ones are given by360

z̄2j−1 = e−2πij/n

(
d+ vt+ iε

`+ d+ vt+ iε

)1/n

, z̄2j = e−2πij/n

(
d+ vt− iε

`+ d+ vt− iε

)1/n

. (37)
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Furthermore, if the local operators are primary fields of the CFT with respective conformal361

dimensions hO and h̄O, the 2n-point function transforms as362

〈
n∏
j=1

O†(w2j−1, w̄2j−1)O(w2j , w̄2j)〉Σn =
2n∏
i=1

(
dw

dz

)−hO
zi

(
dw̄

dz̄

)−h̄O
z̄i

〈
n∏
j=1

O†(z2j−1, z̄2j−1)O(z2j , z̄2j)〉Σ1 .

(38)
In the end, one is left with a problem of calculating 2n-point functions on the complex363

plane. For the sake of simplicity, in the following we shall only consider the case n = 2,364

and apply the procedure outlined above to the Luttinger liquid theory, with the local365

excitations considered in section 3.366

4.1 Fermionic excitation367

We start with the fermion creation operator, which after bosonization (25) corresponds to368

the field insertion369

Of (w, w̄) = eikF dei
√

4πϕ(w) + e−ikF de−i
√

4πϕ̄(w̄) , (39)

where we omitted normalization factors that cancel in the expression (34). Clearly,370

Of (w, w̄) is not itself a primary operator but rather a linear combination of two. Hence,371

the calculation of the four-point function that appears in ∆S2 involves a number of terms372

with primaries, each of which can be mapped from Σ2 to the complex plane using the373

transformation rule (38). The calculation of these correlation functions can be facilitated374

by first performing a canonical transformation375

θ′ =
√
Kθ , φ′ =

1√
K
φ . (40)

which absorbs the Luttinger parameter K in the Hamiltonian (27). However, since the376

variables θ and φ are actually linear combinations (26) of the chiral bosons, the change of377

variables corresponds to the Bogoliubov transformation378

ϕ = cosh(ξ)ϕ′ + sinh(ξ)ϕ̄′ ϕ̄ = sinh(ξ)ϕ′ + cosh(ξ)ϕ̄′ , (41)

where K = e2ξ. Thus, the transformation of the Luttinger liquid Hamiltonian induces a379

left-right mixing of the chiral bosonic modes. In the following we shall use the shorthand380

notations c = cosh(ξ) and s = sinh(ξ).381

Clearly, our task now boils down to evaluate correlation functions of vertex operators382

Vα,β(z, z̄) = ei
√

4παϕ′(z)+i
√

4πβϕ̄′(z̄) (42)

on the complex plane with respect to the Luttinger liquid theory scaled to the free-fermion383

point. The n-point function of vertex operators is then well known and given by [49]384

〈
n∏
j=1

Vαi,βi(zi, z̄i)〉 =
∏
i<j

(zi − zj)αiαj (z̄i − z̄j)βiβj , (43)

where the neutrality conditions385

n∑
i=1

αi = 0 ,
n∑
i=1

βi = 0 (44)

must be satisfied, otherwise the correlator vanishes. In particular, considering the two-386

point function one immediately sees that the vertex operator (42) is a primary with scaling387

dimensions h = α2/2 and h̄ = β2/2.388
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With all the ingredients at hand, performing the calculation for ∆S2 is a straightfor-389

ward but cumbersome exercise, and we refer to Appendix A for the main details. It turns390

out that the result depends only on the cross-ratios391

η =
z12z34

z13z24
, η̄ =

z̄12z̄34

z̄13z̄24
(45)

of the holomorphic and anti-holomorhic coordinates (36) and (37), where zij = zi−zj and392

z̄ij = z̄i − z̄j , respectively. In terms of the cross-ratios, the final result reads393

∆S2 = − ln

(
1 + |η|(c+s)

2

+ |1− η|(c+s)
2

2

)
. (46)

It is important to stress that the notation |η| should be understood as (ηη̄)1/2, since the394

two cross ratios are not conjugate variables. In particular, in the limit ε → 0 of the395

regularization, one has the behaviour [15,16]396

lim
ε→0

η =

{
0 if 0 < vt < d or vt > d+ `

1 if d < vt < d+ `
, lim

ε→0
η̄ = 0 . (47)

This yields the following limit for the Rényi entropy397

lim
ε→0

∆S2 =

{
0 if 0 < vt < d and vt > d+ `

ln(2) if d < vt < d+ `
. (48)

