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Abstract

The diffusion coefficient–a measure of dissipation, and the entropy–a measure of fluctuation are found

to be intimately correlated in many physical systems. Unlike the fluctuation dissipation theorem in linear

response theory, the correlation is often strongly non-linear. To understand this complex dependence, we

consider the classical Brownian diffusion in this work. Under certain rational assumption, i.e. in the bi-

component fluid mixture, the mass of the Brownian particle M is far greater than that of the bath molecule

m, we can adopt the weakly couple limit. Only considering the first-order approximation of the mass ratio

m/M , we obtain a linear motion equation in the reference frame of the observer as a Brownian particle.

Based on this equivalent equation, we get the Hamiltonian at equilibrium. Finally, using canonical ensemble

method, we define a new entropy that is similar to the Kolmogorov-Sinai entropy. Further, we present an

analytic expression of the relationship between the diffusion coefficient D and the entropy S in the thermal

equilibrium, that is to say, D = ~
eM exp [S/(kBd)], where d is the dimension of the space, kB the Boltzmann

constant, ~ the reduced Planck constant and e the Euler number. This kind of scaling relation has been well-

known and well-tested since the similar one for single component is firstly derived by Rosenfeld with the

expansion of volume ratio.
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I.Introduction

Study of relationship between diffusion coefficient D of a tagged molecule and the entropy S

of complex systems has been an interesting topic in statistical physics since the first quantitative

relation between the two was established by Adam and Gibbs[1]. It provides a good viewpoint to

access the field of the Brownian motion in some complex fluid[2].

In 1977, the scaling relationship between diffusion coefficient and the excess entropy of single

component, which only includes the Brownian particle, which readsD = a exp(bS/kB), where

a and b only are some empirical fitting parameters and kB is the Boltzmann constant, was first

proposed by Rosenfeld with the expansion of volume ratio[3, 4]. The scaling relationship reads

D∗ = D
ρ1/3

(kBT/m)1/2
≡ a exp(bSex/kB), (1)

where Sex = Stot−SI

N
, Stot is the total entropy of the system, SI is the entropy of the ideal

gas, a and b are the empirical fitting parameters, m is atom mass, ρ is the number density.

And Dzugutov proposed a similar universal scaling relationship, where the entropy is defined

through the radial distribution function[5]. These relationships have been well-tested by many

experiments in different systems[6–10]. The scaling relationship reads

D∗ =
D

4σ4g(σ)ρ(πkBT/m)1/2
≡ a exp(bSex/kB), (2)

where σ is the hard-sphere diameter, g(ζ) is the radial distribution function. In real system,

σ is the position of the maximum of the function g(ζ).

A more rigorous scaling law for the binary fluid mixture has been presented at the beginning

of 21th century[11, 12]. However,in Ref.[11], the entropy is defined in thermodynamic form

and dependent on the partition function. The kind of canonical entropy is hard to analytically

calculate. And one has to make the cut-off in the cluster expansion to calculate it. In Ref.[11], the

result of the entropy is only at the level of the two-body interaction accuracy. All above-mentioned

universal scaling laws are found to fail in low density case due to the parameter b varying [13].

In the binary fluid mixture, the mass dependence of diffusivity happens[14, 15]. Considering that

the mass of Brownian particles, such as colloids, is far heavier than one of bath particles, we

aim at this kind of relationship in low density case in this paper. Using the canonical ensemble

method, we define a new entropy that is similar to the Kolmogorov-Sinai entropy. The definition

of Kolmogorov-Sinai entropy is based on the change ratio of phase-space volume as time varying
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so that it is easier to calculate than the thermodynamic entropy. At the accuracy of the first-order

approximation of the mass ratio, we present a analytic expression of the relationship between the

diffusion coefficient D and the entropy S in the thermal equilibrium where the parameter a and

b are explicitly given. Hereunto, although the Rosenfeld’s relationship seemly does not have an

acknowledged theoretical explanation[16], we try to provide an alternative view to interpret it in

this work.

