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Abstract

Former part of this article is the proceeding for my talk [1] on [2], which is a report on
the issue in the title of this article. Later part is the detailed description of [2].
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1 Motivation for my analyzing Hawking flux

We will start with a 4D spacetime, then impose some falloff condition to its spatially
infinite region!, which means the spacetime asymptotes to the flat spacetime according to
that. Then, we will consider the diffeomorphism at its spatially infinite region in the range
of the falloff condition (at this time, gauge conditions to eliminate local diffeomorphism
ambiguities are also preserved). Transformation of the spacetime by this diffeomorphism
is called asymptotic (or BMS) symmetry [3,4]. I list several facts known for this.

e Diffeomorphism of the asymptotic symmetry is an infinite dimensional group, which
contains the Poincare group as its subgroup.

e There are so-called supertranslation and superrotation in the asymptotic symmetry,
which respectively contains the global translation and Lorentz transformation.

e Diffeomorphism of the asymptotic symmetry maps a configuration of an asymptoti-
cally flat spacetime as a solution to an other physically different asymptotically flat
spacetime as a solution in the range of the falloff condition.

e Asymptotically flat spacetime is infinitely degenerated in the range of asymptotic
symmetry, and the symmetry of theory at that asymptotic region is not Poincare
symmetry but the one associated with supertranslation and superrotation.

e Infinite conserved charges for the asymptotic symmetry can be defined. Of course
these effects are not zero, therefore the asymptotic symmetry is some kinds of spon-
taneous broken symmetry?. (Brown-Henneaux charge [5] is one of asymptotic sym-
metry breakings, though not in 4D flat spacetime.)

e Although asymptotic symmetry is not global, one can consider the field like NG
boson field for supertranslation.

e Supertranslated spacetimes are normal [6], therefore considering asymptotic symme-
try is meaningful realistically.

In [2], I obtain the Schwarzschild blackhole spacetime with supertranslation correction
to the second-order, which I sketch as

ds* = —(1—=2m/r+ -+ OE3)) dt? + (1 —2m/r) L4+ - + O(3)) dr?
24+ O®E)) dO2 + (r2sin2 0 + - - + O()) dg?
F2((-++)e + -+ + O(°)) drydbs, (1)

where € mean the order of supertranslation correction and the full expressions of metrices
(2)

are given j,, in (46a)-(50b). We can obtain the position of the horizon from this is
15m sin?(26)

- g2+ 0(e%). (2)

Th,4D =2m —

The correction of supertranslation enters from the second-order, which is the motivation
for our analysis to the second-order. Here, as this is not constant, there may be a concern

!Talk slide is in the homepage [1]. T describe the former part of this article by first person.

20One may ask what’s the configuration before the SSB. there look no studies on this until now and I
cannot say any sure things about this. This SSB would be different kind of our familiar SSB. In P.41 in [7],
some comment is written. Phenomena in the familiar SSB may not be always exist, and there may be no
configuration before the SSB of the asymptotic symmetry, though I am not sure.
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for the zeroth law of the blackhole thermodynamics. It is no problem since the Hawking
temperature is constant in the range of our analysis’s order, €2, as shown below.

Since the position of the horizon is displaced for supertranslation correction, it is
interesting to check how the Hawking temperature is. Its result is

Ty = 1/87m + O(e?), (3)

which is no difference from just the Schwarzschild (reason is written in Sec.B.2).

Since Hawking temperature can be calculated from Hawking flux, if the Hawking
temperature were preserved the Hawking flux would be expected to be preserved. However
I have considered that supertranslation corrections may be involved in the Hawking flux
but would be canceled out in the Hawking temperature. This is one of my motivations for
my computing the Hawking flux in [2].

There is another motivation, which is that as a result of involving the supertranslation
corrections as in (1), it becomes obscure whether field theories can reduce to free 2D or
not in the near-horizon. Originally it should be so for the strongly gravitational force at
the horizon, and if not, it would be physically abnormal. Although it can be shown in
Sec.B.5 that the scalar theory can reduce to free 2D whether it is possible or not is unclear
before trying (I comment on the key for the feasibility of this in the last of Sec.B.5).