The result has a very simple interpretation. Namely, our excitation is an equal super-398

position of a left- and right-moving fermion, and the entanglement is changed by ln(2) only399

when the right-moving excitation is located within the interval. In fact, this is exactly400

the same picture that lies behind the quasiparticle ansatz (17), without the dispersion401

of the wavefront. Interestingly, apart from the presence of the spinon velocity v, the402

limiting result (48) is independent of the anisotropy ∆. The only effect of the left-right403

boson mixing appears in the exponents of the cross-ratios in (46), which simply determines404

how the sharp step-function for ∆S2 is rounded off for finite UV regularizations. In fact,405

this result is very similar to the one obtained for a non-chiral EPR-primary excitation in406

Ref. [16,19]. Moreover, this is also a simple generalization of the result in Ref. [25], where407

the superposition of purely holomorphic and anti-holomorphic primaries was considered.408

4.2 Majorana excitation409

We move on to consider the Majorana excitation410

Om(w, w̄) = Of (w, w̄) +O†f (w, w̄) . (49)

The calculation of ∆S2 follows the exact same procedure as for Of (w, w̄), however, one411

has now an even larger number of terms to consider. The main steps are again outlined412

in Appendix A, which lead to the result413

∆S2 = − ln

(
2A+B + C

8

)
, (50)

where the terms in the logarithm are given by414

A = |1− η|(c+s)
2

+ |1− η|(c−s)
2

+ |η|(c+s)
2

+ |η|(c−s)
2

(51)

B = 2 + η2c2 η̄2s2 + η2s2 η̄2c2 + (1− η)2c2 (1− η̄)2s2 + (1− η)2s2 (1− η̄)2c2 (52)

C =
[
|η|(c+s)

2

|1− η|(c−s)
2

+ |η|(c−s)
2

|1− η|(c+s)
2
]

(Z + Z̄) (53)
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and a new variable is introduced as415

Z =
z1z̄2(1− z̄2

1)(1− z2
2)

z̄1z2(1− z2
1)(1− z̄2

2)
. (54)

The result is thus rather involved and cannot be written as a function of the cross-416

ratios alone. However, in the limit ε → 0, the factors in A, B, and C can trivially be417

evaluated using (47), as well as using Z → 1 and Z̄ → 1. For the case ∆ 6= 0, this leads418

to the following simple result419

lim
ε→0

∆S2 =

{
0 if 0 < vt < d and vt > d+ `

2 ln(2) if d < vt < d+ `
. (55)

In sharp contrast, for ∆ = 0, where c = 1 and s = 0, one recovers the result (48). Hence,420

one arrives at the rather surprising result that the excess entropy is doubled in case of421

interactions, which must be a consequence of the left-right boson mixing.422

Obviously, for finite values of the regularization ε, this transition should take place423

continuously, rather than giving an abrupt jump. The behaviour of ∆S2 for ε = 0.1 is424

shown in Fig. 4 for an interval of length ` = 20 at a distance d = 10 from the excitation.425

One can clearly see the development of a plateau for times d < vt < d + `, the height of426

which increases monotonously with ∆. Nevertheless, even for the largest value ∆ = 0.8,427

the expected maximum of 2 ln(2) is by far not reached. The very slow convergence towards428

the ε → 0 (or, equivalently, t → ∞) limit can be understood by looking at the structure429

of the terms appearing in (50). In fact, for smaller values of |∆|, the slowest converging430

pieces are given by η2c2 η̄2s2 as well as (1− η)2s2 (1− η̄)2c2 in the expression (52) of B,431

due to the large-time behaviour η̄ ≈ 1 − η ≈ (ε/2vt)2 for d � vt � ` + d. Hence, the432

apparent nontrivial values of the plateau in Fig. 4 is a consequence of the very slow decay433

(ε/vt)4s2 , where the exponent for e.g. ∆ = 0.5 is given by 4s2 ≈ 0.08. Clearly, observing434

convergence towards ∆S2 → 2 ln(2) would require enormous time scales as well as interval435

lengths.436
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0
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1

vt

∆S2

∆ = 0.8

∆ = 0.5

∆ = 0.2

∆ = 0.0

Figure 4: Time evolution of the excess Rényi entropy in Eq. (50) after the Majorana
excitation with ` = 20, d = 10 and ε = 0.1.