The outline of this paper is as follows. In Section II, we consider the classical Brownian

diffusion. Under certain rational assumption, i.e. in the bi-component fluid mixture, the mass

of the Brownian particle M is far greater than that of the bath molecule m, we know that every

Browian particle suffer the same stochastic force. In Section III, we obtain a linear motion

equation in the reference frame of the observer as a Brownian particle and give the Hamiltonian at

equilibrium. In Section IV, using these snapshot probability distributions, we define a new entropy

and present the relationship between diffusion coefficient and entropy. Finally, in Section V, to

check the superiority of our treatment, we compare our results with that of hard-sphere model

where the entropy is dependent of the volume ratio.

II. Langevin equation and Langevin operator

A Brownian motion particle in d-dimensional space can be described by the Langevin equation

M
d2x
dt2

+ α
dx
dt

= ζ(t), (3)

where M is the particle mass, ζ(t) is the white Gaussian noise with correlations < ζi(t)ζj(t
′
) >=

2αkBTδijδ(t− t
′
). The diffusion coefficient D satisfies Einstein’s relation D = kBT

α
. The velocity

has a decay time γ−1, where α = Mγ. In general, the mass of the particle is very small in mi-

cro/nano scale. The inertial term can be ignored, compared with the viscosity term. That is in the

low Reynolds number regime where the Stoke-Einstein relation could be established. When the

system is at equilibrium, the total entropy production rate is zero, and the velocity of Brownian par-

ticles follows the Maxwell-Boltzmann velocity distribution[17, 18]. There exits many techniques

to obtain the Langevin equation[19, 20]. One of these techniques is as follows[19]. Considering

a system including N light bath molecules of mass m and a heavy point-like Brownian particle of

mass M , the mass ratio λ2 = m
M

is very small. The Hamiltonian of the system is

Hs =
1

2M
p2 +H0, (4)
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H0 =
pN · pN

2m
+ U(rN) + Φ(rN , x), (5)

where p is the momentum of the Brownian particle, pN and rN are Nd-dimensional positions

and momentums of the bath molecules, U(rN) is the two-body interaction potential between bath

molecules, Φ is the interaction potential between bath molecules and the Brownian particle. The

Liouville operator L is defined by

L = L0 + L1

L0 =
pN

m
· ∇rN −∇rNH0 · ∇pN

L1 =
p
M

· ∇x −∇xΦ · ∇p = λ(
p
m

· ∇x −∇xΦ · ∇p) = λL2

(6)

where p = λp. The projection operator P̂ is defined by the following equation[19]

P̂A =< A >=

∫
Z−1

0 e−βH0(t=0)AdrNdpN , (7)

here β ≡ kBT , and the partition function Z0 =
∫
e−βH0(t=0)drNdpN . ζ(0) indicates the force at

t = 0. Then we can get ζ(t) = eLtζ(0), < ζ(0) >= 0. Finally, as was shown in Refs.[18, 19, 21],

the Langevin equation is given by

dp
dt

= λ2

∫ t

0

eL(t−τ)P̂L2ζ
+(τ)dτ + λζ+(t)

= λ2

∫ t

0

eL(t−τ)(∇p − β
p
m
)· < ζ(0)ζ+(τ) > dτ + λζ+(t)

≈ −λ2 β

m

∫ t

0

p(t− τ))· < ζ(0)ζ0(τ) > dτ + λζ0(t)

= −γp + λζ0(t),

(8)

here ζ+(t) = eÔLtζ(0) with the operator Ô = 1− P̂ , and ζ0(t) = eL0tζ(0). The above equation

is obtained in the weak coupling limit( namely, λ2 → 0, t → ∞, λ2t is limited)[19].

III. Hamiltonian at equilibrium in the reference frame of the observer as a Brownian particle

Because the mass of the Brownian particle is far greater than that of the bath molecules (i.e.