2 What’s supertranslation and its NG boson fields

We start with an expression of general 4D spacetime by the Bondi coordinates (u,r, @A)
(u =1t —r and ©4 are the spherical coordinates (2, Z) on the S?) as

1 1
ds? = —Udu? — P dudr + gap <d®A n §UAdu) <d®B n 5UBdu), (4)

where the Bondi gauge to fix the local diffeomorphisms, ¢, = gr4 = 0, is imposed.
Then, supposing that the spacetime will asymptote to the flat spacetime, let us consider
to describe the neighborhood of 7+. At this time we need to impose a falloff condition
to the metrices, however there is no systematic ways to determine the falloff condition.
Conversely, various falloff conditions can be considered. Typically, it is chosen so that
physical solutions can exist and unphysical solutions do not exist.

As an expansion of (4) to r~1, the following one is conventionally adopted [3,4]:

ds® = — du® — 2dudr + 27"2’725d2d2
+ 2mp/rdu’® + rC,.dz% + rCzdz* + D*C..dudz

1,4 1 2z -
+ ~ (V2 + udamp) = (CoC) ) dudz + cc. + 0 (172). (5)

where D, is the covariant derivative with respect to vz,. It is usual that the structure to

r~!is important. C,., Css, mp and N, are functions of (u, z, Z) but not of r, and

e mp is the Bondi mass aspect. |, g2 dzdzmp gives the Bondi mass, which can be ADM
mass in the cases of blackhole spacetimes.

e N, is the angular momentum aspect. |, g2 dzdzN,V* gives the total angular momen-
tum, which is ADM angular momentum in the blackhole spacetimes.

e (.., C3z play the role of potential for gravitational wave (akin to vector potential for
electromagnetic field), and N, is the Bondi news given as 9,C, (Nzz is likewise).
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The falloffs of the metrices in (5) are given as follows:

Juu = — 1+ O(T_l)a Gur = -1+ O(r_z)v Juz = O(l)’
9oz = O(1),  gsz = 72'7,22 +0(1), grr=gr==0.

Let us turn to the supertranslations. These generation are given as

Legur = —0,C"+ O™,

Liger = 127:20,C7 — 9.C" + O(r™ 1),

Legsz =17:2(2¢" + D% +rD:(%) + O(1),
LeGuu = —20,¢" — 20, + (’)(r‘l).

Lymp = fo,mp + i(NZZfo +2D.N*D,f + c.c.),
‘CfNZZ = fauszu (8)
LC,, = f0,C., — 2D?f,

where the vector field for the Lie derivative above is given as
1 i}
£=fO,+ ;(szaz + D*f0z) + D*D, f0,. 9)

f is arbitrary function of (z, Z), and normally spherical harmonics are taken.
The NG bosons associated with the asymptotic symmetry breaking is given as

LiC(z,2) = f(2,7), (10)

C is the NG boson, which is infinite as the asymptotic symmetry is infinite dimensional.

3 Fun in the asymptotic symmetry

First of all, what 4D Mankowski spacetime has not been an unique vacuum but infinitely
degenerated would be a surprisingly interesting fact. Surely this had been already found in
1962 [3,4], however it is in just the last decade that hep-th has recognized this problem [7].
As interesting directions from the study of the asymptotic symmetry, the following ones
could be taken: 1) gravitational memory effect 2) links with/between soft theorems and
memory effects, 3) holography, and 4) information paradox.

1) is the variation in the relativistic position of two objects near the future null infinity
T for the passing of the gravitational wave, which could be measured by the formalism
of the asymptotic symmetry.

Consider the gravitational wave is turned on at v = u; and off at u = wuy, and two
objects near T are exposed it during the time interval Au = uy — u;. The Bondi news
tensor and the energy momentum tensors are zero at any time except for the time getting
the gravitational wave. Then, one can evaluate the displaced amount as

zZz

As® = 7
2r

AC,. s, (11)

where As? = SA]u:uf — 54y, ((s, 5) means the relativistic position of the two objects),
and ACpp = CAB|u:uf - OAB|u:ui-
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Hence, the passage of gravitational wave will arise the displacement by the order r—1.

To observe this would be highly harder than observing the gravitational wave. Now it is
planed at LIGO [8] or via a pulsar timing array [9,10].

