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Abstract

Disordered interacting spin chains that undergo a many-body localization transition are charac-
terized by two limiting behaviors where the dynamics are chaotic and integrable. However, the
transition region between them is not fully understood yet. We propose here a signature that
unambiguously identifies a possible finite-size precursor of a critical point, and distinguishes be-
tween two different stages of the transition. The kurtosis excess of the diagonal fluctuations of
the full one-dimensional momentum distribution from its microcanonical average is maximum
at this singular point in the paradigmatic disordered J1-J2 model. Both the particular value of
this maximum and the disorder strength at which it is reached increase with the system size, as
expected for a typical finite-size scaling. We completely characterize the short and long-range
spectral statistics of the model and find that their behavior perfectly correlates with the properties
of the diagonal fluctuations. For lower values of the disorder, we find a chaotic region in which the
Thouless energy diminishes up to the transition point, at which it becomes equal to the Heisenberg
energy. For larger values of disorder, spectral statistics are very well described by a generalized
semi-Poissonian model, eventually leading to the integrable Poissonian behavior.
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1 Introduction

In the classical world the connection between the ergodic properties of a system and its class of
regularity (chaotic and integrable) is well understood both mathematically and phenomenologi-
cally [1, 2]. The classical phase space is completely covered by the erratic trajectories followed
by classical chaotic systems while integrability means that only a certain subset defined by the
constraints of the constants of motion is accessible. In the first case the system will thermalize
after being driven away from thermal equilibrium while in the second case it will generally not.
Thus ergodicity and chaotic behavior are generally tied together and one is expected if the other is
present.

In the quantum realm, however, the situation is much more involved. Our understanding of
thermalization lies in the eigenstate thermalization hypothesis (ETH) [3–8]. According to this
theory, a quantum system will thermalize if the fluctuations of the long-time averages of local
observables around their standard microcanonical equilibrium value decrease fast enough with
system size. Plainly put, the ETH states that the diagonal matrix elements of observables in the
eigenstates of the system Hamiltonian must change with energy smooth enough, coinciding with
the micranonical average up to some random and sufficiently small fluctuation. The connection
between quantum thermalization and quantum chaotic behavior [9] is still an open question. The
conjecture put forward by Bohigas, Giannoni and Schmit [10] indicates that the spectral fluctu-
ations of quantum systems with an ergodic classical analogue follow exactly the predictions of
random matrix theory (RMT) [11]. Hence the statistical analysis of the eigenlevel distribution of
quantum spectra has been established as a very valuable tool to investigate quantum ergodicity.
The ETH has been long thought to be a consequence of RMT, and thus the thermal properties of
quantum systems seem to depend on the onset of quantum chaos in a non-trivial way. As in the
classical case, quantum thermalization and chaos are two terms almost invariably associated with
each other. However, the limits of applicability of RMT are more rigid than those of the ETH, and
thus the latter can still apply beyond the capabilities of the former.

Originally, the RMT provided a solid framework to identify chaos in isolated quantum systems.
Perhaps unexpectedly, the last decade has seen an enormous revival of the interest in spectral anal-
ysis due to the very exotic nature of quantum many-body systems. In this direction, disordered
lattice models from condensed matter have gifted us with an unprecedented playground to test
quantum ergodicity [12–14]. It seems by now well established that this is a property that clean
(i.e., not disordered) quantum many-body systems generally have [4]. Introducing sufficiently
strong disorder gives rise to one of the most striking exceptions to quantum thermal behavior:
many-body localization (MBL) [3, 15], which is now taken as the prototypical nonergodic phe-
nomenon. MBL is observed in some disordered lattice models with local interactions such as the
Heinsenberg spin-1/2 chain or its generalization to next to nearest-neighbor interactions, the J1-
J2 model, for high enough disorder [16–28]. Systems in this class often display two completely
opposed regimes: an ergodic phase for small disorder strength, in which both the ETH and RMT
provide conclusive results, and the MBL phase, where the spectrum does not follow RMT and the
system does not equilibrate at all. The region in between these two phases reveals highly unusual
properties that have attracted very active investigation [29–34]. One of the most pressing ques-
tions arguably concerns the nature of the transition between the metallic, thermal phase and the
insulating, nonthermal one, i.e., whether there is an actual phase transition in which a critical point
can be observed or if what we are dealing with is a smooth crossover instead. Although exploring
finite systems rather clearly leads to the second option, the answer in the thermodynamic limit
(i.e., at macroscopic scales) is a lot more difficult to obtain, mainly due to the exponential increase
of the dimensionality of the Hilbert space with system size in many-body quantum systems. A
variety of ergodicity breaking indicators [15, 23, 24, 28, 35–42] have been used in the past to try
and identify a hypothetical value of disorder strength that, in the thermodynamic limit, completely
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separates the ergodic and the nonergodic phases. The search for such a critical point implicitly
assumes a nature of real phase transition in MBL systems, although this has not been proved and
some apparent contradictions seem to exist. To obtain this value, different kinds of involved finite
size scalings of such indicators have been employed. However, the problem is not simple at all
and a strong dependence on the particular indicator and the number of sites means that some of
the previously obtained values for the critical point are often incompatible with each other.

The aim of this paper is to introduce a new finite-size precursor of the critical point separating
the transition between the ergodic phase and the many-body localized phase in disordered many-
body quantum systems. The key quantity is the probability of extreme events in the fluctuations
from the equilibrium microcanonical value of the diagonal matrix elements of the momentum
distribution. These fluctuations are the basic quantities in the ETH. This probability of extreme
events is quantified by the kurtosis excess of their ensemble probability distribution. The kurtosis
excess is shown to be highest at the transition between the ergodic phase and the MBL phase in
the J1-J2 disordered spin chain, coinciding with the result provided by a full analysis of short
and long-range correlations of the spectral statistics. The transition point can be determined with
precision for each size of the spin chain, allowing a transparent separation of phases irrespective
of the Hilbert space dimension. For disorder strengths smaller than the critical one, the system
is in its chaotic phase. However, the Thouless energy scale varies greatly depending on the value
of disorder until it disappears at the transition. For larger disorder strengths the region can be
described by a family of semi-Poissonian statistics only reaching the fully Poissonian limit for
infinitely large values of disorder.

The remainder of this paper is structured as follows. In Section 2 we introduce the J1-J2 spin
chain used in the computations. In Section 3, we present the concepts of quantum thermalization
and ETH in subsection 3.1 which is at the core of our research. In the subsection 3.2 we introduce
the diagonal fluctuations of the momentum distribution from their microcanonical averages and
compute the results as a function of disorder, which is the main result of our paper. In Section 4
we study the spectral statistics across the transition introducing a full description including long-
range correlations. In the first subsection 4.1 we present the semi-Poisson spectral statistics that
is followed by chains in the MBL phase; then, in the second subsection 4.2 we complement the
previous results with the study of the Thouless energy ETh and long-range correlations on the
ergodic side of the transition; finally, in subsection 4.3 we provide a general landscape of the MBL
and ergodic phases in terms of their spectral properties. In Section 5 we relate the results of the
spectral statistics with the behavior of the diagonal fluctuations presenting a coherent interpretation
of our results. We gather the main conclusions of our work in Section 6.