M ≫ m), the mean velocity of Brownian particle is far slower than that of the bath molecules,

the force on a arbitrary Brownian particle approximately equals to ζ0(t) [18]. One can choose

a Brownian particle as an observer which has the same initial position as the Brownian particles
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but is motionless at t = 0. The sign ν0 indicates the initial velocity of a Brownian particle. The

position xo of the observer satisfies the Langevin equation

M
d2xo

dt2
+ α

dxo

dt
= ζ(t). (9)

For convenience, we introduce y ≡ x − xo. In the reference frame of the observer, y satisfies the

equation which reads,

M
d2y
dt2

+Mγ
dy
dt

= 0, (10)

where, the initial relative position is zero and the initial relative velocity ν0. Its solution is y =

ν0

γ
(1− e−γt). The solution also satisfies an other system that is described by[22]

M
d2y
dt2

≡ −∂ϕ(y)
∂y

= Mγ2y −Mγν0, (11)

here the potential reads ϕ(y) = constant+Mγν0 · y − M
2
γ2y2. Both systems share the common

phase curve, thus we can get

ϕ(x − xo) ≈ ϕ(0) +Mγν0(x − xo)− M

2
γ2(x − xo)2. (12)

Eq.(8) is a second-order equation of λ and ϕ is the same level. Now the system is linear and

will reach equilibrium at t = ∞. Two particles with the same initial position but a initial velocity

difference ν0 can get a maximum divergence of ∆x = ν0

γ
, therefore the term Mγν0(x − xo) will

involve in the form being M(γ∆x)2. Consequently, the final Hamiltonian of the ensemble system

with n Brownian particles in the reference frame at equilibrium reads

Htotal(t = ∞) =
n∑
i

[
1

2M
p2
i +

M

2
γ2(xi − xo)2 + ϕ(0)] (13)

It needs to point that the entropy whose definition depends upon the Hamiltonian is similar to the

Kolmogorov-Sinai entropy. The definition of Kolmogorov-Sinai entropy is based on the change

ratio of phase-space volume as time varying. Dzugutov, Aurell and Vulpiani have made the

assumption that the Kolmogorov-Sinai entropy can be connected to the conventional ther-

modynamic entropy[23]. The derivation of Eq.(13) based on the Kolmogorov-Sinai entropy

would be showed in APPENDIX A. in APPENDIX B, the formula of the thermodynamic

entropy of Brownian particle is derived, but it is hard to analytically solve. Fortunately,

Dzugutov et al. have point that Kolmogorov-Sinai entropy, when expressed in terms of the

atomic collision frequency, is uniquely related to the thermodynamic excess entropy by a

universal linear scaling law[23]. The linear law is not influence the exponential relationship

between the diffusion coefficient and the entropy
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IV. Relationship between diffusion coefficient and entropy

When the system is in the thermal equilibrium, we can use the canonical ensemble method to

calculate the entropy. Form Eq.(13), one can know that the system is uncouple. The one-particle

partition function

Z =
1

(2π~)d

∫
exp{−β[

1

2M
p2 +

M

2
γ2(x − xo)2 + ϕ(0)]}dpdx = (

1

~βγ
)de−βϕ(0), (14)

here ~ is the reduced Planck constant. The one-particle entropy is

S = kB(lnZ − β
∂

∂β
lnZ) = kBd[1− ln(~βγ)] = kBd ln(

eMD

~
), (15)

here, e is the Euler number. The relationship between diffusion coefficient and entropy reads,

D =
~
eM

exp [S/(kBd)] ≡ a exp(bS/kB), (16)

here the parameter a = ~
eM

and b = 1
d
. In an anisotropic system, if the particle has the

corresponding diffusion coefficient Di in the different dimension, one can get

d∏
i=1

Di = (
~
eM

)d exp(S/kB) (17)

V. Results and discussion

Our result shown in Eq.(16) has the same form as Eq.(1)and Eq.(2), but our method can give

the analytic formula and make it possible to calculate some more complex model.