Other types of memory effect are also considered: spin memory effect [11], color mem-
ory effect [12], and electromagnetic memory effect [13—-15]. Observing the soft graviton
may be also planed, however it is so silent that it is not be caught in our current detection.

Regarding 2), the equation of the soft theorem can be obtained as the Ward identity
with regard to the asymptotic symmetry ( [16,17] and [18,19] for gauge theories and
gravity, respectively). Therefore,

asymptotic symmetry <— soft theorem (12)

Next, the DC shift (equation given in P.91 of [7]) and “the effect of attaching one soft-
graviton line to an arbitrary Feynman diagrams” can be identical each other via Fourier
transformation (with adjustment of some notations’s convention). From this fact, it is
considered that the gravitational wave from blackholes and the soft particles from the
elementary particles’s collisions will show the similar behavior at the long distance in the
observation [7]. Thus, as the phenomena showing similar behavior [20],

soft theorem «— memory effect. (13)

Lastly, the gravitational wave at the long distance can be considered as fine transfor-
mations of the asymptotic symmetry. In this sense,

memory effect +— asymptotic symmetry. (14)

It is very interesting that different theories and phenomena can get related. Same
relations can be obtained in the gauge field theories [7]. Therefore, gravitational and
gauge theories would be universal in the IR-region. I list a few of the many achievements
obtained from (12)-(14) in what follows.

e Each of the subgroups BMS®T is the symmetry separately acting in gravitational
scatterings, but the full group BMS* x BMS™ is not symmetry [21]. However, by
the relation with soft theorem, it turns out that a certain antipodal subgroup of
BMS* x BMS™ is an exact asymptotic symmetry in gravitational scatterings [18].

e By the fact the asymptotically flat spacetimes are infinitely degenerated, the so-
called angular momentum problem in general relativity can be resolved [7].

e Without the relation with the soft theorem, one cannot show superrotation is the
symmetry or not for some singularities in these charges [22,23].

3) means the attempt to find the 2D CFT on the celestial sphere, CS?, with the
correlators which can reproduce the 4D Minkowski S-matrix, based on the fact that 4D
Lorentz symmetry SL(2, C) acts as the global conformal symmetry on a two-sphere [24-27].

Regarding 4), an initial configuration to form a star or blackhole finally leads to some
deformed spacetime by supertranslation [6], the phase space of which is infinite dimensional
and characterized by the infinite conserved charges [21]. Hence, we can expect that the
information of the initial configuration could be preserved in the configuration of the
spacetime, which may be the key to the information paradox.
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4 Our 2D effective action with supertranslation correction

From here, I would like to talk on my study. What I want to do first is to obtain the
Schwarzschild blackhole metric with the supertranslation correction to the second order
in the Schwarzschild blackhole coordinates. For this I will start with the Schwarzschild
blackhole spacetime given in the isotropic coordinates:
(1 —m/2ps) 2 407 2 2 102
ds? = ——— 2 dt? + (1 2p5)*(d d0?), 15
S (1+m/2ps)2 s+( +m/ ps)(ps+ps s) ( )
where a flat three-dimensional space part, dp? + p2d€2?, is convenient to involve the super-
translation correction according to [6].

Then, writing as dp? + p2dQ? = dz? + dy? + dz? and p? = 22 + y2 + 22, I involve the
supertranslation correction according to [6]:

xzs = (p— C)sinfcos ¢ + sin ¢ csc @ 9,C — cos O cos ¢ 9pC, (16a)
ys = (p — C)sinfsin ¢ — cos ¢ csc § 9yC — cos Osin ¢ 9pC, (16b)
zs = (p— C)cos + cos b cos ¢ 9yC, (16¢)

where the function C' is the NG boson field for supertranslation, which I will take as

me

C=meYy(0,0) = T\/§(3cos20 —1). (17)

e ¢ is dimensionless, which I attach to measure the order of supertranslations in our
analysis. m is that in (15), which I involve to have C have the same dimension with
p (now, G/c* = 1). The correction of € appears from the second-order (see (2)) in
the position of the horizon, which is our motivation for the analysis to e2-order.

e Why Yy is considered is that this mode is expected to be dominant in the process
forming a soft-hairy blackhole (e.g. [28]). I have also performed the analysis with
Y just in case. Although I have not performed the calculation to the end, it has
been seemed to be essentially same with what will present in the following.

