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Abstract

Disordered interacting spin chains that undergo a many-body localization transition are charac-
terized by two limiting behaviors where the dynamics are chaotic and integrable. However, the
transition region between them is not fully understood yet. We propose here a possible finite-
size precursor of a critical point that shows a typical finite-size scaling and distinguishes between
two different dynamical phases. The kurtosis excess of the diagonal fluctuations of the full one-
dimensional momentum distribution from its microcanonical average is maximum at this singular
point in the paradigmatic disordered J;-J> model. For system sizes accessible to exact diago-
nalization, both the position and the size of this maximum scale linearly with the system size.
Furthermore, we show that this singular point is found at the same disorder strength at which the
Thouless and the Heisenberg energies coincide. Below this point, the spectral statistics follow the
universal random matrix behavior up to the Thouless energy. Above it, no traces of chaotic behav-
ior remain, and the spectral statistics are well described by a generalized semi-Poissonian model,
eventually leading to the integrable Poissonian behavior. We provide, thus, an integrated scenario
for the many-body localization transition, conjecturing that the critical point in the thermodynamic
limit, if it exists, should be given by this value of disorder strength.
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1 Introduction

In the classical world the connection between the ergodic properties of a system and its class of
regularity (chaotic and integrable) is well understood both mathematically and phenomenologi-
cally [1,[2]. The classical phase space is completely covered by the erratic trajectories followed
by classical chaotic systems while integrability means that only a certain subset defined by the
constraints of the constants of motion is accessible. In the first case the system will thermalize
after being driven away from thermal equilibrium while in the second case it will generally not.
Thus ergodicity and chaotic behavior are generally tied together and one is expected if the other is
present.

In the quantum realm, however, the situation is much more involved. Our understanding of
thermalization lies in the eigenstate thermalization hypothesis (ETH) [3H8]]. According to this
theory, a quantum system will thermalize if the fluctuations of the long-time averages of local
observables around their standard microcanonical equilibrium value decrease fast enough with
system size. Plainly put, the ETH states that the diagonal matrix elements of observables in the
eigenstates of the system Hamiltonian must change with energy smoothly enough, coinciding with
the microcanonical average up to some random and sufficiently small fluctuation. The connection
between quantum thermalization and quantum chaotic behavior [9] is still an open question. The
conjecture put forward by Bohigas, Giannoni and Schmit [[10] indicates that the spectral fluctu-
ations of quantum systems with an ergodic classical analogue follow exactly the predictions of
random matrix theory (RMT) [11]. Hence the statistical analysis of the eigenlevel distribution of
quantum spectra has been established as a very valuable tool to investigate quantum ergodicity.
The ETH has been long thought to be a consequence of RMT, and thus the thermal properties of
quantum systems seem to depend on the onset of quantum chaos in a non-trivial way. As in the
classical case, quantum thermalization and chaos are two terms almost invariably associated with
each other. However, the limits of applicability of RMT are more rigid than those of the ETH, and
thus the latter can still apply beyond the capabilities of the former.

Originally, the RMT provided a solid framework to identify chaos in isolated quantum systems.
Perhaps unexpectedly, the last decade has seen an enormous revival of the interest in spectral anal-
ysis due to the very exotic nature of quantum many-body systems. In this direction, disordered
lattice models from condensed matter have gifted us with an unprecedented playground to test
quantum ergodicity [[12-14]. It seems by now well established that this is a property that clean
(i.e., not disordered) quantum many-body systems generally have [4]]. Introducing sufficiently
strong disorder gives rise to one of the most striking exceptions to quantum thermal behavior:
many-body localization (MBL) [3}|15]], which is now taken as the prototypical nonergodic phe-
nomenon. MBL is observed in some disordered lattice models with local interactions such as the
Heinsenberg spin-1/2 chain or its generalization to next to nearest-neighbor interactions, the .J;-
Jo model, for high enough disorder [[16-28]]. Systems in this class often display two completely
opposed regimes: an ergodic phase for small disorder strength, in which both the ETH and RMT
provide conclusive results, and the MBL phase, where the spectrum does not follow RMT and the
system does not equilibrate at all. The region in between these two phases reveals highly unusual
properties that have attracted very active investigation [[29-31},33-35[]. One of the most pressing
questions arguably concerns the nature of the transition between the metallic, thermal phase and
the insulating, nonthermal one, i.e., whether there is an actual phase transition in which a critical
point can be observed or if we are dealing with a smooth crossover instead. Although exploring fi-
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nite systems rather clearly leads to the second option, the answer in the thermodynamic limit (i.e.,
at macroscopic scales) is a lot more difficult to obtain, mainly due to the exponential increase of the
dimensionality of the Hilbert space with system size in many-body quantum systems. A variety of
ergodicity breaking indicators [15,2324,28,36-43|] have been used in the past to try and identify
a hypothetical value of disorder strength that, in the thermodynamic limit, completely separates
the ergodic and the nonergodic phases. The search for such a critical point implicitly assumes a
nature of real phase transition in MBL systems, although this has not been proved and some ap-
parent contradictions seem to exist which have led to much debate in the community [28],44-47].
To obtain this value, different kinds of involved finite size scalings of such indicators have been
employed. However, the problem is not simple at all and a strong dependence on the particular
indicator and the number of sites means that some of the previously obtained values for the critical
point are often incompatible with each other; today much uncertainty remains about the properties
and the phenomenology of the MBL transition [[19}/23,[28}30},38.39}144,45.|47-51].

The aim of this paper is to introduce a new finite-size precursor of the critical point separating
the transition between the ergodic phase and the many-body localized phase in disordered many-
body quantum systems. The key quantity is the probability of extreme events in the fluctuations
from the equilibrium microcanonical value of the diagonal matrix elements of the momentum dis-
tribution. These fluctuations are the basic quantities in the ETH. The probability of extreme events
is quantified by the kurtosis excess of their ensemble probability distribution. The kurtosis excess
is shown to have a maximum at the transition between the ergodic phase and the MBL phase in
the J;-Jo disordered spin chain. Both the position and the value of this maximum are shown to
increase linearly with the system size, at least for systems small enough to be exactly diagonal-
ized. This finite-size scaling is compatible with recent results suggesting that the MBL transition
belongs to the Berezinskii-Kosterlitz-Thouless class [47]. We also show that the maximum of the
kurtosis excess happens at the same disorder strength at which spectral statistics cease to follow the
universal random matrix theory behavior at any scale —when Thouless and Heisenberg energies
coincide. In particular, we show that the disorder strength above which spectral fluctuations are
well described by semi-poisson statistics shows the same finite-size scaling that the maximum of
the kurtosis excess. Therefore, our results provide an integrated scenario for the MBL transition,
involving both spectral statistics and thermalization.