2 Model: the disordered J1-J2 chain and many-body localization

Much of the research on the phenomenon of many-body localization has been carried out with
the Heisenberg XXZ spin chain [16–28, 43], which takes into account nearest-neighbors interac-
tions only. In comparison, its simplest generalization, the J1-J2 model, has been somewhat less
explored. However, it can be argued that the latter is a more generic model as it does not present
Bethe ansatz integrability for the clean (i.e., disorder-free) case [44].

The J1-J2 model consists on a one-dimensional chain with L sites, on-site magnetic fields ω`,
and coupling parameters J1 and J2 where next to nearest-neighbors interactions are additionally
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considered. Its Hamiltonian can be cast in the form

H(J1, J2) :=
L∑

`=1

ω`Ŝ
z
` + J1

L∑

`=1

(
Ŝx` Ŝ

x
`+1 + Ŝy` Ŝ

y
`+1 + λ1Ŝ

z
` Ŝ

z
`+1

)

+ J2

L∑

`=1

(
Ŝx` Ŝ

x
`+2 + Ŝy` Ŝ

y
`+2 + λ2Ŝ

z
` Ŝ

z
`+2

)
,

(1)

where Ŝx,y,z` are the total spin-1/2 operators at site ` ∈ {1, . . . , L}. The Hamiltonian is simu-
lated on a lattice with periodic boundary conditions as these minimize finite-size effects; thus,
Ŝx,y,z` = Ŝx,y,z`+L . Disorder enters the chain via the uniformly, independently and randomly dis-
tributed magnetic fields ω` ∈ [−ω, ω]. The coupling constants J1 and J2 are associated to nearest
and next to nearest-neighbors interactions, respectively, and they can be used to set the unit of
energy. In our simulations, we fix J1 = J2 = 1 throughout —since J1, J2 ≥ 0, we are dealing
with the anti-ferromagnetic variant of the model . Note that H(J1 6= 0, J2 = 0) is simply the
famous XXZ Heisenberg chain. The terms λ1 and λ2 quantify the intensity of the interactions,
which we choose λ1 = λ2 = 0.55 (this choice is also made, e.g., in [28]). Spin chains such as this
one can be mapped exactly onto a spinless fermionic chain with an extra boundary term via the
Jordan-Wigner transformation [44].

The crux of the matter of systems that reveal a MBL transition is that both their dynamical and
static physical properties critically depend on the intensity of the disorder strength, ω. Although
the precise boundaries have not been completely delimited and in fact they vary depending on
each particular model, the general scenario is more or less shared by all of them. While in the ab-
sence of disorder the XXZ chain is solvable by Bethe ansatz and thus integrable, the J1-J2 chain
is considered as a paradigmatic model to exhibit quantum chaos and quantum thermalization [4].
For intermediate values of ω, the chain shows an ergodic phase where most initial conditions
are expected to thermalize. This region is generally said to be quantum chaotic in the sense that
energy levels are characterized by level repulsion and the eigenvalue distribution is close to the
Gaussian orthogonal ensemble (GOE) as in the predictions of RMT. This picture can be easily
checked by statistical measures such as the nearest-neighbor spacing distribution (NNSD), P (s),
or the adjacent eigenlevel gap ratio, P (r). However, as we will show later, this metallic region
hides long-range deviations from RMT universal results, which can be analyzed by computing the
Thouless energy scale as was done in Refs. [23, 45]. Dynamically, this region is dominated by
sub-diffusive processes, multifractal scalings and other unexpected behavior [29–31]. The region
in between the ergodic and the localized phases has been extensively studied. Recent results indi-
cate that it may be characterized by a Griffith-like phase in which anomalously different disorder
regions seem to dominate the dynamics [32–34, 46]; nonetheless, the debate is still open [47]. To
describe the flow of intermediate statistics observed in this region, mean-field plasma models with
effective power-law interactions between energy levels [24, 48], the Rosenzweig-Porter ensemble
with multifractal eigenvectors [49, 50], a family of short-range plasma models [51] and general-
izations [41, 42] have been used. Finally, for disorder strengths larger than a critical value that
is dependent on the dimension of the Hilbert space, the chain gradually reaches the MBL phase.
Here, the ETH is violated, so generic initial conditions do not relax to their microcanonical aver-
age value. This region shows Poissonian spectral statistics instead, from which it follows that the
spectrum behaves as a set of uncorrelated random numbers where level crossings can potentially
take place [52]. This is explained by the identification of a complete set of local integrals of motion
in the MBL phase [53, 54]. Whether the MBL phase is reached in the thermodynamic limit from
the ergodic phase in the form of an actual phase transition (i.e., by means of a critical point), or
as a dynamical crossover, exhibiting a finite transition region (dubbed bad metal) with surviving
non-ergodic but extended states is an open question [38, 55–57]. The answer seems to be forever
eluding the community due to the (strictly speaking) impossibility to access the thermodynamic

4



SciPost Physics Submission

limit and the importance of finite size effects [58, 59], which are strong in these chains.
As the operator Ŝz :=

∑L
`=1 Ŝ

z
` commutes with the Hamiltonian, in this work we restrict our

attention to the sector Sz = 0. The total dimension of the Hilbert space is then d =
(
L
L/2

)
which

grows asymptotically when L → ∞ as d ∼ 2L/
√
πL/2. Thus, exact diagonalization with full

calculation of all the eigenstates becomes realistic only up to chain lengths 16 . L . 18. The spin
chains that are frequently used to investigate the MBL phenomenon are known to exhibit strong
border effects, meaning that the eigenstates are more localized as they get closer to the boundaries
of the band, regardless of the disorder strength [36, 38, 60, 61]. The question of whether true
mobility edges survive in the thermodynamic limit in MBL systems is still open as they have also
been argued to be indistinguishable from finite size effects [62]. In any case, to avoid border
effects we will only consider the central N = d/4 eigenstates {|En〉}Nn=1. The number of states
we use range from N = 63 for L = 10 to N = 3217 for L = 16.

3 Extreme events across the transition

3.1 Quantum thermalization: the concept

Quantum thermalization refers to the equilibrium state that a quantum system reaches for suffi-
ciently long times. Let us consider an isolated quantum system with Hamiltonian H with eigen-
states {|En〉}n satisfying H |En〉 = En |En〉, and an arbitrary initial condition |ψ(0)〉. The
latter evolves in time under H and after an interval of t ≥ 0 its wavefunction can be written
|ψ(t)〉 = exp(iHt/~) |ψ(0)〉. For a typical observable Ô, one might consider the long-time aver-
age 〈Ô〉t in the eigenbasis of H . If, for simplicity, the spectrum is non-degenerate, this is given by

〈Ô〉t := lim
τ→∞

1

τ

∫ τ

0
dt 〈ψ(t)| Ô |ψ(t)〉 =

∑

n

|Cn|2 〈En| Ô |En〉 , (2)

where |Cn| := | 〈ψ(0)|En〉 | is a c-number representing the probability of finding the system in the
eigenstate |En〉. Under very relaxed assumptions [63, 64], long-time averages of the kind of Eq.
(2) are known to reach a certain equilibrium value and remain close to it at all times. Nonetheless,
the system is often said to thermalize only if that value corresponds to the particular case of the
microcanonical average,