In this paper, we only consider the point-like particle and the accuracy of the λ2. To obtain the

more accurate relationship, one can expand the motion equation in the higher-order terms of λ.

The entropy can be expanded in terms of λ related to the mass ratio. λ maybe plays the same role

as the quantity related to the volume ratiosuch as η in the 3-dimensional hard-sphere model. In

the model that has been well-solved at the level of 10-body interaction, the entropy is[3]

S = NkB[ln(
2πmkBT

h2
)
3
2 +

5

2
+ ln

1

ρ
− 4η − 3η2

(1− η)2
] (18)

where η = πNd
3

6V
, d is the hard-sphere diameter, Sex = −4η−3η2

(1−η)2
. Because diffusion coefficient

D ∝ ν

ρd
2 , and (ρ)−

1
3 is larger than d for the dilute gas, so that b is larger than 1

3
for the function

D = a ·eb·s/kB . For Brownian particle, its mass and volume is far lager than that of bath molecules,
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its remaining space is filled with these light molecules, so that its (ρ)−
1
3 is close to d, then Eq.(16)

is roughly right. On the other hand, Eq.(8) is only valid up to order λ2. the term Sex will be

included in the nonlinear Langevin equation

M
d2x

dt2
+ α

dx

dt
+ α1(

dx

dt
)3 = ζ(t), (19)

where α1

α
≈ m

6kBT
for the generalized Rayleigh model[18]. The relationship in the nonlinear

Langevin equation will be considered in our future work.
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APPENDIX

APPENDIX A: DEFINITION OF KOLMOGOROV-SINAI ENTROPY AND DERIVATION OF

FINAL HAMILTONIAN

We introduce the Kolmogorov-Sinai entropy defined as

S = sup
Q

h(Q) ≡ sup
Q

{− lim
n→∞

1

nτ

∑
ω

µ(ω) lnµ(ω)}, (A1)

ω = {X(t) = (ti,Xi), ti = iτ, i = 0, 1, 2 · · · , n− 1}.

Here, ω denotes a path of the particle, and µ(ω) is the probability. A Brownian motion

particle can be described by the Langevin equation which reads

dp
dt

+ γp = ζ0(t), ζ0(t) = eL0tζ(0). (A2)

In the 1st and 2nd ensemble, the path of the Brownian particle is X00(t) and X11(t), re-

spectively. In the two ensembles, the Brownian particles have different initial velocities be-

ing v00 and v11, but the bath molecules have the same initial velocity distributions. Due to

ζ0(t) = eL0tζ(0), the forces ζ0(t) are the same. One can get

lim
n→∞

[X11(t)− X00(t)] = lim
t→∞

[X11(t)− X00(t)] =
v11 − v00

γ
. (A3)

Assuming that the systems are in thermal equilibrium, one can get the probability ratio of

two paths which reads

µ(ω2)

µ(ω1)
∝ exp[−M(v11 − v00)

2

2kBT
] = lim

t→∞
exp{−Mγ2[X11(t)− X00(t)]

2

2kBT
}. (A4)

So, when t → ∞, the probability of all possible paths satisfies

µ ∝ exp{−Mv2
00

2kBT
− Mγ2[X11(t)− X00(t)]

2

2kBT
} (A5)

Therefore, based on the definition of Kolmogorov-Sinai entropy, one can obtain the final

Hamiltonian of the ensemble system which reads

Htotal(t = ∞) =
n∑
i

[
1

2M
p2
i +

M

2
γ2(xi − xo)2 + ϕ(0)]. (A6)
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APPENDIX B: FORMULA OF THE THERMODYNAMIC ENTROPY OF BROWNIAN PAR-