The rest of this paper is structured as follows. In Section [2] we introduce the J;-J5 spin chain
used in the computations. In Section |3] we present the concepts of quantum thermalization and
ETH in subsection 3.1l which is at the core of our research. In the subsection [3.2] we introduce the
diagonal fluctuations of the momentum distribution from their microcanonical averages and com-
pute the results as a function of disorder, which is the main result of our paper. In subsection [3.3]
we study the finite-size scaling of the proposed singular point. In Section [d] we study the spectral
statistics across the transition introducing a full description including long-range correlations. In
the first subsection {4.1{ we present the semi-Poisson spectral statistics that is followed by chains
in the MBL phase; then, in the second subsection 4.2] we complement the previous results with
the study of the Thouless energy Ety and long-range correlations on the ergodic side of the tran-
sition; finally, in subsection 4.3 we provide a general landscape of the MBL and ergodic phases
in terms of their spectral properties. In Section [5] we relate the results of the spectral statistics
with the behavior of the diagonal fluctuations presenting a coherent interpretation of the overall
landscape, which suggest that looking at the value of disorder at which the Thouless time roughly
equals the Heisenberg time emerges as a powerful criterion to elucidate the characteristics of MBL
transitions. We gather the main conclusions of our work in Section 6]
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2 Model: the disordered .J;-.J; chain and many-body localization

Much of the research on the phenomenon of many-body localization has been carried out with
the Heisenberg XXZ spin chain [16528,(52]], which takes into account nearest-neighbors interac-
tions only. In comparison, its simplest generalization, the J;-J2 model, has been somewhat less
explored. However, it can be argued that the latter is a more generic model as it does not present
Bethe ansatz integrability for the clean (i.e., disorder-free) case [53].

The J;-J2 model consists on a one-dimensional chain with L sites, on-site magnetic fields wy,
and coupling parameters J; and Jo where next to nearest-neighbors interactions are additionally
considered. Its Hamiltonian can be cast in the form

L L
HT o) =S weSi+ S (Sgc:;*gfﬂ +SY8Y + Alggégﬂ)
=1 =1
. ey
+ Ry (5“55'3;2 +SY8Y , + AQSgSgH) ,
/=1
where S7"¥"% are the total spin-1/2 operators at site £ € {1,...,L}. The Hamiltonian is simu-

lated on a lattice with periodic boundary conditions as these minimize finite-size effects; thus,
S*Z’y’z = Sﬁryf. Disorder enters the chain via the uniformly, independently and randomly dis-
tributed magnetic fields wy € [—w, w]. The coupling constants J; and J, are associated to nearest
and next to nearest-neighbors interactions, respectively, and they can be used to set the unit of
energy. In our simulations, we fix J; = Jy = 1 throughout —since Ji, Jo > 0, we are dealing
with the anti-ferromagnetic variant of the model . Note that #(J; # 0, Jo = 0) is simply the
famous XXZ Heisenberg chain. The terms A; and Ay quantify the intensity of the interactions,
which we choose A\; = A9 = 0.55 (this choice is also made, e.g., in [28]]). Spin chains such as this
one can be mapped exactly onto a spinless fermionic chain with an extra boundary term via the
Jordan-Wigner transformation [|53]].

The crux of the matter of systems that reveal a MBL transition is that both their dynamical and
static physical properties critically depend on the intensity of the disorder strength, w. Although
the precise boundaries have not been completely delimited and in fact they vary depending on
each particular model, the general scenario is more or less shared by all of them. While in the ab-
sence of disorder the XXZ chain is solvable by Bethe ansatz and thus integrable, the .J;-J5 chain
is considered as a paradigmatic model to exhibit quantum chaos and quantum thermalization [4].
For intermediate values of w, the chain shows an ergodic phase where most initial conditions
are expected to thermalize. This region is generally said to be quantum chaotic in the sense that
energy levels are characterized by level repulsion and the eigenvalue distribution is close to the
Gaussian orthogonal ensemble (GOE) as in the predictions of RMT. This picture can be easily
checked by statistical measures such as the nearest-neighbor spacing distribution (NNSD), P(s),
or the adjacent eigenlevel gap ratio, P(r). However, as we will show later, this metallic region
hides long-range deviations from RMT universal results, which can be analyzed by computing the
Thouless energy scale as was done in Refs. [23]/54]. Dynamically, this region is dominated by
sub-diffusive processes, multifractal scalings and other unexpected behavior [29-32]. The region
in between the ergodic and the localized phases has been extensively studied. Recent results indi-
cate that it may be characterized by a Griffiths-like phase in which anomalously different disorder
regions seem to dominate the dynamics [[331351|55]; nonetheless, the debate is still open [56]. To
describe the flow of intermediate statistics observed in this region, mean-field plasma models with
effective power-law interactions between energy levels [[24}/57]], the Rosenzweig-Porter ensemble
with multifractal eigenvectors [58},59], a family of short-range plasma models [60] and general-
izations [42}143]] have been used. Finally, for disorder strengths larger than a critical value that
is dependent on the dimension of the Hilbert space, the chain gradually reaches the MBL phase.

4
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Here, the ETH is violated, so generic initial conditions do not relax to their microcanonical aver-
age value. This region shows Poissonian spectral statistics instead, from which it follows that the
spectrum behaves as a set of uncorrelated random numbers where level crossings can potentially
take place [[61]]. This is explained by the identification of a complete set of local integrals of motion
in the MBL phase [62,|63]]. Whether the MBL phase is reached in the thermodynamic limit from
the ergodic phase in the form of an actual phase transition (i.e., by means of a critical point), or
as a dynamical crossover, exhibiting a finite transition region (dubbed bad metal) with surviving
non-ergodic but extended states is an open question [39,/64-66[. The answer seems to be forever
eluding the community due to the (strictly speaking) impossibility to access the thermodynamic
limit and the importance of finite size effects [44,45], which are strong in these chains.

As the operator S = Zle S ; commutes with the Hamiltonian, in this work we restrict our
attention to the sector S = (. The total dimension of the Hilbert space is then d = ( L]72) which

grows asymptotically when I — oo as d ~ 2%/\/mL/2. Thus, exact diagonalization with full
calculation of all the eigenstates becomes realistic only up to chain lengths 16 < L < 18 [67].
The spin chains that are frequently used to investigate the MBL phenomenon are known to exhibit
strong border effects, meaning that the eigenstates are more localized as they get closer to the
boundaries of the band, regardless of the disorder strength [37,/39,/6869]. The question of whether
true mobility edges survive in the thermodynamic limit in MBL systems is still open as they have
also been argued to be indistinguishable from finite size effects [70]. In any case, to avoid border
effects we will only consider the central N = d/4 eigenstates {|E,)}2_;. The number of states
we use range from N = 63 for L = 10to N = 3217 for L = 16.

3 Extreme events across the transition

3.1 Quantum thermalization: the concept

Quantum thermalization refers to the equilibrium state that a quantum system reaches for suffi-
ciently long times. Let us consider an isolated quantum system with Hamiltonian H with eigen-
states {|E,)}, satisfying H |E,) = E, |E,), and an arbitrary initial condition [¢/(0)). The
latter evolves in time under H and after an interval of ¢ > 0 its wavefunction can be written
[ih(t)) = exp(iHt/h)|1h(0)). For a typical observable O, one might consider the long-time aver-

age (O); in the eigenbasis of H. If, for simplicity, the spectrum is non-degenerate, this is given by

T

Oy i=Jim ~ ["at |00 = 3 Ca (Bl OB, @
T—00 T 0 ~

where |Cy,| := | (¢(0)| E,,) | is a c-number representing the probability of finding the system in the

eigenstate |E,). Under very relaxed assumptions [71,/72], long-time averages of the kind of Eq.