〈Ô〉ME :=
1

N
∑

En∈[E−∆E,E+∆E]

〈En| Ô |En〉 , (3)

where E is the macroscopic energy of the system and ∆E is a small energy window, ∆E/E � 1,
containing a large but finite number of levels, 1� N <∞. The connection between Eqs. (2) and
(3) is well understood in classical dynamics; in particular, for classical chaotic systems, long-time
averages are equivalent to phase averages if one fixes the right energy E, whereas integrable sys-
tems generically do not relax to Eq. (3) at all. In quantum mechanics, the eigenstate thermalization
hypothesis [3–8] underlies the equivalence between these two averages. It concerns the diagonal
matrix elements of a typical observable Onn := 〈En| Ô |En〉, which can always [8] be written

Onn = 〈Ô〉ME + ∆n, n ∈ {1, . . . , N}, (4)

where N denotes the Hilbert space size. The values ∆n are called diagonal fluctuations, and
describe the fluctuations ofOnn around the microcanonical average 〈Ô〉ME. We can consider them
as random numbers verifying 〈∆n〉 = 0 and 〈∆2

n〉 6= 0. The ETH states that a quantum system
thermalizes if ∆n (or, rather, its standard deviation, σ∆n =

√
〈∆2

n〉) decreases fast enough with
N . In other words, the ETH is nothing more than a statement about how smoothly the diagonal
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terms must change with energy for a quantum system to reach the equilibrium value Eq. (3) for
sufficiently long (but not exponentially long in the system size) times.

The standard tool to determine whether a quantum system thermalizes or not consists in study-
ing if σ∆n decreases fast enough with the system size. However, besides this fact, it has been
recently shown that the presence of correlations in the ∆n constitutes a signature of the existence
of anomalous non-thermalizing initial conditions [45]. To better study these correlations with dif-
ferent observables, it is convenient to make the diagonal fluctuations in Eq. (4) dimensionless, by
normalizing by its standard deviation, which yields

∆̃n :=
∆n

σ∆n

=
Onn
σ∆n

− 〈Ô〉ME

σ∆n

, n ∈ {1, . . . , N}. (5)

The consequence is that the new quantity in Eq. (5) is exactly a standard Gaussian random variable
G(0, 1), that is, with expected value 0 and variance 1, for any observable in any quantum system
obeying RMT. Hence, as previous evidence strongly suggests that the breakdown of the ETH close
to integrable regions may be a generic result [65–72], whereas thermalization is widely associated
with ergodicity and and RMT, the quantity ∆̃n sharply discriminates between these two limiting
regularity classes: for quantum chaotic systems it behaves as an uncorrelated, white random noise
and is Gaussian, whereas for quantum integrable ones an emerging structure in its Fourier modes
results from the existence of integrals of motion (i.e., the noise is no longer featureless). Thus,
the (normalized) diagonal fluctuations ∆̃n provide a powerful tool to identify small deviations
from thermalizing behavior, even in otherwise rather chaotic regions. In this direction, the power
spectrum of ∆̃n has been recently used in conjunction with long-range spectral statistics to connect
thermalization and Thouless energy in the prototypical disordered XXZ spin-1/2 chain [45].

3.2 Analysis of the diagonal fluctuations

Here, we study the diagonal fluctuations Eq. (5) across the MBL transition in the J1-J2 model,
Eq. (1). As representative physical observables, we choose the full momentum distribution on a
one-dimensional lattice with lattice constant set to unity, i.e.,

n̂q :=
1

L

L∑

m=1

L∑

n=1

e2πi(m−n)q/LŜ+
mŜ
−
n , q ∈ {0, . . . , L− 1}, (6)

where ~ := 1 and Ŝ±` are the usual ladder spin operators, which are related to those in Eq. (1)
by the well-known expressions Ŝ±` = Ŝx` ± iŜ

y
` . Thus, to calculate ∆̃n, we first need to evaluate

the diagonal matrix elements Onn, for which the complete set of eigenstates {|En〉}n is needed.
This is obtained by full diagonalization of Eq. (1). Next, the microcanonical average 〈Ô〉ME
is obtained by fitting a polynomial of degree 4 to the previous matrix elements Onn to avoid the
spurious effects originating in averages over finite energy windows [73] (this is the same procedure
that was used in Ref. [45]).

For reference, a summary of the number of central states N = d/4 and the number of real-
izations for each value of the number of sites L and the disorder strength ω can be found in Table
1. These quantities have been chosen explicitly so that their product remains approximately con-
stant. As not only the eigenlevels {En}n but also the eigenvectors {|En〉}n are needed, we cannot
realistically increase the value of L beyond 16. On the other hand, system sizes below L = 10 are
indeed accessible but not very representative as the samples become statistically poor.

We can now compute the probability distribution of such quantities ∆̃n, P (∆̃n). It is then
straightforward to obtain the kurtosis excess which is directly related to the probability of extreme
events. For a random variable X , the kurtosis excess γ2(X) is defined as

γ2(X) := Kurt[X]− 3 =

〈(
X − µ
σ

)4
〉
− 3. (7)
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L Levels in the central region Realizations

10 63 5000

12 231 1400

14 858 375

16 3217 100

Table 1: Number of levels in the central region of the spectrum that is considered in the calcu-
lations N = d/4 and number of realizations for each value of the number of sites L in the J1-J2

model, Eq. (1). The corresponding eigenvalues {En}Nn=1 and eigenstates {|En〉}n have been
obtained by exact diagonalization.

Here, µ := 〈X〉 is the expected value of X while σ2 := 〈X2〉− 〈X〉2 is its variance. The kurtosis
of any univariate Gaussian distribution is 3, and thus we may use this quantity to compare how
important is the presence of extreme events in a certain probability distribution with respect to
a Gaussian. A positive kurtosis excess means that the distribution of X is more tailed than a
Gaussian while a negative kurtosis excess indicates the opposite. In what follows, the random
variable of interest is X = ∆̃n.

In the main panel of Fig. 1 we show the kurtosis excess as a function of disorder for L =
10, 12, 14, 16. For small values of ω, those corresponding to the ergodic phase of the model, the
probability of extreme events roughly corresponds to the expected for a Gaussian distribution,
γ2(∆̃n) ≈ γ2(G) = 0; the larger the chain size, L, the better the agreement. This means that the
observables in Eq. (6) behave as expected in RMT in this region, and therefore ETH is fulfilled
and thermalization is expected. Note that ω = 0 has been excluded from our analysis as the clean
system, a spin chain with periodic boundary conditions, is translationally invariant. The influence
of these extra symmetries survives up to larger values of ω for smaller L and γ2(∆̃n) increasingly
deviates from 0 as a consequence. Then, the probability of extreme events as measured by γ2(∆̃n)
shows a neat increase with disorder. However, this increase is not monotonic. On the contrary,
γ2(∆̃n) has a maximum at a certain value of the disorder, which depends on L; this disorder
strength will be denoted by ωc(L) from now onward. In fact, we take the preceding statement as
the definition of ωc(L). After reaching this peak, γ2 starts decreasing as a function of disorder,
becoming negative for the largest values of disorder considered.