Despite the different geometry considered for the CFT calculations, we expect that the437

result (50) should also give quantitative predictions for the finite XXZ chain in a certain438

regime. First of all, for the half-chain bipartition where the excitation is applied directly439

at the boundary, the role of the dispersion should not play an important role, as all the440

excitations can immediately enter the subsystem. Furthermore, one could argue that the441
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finite chain effectively corresponds to an interval of size ` = L, which is the distance the442

quasiparticles have to cover before leaving the subsystem after reflection from the chain443

end. Clearly, the exact form of the plateau will not be the same in the two cases, but one444

expects the CFT results to be applicable in a regime vt � L. Finally, there is a highly445

nontrivial symmetry s→ −s displayed by all the terms (51)-(53) in the expression of ∆S2,446

corresponding to a change of the Luttinger parameter K → 1/K, which is expected to447

be observed also in the lattice calculations. Note that since K = 1 corresponds to the448

free-fermion point ∆ = 0, the symmetry relates interaction strengths of different sign.449
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Figure 5: Growth of the Rényi entropy ∆S2 for pairs of conjugate interaction parameters
∆ and ∆′ (red and green symbols) for a chain of length L = 200. The blue solid lines show
the CFT result Eq. (50) with ` = 200 and d = 1. The regularization ε = 0.55, 0.40, 0.35
(from left to right) was tuned to obtain the best match with the tDMRG data.

In Fig. 5 we show a comparison of ∆S2 obtained from tDMRG calculations for a XXZ450

chain with L = 200 divided in the middle, to the CFT result (50) shown by the blue451

solid lines. For the latter we have set ` = L and d = 1 as discussed above, whereas452

the regularization ε was set by hand in order to achieve the best agreement with the453

numerical data. One indeed observes that the CFT result gives, up to oscillations, a good454

quantitative description of the XXZ numerics. Furthermore, for each ∆ 6= 0, we also455

performed the calculation for the conjugate ∆′ corresponding to K ′ = 1/K, leading to a456

remarkably good collapse of the curves.457

5 Entanglement dynamics in the gapped phase458

The CFT studies of the previous section give a rather good qualitative description of459

the entanglement spreading in the critical phase of the XXZ chain. To obtain a complete460

picture, in this section we shall study the dynamics in the gapped antiferromagnetic phase.461

For a physically motivated setting, we choose one of the symmetry-broken ground states462

|ψ↑〉 from Eq. (8), with a nonvanishing staggered magnetization (9). We now consider463

local Majorana operators, defined in terms of the spin variables as464

m̃2j−1 =

 j−1∏
l=−L/2+1

σxl

σzj , m̃2j =

 j−1∏
l=−L/2+1

σxl

σyj . (56)

Note that these operators differ from the ones in (22) discussed in the gapless phase by465

an interchange of the x and z spin components, but they also obey Majorana fermion466

statistics with anticommutation relations {m̃k, m̃l} = 2δkl. We focus on the case of a467

domain wall created by m̃1 in the center of the chain, which is then time evolved by the468

XXZ Hamiltonian (1)469

|ψ(t)〉 = e−iHtm̃1 |ψ↑〉 . (57)
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Note that, in order to find the proper symmetry-broken ground state, in the DMRG470

simulation we add to the Hamiltonian a small staggered field in the z-direction, which is471

then decreased towards zero during the sweeps.472

First we have a look at the entropy growth ∆S for the half-chain r = 0 as a function of473

time, shown on the left of Fig. 6 for several values of the anisotropy ∆ > 1. One observes474

a clear saturation of the excess entropy for large times, which is reached very quickly for475

large values of ∆. The asymptotic value of ∆S decreases with ∆ and always exceeds ln(2).476

Remarkably, as shown on the right of Fig. 6, we find that the asymptotic excess entropy is477

well described by the formula ∆S = S(0) + ln(2), where S(0) is the ground-state entropy478

of the half-chain in the symmetry-broken state. Repeating the calculation for the excess479

Rényi entropy ∆S2, we find the exact same relation with S2(0).480
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S(0) + ln(2)

Figure 6: Left: Entanglement growth in the middle of the chain after a domain-wall
excitation m̃1 for different values of ∆ > 1 and L = 400. Right: ∆S at t = 100 compared
to S(0)+ln(2) from Eq. (59). The red dashed line denotes ln(2). Note the different vertical
scales.