(2) are known to reach a certain equilibrium value and remain close to it at all times. Nonetheless,

the system is often said to thermalize only if that value corresponds to the particular case of the

microcanonical average,

~ 1 N

En€[E—AE,E+AE)

where E is the macroscopic energy of the system and A E is a small energy window, AE/E < 1,
containing a large but finite number of levels, 1 < N < oo. The connection between Eqs. (2)
and (3) is well understood in classical dynamics; in particular, for classical chaotic systems, long-
time averages are equivalent to phase averages if one fixes the right energy E, whereas integrable
systems generically do not relax to Eq. (3] at all. In quantum mechanics, the eigenstate thermaliza-
tion hypothesis [3-8]] underlies the equivalence between these two averages. In particular,it states
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that the diagonal matrix elements of a typical observable O,,,, := (E,| O |Ey) can always [8] be
written

A~

Opn = (O)Mme + Ay, ne{l,...,N}, 4)

where N denotes the Hilbert space size. The values A, are called diagonal fluctuations, and
describe the fluctuations of O, around the microcanonical average <O>ME. We can consider
them as random numbers verifying (A,,) = 0 and (A2) # 0. The ETH states that a quantum
system thermalizes if A,, (or, rather, its standard deviation, oa, = /(A2)) decreases fast enough
with the Hilbert space dimension. In other words, the ETH is nothing more than a statement
about how smoothly the diagonal terms must change with energy for a quantum system to reach
the equilibrium value Eq. for sufficiently long (but not exponentially long in the system size)
times.

As indicated above, the standard tool to determine whether a quantum system thermalizes or
not consists in studying if oA, decreases fast enough with the system size. However, in addition
to this fact, it has been recently shown that the presence of correlations in the A,, constitutes a
signature of the existence of anomalous non-thermalizing initial conditions [54]. To better study
these correlations with different observables, it is convenient to make the diagonal fluctuations in
Eq. @) dimensionless, by normalizing by its standard deviation, which yields

A, = =

O'An O'An

So _ O _ <3>ME, ne{l,...,N}. (5)
The consequence is that the new quantity in Eq. (3)) is exactly a standard Gaussian random vari-
able G(0,1) with expected value 0 and variance 1, for any generic physical observable obeying
RMT. Hence, as previous evidence strongly suggests that the breakdown of the ETH close to inte-
grable regions may be a generic result [73480], whereas thermalization is widely associated with
ergodicity and and RMT, the quantity A, sharply discriminates between these two limiting reg-
ularity classes: for quantum chaotic systems it behaves as an uncorrelated, white random noise
and is Gaussian, whereas for quantum integrable ones an emerging structure in its Fourier modes
results from the existence of integrals of motion (i.e., the noise is no longer featureless). Thus, the
(normalized) diagonal fluctuations An provide a powerful tool to identify small deviations from
thermalizing behavior, even in otherwise rather chaotic regions. In this direction, the power spec-
trum of ﬁn has been recently used in conjunction with long-range spectral statistics to connect
thermalization and Thouless energy in the prototypical disordered XXZ spin-1/2 chain [54].

3.2 Analysis of the diagonal fluctuations

Here, we study the diagonal fluctuations Eq. (5) across the MBL transition in the .J;-.Jo model,
Eq. (I). As representative physical observables, we choose the full momentum distribution on a
one-dimensional lattice with lattice constant set to unity, i.e.,

L L
1 . L
fg =+ >N ermlmmma/Lgrer qefo,... L1}, (6)

m=1n=1

where & := 1 and S lft are the usual ladder spin operators, which are related to those in Eq.

by the well-known expressions SE = 5’}" + zgg Thus, to calculate ﬁn, we first need to evaluate
the diagonal matrix elements O,,,,, for which the complete set of eigenstates {|E,,) },, is needed.
This is obtained by full diagonalization of Eq. (I)). Next, the microcanonical average <O>ME is
obtained by fitting a polynomial of degree 4 to the previous matrix elements O,,, to avoid the
spurious effects originating in averages over finite energy windows [S54,[81]].

For reference, a summary of the number of central states N = d/4 and the number of real-
izations for each value of the number of sites L and the disorder strength w can be found in Table
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These quantities have been chosen explicitly so that their product remains approximately con-
stant. As not only the eigenlevels { E, },, but also the eigenvectors {|E,,) },, are needed, we cannot
realistically increase the value of L beyond 16. On the other hand, system sizes below L = 10 are
indeed accessible but not very representative as the samples become statistically poor.

H L H Levels in the central region Realizations H
10 63 5000
12 231 1400
14 858 375
16 3217 100

Table 1: Number of levels in the central region of the spectrum that is considered in the calcu-
lations N = d/4 and number of realizations for each value of the number of sites L in the J;-.J2
model, Eq. (I). The corresponding eigenvalues {E,}"_, and eigenstates {|E,)}, have been
obtained by exact diagonalization.

We can now compute the probability distribution of such quantities Kn, P(&n) It is then
straightforward to obtain the kurtosis excess which is directly related to the probability of extreme
events. For a random variable X, the kurtosis excess v2(X) is defined as

4
19 (X) := Kurt[X] — 3 = <(X_“> >—3. 7

a

Here, ;= (X) is the expected value of X while 02 := (X?) — (X)? is its variance. The kurtosis
of any univariate Gaussian distribution is 3, and thus we may use this quantity to compare how
important is the presence of extreme events in a certain probability distribution with respect to
a Gaussian. A positive kurtosis excess means that the distribution of X is more tailed than a
Gaussian while a negative kurtosis excess indicates the opposite. In what follows, the random
variable of interest is X = A,,. The kurtosis excess of the quantity X = O, was also calculated
in Ref. [82] as a signature of anomalous thermalization.

In the main panel of Fig. [T| we show the kurtosis excess as a function of disorder for L =
10,12, 14, 16. For small values of w, those corresponding to the ergodic phase of the model, the
probability of extreme events roughly corresponds to the expected for a Gaussian distribution,
Y2 (Ap) & 72(G) = 0; the larger the chain size, L, the better the agreement. This means that the
observables in Eq. (6) behave as expected in RMT in this region, and therefore ETH is fulfilled
and thermalization is expected. Note that w = 0 has been excluded from our analysis as the clean
system, a spin chain with periodic boundary conditions, is translationally invariant. The influence
of these extra symmetries survives up to larger values of w for smaller L and y2(A,,) increasingly
deviates from 0 as a consequence. Then, the probability of extreme events as measured by v2(A,,)
shows a neat increase with disorder. However, this increase is not monotonic. On the contrary,
Y2 (&n) has a maximum at a certain value of the disorder, which depends on L; this disorder
strength will be denoted by w.(L) from now onward. In fact, we take the preceding statement as
the definition of w.(L). After reaching this peak, 7, starts decreasing as a function of disorder,
becoming negative for the largest values of disorder considered.

