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Abstract

We review the results of refs. [1, 2], in which the entanglement entropy in spaces with
horizons, such as Rindler or de Sitter space, is computed using holography. This is
achieved through an appropriate slicing of anti-de Sitter space and the implementation
of a UV cutoff. When the entangling surface coincides with the horizon of the bound-
ary metric, the entanglement entropy can be identified with the standard gravitational
entropy of the space. For this to hold, the effective Newton’s constant must be defined
appropriately by absorbing the UV cutoff. Conversely, the UV cutoff can be expressed
in terms of the effective Planck mass and the number of degrees of freedom of the dual
theory. For de Sitter space, the entropy is equal to the Wald entropy for an effective
action that includes the higher-curvature terms associated with the conformal anomaly.
The entanglement entropy takes the expected form of the de Sitter entropy, including
logarithmic corrections.
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The fact that the divergent part of the entanglement entropy scales with the area of the en-6

tangling surface [3] suggests a connection with the gravitational entropy of spaces containing7

horizons. It seems reasonable that the entropies should become equal when the entangling8

surface is identified with a horizon. We address this problem in the context of the AdS/CFT9

correspondence through use of appropriate coordinates that set the boundary metric in Rindler10

or static de Sitter form. According to the Ryu-Takayanagi proposal [4], the entanglement en-11

tropy of a part of the AdS boundary within an entangling surface A is proportional to the area12

of a minimal surface γA anchored on A and extending into the bulk.13
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Figure 1: Constant-time slice of AdS3 for a Rindler boundary with a = 1 (left) and a
static de Sitter boundary with H = 1 (right).

We consider the standard parameterization of (d + 2)-dimensional AdS space with global14

coordinates, as well as parametrizations through Fefferman-Graham coordinates, with the15

boundary located at the value z = 0 of the bulk coordinate. As a first case we consider a16

metric with a Rindler boundary:17

ds2
d+2 =

R2

z2

�
dz2 − a2 y2dη2 + d y2 + d x⃗d−1

�
, (1)

where a is a constant parameter. The timelike coordinate η takes values −∞< η <∞. The18

range 0< y <∞ of the spacelike coordinate y covers the right (R) Rindler wedge, while the19

range −∞< y < 0 covers the left (L) wedge.20

In the left plot of fig. 1 we depict how the slice of the AdS3 cylinder with η= 0 is covered21

by the coordinates y and z for a = 1. The two axes correspond to global coordinates. The22

circumference is the AdS3 boundary with z = 0, which is parameterized by the coordinate y .23

The Rindler horizon at y = 0 corresponds to the point (0,−1) in fig. 1. Positive values of y24

cover the right semicircle (R wedge), and negative values the left semicircle (L wedge). The25

point (0, 1) is approached in the limits y →±∞ from right or left. The AdS3 interior is covered26

by lines of constant y and variable positive z. All these lines converge to the point (0,1) for27

z →∞. We expect to have entanglement between the R and L wedges. The corresponding28

entanglement entropy can obtained through holography by computing the area of the minimal29

surface γA of ref. [4]. This is depicted by the blue line in this case, which acts as a bulk horizon.30

The Rindler horizon can be viewed as the holographic image of the bulk horizon.31

Let us consider a strip with width l in the y-direction and very large extent in the remaining32

spacelike directions. The minimal surface extends into the bulk up to z∗ = Γ
� 1

2d

�
/
�
2
p
π Γ
� d+1

2d

��
l.33

In global coordinates this surface corresponds to a straight line through the bulk, as depicted34

by the red line in fig. 1. The entanglement entropy can be computed as35

SA =
2R(Rd−1 Ld−1)

4Gd+2

�
1

(d − 1)εd−1
+
p
π

2d

Γ
�1−d

2d

�
Γ
� 1

2d

� 1
zd−1∗

�
. (2)

A cutoff ε has been imposed on z as the surface approaches the boundary. For d = 1, one36

must substitute 1/((d − 1)εd−1) with log(1/ε). Here L is the large length of the directions37

perpendicular to the strip, so that Rd−1 Ld−1 is the corresponding volume.38

We are interested in the limit in which the width l of the strip covers the whole R wedge. In39

this case the entanglement occurs between the R and L wedges. For l →∞ we have z∗→∞40
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and the second term in the parenthesis in eq. (2) vanishes. In order to assign a physical41

meaning to the first term, we can define the effective Newton’s constant for the boundary42

theory as in [5]:43

Gd+1 = (d − 1)εd−1 Gd+2

R
, (3)

with (d−1)εd−1 replaced by 1/log(1/ε) for d = 1. This definition can be justified in the context44

of the Randall-Sundrum (RS) model [6], which employs only the part of the AdS space with45

z > ε. The effective low-energy theory includes dynamical gravity with a Newton’s constant46

given by eq. (3). In the limit ε→ 0, the constant vanishes and gravity becomes non-dynamical.47