A precise calculation of ωc(L) is a complicated task, requiring a huge number of realizations.
To illustrate this fact, in the inset of Fig. 1 we plot the same results for L = 10, obtained with 103

and 105 realizations. The last curve is smooth and provides a pretty good value for ωc(L = 10).
On the contrary, the curve obtained with 103 realizations shows large fluctuations. As collecting
so many realizations is too expensive for larger values of L, we provide here just an estimate
of the singular disorder strength, ωc(L), for the cases displayed in the main panel of Fig. 1:
ωc(10) ∈ [3.0, 3.7], ωc(12) ∈ [3.3, 4.0], ωc(14) ∈ [3.8, 4.4], and ωc(16) ∈ [4.3, 4.8]. Despite
these uncertainties, it is clearly seen that both the disorder strength for the maximum in γ2(∆̃n),
ωc, and its magnitude increase with the system size. Furthermore, as the dimension of the Hilbert
space grows, the probability of finding extreme events is increasingly higher for intermediate and
large ω but also smaller for small ω.

At this stage, we can draw the following picture for the transition from the ergodic to the MBL
phases in the J1-J2 model. This transition starts with an increase of extreme events for the diagonal
fluctuations, ∆n, which favor the existence of non-thermalizing initial conditions [45]. However,
the integrable MBL phase is not characterized by a large probability for such extreme events,
but by a large value of σ∆n with a negative kurtosis excess. Hence, we can write a preliminary
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Figure 1: Main panel: kurtosis excess, γ2(∆̃n), Eq. (7), as a function of the disorder strength ω for
the number of sites L ∈ {10, 12, 14, 16}. The black, dashed line represents the kurtosis excess for
a standard Gaussian distribution G(0, 1), γ2(G) = 0. Inset: kurtosis excess for L = 10 obtained
with 105 realizations (red squares) and 103 realizations (yellow circles).

statement for the main conclusion of the paper: ωc(L) is a singular point in the transition from the
ergodic to the MBL phase in the J1-J2 model, characterized by a maximum probability of extreme
events for the diagonal fluctuations. Furthermore, its behavior when the chain size L is increased
resembles the finite-size scaling of observables that diverge at the critical point of a standard phase
transition, like, say, the magnetic susceptibility.

From this result, one may ask about the actual shape of the distribution P (∆̃n). This matter
is addressed in Fig. 2, which consists of two panels. Here we fix the number of sites at L = 16.
On the right-hand side we show P (∆̃n) for three representative values of disorder. We also plot
with black, dashed lines the probability density function of a Gaussian G(0, 1), P (x)Gaussian :=
exp
(
−x2/2

)
/
√

2π, x ∈ R, which underlies this quantity in the case of thermalizing systems.
For ω = 1, we can see that this is indeed the case: P (∆̃n) matches perfectly such a Gaussian
distribution. It is worth to mention that no fitting has been performed here; we merely plot the
Gaussian on top of the distributions. For ω = 4.7, which lies inside the interval1 for ωc(16)
inferred from Fig. 1, we observe that P (∆̃n) no longer agrees with a Gaussian, and its tails
display a slower decay, in concert with the high value of γ2(∆̃n) at this disorder. Instances of
long tailed distributions and the breakdown of the ETH near the MBL transition are known, often
associated with Griffith effects [33, 34, 40, 45]. Finally, for a value of disorder well within the
localized phase, ω = 100, the distribution has been completely distorted and the tails decay faster
than those of a Gaussian. To get a clearer picture, on the left-hand side of Fig. 2 we have chosen
to plot the tails of the same distributions for ∆̃n ∈ [2, 6]. This panel further confirms that the case
ω = 4.7 decays much more slowly than the others; as ω → ∞, the decay is faster and faster;
and ω = 1, matching very approximately the tails of the G(0, 1) distribution, seems to be in an
intermediate situation.

This discussion reinforces our previous conclusion. ωc(L) may be associated with a precursor

1We have also studied other measures for extreme events, like the probabilities of finding diagonal fluctuations
beyond 3σ and 5σ. The value ωc(L = 16) ≈ 4.7 seems a good compromise for all three indicators. The results for
other values of ω close to ω = 4.7 are qualitatively similar.
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Figure 2: Left panel: Tails of the distribution of ∆̃n, P (∆̃n), for L = 16 and disorder values
ω ∈ {1, 4.7, 100} in logarithmic scale. Right panels: probability distribution P (∆̃n) for, from
top to bottom, ω ∈ {1, 4.7, 100}. The histograms bin has been chosen 0.05. Black, dashed lines
represent the probability density function of a Gaussian G(0, 1).

of a critical point in the ergodic-MBL transition. Unfortunately, much larger systems, far above
the reach of current computers, are required to determine if this is an actual transition, or just a
smooth crossover. In any case, from the results discussed in this section, we can conjecture that,
if there exists a critical point, ωc(∞), then it must be the one in which γ2(∆̃n) is maximum . In
the next section we will show that the singular character of ωc(L) is fully compatible with the
behavior of spectral statistics across the transition, widely used to characterize the static properties
of the chain.

4 Spectral statistics across the transition

The statistical analysis of eigenlevel fluctuations is by now well established as one of the main
tools to study quantum complex systems. This is because the spectral properties of quantum
systems with a chaotic classical counterpart do not depend on the particular features of the Hamil-
tonian but only on its more general global symmetries. As a result, the level statistics of a variety
of apparently completely unrelated physical systems universally coincide with the predictions of
RMT for the random matrix ensemble associated to their particular symmetry [10].

The eigenlevel distribution of the kind of spin chains associated to the MBL transition has been
abundantly studied by many previous works. The goal of this section is to show that the maximum
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of the probability of extreme events as measured by the kurtosis in Fig. 1 acts as an indicator of the
value of disorder beyond which the chaotic regime is completely abandoned and the transition to
the MBL phase begins. We will show that the spectral statistics are not only quantitatively but also
qualitatively different on both sides of this point. For ω < ωc(L), the system belongs in the chaotic
region where the Thouless energy, the scale associated with RMT correlations, is larger than the
Heisenberg energy, the mean energy distance between levels. To model the spectral statistics for
larger disorder strengths, ω > ωc(L), we employ a family of generalized semi-Poisson statistics.

Here we make use of two different measures: the NNSD, P (s), which is concerned with short-
range level correlations, and the δn, which is a long-range spectral statistic. For the universal
predictions of RMT to hold it is necessary to obtain the cumulative spectral function, G(E) =∑N

n=1 Θ(E − En), where Θ is the unit step function, representing the number of levels with
energy less than or equal to a certain value E [9–11]. This function can be separated into a smooth
part G and a fluctuating part, G̃, as G(E) = G(E) + G̃(E). Then, the original eigenlevels
{En}Nn=1 are mapped onto the dimensionless quantities {εn}Nn=1 as En 7→ G(En) =: εn. As a
consequence, the mean level density is unity, and RMT results can be applied. This procedure
is termed unfolding [73]. Since there is no statistical theory for Eq. 1 that provides a theoretical
expression for the smooth G(E), in this work we numerically obtain it by fitting a polynomial of
degree 10 to the original energies {En}Nn=1, i.e., G(x) =

∑10
k=0 akx

k.
The famous NNSD, P (s), is the distribution of the (unfolded) consecutive level spacings, si :=

εi+1 − εi ≥ 0, that is, P (s) := 〈δ(s− si)〉. For systems that are invariant under orthogonal trans-
formations, the eigenlevel distribution follows the results for GOE random matrices, and quantum
chaos manifests via level repulsion in the Wigner-Dyson surmise P (s) = π

2 s exp
(
−πs2/4

)
. By

contrast, the spectrum of quantum integrable systems is equivalent to a set of independent, iden-
tically distributed, Poisson random variables [52] where level repulsion is no longer present, and
thus P (s) = exp(−s).