These results suggest that the transition to the MBL phase starts with an increase of extreme
events for the diagonal fluctuations, A,,, which favor the existence of non-thermalizing initial
conditions [54]. However, the integrable MBL phase is not characterized by a large probability for
such extreme events, but by a large value of oA, with a negative kurtosis excess. Hence, we can
write a preliminary statement for the main conclusion of the paper: w.(L) is a singular point in
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Figure 1: Main panel: kurtosis excess, y2(Ay,), Eq. (7)), as a function of the disorder strength w for
the number of sites L € {10, 12, 14,16}. The black, dashed line represents the kurtosis excess for
a standard Gaussian distribution G(0, 1), 72(G) = 0. Inset: kurtosis excess for L = 10 obtained
with 10° realizations (red squares) and 103 realizations (yellow circles).All results correspond to
averages over all values of g.

the transition from the ergodic to the MBL phase in the Ji-J> model, characterized by a maximum
probability of extreme events for the diagonal fluctuations. B

From this result, one may ask about the actual shape of the distribution P(A,,). This matter
is addressed in Fig. 2] which consists of four panels. Here we fix the number of sites at L = 16.
On the right-hand side we show P (An) for three representative values of disorder. We also plot
with black, dashed lines the probability density function of a Gaussian G(0,1), P(z)Gaussian :=
exp(—:c2 / 2) /V/2m, x € R, which underlies this quantity in the case of thermalizing systems.

For w = 1, we can see that this is indeed the case: P(A,) matches perfectly such a Gaussian
distribution. It is worth to mention that no fitting has been performed here; we merely plot the
Gaussian on top of the distributions. For w = 4.5, which is very close to the singular point
we(L = 16) (see next subsection), we observe that P(A;,) no longer agrees with a Gaussian, and
its tails display a slower decay, in concert with the high value of v2(A,,) at this disorder. Instances
of long tailed distributions and the breakdown of the ETH near the MBL transition are known,
often associated with Griffiths effects [34,35/41,/54]]. Finally, for a value of disorder well within
the localized phase, w = 100, the distribution has been completely distorted and the tails decay
faster than those of a Gaussian. To get a clearer picture, on the left-hand side of Fig. [2| we have
chosen to plot the tails of the same distributions for A,, € [2,6]. This panel further confirms that
the case w = 4.5 decays much more slowly than the others; as w — oo, the decay is faster and
faster; and w = 1, matching very approximately the tails of the G(0, 1) distribution, seems to be
in an intermediate situation.

3.3 Finite-size scaling

A precise calculation of w.(L) is a complicated task, requiring a huge number of realizations. To
illustrate this fact, in the inset of Fig. [I| we plot the same results for L = 10, obtained with 103
and 10° realizations. The last curve is smooth and provides a pretty good value for w.(L = 10).
On the contrary, the curve obtained with 10 realizations shows large fluctuations. As collecting



SciPost Physics

1 ‘
w = =
w=4.5
—1.5 I w = 100 1~
\ Ggo,1) - - - < 4
E E
EN
—92 L ’1\‘ ,
2 O —
%‘i"h L=16
PO
—25F 4% A
< y 1 . .
& 3L o e 1IN~
-3 Y 4
g 58 | E
— e ‘:o b T
—-3.5 “:‘n;\‘:‘:. - 7
- X )
“A‘ .‘-:. 0 l. -.5d
4| e ]
FUURE
Vo
PR B, 0
—45 | (a) \ 4
O\I- L] Q‘
\
-5 I I LI
2 3 4 ) 6
Ay,

Figure 2: (a): Tails of the distribution of A, P(A,), for L = 16 and disorder values w €
{1,4.5,100} in logarithmic scale. (b)-(d): probability distribution P(A,,) for, from top to bottom,
w € {1,4.5,100}. The histograms bin has been chosen 0.05. Black, dashed lines represent the
probability density function of a Gaussian G (0, 1).

so many realizations is too expensive for larger values of L, we rely on an heuristic ansatz for the
position of the maximum,

(W) = alw — B** + . ®)

We use this ansatz to fit the curves obtained with 10° realizations for L = 10, shown in the inset
of Fig. [} and the ones for L = 12, L = 14 and L = 16 shown in the main panel of the same
figure. From the results we infer how the position of the maximum, w.(L) = £, and its value,
v2,max (L) = 7, change with the system size. We collect all these results in the Fig. 3| We can see
in panel (a) that the ansatz given in Eq. [§| provides a good description of the kurtosis excess, 72,
around its maximum. We note, however, that this ansatz is not linked to critical exponents (o and
~ depend on the system size, so its shape is not universal); it is just an heuristic proposal to identify
the position, w(L), and the value, ¥ max (L), of the maximum of the kurtosis excess. Panel (b)
shows the finite-size scaling of w.(L), which is well described by a linear law, w.(L) = wo+ w1 L.
We obtain wg = 1.3 and w; = 0.2. These results are compatible with the values obtained in
Refs. [28/47] from spectral statistics and entanglement entropy (they find w; ~ 0.25). It is worth to
remark that this linear increase does not necessarily imply that w.(L) — oo in the thermodynamic
limit. As discussed in [28l/47]] the linear behavior may be only an approximation of a more complex
behavior leading to a saturation of w.(L) when approaching the large-L limit (see also Ref. [48]
where an argument in the same direction was given in terms of phenomenological renornalization
group flows [[83]]). Panel (c) shows that the same linear behavior is also found for the value of the
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maximum y2 max (L) = Y0 + 71 L, with 9 = —1.12 and y; = 0.16.
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Figure 3: (a) Kurtosis excess, 72(A,), Eq. (7), as a function of the disorder strength w for
the number of sites L € {10,12,14,16}. The dashed line shows the fit to Eq. (b) Critical
value, w.(L), as a function of the system size, L. The dotted line displays the best linear fit,
we(L) = wo + wi L. (c) Maximum of the kurtosis excess, y2 max (L), as a function of L. Again,
the dotted line displays the best linear fit, v2 max (L) = Yo + 71 L-

These results reinforce our previous conclusion. w.(L) may be associated with a precursor of
a critical point in the ergodic-MBL transition. Unfortunately, much larger systems, far above the
reach of current computers, are required to unveil the properties of this phase transition, or even
whether it is an actual phase transition or just a smooth crossover. In any case, from the results
discussed in this section, we can conjecture that, if there exists a critical point, w.(00), then it
must be the one in which v2(A,,) is maximum . In the next section we will show that the singular
character of w. (L) is fully compatible with the behavior of spectral statistics across the transition,
widely used to characterize the static properties of the chain.
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4 Spectral statistics across the transition

The statistical analysis of eigenlevel fluctuations is by now well established as one of the main
tools to study quantum complex systems. This is because the spectral properties of quantum
systems with a chaotic classical counterpart do not depend on the particular features of the Hamil-
tonian but only on its more general global symmetries. As a result, the level statistics of a variety
of apparently completely unrelated physical systems universally coincide with the predictions of
RMT for the random matrix ensemble associated to their particular symmetry [[10]].

The eigenlevel distribution of the kind of spin chains associated to the MBL transition has been
abundantly studied by many previous works. The goal of this section is to show that the maximum
of the probability of extreme events as measured by the kurtosis in Fig. [I] acts as an indicator of
the value of disorder beyond which the chaotic regime is completely abandoned and the transition
to the MBL phase begins. We will show that the spectral statistics are not only quantitatively but
also qualitatively different on both sides of this point. For w < w.(L), the system belongs in the
chaotic region where the Thouless energy, the scale associated with RMT correlations, is larger
than the Heisenberg energy, the mean energy distance between levels. We focus here in the case
with L = 16, for which long-range spectral statistics give a better result. We leave for Sec. [5]the
finite-size scaling.