To gain a deeper understanding of the above relation, one should invoke the exact481

results for the reduced density matrix of the half-chain, which can can be found with the482

corner transfer matrix (CTM) method as [50]483

ρA =
e−HCTM

Tr (e−HCTM )
, HCTM =

∞∑
j=0

εjnj , (58)

where the single-particle eigenvalues are given by εj = 2jφ with φ = acosh(∆), and nj =484

0, 1 denotes fermionic occupation numbers. In other words, the entanglement Hamiltonian485

HCTM of the ground state is characterized by an equispaced single-particle entanglement486

spectrum. Strictly speaking, this result applies to a half-infinite chain, but in practice it487

holds also for finite chains of length much larger than the correlation length. Note also,488

that the result (58) applies for the symmetric ground state, whereas for the symmetry-489

broken state the term j = 0 is missing from the sum. In that case, the von Neumann and490

Rényi entropies can be simply expressed as [51]491

S(0) =

∞∑
j=1

[
log
(

1 + e−2jφ
)

+
2jφ

1 + e2jφ

]
, (59)

as well as492

Sn(0) =
1

1− n

 ∞∑
j=1

log
(

1 + e−2njφ
)
− n

∞∑
j=1

log
(

1 + e−2jφ
) . (60)
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It is easy to see that the inclusion of the term j = 0 with ε0 = 0 simply yields an493

extra ln(2) contribution to the entropies. This change alone, however, would not explain494

our findings for the asymptotic excess entropy in Fig. 6, which seems to indicate that495

S(t) ≈ 2S(0) + ln(2) for t � 1. Indeed, in order to obtain such a formula, one would496

have to add a double degeneracy for each εj with j 6= 0. Let us now discuss how such a497

degeneracy is reflected in the eigenvalues λl of the reduced density matrix. In fact, it is498

more convenient to introduce the scaled quantity499

νl = − 1

φ
ln

(
λl
λ0

)
, (61)

where λ0 denotes the maximal eigenvalue. For the initial symmetry-broken ground state,500

νl are independent of ∆ and can only assume even integer values, with occasional multi-501

plicities due to different integer partitions. The lowest lying λl yield νl = 0, 2, 4, 6, 6, . . . ,502

i.e. the first degeneracy appears as 6 = 2 + 4. The inclusion of the ε0 = 0 term simply503

gives an overall double degeneracy of the levels λl. The doubling of the εj for j 6= 0 further504

increases the degeneracies. Altogether, the combined effect would lead to the multiplicities505

(2, 4, 6) for νl = 0, 2, 4.506

To check these predictions, in Fig. 7 we have plotted the 12 lowest lying νl calculated507

from the reduced density matrix eigenvalues, as obtained from tDMRG simulations after508

time evolving the state (57) to t = 100. One can see that the νl lie indeed rather close509

to the expected even integer values, approximately reproducing the expected multiplicity510

structure. Interestingly, the largest deviation around νl = 4 is found for ∆ = 5, where511

one actually finds the best agreement with the entropy formula, see Fig. 6. In fact,512

however, the contribution of these eigenvalues to the entropy is already negligible. Note513

that the situation for larger values of νl is much less clear, as they correspond to very514

small eigenvalues λl which are already seriously affected by tDMRG truncation errors.515
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Figure 7: Scaled levels νl obtained from the reduced density matrix eigenvalues λl at time
t = 100 via Eq. (61) for different ∆.

Although we find a nontrivial asymptotic behaviour of the half-chain entanglement,516

we expect that the full profile should still be described, up to a multiplicative factor, by517

the quasiparticle ansatz introduced in section 3.1, similarly to the Majorana excitation in518
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the gapless phase in Fig. 2. Therefore, we put forward the ansatz519

∆S =

(
1 +

S(0)

ln 2

)
[−N ln (N )− (1−N ) ln (1−N )] , (62)

and for the excess Rényi entropy we propose520

∆Sn =

(
1 +

Sn(0)

ln 2

)
1

1− n
ln [N n + (1−N )n] . (63)

The quasiparticle fraction N must now be evaluated via (16) by using the spinon velocities521

(13) in the gapped phase. Note that the binary entropy functions are multiplied by a factor522

to reproduce our findings for the half-chain, where N = 1/2. The results of our numerical523

calculations for the profiles ∆S and ∆S2, plotted against the scaling variable ζ = r/t, are524

shown in Fig. 8. The solid lines show the respective ansatz (62) and (63), which give a525

very good description of the data for both ∆ values shown. In fact, we checked that the526

profiles are nicely reproduced even for ∆ = 1.5, which already corresponds to a relatively527

large correlation length.528
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Figure 8: Entropy profiles ∆S (top) and ∆S2 (bottom) after a domain-wall excitation m̃1

for two different value of ∆ and L = 400. The solid lines show the ansatz Eq. (62) for the
von Neumann, as well as Eq. (63) for the n = 2 Rényi excess entropy.