This demonstrates the difficulty in computing the gravitational entropy in the context of the48

AdS/CFT coorespondence. The resolution we suggest is to keep the cutoff nonzero and absorb49

it in the definition of the effective Newton’s constant. Trading ε for Gd+1 in the expression for50

the entropy results in a meaningful expression.51

Substituting eq. (3) in eq. (2) gives an entanglement entropy which is bigger by a factor52

of 2 than the known gravitational entropy [7]. The reason can be traced to the way the limit is53

taken in order to cover the whole R wedge. We start from a strip in the y-direction extending54

between two points y1 and y2, and then take the limits y1 → 0 and y2 →∞. The first limit55

leads to the location of the Rindler horizon. However, any finite value of y2 excludes an infinite56

domain corresponding to y > y2. As a result, the strip is entangled not only with the (infinite)57

L wedge, but also with the (infinite) domain y > y2. The two contributions are expected58

to be equal because the space is essentially flat. Obtaining the entropy corresponding to the59

entanglement with the L wedge only can be obtained by dividing the result with a factor of 2.60

The final result for the Rindler entropy is61

SR =
Rd−1 Ld−1

4Gd+1
, (4)

in agreement with [7]. It is also illuminating to observe that the bulk horizon depicted as62

a blue line in fig. 1 approaches the boundary at two points. The point (0,−1) is the true63

Rindler horizon. However, the point (0, 1) does not belong to the boundary Rindler space,64

but corresponds only to the limits y → ±∞. The contribution to the area of the entangling65

surface from its vicinity should not be taken into account, thus justifying the division by 2.66

The second case we consider is that of a boundary static de Sitter (dS) space:67

ds2
d+2 =

R2

z2

�
dz2 +
�

1− 1
4

H2z2
�2�
−(1−H2ρ2)d t2 +

dρ2

1−H2ρ2
+ρ2 dΩ2

d−1

��
. (5)

For d > 1, the range 0 ≤ ρ ≤ 1/H covers one static patch. There are two such patches in the68

global geometry, which start from the the “North" or “South pole" at ρ = 0 and are joined at69

the surface with ρ = 1/H. For d = 1, ρ can also take negative value and each static patch is70

covered by −1/H ≤ ρ ≤ 1/H. In the right plot of fig. 1 we depict how the slice of the AdS371

cylinder with t = 0 is covered by the coordinates ρ and z for H = 1. The circumference is again72

the AdS3 boundary with z = 0, which is parameterized by the coordinate ρ. There are two73

horizons: one at ρ = −1, corresponding to the point (0,−1), and one at ρ = 1, corresponding74

to the point (0, 1) on the boundary. The AdS3 interior is covered by lines of constant ρ and75

variable positive z. All these lines converge to the point (0,0) at the center for z →∞. In76

the context of the global geometry, we expect to have entanglement between the two static77

patches. The corresponding entanglement entropy can be obtained through holography by78

computing the area of the minimal surface γA of ref. [4], depicted by the blue line. This line79

acts as bulk horizon. The difference with the Rindler case we discussed before is that the80

endpoints of the minimal surface are points of the boundary dS space, they are actually the81
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horizons. This means that there is no need to divide by a factor of 2 in this case. For d > 1 the82

d-dimensional minimal surface γA ends on an (d − 1)-dimensional sphere that separates the83

two hemispheres of the slice of dSd+1 with t = 0.84

The isometries of dS space indicate that the entangling surface is spherical in this case.85

The minimal surface γA in the bulk can be determined by minimizing the integral86

Area(γA) = RdSd−1

∫
dσ

sind−1(σ)

sinhd(w)

√√√
1+
�

dw(σ)
dσ

�2
, (6)

where we have defined the parameters σ = sin−1(Hρ), w= 2 tanh−1(Hz/2), and denoted the87

volume of the (d−1)-dimensional unit sphere as Sd−1. The above expression is minimized by88

the function [2]89

w(σ) = cosh−1
�

cos(σ)
cos(σ0)

�
. (7)

For σ0 → 0 the known expression w(σ) =
q
σ2

0 −σ2 [4] for H = 0 is reproduced. For90

σ0→ π/2 the boundary is approached at the location of the horizon with dw/dσ→−∞.91

The integral (6) is dominated by the region near the boundary. Introducing a cutoff at92

z = ε results in a leading contribution93

Area(γA) = RdSd−1 I(ε) = RdSd−1

∫
Hε

dw

sinhd(w)
. (8)

For d 6= 1 the leading divergent part is I(ε) = 1/((d − 1)Hd−1εd−1), while for d = 1 it is94

log(1/(Hε)). Using eq. (3) we obtain the leading contribution to the entropy:95

SdS =
Area(γA)