Here we make use of two different measures: the NNSD, P(s), which is concerned with short-
range level correlations, and the d,,, which is a long-range spectral statistic. For the universal
predictions of RMT to hold it is necessary to obtain the cumulative spectral function, G(F) =
27]:[:1 O(FE — E,), where O is the unit step function, representing the number of levels with
energy less than or equal to a certain value £ [9-11]]. This function can be separated into a smooth
part G and a fluctuating part, G, as G(E) = G(E) + G(E). Then, the original eigenlevels
{E,}N_, are mapped onto the dimensionless quantities {e,}_, as E,, +— G(E,) =: ¢,. Asa
consequence, the mean level density is unity, and RMT results can be applied. This procedure is
termed unfolding [81}[84]. Since there is no statistical theory for Eq. [T]that provides a theoretical
expression for the smooth G(E), in this work we numerically obtain it by fitting a polynomial of
degree 10 to the original energies { £}V, i.e., G(z) = 342, apz®.

The famous NNSD, P(s), is the distribution of the (unfolded) consecutive level spacings, s; :=
gi41 —€; > 0, thatis, P(s) := (d(s — s;)). For systems that are invariant under orthogonal trans-
formations, the eigenlevel distribution follows the results for GOE random matrices, and quantum
chaos manifests via level repulsion in the Wigner-Dyson surmise P(s) = Ssexp(—ms®/4). By
contrast, the spectrum of generic quantum integrable systems is equivalent to a set of independent,
identically distributed, Poisson random variables [61]] where level repulsion is no longer present,
and thus P(s) = exp(—s).

Long-range statistics describe the spectral properties of eigenlevels separated by large energy
index distances (i.e., levels E;, E; € {E,}Y_, with |i — j| < N), as opposed to level distances
of one or two units (or in general |i — j| < N). Contrary to short-range statistics, these allow to
obtain the so-called Thouless energy scale, Ety: the energy scale beyond which universal RMT
results break down [85,[86]]. It has been recently shown that, at least in the disordered XXZ spin
chain, this scale determines to what extent a given system thermalizes [54]]. A decreasing value of
FEth, was linked to an increase of the probability of extreme events from the ergodic region. RMT
results have been shown to describe well the statistics of eigenvalues separated by less than Ery;
however, for level distances larger than Ery,, long-range deviations towards the corresponding
integrable result can be detected even in the region interpreted as chaotic by short-range statistics
such as the P(s). In the case of disordered spin chains, the number variance [23], the spectral
form factor [45]], and very recently the §,, [54] have allowed to calculate the value of Fry.

In this work we will use the §,, spectral statistic as a long-range measure of level correlations
[87-92f]. It is defined as the difference between the nth unfolded level and the corresponding
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energy value in an equiespaced spectrum (i.e., with (€,,) = n), that is,

Opi=en—mn, nef{l,...,N}. 9)

The quantity J,, can be understood as a discrete time series where the level order index n plays
the role of a discrete time. Thus a discrete Fourier transform can be applied to d,,, one of the most
common techniques in time series analysis. Taking its square modulus gives the power spectrum
P,f of the signal. The quantity of interest is the averaged power spectrum, which reads

—2mwikn

1 Y ’
<P£>:—<rf<5n>\2>—<‘m25nexp( i )‘>,ke{1,2,...,m}, (10)

where kny := IN/2 is the Nyquist frequency. Here the angular brackets (-) denote average over
realizations for a fixed disorder strength. In the limit k/N < 1 and N > 1, the power spectrum
of §,, in quantum integrable systems exhibits the neat power-law decay <P,§S ) ~ 1/k?, whereas for
quantum chaotic ones this is (P/,;S ) >~ 1/k [87]]. One says that this is a universal feature because it is
only dependent on the regularity class (integrable or chaotic) of the Hamiltonian matrix; however,
it does not depend on the underlying symmetry.

4.1 Semi-Poisson model for short- and long-range spectral statistics

While a quantum chaotic spectrum exhibits correlations between levels, these are completely
absent from quantum integrable ones (i.e., levels are uncorrelated). Wigner-Dyson and Pois-
son statistics are valid, respectively, in the limiting metallic and insulator regimes of the metal-
insulator transition (MIT) of the Anderson model [93|]. At the MIT critical point a new universal
model of spectral statistics is believed to be applicable, the semi-Poisson [86], which is connected
to the fractal nature of the critical wavefunctions, intermediate between the extended and local-
ized cases [57,94]. Semi-Poisson spectra are intermediate between the two opposed regimes of
Wigner-Dyson and Poisson in the sense that they reveal some degree of level repulsion but for
asymptotically large level distances the NNSD decreases much more slowly than for GOE spec-
tra, producing P(s) = 4sexp(—2s) [95,96].

The semi-Poisson statistics can be obtained from a short-range plasma model in which the
particles play the role of the energy levels, interacting only with their corresponding nearest neigh-
bours [95,97H100]. The result is a family of distribution of independent level spacings,

P(s;n) = W

where ['(z) = fooo dtt*~le~t is the gamma function. The case with = 1 corresponds to a
Poissonian spectrum. If > 1, the NNSD reveals level repulsion proportional to P(s) oc 8771,
but the fall-off exp(—ns) is always slower than exp (—52) in the Wigner-Dyson surmise of chaotic
systems.

The power spectrum of d,, is known for the family of distributions in Eq. (TI). The exact
result for a set of IV uncorrelated spacings after normalizing by the estimator of the level spacing
mean [84] is given by

, 20, ne [l +o0), 1D

R ) Frerr 2nk

, =— ke {l,2,...,N+1}, 12
IN +1) tsii(w,/2)’ F T N+1 { b2

Equation (I2)) depends on the single continuous parameter n € [1,+00), with = 1 again
corresponding to Poissonian statistics, and 17 = 2 being semi-Poisson in the strictest sense of the
term. From Eq. (12) it follows immediately that the crossover between these two limits takes
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the form of a vertical translation of <P,f ) but its overall structure remains unchanged. In the
MIT transition this generalized semi-Poisson model seems to describe the spectral statistics of the
critical region with a value of 7 that changes from 2 to 1 as the dimensionality is increased as has
been numerically investigated up to six spatial dimensions [101]].

Therefore, Eq. and Eq. allow to completely characterize a crossover from semi-
Poissonian to Poissonian statistics. Although the semi-Poissonian limit strictly refers to the case
1 = 2 alone, one usually still uses the term to allude to the whole family of distributions. As the
value of 7 is reduced the family of distributions exhibit a decreasing intensity of level repulsion,
which completely vanishes only at the Poissonian limit.

Here we show that the semi-Poisson model provides a characterization of the level statistics
for w 2 w.(L) in Eq. (I)), for both short- and long-range correlations. To that end, first we have
computed the NNSD for the eigenlevels of our model, Eq. (I)). We have unfolded the sequence of
original energies {F,,}N_; with a polynomial of degree 10. Starting from the central d/3 levels,
we have removed the 2| d/48] levels closest to the edges before and after unfolding, which gives
N = |d/4] for our analysis (see Table [1). To avoid the spurious effects introduced by spectral
unfolding in systems close to integrable dynamics, we have divided each level spacing by its mean
value for each realization, so that the mean level spacing becomes (s) = 1 exactly [84]. Then,
we have constructed the histograms of P(s) with a bin size ds = 0.1. After that, we performed a
single-parameter fit of Eq. (TT)) to the P(s) to obtain the value of 7. Results are shown in Fig. [4]
for a set of disorder values and L = 16, for which Eq. (II) provides a good description. Below
w = 4.7, the case displayed in panel (a) of this figure, results are not so good. Hence, we take
this value as an estimate of the critical point. It is very close to the one inferred from Fig. [3]
we(16) = 4.52. We leave a direct comparison between both estimates to Sec.