TICLE

one can assume that a system labelled as System 1 with the volume V , only includes N

bath particles,which Hamiltonian reads,

H =
pN · pN

2m
+ U(rN). (B1)

The partition function of this system under canonical ensemble is

Z1 =
1

N !hdN

∫
e−βHdp1...dpNdr1...drN . (B2)

When one introduces a heavier Brownian particle to join in the system, it is labelled as

System 2, which partition function is

Z2 =
1

N !hdNhd

∫
e−βHsdp1...dpNdr1...drNdpdx (B3)

one can define the entropy of Brownian particle which equals the difference of entropy of

System 2 and System 1. One can obtain ∆ lnZ, which reads

∆ lnZ ≡ lnZ2 − lnZ1 =
d

2
ln(

2πM

h2β
)

+ ln(

∫
e−βΦ−βUdr1...drNdx)− ln(

∫
e−βUdr1...drN)

=
d

2
ln(

2πM

h2β
)− ln(

< eβΦ >

V
).

(B4)

Based on the formula of the thermodynamic entropy being

S = k(lnZ − β
∂

∂β
lnZ), (B5)

The thermodynamic entropy of Brownian particle ST reads

ST =
kd

2
[ln(

2πM

h2β
) + 1]− k ln[

< eβΦ >

V
] + kβ

∂

∂β
ln(< eβΦ >) (B6)

9



REFERENCES

[1] Adam, M. and Gibbs, J. H. 1965, J.Chem.Phys. 43, 139.

[2] Bian, X., Kimb, C. and Karniadakis, G. E. 2016, Soft Matter, 12, 6331.

[3] Rosenfeld, Y. 1977, Phys. Rev. A , 15, 2545.

[4] Rosenfeld, Y. 1977, J.Chem.Phys. 48, 467.

[5] Dzugutov, M. 1996, Nature (London) , 381, 137.

[6] Li, G. X., Liu, C. S., and Zhu, Z. G. 2005, Phys. Rev. B , 71, 094209.

[7] Agarwal, M., Singh, M., Sharma, R., Parvez Alam, M., and Chakravarty, C. 2010, J. Phys. Chem. B,

114, 6995-7001.

[8] Krekelberg, W. P., Kumar, T., Mittal, J., Errington, J. R., and Truskett, T. M. 2009, Phys. Rev. E , 79,

031203.

[9] Abramson, E. H. 2009, Phys. Rev. E , 80, 021201.

[10] Ma, X., Chen, W., Wang, Z., et al. 2013, Phys. Rev. Lett. 110, 078302.

[11] Hoyt, J. J., Asta, M., and Sadigh, B. 2000, Phys. Rev. Lett. 85, 594.

[12] Samanta, A., Ali, S. M., and Ghosh, S. K. 2001, Phys. Rev. Lett. 87, 245901.

[13] Samanta, A., Ali, S. M., and Ghosh, S. K. 2004, Phys. Rev. Lett. 92, 145901.

[14] Ali, S. M., Samanta, A., and Ghosh, S. K. 2001, J.Chem.Phys. 114, 10419.

[15] van den Berg, H. P., and Hoheisel, C. 1990, Phys. Rev. A , 42, 3368.

[16] Seki, K., and Bagchi, B. 2015, J.Chem.Phys. 143, 194110.

[17] Lev, B. I., and Kiselev, A. D. 2010, Phys. Rev. E , 82, 031101.

[18] Plyukhin, A. V. 2008, Phys. Rev. E , 77, 061136.

[19] Mazur, P., and Oppenheim, I. 1970, Physica, 50, 241.

[20] de Grooth, B. G. 1999, Am. J. Phys. 67, 1248.

[21] Plyukhin, A. V. 2006, Europhys. Lett. 75, 15.

[22] Luo, T. and Guo, Y. 2009, arXiv:0906.3062.

[23] Dzugutov M., Aurell E., and Vulpiani A. 1998, Phys. Rev. Lett. 81, 1762.

10