5.1 Magnetization profiles529

To conclude this section, we also investigate the spreading of the magnetization profiles530

for the antiferromagnetic domain wall excited by m̃1. This setting was studied previously531

with a focus on the edge behaviour of the profile [52]. In order to remove the dependence532
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on the ground-state value (9) of the staggered magnetization, we consider the normalized533

profile534

Mj(t) =
〈ψ(t)|σzj |ψ(t)〉
〈ψ↑|σzj |ψ↑〉

, (64)

which then varies between −1 ≤Mj(t) ≤ 1 along the chain. We are mainly interested in535

the quasiparticle description of the time-evolved profile. In fact, a very similar problem536

was studied for a ferromagnetic domain wall in the XY chain [28], by first expanding537

the excited state in the single-particle basis of the Hamiltonian, which can then be time538

evolved trivially.539

Here we assume that the dominant weight for our simple domain wall is carried by540

single-spinon excitations |q〉. Strictly speaking, this is only possible if one considers an-541

tiperiodic or open boundary conditions on the spins, since for a periodic chain spinons are542

created in pairs (i.e. one actually has a pair of domain walls). The time evolved state can543

then be written as544

|ψ(t)〉 '
∑
q

e−itεs(q)c(q) |q〉 , (65)

where εs(q) is the spinon dispersion (10), while c(q) are the overlaps of the domain-wall545

excitation with the single-spinon states. Note that the momentum of a single spinon satis-546

fies 0 ≤ q ≤ π, however, the total momentum of spinons above the quasidegenerate ground547

state is shifted by π. Since the domain wall is created by a strictly local fermionic opera-548

tor, we assume that in the thermodynamic limit |c(q)| becomes a constant in momentum549

space, i.e. c(q) = eiα(q)/
√
N is just a phase factor normalized by the number N of spinon550

states. Using this in (65), one obtains for the profile551

Mj(t) =
1

N

∑
p

∑
q

e−it(εs(q)−εs(p))ei(α(q)−α(p))
〈p|σzj |q〉
〈ψ↑|σzj |ψ↑〉

. (66)

Clearly, the main difficulty of calculating (66) is due to the form factors 〈p|σzj |q〉. For552

the transverse Ising and XY chains, such form factors are known explicitly [53, 54] and553

were used to obtain a double integral representation of the magnetization profile [26, 28].554

The hydrodynamic limit can then be obtained from the stationary-phase analysis of the555

integrals. Moreover, there exists a number of form factor results for the XXZ chain as well556

(see e.g. [55, 56]), which were used in numerical studies of the magnetization profile after557

a spin-flip excitation [57]. Unfortunately, however, the expressions are typically rather558

involved or not in a representation that could be useful for our purposes. In fact, we are559

not aware of any results where the required single-spinon matrix elements are evaluated560

as a function of the spinon rapidity or momentum.561

Nevertheless, based on the known results, we give a handwaving argument about how562

the main structure of the form factor should look like. Most importantly, we assume that563

it becomes singular for p→ q and can be written as564

lim
p→q

〈p|σzj |q〉
〈ψ↑|σzj |ψ↑〉

' i

N
ei(q−p)j

F(q)

p− q
. (67)

Here the only j-dependence is in the exponential factor that follows from the action of565

the translation operator, and the function F(q) denotes the slowly varying part of the566

form factor around its pole. The factor 1/N is required for a proper thermodynamic limit567

of (66). Converting the sums into integrals, one can proceed with the stationary phase568

analysis similarly to the XY case [28], by expanding the phases around Q = q − p = 0.569

Using a resolution of the pole and the definition of the step function570

1

Q
= iπδ(Q) + lim

ε→0

1

Q+ iε
, Θ(x) = − lim

ε→0

∫ ∞
−∞

dQ

2πi

e−iQx

Q+ iε
, (68)
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one arrives at the following simple expression for the profile571

Mj(t) = 1− 2 Ñ , Ñ =

∫ π

0

dq

π
Θ(vs(q)t− j)F(q) . (69)