As can be seen, all the numerical histograms shown in Fig. 4| P(s) are very well described
by Eq. for disorder values larger than w.(16). Incidentally, for w = 5.0, we obtain almost
fully semi-Poissonian level spacings, n ~ 2.079. For w = 4.7, we obtain n ~ 2.274, implying
that the level repulsion is stronger that in the ergodic case. However, it is difficult to infer whether
this is a spurious result due to the proximity to the singular point, w.(L), or if it is just a finite-
size effect. As w is increased into the localized phase, the parameter 77 decreases, until it reaches
a value of n = 1.058 for w = 12. Well within the localized phase, the NNSD agrees well
with n =~ 1 (not shown). For w smaller than w = 4.7, the system enters the chaotic region.
Equation is explicitly derived on the assumption of statistically independent spacings as in
the Berry-Tabor result [61]]. Then, since quantum chaotic eigenlevels are statistically correlated,
Eq. cannot satisfactorily describe this side of the transition. However, for w 2> 4.7, level
spacings approximately become independent random variables, but as we have seen they differ
from (generic) integrable systems in that their distribution is not Poissonian.

This picture is also obtained in long-range measures of level statistics. This means that this
side of the transition can be correctly described by spectral statistics ranging from semi-Poisson
to Poisson for eigenergies separated by not only short but also large level distances.

In Fig. [5| we show the numerically obtained power spectrum (P,f ) together with Eq. for
the values of 7 from the NNSD for the same values of the disorder strength. The Poisson and
GOE results are also shown for reference. For brevity we omit the analytic expression of the GOE
but it can be found in Ref. [88]]. For w 2 5.0, the agreement between the two curves is almost
perfect. Below this disorder strength, for w = 4.7, the power spectrum is slightly touching the
GOE result. This reflects that this value of w can indeed be taken as the limit beyond which the
model of statistically independent spacings is valid. As w is increased, n decreases towards the
Poisson result, and the power spectrum undergoes a smooth crossover, approaching the theoretical
Poisson curve vertically. We stress that no fitting has been performed in this case; the black solid
lines merely correspond to Eq. for 7 as obtained in Fig. [ for each value of w there shown.
The first frequencies are spoiled in all six cases, but this is an expected consequence from the
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Figure 4: (a)-(f) Nearest-neighbor spacing distribution, P(s), for the six values of disorder strength
w € {4.7,5.0,6.0,7.0,8.0,12.0} (colour filled histograms). Solid, black lines represent the best
nonlinear fit of Eq. (T)) to the histograms of P(s). Bin size has been chosen ds = 0.1. Results
correspond to L = 16.

unfolding procedure [81]], not a shortcoming of our model.

4.2 Long-range spectral statistics on the ergodic region

Short-range spectral statistics in the chaotic region show results consistent with GOE random
matrices as has been extensively shown before (see, e.g., [39]), so we will not consider them
further. Additional investigation of the long-range spectral correlations across the transition is
provided in Fig. [6] where we focus on the chaotic side of the model Eq. instead. There we
show the numerical <P,f ), obtained following the same steps as before. For w = 0.5 and w = 1.0,
the differences between the chaotic theoretical curve and the numerics are minimal. Howeyver,
as w is increased, the power spectrum gradually deviates from the ergodic towards the integrable
curve. This effect is blurred in panels (a) and (b), due to the unfolding procedure [81], but it
is clearly seen in the rest of the panels. This deviation is linked to the Thouless energy Fry, the
energy scale beyond which energy levels are no longer correlated like in RMT. Following the same
procedure that in [54], the power spectrum of §,, gives us direct access to the Thouless frequency
kth, which determines a characteristic length ¢1, = N/kry: two energy levels, F,, and E,, are
correlated like in RMT if their level index distance satisfies [n — m| < ¢ry,. In this sense, a fully
chaotic RMT spectrum is one that has the highest possible value of {1y, (or the lowest possible
value of k). This would indicate that GOE correlations are shared by levels separated by any
distance within the spectrum boundaries. As kty, increases, the spectrum is thus ‘less chaotic’ in
this particular senseﬂ A good estimation for kty, is to choose the lowest possible frequency for

'One may in fact estimate the Thouless energy as B, = h/7m = fm/g(€), where where g(¢) is the density of
states at the average energy. Thus, Fry  fth & fmax X k;iln. Note that Ery and 7, have dimensions of energy and
time, respectively, but ¢, is a dimensionless quantity that refers to the unfolded level distance; the ‘frequency’ kry is
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Figure 5: (a)-(f) Power spectrum of §,, <P,;s ), for the six values of disorder strength w €
{4.7,5.0,6.0,7.0,8.0,12.0} (color points). Solid, black lines represent Eq. for the values
of 1 obtained from the NNSD, Fig. 4] Top and bottom dashed lines are the Poisson [Eq. (I2)) with
1 = 1] and GOE results (see Ref. [88]) respectively. Results correspond to L = 16.

which (P?) fluctuates below the GOE curve, which gives the approximation kmin ~ krn. This
point is identified in all the panels of Fig. [f| by means of a vertical arrow. We can see that kmin
monotonically increases with w, showing that the system becomes less chaotic as the singular
point, w.(L), is approached. It is worth to note that this degree of detail cannot be achieved by
analyzing short-range spectral statistics, even in the case where kp;, is very large. Because they
are by definition insensitive to the spectral properties of distant levels, short-range statistics would
still produce a rather chaotic result (this can be seen, e.g., in the mean value of the adjacent level
gap ratio, sometimes employed for finite-size scaling considerations).

4.3 Transition landscape

Results plotted in Figs. [5 and [6] suggest a scenario summarized in Fig. In panel (a) of this
figure, we display kpin as a function of w. We observe that the value of ky, for w < w(L)
is very small compared to the number of levels, kn,in /N < 1, which gives a large value of the
Thouless energy. It is seen that ki, then grows quite fast with w, explaining the subsequent
separation from the GOE curve of the power spectrum for those values of disorder. The limiting
value kmin = kny = NN/2 is also shown with a dashed line in panel (a) of Fig. Reaching
the Nyquist frequency indicates that the power spectrum has completely separated from the GOE
curve, and hence the quantum correlations of RMT are destroyed at all scales (i.e., there is no
level index distance such that levels separated by that distance are correlated). We can see an
abrupt jump towards the Nyquist frequency at w ~ 4.7, supporting our previous claim that this
value constitutes a good estimate of the critical disorder strength. This means that (P,f ) completely

also dimensionless.
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separates from the RMT result at a value of the disorder compatible with w.(L).

From this point onward, the power spectrum is characterized by Eq. (12)) instead because
level correlations are no longer present. This is shown in panel (b) of Fig. [/ where we display
n as a function of w. In concert with previous Fig. [T} 7 smoothly decreases as the MBL phase
is approached. Furthermore, a value close to n = 2, which implies a level repulsion equal to
the GOE, is found around the singular point w.(L). As we have discussed before, our results
are compatible with a strange singular point w.(L) characterized by semi-Poisson statistics with
level repulsion larger than in the GOE. Notwithstanding, this may be also a finite-size effect. In any
case, we find a neat transition in the spectral statistics between full or partial correlations with level
repulsion [the chaotic region, 0.5 < w < w.(L)], to no correlations but still level repulsion [semi-
Poisson region, w.(L) < w < o], to finally no correlations and no level repulsion whatsoever
(Poisson limit, w — 00).