Long-range statistics describe the spectral properties of eigenlevels separated by large energy
index distances (i.e., levels Ei, Ej ∈ {En}Nn=1 with |i − j| . N ), as opposed to level distances
of one or two units (or in general |i − j| � N ). Contrary to short-range statistics, these allow to
obtain the so-called Thouless energy scale, ETh: the energy scale beyond which universal RMT
results break down [74, 75]. It has been recently shown that, at least in the disordered XXZ spin
chain, this scale determines to what extent a given system thermalizes [45]. A decreasing value of
ETh was linked to an increase of the probability of extreme events from the ergodic region. RMT
results have been shown to describe well the statistics of eigenvalues separated by less than ETh;
however, for level distances larger than ETh, long-range deviations towards the corresponding
integrable result can be detected even in the region interpreted as chaotic by short-range statistics
such as the P (s). In the case of disordered spin chains, the number variance [23], the spectral
form factor [58], and very recently the δn [45] have allowed to calculate the value of ETh.

In this work we will use the δn spectral statistic as a long-range measure of level correlations
[76–81]. It is defined as the difference between the nth unfolded level and the corresponding
energy value in an equiespaced spectrum (i.e., with 〈εn〉 = n), that is,

δn := εn − n, n ∈ {1, . . . , N}. (8)

The quantity δn can be understood as a discrete time series where the level order index n plays
the role of a discrete time. Thus a discrete Fourier transform can be applied to δn, one of the most
common techniques in time series analysis. Taking its square modulus gives the power spectrum
P δk of the signal. The quantity of interest is the averaged power spectrum, which reads

〈P δk 〉 := 〈|F(δn)|2〉 =

〈∣∣∣∣∣
1√
N

N∑

n=1

δn exp

(−2πikn

N

)∣∣∣∣∣

2〉
, k ∈ {1, 2, . . . , kNy}, (9)

10
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where kNy := N/2 is the Nyquist frequency. Here the angular brackets 〈·〉 denote average over
realizations for a fixed disorder strength. Analytical expressions are known for the main random
matrix ensembles [77]. In the limit k/N � 1 and N � 1, the power spectrum of δn in quantum
integrable systems exhibits the neat power-law decay 〈P δk 〉 ' 1/k2, whereas for quantum chaotic
ones this is 〈P δk 〉 ' 1/k [76]. One says that this is a universal feature because it is only dependent
on the regularity class (integrable or chaotic) of the Hamiltonian matrix; however, it does not
depend on the underlying symmetry.

In this section we show results for the number of sites L = 16 in all cases. Smaller sizes
reveal the same features. However, we have focused on the larger size that shows best statistical
significance, especially when dealing with long-range correlations.

4.1 Semi-Poisson model for short- and long-range spectral statistics

While a quantum chaotic spectrum exhibits correlations between levels, these are completely
absent from quantum integrable ones (i.e., levels are uncorrelated). Wigner-Dyson and Pois-
son statistics are valid, respectively, in the limiting metallic and insulator regimes of the metal-
insulator transition (MIT) of the Anderson model [82]. At the MIT critical point a new universal
model of spectral statistics is believed to be applicable, the semi-Poisson [75], which is connected
to the fractal nature of the critical wavefunctions, intermediate between the extended and local-
ized cases [48, 83]. Semi-Poisson spectra are intermediate between the two opposed regimes of
Wigner-Dyson and Poisson in the sense that they reveal some degree of level repulsion but for
asymptotically large level distances the NNSD decreases much more slowly than for GOE spec-
tra, producing P (s) = 4s exp(−2s) [84, 85].

It has been shown [86] that a simple way to generate semi-Poisson statistics from a given
Poissonian spectrum is to keep every two eigenvalues from it so that the new spacing is simply
si = (si + si+1)/2. If instead one keeps every η ∈ N eigenvalues from a Poissonian spectrum,
one gets the new sequence of spacings {si}i where

si =
1

η

η−1∑

j=0

si+j =
1

η
(si + si+1 + · · ·+ si+η−1), i = 1, 1 + η, 1 + 2η, . . . (10)

From now onward we continue to denote the spacings defined in Eq. (10) by si. The sum of
η (unitary) exponential random variables (i.e., Poisson in the sense of Berry and Tabor) has the
Erlang probability density, P (s) = sη−1 exp(−s)/(η − 1)!. In particular, the case η = 2 corre-
sponds to semi-Poisson, while η = 1 gives the original Poissonian statistics. This can be further
generalized by extending the domain, η ∈ N→ [1,+∞). The corresponding NNSD is simply the
marginal probability density of any spacing in Eq. (10),

P (s; η) :=
ηηsη−1e−ηs

Γ(η)
, s ≥ 0, η ∈ [1,+∞), (11)

where Γ(z) =
∫∞

0 dt tz−1e−t is the gamma function. In Ref. [84], an equivalent family of dis-
tributions was obtained from a phenomenological short-range plasma model in order to fit the
spectrum of a variety of systems displaying dynamics between chaotic and integrable [87–89]. In
fact, Eq. (11) is the exact same as Eq. (5) in [84] with η := β + 1 and n = 1, the NNSD of
the well-known short-range plasma model based on a one-dimensional Dyson gas introduced by
Bogomolny and co-workers. As soon as the continuous parameter η of Eq. (11) departs from its
corresponding value in a Poissonian spectrum, the NNSD reveals level repulsion proportional to
P (s) ∝ sη−1, but the fall-off exp(−ηs) is always slower than exp

(
−s2

)
in the Wigner-Dyson

surmise of chaotic systems. In addition, the property of level spacing independence is preserved
in a so-defined spectrum, as the covariance between any two spacings si and sj is

Cov(si, sj) = 〈sisj〉 − 〈si〉〈sj〉 = δij/η, (12)
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where δij is the Kronecker delta. This property of independent level spacings can be used to derive
the power spectrum of δn exactly for the family of distributions in Eq. (11). The exact result [90]
is given by

〈P δk 〉(η) :=

(
N − 1

ηN

)
1

4 sin2(ωk/2)
, ωk :=

2πk

N
, k ∈ {1, 2, . . . , kNy}, (13)

for unfolded sequences each one having 〈s〉 = 1 and in the case where the total number of levels
is N (i.e., there are N − 1 level spacings; we are of course concerned with the case N � 1).