Note that the proper normalization of the profile for t = 0 requires to have572 ∫ π

0

dq

π
F(q) = 1 . (70)

The result (69) is nothing else but the quasiparticle interpretation of the magnetization573

profile in the hydrodynamic limit. Indeed, the initial sharp domain wall is carried away by574

spinons of different momenta q and velocities vs(q), where F(q) gives the corresponding575

weight. Unfortunately, without an explicit analytical result on the form factor, one has to576

make a guess on the weight function. The simplest assumption is F(q) ≡ 1, which indeed577

holds true for the XY chain form factors [28]. With this simple choice one actually has578

Ñ = N , that is we recover the spinon fraction introduced in (16) for the description of579

the entropy profile. In Fig. 9 we show the comparison of this simple ansatz to the tDMRG580

data, with a rather good agreement for a large ∆ = 5. For ∆ = 2, however, one can581

already see the deviations from our simple ansatz, which fails completely for even smaller582

anisotropies. Thus, in sharp contrast to the case of the entanglement entropies, the spinon583

contributions to the magnetization cannot be taken to be equal, except for close to the584

Ising limit.585
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Figure 9: Normalized magnetization profiles Mj(t) obtained from tDMRG calculations
for ∆ = 2.0 (left) and ∆ = 5.0 (right) after a domain-wall excitation m̃1 in a chain of
length L = 400. The solid lines show the ansatz 1−2N , with the spinon fraction Eq. (16)
calculated from the velocities in Eq. (13).

6 Summary and discussion586

We studied the entanglement spreading in the XXZ chain after excitations that are strictly587

local in terms of the fermion operators. In the gapless phase we found that the time evolu-588

tion after a fermion creation operator yields an entropy profile that can be well described589

by a probabilistic quasiparticle ansatz for not too large ∆, assuming equal contributions590

from low-lying spinon excitations. On the other hand, for a local Majorana excitation we591

observe that the quasiparticle ansatz holds only up to a multiplicative factor, determined592

by the excess entropy at the operator insertion point. This is in agreement with our CFT593
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calculations, which suggest that the excess entropy exceeds ln(2) for any ∆ 6= 0, with594

a very slow convergence towards the asymptotic value 2 ln(2). In the symmetry-broken595

gapped phase we considered a different Majorana excitation, creating an antiferromag-596

netic domain wall. For the entropy profile we find again a nontrivial prefactor, whereas597

our simple ansatz for the magnetization, assuming equal contributions from the spinons,598

holds only in the Ising limit ∆→∞.599

The main limitation of our quasiparticle ansatz (17) is that it includes only the low-600

lying spinons. It is natural to ask how well such an assumption actually holds for our local601

excitations in the different regimes. A simple way to quantify the spectral weight of the602

spinons in the gapless regime is via the energy difference 〈∆E〉 = 〈ψ0| (m1Hm1 −H) |ψ0〉603

of the Majorana excitation (equal to that of c†1 by particle-hole symmetry) measured from604

the ground state, whereas in the gapped case we replace m1 → m̃1. Our assumption in605

both regimes was that one can practically work with single-spinon states, whose energies606

above the ground state are given by the corresponding dispersions εs(q) in (4) and (10),607

respectively. This yields the simple formula for the energy difference608

〈∆E〉 =

∫ π

0
εs(q)

dq

π
. (71)

To test the validity of our assumption, in Fig. 10 we compare the energy difference609

obtained from DMRG to the formula (71) in both gapless and gapped phases. As expected,610

the result at the free-fermion point ∆ = 0 is exactly reproduced, while the error remains611

relatively small in the regime |∆| . 0.5. However, not surprisingly, the overall behaviour612

of 〈∆E〉 is not properly captured by the naive ansatz (71), especially for ∆→ −1, which613

is exactly what we observed for the entropy profiles in Fig. 1. On the other hand, in the614

gapped phase shown on the right of Fig. 10, one has a qualitatively good description in615

the entire regime, with the error decreasing for ∆� 1. This explains why we had a much616

better overall description of the entropy profiles for ∆ > 1 via the quasiparticle ansatz617

(62).618
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Figure 10: Energy difference due to the insertion of local operator m1 in the gapless (left)
and m̃1 in the gapped (right) regime. DMRG results (symbols) for L = 400 are compared
to the spinon ansatz (lines) in Eq. (71). Note the different vertical scales.