All these results reinforce our previous conclusion regarding the singular character of w,(L).
Furthermore, the disorder value at which the kurtosis of the diagonal fluctuations, vg(ﬁn), is
maximum , w.(L), is also a singular point regarding spectral statistics.
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w=0.5 . W w=10 - o w=20
4 + Poisson  ------------ a - : - :
~.. GOE N N
S |
= 2
5 N
—~ 1+ (a)
0+
-1
5 BN T T T . T T T T T T
w =30 o w=40 w=4.7
40 1o 1t -
S I 11 ’
< 2 |
g 1 ]
0 i
_]_ | | | | |

0 05 1 15 2 25 3 005115 2 25 3 005115 2 25 3
logyg k log k logyg k

Figure 6: (a)-(f) Power spectrum of §,, <P,;S ), for six values of disorder strength w €
{0.5,1.0,2.0,3.0,4.0,4.7} (color points). Top and bottom black lines are the Poisson [Eq.
with » = 1] and GOE results (see Ref. [88]]), respectively. The arrows in each panel indicate the
value of ki, for the corresponding value of w. All results correspond to L = 16.

5 Discussion of results
The results from previous Secs. [3]and 4] provide an interesting insight into the mechanism for the

transition between the chaotic and the localized phases in the J;-J2 model. It can be summarized
as a conjecture as follows:
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Figure 7: Behavior of long-range spectral statistics as a function of disorder w for L = 16 across
the transition. (a): For small values of disorder, w < w.(L = 16), we represent the characteristic
frequency kmin as a function of w and compare to the Nyquist frequency kny = N/2 (gray, dashed
line). A small kp;, corresponds to a large Thouless energy and vice versa. (b): For large values
of disorder, w 2 w.(L = 16), we plot 1 obtained from a single-parameter fit of the generalized
semi-Poisson distribution Eq. to the numerically obtained NNSD (1 = 1 corresponds to the
full Poisson limit). For convenience of the reader, colored points represent the values of ky,;, and
n for the same values of disorder and color code as in Figs. 4] [ and[6]

If there exists a critical point in the transition from the ergodic to the MBL phases, w.(L —
00), then it must correspond to the disorder strength at which the kurtosis of the distribution of the
(normalized) diagonal fluctuations vy (A,,) is maximum . For finite systems, w.(L < oo) splits the
chaotic and localized phases.

As this conjecture seems based on just the approximate coincidence between the critical dis-
order strength for L = 16, estimated from both the kurtosis excess, w.(16) = 4.52, and spectral
statistics, w = 4.7, we show in Fig. [§an integrated scenario. In Fig. [§[a), we show the re-scaled
kurtosis excess, 72(L) /v2,max = V2(L)/ (70 + 71 L), as a function of w —w¢(L) = w —wp —w1 L,
for L = 10, 12, 14, and 16. We can see that the results for these four different system sizes col-
lapse onto a single curve around the singular point w = w.(L). This suggest that the transition
from the ergodic to the MBL phases shows the same features from L = 10 to L = 16, although
the maximum of the kurtosis excess increases with the system size. In Fig. [§(b), we perform a
similar finite-size scaling analysis for the spectral statistics. In particular, we display the distance
between the numerics obtained for the NNSD and the family of generalized intermediate statistics,

given by Eq. (T1),
Ny

1
Asp = EDPH(SZ-) — P(sizn)|*, (13)
=1
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where Py (s) represents the numerical results, P(s;n) is Eq. (I1]), and Ny is the total number of
bins used to build the histogram. All the calculations are done with a bin size ds = 0.1, and the
fit is performed over 0 < s; < 5. Exactly as in Fig. a), the distance Agp(L) is plotted versus
w —we(L) = w — wy — w1 L, that is, relying on the estimate of the critical point inferred from the
kurtosis excess, displayed in Fig. We can see that the results for L = 12, 14 and 16 collapse
very approximately onto a single curve, and that w = w.(L) constitutes a very good estimate of
the disorder strength above which the generalized semi-Poisson distribution, Eq. (T1I), provides
an accurate description of the numerical resultﬂ These results provide a strong support for our
previous conjecture. The singular point, w.(L), splits the behavior of the system into two different
dynamical phases:
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Figure 8: (a): Kurtosis excess of the distribution of Zn, re-scaled with its maximum value for
each system size, 72 max, as a function of w — wc(L), for L = 10, 12, 14, and 16. The black,
dashed line shows the singular point, w = w.(L). (b): Distance between the numerical NNSD and
the family of intermediate statistics Eq. (T1]), Asp, as a function of w — w.(L), for L = 12, 14,
and 16.

The case with L = 10 is not considered, because it is well known that the behavior of short-range spectral statistics
is qualitatively different for L < 12 along the whole MBL transition [15]]
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e Chaotic phase. This corresponds to small values of disorder, w < w.(L). Here spectral
statistics coincide with RMT up to a certain characteristic length £,.x, beyond which RMT-
like correlations are lost [54]. For very small values of w, the ETH is fulfilled, and generic
observables relax to their microcanonical equilibrium value. As can be seen in Fig. [I] the
probability of extreme events is very approximately the same than for a Gaussian distribu-
tion, which underlies the diagonal matrix elements for thermalizing systems. Even more,
panels (a) and (b) of Fig. [2 I show that A agrees almost perfectly with such a distribution,
including in the tails. As w is increased, the kurtosis excess 72(A ) increases too, signif-
icantly separating from the Gaussian expectation. As was shown in Ref. [54], this means
that, although generic initial conditions will thermalize to the microcanonical average for
these disorder strengths, it is also a lot more probable to find anomalous initial conditions
that do not. In terms of spectral statistics, even though for small w the eigenlevel distribu-
tion is very close to the GOE predictions of RMT, Fig. [f] shows that as w increases (but
still remains on the chaotic side) long-range deviations can be attributed to the anomalous
behavior of the Thouless energy. The increasing values of the probability of extreme events
are thus connected to the gradual loss of chaos in the spectrum. For small values of w, A,
is Gaussian, the system thermalizes, and GOE level correlations are maintained between
levels separated by distances comparable to the total size of the spectrum. As w increases,
extreme events take place with more and more probability and the Thouless energy starts
decreasing, meaning that level correlations between levels very far apart from each other are
being destroyed. For disorder values close to w ~ w,(L), the Thouless energy is minimal
and the model departs from its chaotic phase.

e Semi-Poisson phase. This corresponds to w > w.(L). At this point the probability of
extreme events of Fig. 1| starts diminishing (for L = 16); at around w ~ 11, it crosses the
corresponding value for a Gaussian distribution. As can be seen in panels (a) and (d) of Fig.
[2l well within the localized phase, at w = 100, the distribution of the diagonal fluctuations
has been completely distorted and for asymptotically large values it decreases faster than a
Gaussian distribution, in concert with the finding that the probability of extreme events is
smaller than that of a Gaussian for large disorder. On this side of the transition, Egs. and
(T2)) account for both short and long-range spectral statistics, as can be seen in Figs. dand[5]
This means that the spectrum is here approximately composed of independent, identically
distributed random numbers that still show level repulsion, so they are intermediate between
GOE and Poisson. For L < oo, the Poisson limit is only strictly reached when w — oo.