Equation (13) depends on the single continuous parameter η ∈ [1,+∞), with η = 1 again
corresponding to Poissonian statistics, and η = 2 being semi-Poisson in the strictest sense of the
term. From Eq. (13) it follows immediately that the crossover between these two limits takes the
form of a vertical translation of 〈P δk 〉 but its overall structure remains unchanged. Similarly, Eq.
(12) implies linear behavior of the number variance Σ2(L) with a proportionality constant η−1,
i.e., Σ2(L) ∼ L/η when L → ∞. In the MIT transition this generalized semi-Poisson model
seems to describe the spectral statistics of the critical region with a value of η that changes from
2 to 1 as the dimensionality is increased as has been numerically investigated up to six spatial
dimensions [91].

Therefore, Eq. (11) and Eq. (13) allow to completely characterize a crossover from semi-
Poissonian to Poissonian statistics. Although the semi-Poissonian limit strictly refers to the case
η = 2 alone, one usually still uses the term to allude to the whole family of distributions. As the
value of η is reduced the family of distributions exhibit a decreasing intensity of level repulsion,
which completely vanishes only at the Poissonian limit.

Here we show that the semi-Poisson model provides a characterization of the level statistics
for ω > ωc(L) in Eq. (1), for both short- and long-range correlations. To that end, first we have
computed the NNSD for the eigenlevels of our model, Eq. (1). We have unfolded the sequence of
original energies {En}Nn=1 with a polynomial of degree 10. Starting from the central d/3 levels,
we have removed the 2bd/48c levels closest to the edges before and after unfolding, which gives
N = bd/4c for our analysis (see Table 1). To avoid the spurious effects introduced by spectral
unfolding in systems close to integrable dynamics, we have divided each level spacing by its mean
value for each realization, so that the mean level spacing becomes 〈s〉 = 1 exactly [90]. Then,
we have constructed the histograms of P (s) with a bin size ds = 0.1. After that, we performed
a single-parameter fit of Eq. (11) to the P (s) to obtain the value of η. Results are shown in Fig.
3 for a set of disorder values and L = 16. As can be seen, P (s) can be very approximately
characterized by Eq. (11) for disorder values larger than ωc(16). Incidentally, for ω = 5.0, we
obtain almost fully semi-Poissonian level spacings, η ≈ 2.079. For ω = 4.7, we obtain η ≈ 2.274,
implying that the level repulsion is stronger that in the ergodic case. However, it is difficult to infer
whether this is a spurious result due to the proximity to the singular point, ωc(L), or if it is just
a finite-size effect. As ω is increased into the localized phase, the parameter η decreases, until
it reaches a value of η ≈ 1.058 for ω = 12. Well within the localized phase, the NNSD agrees
well with η ≈ 1 (not shown). For ω smaller than ω = 4.7, the system enters the chaotic region.
Equation (11) is explicitly derived on the assumption of statistically independent spacings as in
the Berry-Tabor result [52]. Then, since quantum chaotic eigenlevels are statistically correlated,
Eq. (11) cannot satisfactorily describe this side of the transition. However, for ω & 4.7, level
spacings approximately become independent random variables, but as we have seen they differ
from (generic) integrable systems in that their distribution is not Poissonian.

This picture is also obtained in long-range measures of level statistics. This means that this
side of the transition can be correctly described by spectral statistics ranging from semi-Poisson
to Poisson for eigenergies separated by not only short but also large level distances.

In Fig. 4 we show the numerically obtained power spectrum 〈P δk 〉 together with Eq. (13) for
the values of η from the NNSD for the same values of the disorder strength. The Poisson and
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Figure 3: (a)-(f) Nearest-neighbor spacing distribution, P (s), for the six values of disorder strength
ω ∈ {4.7, 5.0, 6.0, 7.0, 8.0, 12.0} (colour filled histograms). Solid, black lines represent the best
nonlinear fit of Eq. (11) to the histograms of P (s). Bin size has been chosen ds = 0.1. Results
correspond to L = 16.

GOE results are also shown for reference. For brevity we omit the analytic expression of the GOE
but it can be found in Ref. [77]. For ω & 5.0, the agreement between the two curves is almost
perfect. Below this disorder strength, for ω = 4.7, the power spectrum is slightly touching the
GOE result. This reflects that this value of ω can indeed be taken as the limit beyond which the
model of statistically independent spacings is valid. As ω is increased, η decreases towards the
Poisson result, and the power spectrum undergoes a smooth crossover, approaching the theoretical
Poisson curve vertically. We stress that no fitting has been performed in this case; the black solid
lines merely correspond to Eq. (13) for η as obtained in Fig. 3, for each value of ω there shown.
The first frequencies are spoiled in all six cases, but this is an expected consequence from the
unfolding procedure [73], not a shortcoming of our model.

4.2 Long-range statistics on the ergodic region

Short-range spectral statistics in the chaotic region show results consistent with GOE random
matrices as has been extensively shown before (see, e.g., [38]), so we will not consider them
further. Additional investigation of the long-range spectral correlations across the transition is
provided in Fig. 5, where we focus on the chaotic side of the model Eq. (1) instead. There we
show the numerical 〈P δk 〉, obtained following the same steps as before. For ω = 0.5 and ω = 1.0,
the differences between the chaotic theoretical curve and the numerics are minimal. However,
as ω is increased, the power spectrum gradually deviates from the ergodic towards the integrable
curve. This effect is blurred in panels (a) and (b), due to the unfolding procedure [73], but it
is clearly seen in the rest of the panels. This deviation is linked to the Thouless energy ETh, the
energy scale beyond which energy levels are no longer correlated like in RMT. Following the same
procedure that in [45], the power spectrum of δn gives us direct access to the Thouless frequency
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Figure 4: (a)-(f) Power spectrum of δn, 〈P δk 〉, for the six values of disorder strength ω ∈
{4.7, 5.0, 6.0, 7.0, 8.0, 12.0} (color points). Solid, black lines represent Eq. (13) for the values
of η obtained from the NNSD, Fig. 3. Top and bottom dashed lines are the Poisson [Eq. (13) with
η = 1] and GOE results (see Ref. [77]) respectively. Results correspond to L = 16.

kTh, which determines a characteristic length `Th = N/kTh: two energy levels, En and Em are
correlated like in RMT if their level index distance satisfies |n −m| < `Th. In this sense, a fully
chaotic RMT spectrum is one that has the highest possible value of `Th (or the lowest possible
value of kTh). This would indicate that GOE correlations are shared by levels separated by any
distance within the spectrum boundaries. As kTh increases, the spectrum is thus ‘less chaotic’ in
this particular sense2. A good estimation for kTh is to choose the lowest possible frequency for
which 〈P δk 〉 fluctuates below the GOE curve, which gives the approximation kmin ≈ kTh. This
point is identified in all the panels of Fig. 5 by means of a vertical arrow. We can see that kmin

monotonically increases with ω, showing that the system becomes less chaotic as the singular
point, ωc(L), is approached. It is worth to note that this degree of detail cannot be achieved by
analyzing short-range spectral statistics, even in the case where kmin is very large. Because they
are by definition insensitive to the spectral properties of distant levels, short-range statistics would
still produce a rather chaotic result (this can be seen, e.g., in the mean value of the adjacent level
gap ratio, sometimes employed for finite-size scaling considerations).