Another feature that is not completely understood is the multiplicative factor of the619

spinon ansatz appearing for Majorana excitations. In the gapless phase this could be620

accounted for the mixing of the chiral boson modes and yields a factor 2 in the limit t→∞621

for any ∆ 6= 0. The exceptional behaviour of the XX chain can actually be also understood622

directly, using a duality transformation [58–61] that relates it to two independent and623

critical transverse Ising chains. Furthermore, as shown in [26], the Majorana excitation on624
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the XX chain transforms under the dual map into a Majorana excitation acting only on a625

single Ising chain. Hence, the asymptotic excess entropy is given by ln(2) and there is no626

doubling in this case. On the other hand, in the gapped phase the prefactor in (62) seems627

to be nontrivially related to the ground-state entanglement entropy. Note that a similar628

observation was reported after a local quench in the non-critical transverse Ising chain [62],629

where the entanglement plateau was also found to be related to the ground-state value.630

A deeper understanding of these effects requires further studies.631

Finally, let us comment about the case where the locality of the excitation is not632

imposed in the fermionic but rather in the spin picture. In other words, instead of the633

c†j excitation one could consider the spin operator σ+
j by dropping the Jordan-Wigner634

string in (19). According to our tDMRG calculations carried out for this case, the entropy635

profiles change completely, becoming more flat in the center with a maximum that stays636

way below ln(2). In short, the fermionic nature of the local excitations turns out to be637

essential for the applicability of the quasiparticle description.638
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A Correlation functions of vertex operators642

In the following we give the main steps of the calculation of the excess Rényi entropy ∆S2,643

obtained via the ratio (34) of four-point and two-point functions. As in the main text, we644

consider two different local operators, the one corresponding to the fermion creation645

Of = eikF dψ† + e−ikF dψ̄† , (72)

as well as the Hermitian Majorana excitation646

Om = eikF dψ† + e−ikF dψ̄† + e−ikF dψ + eikF dψ̄ . (73)

They are composed of chiral fermion fields which, after the Bogoliubov transformation (41),647

can be written as vertex operators (42) involving chiral boson fields. The holomorphic and648

anti-holomorhic components of the vertex operators are summarized in the table below,649

where c = cosh(ξ) and s = sinh(ξ).

ψ ψ† ψ̄ ψ̄†

α −c c s −s
β −s s c −c

Table 1: Parameters of the vertex operators (42) for the fermionic fields

650

We start by evaluating the two point function in the denominator of (34). Using651

the fact that vertex operators are primaries with conformal dimensions h = α2/2 and652

h̄ = β2/2, one immediately obtains the nonvanishing two-point functions on the plane as653

〈ψ(w1, w̄1)ψ†(w2, w̄2)〉 ∝ (w1 − w2)−c
2

(w̄1 − w̄2)−s
2
,

〈ψ̄(w1, w̄1)ψ̄†(w2, w̄2)〉 ∝ (w1 − w2)−s
2

(w̄1 − w̄2)−c
2
.

(74)
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From (32) we have w1 − w2 = w̄1 − w̄2 = 2ε, thus we obtain for the two-point functions654

〈O†f (w1, w̄1)Of (w2, w̄2)〉 = 2 (2ε)−(c2+s2), 〈O†m(w1, w̄1)Om(w2, w̄2)〉 = 4 (2ε)−(c2+s2).
(75)

Let us now move to the four-point function on the Riemann surface Σ2. This is a655

sum of many terms, from which the nonvanishing contributions allowed by the neutrality656

conditions (44) are given by657

〈ψψ†ψ̄ψ̄†〉 , 〈ψ̄ψ̄†ψψ†〉 , 〈ψ̄ψ†ψψ̄†〉 , 〈ψψ̄†ψ̄ψ†〉 , 〈ψψ†ψψ†〉 , 〈ψ̄ψ̄†ψ̄ψ̄†〉 . (76)

We first analyze the Jacobian of the transformation (38) from Σ2 → Σ1. The derivatives658

of the mapping are given by659

dw

dz
= i`

nzn−1

(1− zn)2
,

dw̄

dz̄
= −i` nz̄n−1

(1− z̄n)2
. (77)