4Gd+2
=

RdSd−1

4Gd+2(d − 1)Hd−1εd−1
=

Sd−1

4Gd+1

�
R
H

�d−1

=
AH

4Gd+1
, (9)

with AH the area of the horizon. This result reproduces the gravitational entropy of [8]. It is96

valid for d = 1 as well, with 1/((d − 1)εd−1) replaced by log(1/ε) and S0 = 2, because the97

horizons of the global dS2 geometry are 2 points [5].98

The integral I(ε) also contains subleading divergences. There is a subleading logarithmic99

divergence for d = 3, no singular subleading terms for d = 2, while the only divergence100

for d = 1 is the leading logarithmic term already included in eq. (9). For d > 3 we have101

subleading power-law divergences for odd d + 1, plus a logarithmic one for even d + 1. We102

focus on four dimensions, in which the dS entropy takes the form103

SdS =
AH

4G4

�
1+H2ε2 log Hε

�
. (10)

The logarithmic dependence on the cutoff hints at a connection with the conformal anomaly104

of the dual theory, which results from higher curvature terms in the effective theory. The105

effective action can be deduced from known results for the on-shell action in holographic106

renormalization [9]. In our approach the divergences are not removed through the introduc-107

tion of counterterms, but are absorbed in the effective couplings. This means that the relevant108

quantity for our purposes is the regulated form of the effective action. Using the results of [9],109

we obtain the leading terms [2]110

S =
R3

16πG5

∫
d4 x
p−γ� 6

ε4
+

1
2ε2

R− 1
4

logε
�
Ri jRi j − 1

3
R2
��

. (11)

The first term corresponds to a cosmological constant. In the RS model [6] this is balanced by111

the surface tension of the brane at z = ε. The second term is the standard Einstein term if the112
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effective Newton’s constant G4 is defined as in eq. (3) with d = 3. The third term is responsible113

for the holographic conformal anomaly. The action (11) supports a dS solution. In order to114

take into account the presence of the higher-curvature terms in eq. (11) one must compute115

the Wald entropy [10]. The result is in agreement with the singular part of the correction116

provided by the holographic calculation (10) [2].117

For the N = 4 supersymmetric SU(N) gauge theory in the large-N limit, the effective118

action can be computed as [11]119

S = − β

16π2
Γ

�
2− d + 1

2

�∫
d4 x
p−γ�Ri jRi j − 1

3
R2
�

, (12)

with β = −N2/4. The divergence of Γ (2 − (d + 1)/2) in dimensional regularization in the120

limit d + 1 → 4 corresponds to a log(1/ε2) divergence in our cutoff regularization. A com-121

parison of the above expression with eq. (11) reproduces the standard AdS/CFT relation122

G5 = πR3/(2N2). The dimensionful UV momentum cutoff for d = 3 can be expressed as123

(εN R)−2 = 2G5/(R3G4) = 8π2m2
Pl/N

2, with m2
Pl = 1/(8πG4). Now eq. (10) for d = 3 can be124

cast in the form125

SdS =
AH

4G4
+ N2 log(HεN ) =

AH

4G4
+ N2 log
�

Np
8π

H/R
mPl

�
, (13)

where H/R is the physical Hubble scale. This expression is completely analogous to the black-126

hole result [12], with the horizon size parameter measured in units of the UV cutoff. It is also127

in agreement with the calculation of the logarithmic part of the holographic entanglement128

entropy in [13].129

The calculation of the entropy associated with nontrivial gravitational backgrounds through130

holography faces two difficulties:131

• The boundary metric in the context of AdS/CFT is not dynamical, a feature that is equiv-132

alent to mPl→∞.133

• The entanglement entropy has a strong dependence on the UV cutoff of the theory, which134

makes its identification with the gravitational entropy problematic.135

We showed that these difficulties can be resolved if the UV cutoff dependence is absorbed in the136

definition of mPl. The conceptual framework is provided by the Randall-Sundrum model [6],137

or, alternatively, by the regulated form of the effective action in holographic renormaliza-138

tion [9]. Our derivation of the dS entropy is consistent with the expectation that the entropy139

associated with gravitational horizons can be understood as entanglement entropy if New-140

ton’s constant is induced by quantum fluctuations of matter fields [14]. In the context of the141

AdS/CFT correspondence the bulk degrees of freedom correspond to the matter fields of the142

dual theory. The boundary Einstein action arises through the integration of these bulk degrees143

of freedom up to the UV cutoff.144

Our approach is in contrast with the usual interpretation of the leading contribution to145

the entanglement entropy as an unphysical UV-dependent quantity of little interest. We have146

reached the opposite conclusion: The leading contribution to the entropy has a universal form147

that depends only on the horizon area because the same degrees of freedom contribute to the148

entropy and Newton’s constant. Also, the detailed nature of the UV cutoff does not affect the149

leading contribution. The particular features of the underlying theory, such as the number of150

degrees of freedom become apparent at the level of the subleading corrections to the entropy:151

the coefficient of the logarithmic correction is determined by the central charge of the theory.152
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