4.3 Transition landscape

Results plotted in Figs. 4 and 5 suggest a scenario summarized in Fig. 6. In panel (a) of this
figure, we display kmin as a function of ω. We observe that the value of kmin for ω � ωc(L)
is very small compared to the number of levels, kmin/N � 1, which gives a large value of the

2One may in fact estimate the Thouless energy as ETh = ~/τTh = `Th/g(ε), where where g(ε) is the density of
states at the average energy. Thus, ETh ∝ `Th ≈ `max ∝ k−1

min. Note that ETh and τTh have dimensions of energy and
time, respectively, but `Th is a dimensionless quantity that refers to the unfolded level distance; the ‘frequency’ kTh is
also dimensionless.
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Thouless energy. It is seen that kmin then grows quite fast with ω, explaining the subsequent
separation from the GOE curve of the power spectrum for those values of disorder. The limiting
value kmin = kNy = N/2 is also shown with a dashed line in panel (a) of Fig. 6. Reaching
the Nyquist frequency indicates that the power spectrum has completely separated from the GOE
curve, and hence the quantum correlations of RMT are destroyed at all scales (i.e., there is no
level index distance such that levels separated by that distance are correlated). Importantly, for
ω = 4.5 the characteristic frequency is still smaller than the Nyquist frequency, kmin < kNy, but
for ω = 5.0 it has already reached it. This means that 〈P δk 〉 completely separates from the RMT
result at a value of the disorder compatible with ωc(L).

From this point onward, the power spectrum is characterized by Eq. (13) instead because
level correlations are no longer present. This is shown in panel (b) of Fig. 6, where we display
η as a function of ω. In concert with previous Fig. 1, η smoothly decreases as the MBL phase
is approached. Furthermore, a value close to η = 2, which implies a level repulsion equal to
the GOE, is found around the singular point ωc(L). As we have discussed before, our results
are compatible with a strange singular point ωc(L) characterized by semi-Poisson statistics with
level repulsion larger than in the GOE. Notwithstanding, this may be also a finite-size effect. In any
case, we find a neat transition in the spectral statistics between full or partial correlations with level
repulsion [the chaotic region, 0.5 . ω . ωc(L)], to no correlations but still level repulsion [semi-
Poisson region, ωc(L) . ω < ∞], to finally no correlations and no level repulsion whatsoever
(Poisson limit, ω →∞).

All these results reinforce our previous conclusion regarding the singular character of ωc(L).
Furthermore, the disorder value at which the kurtosis of the diagonal fluctuations, γ2(∆̃n), is
maximum , ωc(L), is also a singular point regarding spectral statistics.
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Figure 5: (a)-(f) Power spectrum of δn, 〈P δk 〉, for six values of disorder strength ω ∈
{0.5, 1.0, 2.0, 3.0, 4.0, 4.7} (color points). Top and bottom black lines are the Poisson [Eq. (13)
with η = 1] and GOE results (see Ref. [77]), respectively. The arrows in each panel indicate the
value of kmin for the corresponding value of ω. All results correspond to L = 16.
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Figure 6: Behavior of long-range spectral statistics as a function of disorder ω for L = 16
across the transition. Left panel: for small values of disorder, ω . ωc(L = 16), we represent the
characteristic frequency kmin as a function of ω and compare to the Nyquist frequency kNy = N/2
(gray, dashed line). A small kmin corresponds to a large Thouless energy and vice versa. Right
panel: for large values of disorder, ω & ωc(L = 16), we plot η obtained from a single-parameter
fit of the generalized semi-Poisson distribution Eq. (11) to the numerically obtained NNSD (η = 1
corresponds to the full Poisson limit).

5 Discussion of results

The results from previous Secs. 3 and 4 provide an interesting insight into the mechanism for the
transition between the chaotic and the localized phases in the J1-J2 model. It can be summarized
as follows:

If there exists a critical point in the transition from the ergodic to the MBL phases, ωc(L →
∞), then it must correspond to the disorder strength at which the kurtosis of the distribution of
the (normalized) diagonal fluctuations γ2(∆̃n) is maximum . For finite systems, ωc(L < ∞)
unambiguously splits the chaotic and localized phases.

In Fig. 7 we illustrate this scenario, exemplified with L = 16 but that we conjecture to hold
with generality (at least for finite sizes). There, we find two different regions:

• Chaotic region. This corresponds to small values of disorder, ω < ωc(L). Here spectral
statistics coincide with RMT up to a certain characteristic length `max, beyond which RMT-
like correlations are lost [45]. For very small values of ω, the ETH is fulfilled, and generic
observables relax to their microcanonical equilibrium value. As can be seen in Fig. 1, the
probability of extreme events is very approximately the same than for a Gaussian distribu-
tion, which underlies the diagonal matrix elements for thermalizing systems. Even more,
panels (a) and (b) of Fig. 2 show that ∆̃n agrees almost perfectly with such a distribution,
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including in the tails. As ω is increased, the kurtosis excess γ2(∆̃n) increases too, signif-
icantly separating from the Gaussian expectation. As was shown in Ref. [45], this means
that, although generic initial conditions will thermalize to the microcanonical average for
these disorder strengths, it is also a lot more probable to find anomalous initial conditions
that do not. In terms of spectral statistics, even though for small ω the eigenlevel distribu-
tion is very close to the GOE predictions of RMT, Fig. 5 shows that as ω increases (but
still remains on the chaotic side) long-range deviations can be attributed to the anomalous
behavior of the Thouless energy. The increasing values of the probability of extreme events
are thus connected to the gradual loss of chaos in the spectrum. For small values of ω, ∆̃n

is Gaussian, the system thermalizes, and GOE level correlations are maintained between
levels separated by distances comparable to the total size of the spectrum. As ω increases,
extreme events take place with more and more probability and the Thouless energy starts
decreasing, meaning that level correlations between levels very far apart from each other are
being destroyed. For disorder values close to ω ≈ ωc(L), the Thouless energy is minimal
and the model departs from its chaotic phase.

• Semi-Poisson region. This corresponds to ω > ωc(L). At this point the probability of
extreme events of Fig. 1 starts diminishing; at around ω ≈ 11, it crosses the corresponding
value for a Gaussian distribution. As can be seen in panels (a) and (d) of Fig. 2, well
within the localized phase, at ω = 100, the distribution of the diagonal fluctuations has been
completely distorted and for asymptotically large values it decreases faster than a Gaussian
distribution, in concert with the finding that the probability of extreme events is smaller
than that of a Gaussian for large disorder. On this side of the transition, Eqs. (11) and (13)
account for both short and long-range spectral statistics, as can be seen in Figs. 3 and 4.
This means that the spectrum is here approximately composed of independent, identically
distributed random numbers that still show level repulsion, so they are intermediate between
GOE and Poisson. For L <∞, the Poisson limit is only strictly reached when ω →∞.