Introducing the variable660

χ =
(1− z2

1)2(1− z2
2)2

4z1z2
, (78)

one obtains for the first four contributions in (76)661

`−2(c2+s2)χc
2/2χ̄s

2/2χs
2/2χ̄c

2/2 = `−2(c2+s2)|χ|c2+s2 , (79)

whereas for the last two contributions we have, respectively662

`−2(c2+s2)χc
2
χ̄s

2
, `−2(c2+s2)χs

2
χ̄c

2
. (80)

Note that there is an extra sign factor (−i)c2(i)s
2
(i)s

2
(−i)c2 = (−i)2(c2−s2) = −1 which663

multiplies the first two Jacobian.664

The next step is to evaluate the vertex four-point functions. Using (43) this reads for665

the first term in (76)666

z−c
2

12 z−s
2

34 z−cs13 z−cs24 zcs14z
cs
23z̄
−s2
12 z̄−c

2

34 z̄−cs13 z̄−cs24 z̄cs14z̄
cs
23 = (−1)|1− η|2cs|η|−(c2+s2)|z13z24|−(c2+s2)

(81)
Note that we have used the property z34 = −z12. It is easy to check that one obtains the667

very same factor from the second term. Similarly, using z23 = z14, one can check that the668

third and fourth terms deliver669

zcs12z
cs
34z
−cs
13 z−cs24 z−c

2

14 z−s
2

23 z̄cs12z̄
cs
34z̄
−cs
13 z̄−cs24 z̄−s

2

14 z̄−c
2

23 = |η|2cs|1−η|−(c2+s2)|z13z24|−(c2+s2). (82)

For the fifth term one has670

[η(1− η)]−c
2

(z13z24)−c
2

[η̄(1− η̄)]−s
2

(z̄13z̄24)−s
2
, (83)

and the last term follows by interchanging c and s above.671

In order to obtain an expression in terms of the cross-ratios, one can rewrite (78) as672

χ =

(
`

2ε

)2

η(1− η) z13z24 . (84)

Putting everything together, one arrives at the four-point function673

2 (2ε)−2(c2+s2)
[
|η|(c+s)2 + |1− η|(c+s)2 + 1

]
. (85)
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Evaluating the four-point function for the Majorana excitation (73) is more cumber-674

some, since one has a large number of terms to consider. There are, however, some simple675

rules and symmetry arguments which make the task easier. First of all, one should clearly676

always have the same number of creation and annihilation operators, for the neutrality677

conditions (44) of the vertex correlation functions to be satisfied. This already drasti-678

cally reduces the number of terms to consider. The remaining ones can be collected into679

families, some of them given by (76).680

Let us consider the family generated by the first term in (76), by allowing permutations681

of the left- and right-moving operators separately (i.e. interchanging the first or last two682

operators). If only the first or last two are interchanged, the vertex correlator (81) is683

modified by replacing684

|1− η|2cs → |1− η|−2cs , (86)

whereas the correlator remains the same if both of them are interchanged. The next685

family is generated by the second term in (76), which is actually related to the first one by686

Hermitian conjugation. Hence this just gives a factor of two. The same argument holds687

for the next two families, where interchanging only one pair modifies the correlator in (82)688

as689

|η|2cs → |η|−2cs . (87)

Finally, the single interchange in the fifth family leads to690

(1− η)−c
2 → (1− η)c

2
, (1− η̄)−s

2 → (1− η̄)s
2
, (88)

whereas the last family follows by interchanging c and s above.691

There are, however, two additional families appearing where the left- and right-moving692

particles are intertwined. They are given by the representative correlators693

〈ψψ̄†ψ†ψ̄〉 , 〈ψ̄ψ†ψ̄†ψ〉 . (89)

Defining the variable694

σ =
(1− z2

1)2(1− z̄2
2)2

4z1z̄2
, (90)

the corresponding Jacobians contain the factors σc
2
σ̄s

2
and σs

2
σ̄c

2
, respectively. Further-695

more, the vertex correlation functions yield696

|η|±2cs|1− η|∓2cs(z13z̄24)−c
2
(z̄13z24)−s

2
, |η|±2cs|1− η|∓2cs(z13z̄24)−s

2
(z̄13z24)−c

2
, (91)

and each term comes with a double multiplicity. Collecting all the terms, the four-point697

function takes the form698

2 (2ε)−2(c2+s2)(2A+B + C) , (92)

where the factors A, B and C are reported in (51)-(53).699
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[22] P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum entanglement of753

localized excited states at finite temperature, J. High Energy Phys. 2015, 102 (2015),754

doi:10.1007/JHEP01(2015)102.755
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