The singular point separating these two dynamical phases, w.(L), shows the following fea-
tures. First, it is the disorder strength for which the maximum probability of extreme events in
the diagonal fluctuations occurs. Here A, is no longer well described by a Gaussian, and the
decay of its tails is much slower, almost exponential as panel (a) of Fig. [2] suggests. Second, it
indicates certain singularity in the spectral statistics in the sense that below it level correlations
exists between levels separated by certain distances, but beyond it no such feature can be found,
even though some degree of level repulsion is still preserved. This scenario is compatible with a
two-stage transition, in concert with previous numerical findings [24}30]. And third, it linearly
increases with the system size, w.(L) = wgy + wi L, at least for system sizes small enough to be
exactly diagonalized, and both for the kurtosis excess and the NNSD distribution. This scaling
law is compatible with the recent results published in [[28/47], where the transition is identified to
the Berezinskii-Kosterlitz-Thouless class [[102}103]].

In Ref. [30] the transition from the ergodic to the MBL phase was identified by means of a
nonuniversal jump of the multifractal dimensions (both in Fock and spin configuration basis). We
find that a similar effect gives rise to a maximum value of v2(A,,), which also hints towards the
existence of a critical transition point in the J;-J2 model as we have shown. The multifractal di-
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mensions vanish only in the infinite disorder limit, coinciding with full Poissonian statistics where
level repulsion completely vanishes as well since 7 = 1 [see Eq. (TI))]. Our results are also con-
sistent with those presented in Ref. [24]], where the effective interaction between eigenlevels in the
disordered XXZ spin chain was analyzed. In the ergodic phase, level statistics were characterized
by a long-range plasma model. However, upon reaching the MBL transition, a power-law local
interaction between levels means that these are intermediate between Wigner-Dyson and Poisson,
leading to the family of semi-Poisson distributions as we have seen. The locality of interactions
on this side of the transition is also consistent with the level repulsion P(s) oc s7~!, which be-
comes increasingly weaker as we approach the Poisson limit and hence the interaction between
level spacings also diminishes up to this point.

Finally, we wish to emphasize that other more common signatures of the transition from ergod-
icity to MBL, like the mean value of the adjacent level gap ratio or the family of Rényi entropies
(of which the Shannon entropy is a particular case) [15,[23}24,36-43]], change monotonically
with w, and therefore do not give rise to a neat singular point. For the previous indicators usu-
ally some form of scaling is involved in order to identify the transition point, and its value is
generally largely influenced by several factors among which the most important is the number of
simulated sites, L. By contrast, as can be seen in Figs. [T] and [§] the probability of extreme di-
agonal fluctuations allows to separate the dynamical sides transparently and is valid irrespective
of L. Furthermore, the resulting singular point shows typical finite-size scalings both in its value
and its position, suggesting that it is the precursor of an actual critical point. It is worth to note
that experiments in one-dimensional interacting bosons seem also to point to the critical point sce-
nario by studying spatial correlations at long distances after some time evolution. However, sizes
are not large enough to make a sensible extrapolation to the thermodynamic limit [[104]]. Thus,
although our findings seem more compatible with a critical point leading to an actual phase tran-
sition, they could signify a change between two distinct, extended regimes. In this sense it is not
clear whether both the semi-Poisson and the chaotic regions are finite size effects, disappearing
altogether at macroscopic scales and giving rise to an abrupt change from ergodicity to MBL, or if
it is a robust characteristic of disordered interacting spin chains that, like the J;-J2 model, undergo
a MBL transition. The answer to this question, however, lies out of the scope of this manuscript.

6 Conclusion

We have studied the probability of extreme events of the (normalized) fluctuations of the diagonal
matrix elements of physical observables around its microcanonical equilibrium value for the .J;-
Jo disordered quantum spin chain. For intermediate values of disorder this probability exhibits a
maximum. Its precise value and the disorder strength at which it is found increase linearly with
the system size. We interpret this result as a possible finite-size precursor of the critical point of
the ergodic-MBL transition. Below this value of disorder the model is in its chaotic phase, char-
acterized by GOE as in RMT spectra but with long-range deviations due to the Thouless energy.
Beyond this value of disorder, an extended region can be identified whose spectral statistics can be
described by a family of generalized semi-Poissonian statistics which show level repulsion but not
chaotic correlations. Both short and long-range spectral measures can be accurately taken into ac-
count by this model. For very large values of disorder, the standard Poissonian statistics associated
to the integrability of the localized phase are recovered, where both level repulsion and correlations
are lost. Contrary to other ergodicity indicators such as the adjacent level gap ratio or the family of
Rényi entropies, this probability is not a monotonous quantity and allows to distinguish these two
regimes for any value of the number of sites unambiguously. The main conclusion of our work
is that the maximum of the probability of extreme events as represented by the kurtosis excess is
an indicator of the hypothetical critical point of the transition. In other words, if the ergodic and
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MBL phases are indeed connected by an actual phase transition and not by a smooth crossover,
then the critical point must correspond to the value of disorder strength that yields the maximum
of the kurtosis excess. It is interesting to note that the behavior of 'yQ(ﬁn) closely resembles that
of a magnetic susceptibility, a robust indicator of a phase transition. This conjecture about the
putative position of the critical disorder is complemented with finite-size scaling considerations
which are mainly presented in Figs. [3] and [§] where data collapse is shown both for the kurto-
sis of diagonal matrix elements of the ETH and for the difference between numerical and fitted
NNSD histograms, which is a spectral measure. These results therefore provide solid reasons to
consider the equality between Thouless energy and Heisenberg energy as a good working criterion
to understand the MBL transition in random disordered many-body systems.

We believe our results are an important contribution for a better understanding of the ergodic-
MBL transition and the MBL phase itself, opening up several new avenues of research. These
ideas immediately call for a study of their relationship with Griffiths effects and their generality
in other many-body systems with MBL transition. It should be mentioned that the momentum
distribution is a quantity experimentally accessible in time-of-flight experiments with cold atoms
[105]. By performing many copies of the same experiment with different disorder strengths, our
results could be tested experimentally. One of the main questions in the field is the relationship
between the standard one-body Anderson localization transition and the Anderson localized phase
and the many-body localization transition and phase. Our description of the spectral statistics of
the MBL phase with a generalized semi-Poisson model which is known to describe the critical
behavior of the Anderson model at high dimensions should be an important motivation for the
current effort of understanding the relationship between the MBL transition and the Anderson
localization transition in high dimensional lattices [[106]. The main problem in the study of many-
body disordered systems, which is also the main limitation of the results presented in this paper,
is the scaling to the thermodynamic limit, L — oo. Without a complete underlying scaling theory
for MBL systems, trying to solve the problem by simply expanding the range of system sizes
amenable to diagonalization schemes may, however, be insufficient to obtain satisfying solutions
to the open questions in the field [46]. However, we believe that our results could serve as guidance
for the search of a theoretical framework, probably in the form of a more complete renormalization
group approach, capable of overcoming this limitation.
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