The singular point separating these two regions, ωc(L), shows the following features. First,
it is the disorder strength for which the maximum probability of extreme events in the diagonal
fluctuations occur. Here ∆̃n is no longer well described by a Gaussian, and the decay of its tails is
much slower, almost exponential as panel (a) of Fig. 2 suggests. And second, it indicates certain
singularity in the spectral statistics in the sense that below it level correlations exists between
levels separated by certain distances, but beyond it no such feature can be found, even though
some degree of level repulsion is still preserved.

Thus, we observe that the kurtosis excess γ2(∆̃n) together with the spectral analysis provided
in the previous sections strongly suggest that the flow from Wigner-Dyson to Poisson statistics
is a two-stage process, in concert with previous numerical findings [24, 30]. In Ref. [30] the
transition from the ergodic to the MBL phase was identified by means of a nonuniversal jump of
the multifractal dimensions (both in Fock and spin configuration basis). We find that a similar
effect gives rise to a maximum value of γ2(∆̃n), which also hints towards the existence of a
critical transition point in the J1-J2 model as we have shown. The multifractal dimensions vanish
only in the infinite disorder limit, coinciding with full Poissonian statistics where level repulsion
completely vanishes as well since η = 1 [see Eq. (11)]. Our results are also consistent with
those presented in Ref. [24], where the effective interaction between eigenlevels in the disordered
XXZ spin chain was analyzed. In the ergodic phase, level statistics were characterized by a long-
range plasma model. However, upon reaching the MBL transition, a power-law local interaction
between levels means that these are intermediate between Wigner-Dyson and Poisson, leading
to the family of semi-Poisson distributions as we have seen. The locality of interactions on this
side of the transition is also consistent with the level repulsion P (s) ∝ sη−1, which becomes
increasingly weaker as we approach the Poisson limit and hence the interaction between level
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Figure 7: Kurtosis excess of the distribution of ∆̃n as a function of the disorder strength ω for
L = 16. The black, dashed line represents the kurtosis excess for a standard Gaussian distribution
G(0, 1), γ2(G) = 0. The vertical, yellow shaded zone at 4.3 . ω . 4.8 indicates the region where
the critical value ωc(L = 16) should be located if it existed: the chaotic region is located on its
left, while the semi-Poisson region is on its right.

spacings also diminishes up to this point.
Other more common signatures of the transition from ergodicity to MBL, like the mean value

of the adjacent level gap ratio or the family of Rényi entropies (of which the Shannon entropy
is a particular case) [15, 23, 24, 35–42], change monotonically with ω, and therefore do not give
rise to a neat singular point. For the previous indicators usually some form of scaling is involved
in order to identify the transition point, and its value is generally largely influenced by several
factors among which the most important is the number of simulated sites, L. By contrast, as can
be seen in Fig. 1, the probability of extreme diagonal fluctuations allows to separate the dynamical
sides transparently and is valid irrespective of L. The transition point, located at the maximum of
γ2(∆̃n), grows with L, in concert with previous numerical findings. The fact that this maximum
value itself also increases with size indicates that the transition is more pronounced for larger
systems, but it still does not rule out the possibility that there might exist an extended transition
region between the completely chaotic and integrable regimes even in the thermodynamic limit.
Experiments in one-dimensional interacting bosons seem also to point to the critical point scenario
by studying spatial correlations at long distances after some time evolution. However, sizes are
not large enough to make a sensible extrapolation to the thermodynamic limit [92]. Thus, although
our findings seem more compatible with a critical point leading to an actual phase transition, they
could signify a change between two distinct, extended regimes. In this sense it is not clear whether
both the semi-Poisson and the chaotic regions are finite size effects, disappearing altogether at
macroscopic scales and giving rise to an abrupt change from ergodicity to MBL, or if it is a robust
characteristic of disordered interacting spin chains that, like the J1-J2 model, undergo a MBL
transition. The answer to this question, however, lies out of the scope of this manuscript.
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6 Conclusion

We have studied the probability of extreme events of the (normalized) fluctuations of the diagonal
matrix elements of physical observables around its microcanonical equilibrium value for the J1-
J2 disordered quantum spin chain. For intermediate values of disorder this probability exhibits a
maximum value that increases and whose exact location shifts with the system size. We interpret
this result as a possible finite-size precursor of the critical point of the ergodic-MBL transition.
Below this value of disorder the model is in its chaotic phase, characterized by GOE as in RMT
spectra but with long-range deviations due to the Thouless energy. Beyond this value of disorder,
an extended region can be identified whose spectral statistics can be described by a family of
generalized semi-Poissonian statistics which show level repulsion but not chaotic correlations.
Both short and long-range spectral measures can be accurately taken into account by this model.
For very large values of disorder, the standard Poissonian statistics associated to the integrability of
the localized phase are recovered, where both level repulsion and correlations are lost. Contrary to
other ergodicity indicators such as the adjacent level gap ratio or the family of Rényi entropies, this
probability is not a monotonous quantity and allows to distinguish these two regimes for any value
of the number of sites unambiguously. The main conclusion of our work is that the maximum
of the probability of extreme events as represented by the kurtosis excess is an indicator of the
hypothetical critical point of the transition. In other words, if the ergodic and MBL phases are
indeed connected by an actual phase transition and not by a smooth crossover, then the critical
point must correspond to the value of disorder strength that yields the maximum of the kurtosis
excess. It is interesting to note that the behavior of γ2(∆̃n) closely resembles that of a magnetic
susceptibility, a robust indicator of a phase transition.

We believe our results are an important contribution for a better understanding of the ergodic-
MBL transition and the MBL phase itself, opening up several new avenues of research. The
behavior of the fluctuations of matrix elements from the microcanonical result has been studied
before but not with our focus of computing the probability of extreme events. These ideas im-
mediately call for a study of their relationship with Griffiths effects and their generality in other
many-body systems with MBL transition. It should be mentioned that the momentum distribu-
tion is a quantity experimentally accessible in time-of-flight experiments with cold atoms [93].
By performing many copies of the same experiment with different disorder strengths, our results
could be tested experimentally. One of the main questions in the field is the relationship between
the standard one-body Anderson localization transition and the Anderson localized phase and the
many-body localization transition and phase. Our description of the spectral statistics of the MBL
phase with a generalized semi-Poisson model which is known to describe the critical behavior of
the Anderson model at high dimensions should be an important motivation for the current effort
of understanding the relationship between the MBL transition and the Anderson localization tran-
sition in high dimensional lattices [94]. The main problem in the study of many-body disordered
systems, which is also the main limitation of the results presented in this paper, is the scaling to
the thermodynamic limit, L → ∞. However, we believe that our results could serve as guidance
for the search of a theoretical framework capable of overcoming this limitation.
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[73] J. M. G. Gómez, R. A. Molina, A. Relaño, and J. Retamosa, Misleading signatures of
quantum chaos, Phys. Rev. E 66, 036209 (2002), doi:10.1103/PhysRevE.66.036209.

[74] J. T. Edwards and D. J. Thouless, Numerical studies of localization in disordered systems,
J. Phys. C: Solid State Phys. 5, 807 (1972), doi:10.1088/0022-3719/5/8/007.

[75] B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides, and H. B. Shore, Statistics of
spectra of disordered systems near the metal-insulator transition, Phys. Rev. B 47, 11487
(1993), doi:10.1103/PhysRevB.47.11487.
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