Involving (16) into the isotoropic coordinates (15) to e2-order, I will rewrite it into the
Schwarzschild coordinates (for detail, see Sec.A), and finally obtain like (1).

Then, with these 4D metrcies, I consider a complex scalar field theory as
S = /d4m\/—g "N oy On . (18)

Writing ¢(t,7,0,6) = ¢pn(t,r)Y.L (0, ¢), and taking near-horizon limit by writing r =
rhap + Ar, I can get the 4D near-horizon action as

S =- ZZ/dtdr(2m)2{

Im kn

2m 15m?2e?
* _ —A o
¢lm< r—2m mhn A7c(r — 2m)?

" r—2m 15m2e? . 9 s 5
+ gblmar<—2m A, kn — o /dQ sin”(20) (Y)Y} >8r¢kn}+ O(e%),
(19a)

/dQ sin?(26) (Ylm)*Ykn) 010t Pren
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3 /5
Alm7 kn :/dﬂ{l + 5\/;(1 + 3COS(29)) €

45 <sin(29)
2T 4

— cos?() + 3cos?(6) cos(29)>£2} Y,y (19b)

Integrating out (@, ¢), I obtain 2D near-horizon effective action as (Sec.B.4 and B.5)

lmar l
SQD eff = Z Z /d2l‘ q)lm((geﬁ")ffn 8t907m8t901m + (geﬁ")mz 8r90fmar80lm)a (20)
=0 |m|=0
(I)lm = (2(7neff)lm7 lm)27 (21&)

. 2(meff)kn, Ilm
r— 2(meff)kn, Im

(9ett)im = —1/(gett)im = +0(), (21b)

15m
(Mt )k, tm = M + Wz,fn,lme? + 0(e%). (21c)

(For r-dependence in (mef)kn, im, see (82)). Whether the 2D near-horizon effective action
can be obtained or not is non-trivial before trying as mentioned in Sec.1, to check which
is one of the motivations in this study.

5 Result of Hawking flux with supertranslation correction

I obtain Hawking flux by anomaly cancellation method [53,54], in which reducing to 2D
is crucial, because analysis is performed with the 2D anomaly. For details, see Sec.D.

Anomaly cancellation will focus on the fact: 1) At the classical level, there is no
outgoing flux in the near-horizon region for the strong gravitational effect, 2) however, at
the quantum level, outgoing flux will arise by the quantum tunneling. Hence, the outgoing
flux exists in the near-horizon region finally. At this time, if one takes in the analysis as

amount of flux from tunneling = amount of lack of flux at the classical level, (22)

the amount of the flux by the quantum tunneling can be identified as the Hawking flux.

The amount of the outgoing flux is represented by the integral constant obtained from
the formulas of the 2D anomaly:

0P, 65

/= (Ge)im OLPim

which can be fixed by the condition that the system is symmetric, which is at the point
where the variation of the action vanishes:

(552D)lm = - d2$ V _(geff)lm UVVM lmT"uV7 Im- (24)

+ both /either o/*

v,lm>

VT, i = (23)

The Hawking flux I have obtained has been (127), 7% /12, which is the same with
just a Schwarzschild. The reason of this is written in Sec.D.2.
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6 Conclusion

Although the position of the horizon has been displaced and whether the near-horizon
field theories can reduce to free 2D has been non-trivial, the Hawking temperature and
flux have been obtained without changes. This result, no changes, has been already clear
when the near-horizon metrices are obtained, however whether theories can reduce to free
2D has not been so before trying.

The value of the Hawking flux would be always (127) as long as the function C is 1)
to the second-order, and 2) independent of ¢. The reason for this is as follows.
First, if the correction is to €2 but C' is some one other than (17) independent of ¢,

e highly complicated terms of § will be newly involved into the each coefficient of ¢!
in (19). At this time, the feasibility of the integrate out for (6, ¢) is the problem,
however it would be no problem by using the following formula and (78):

(2[1 + 1)(212 + 1) M
Y,y = 15 0|L 0){I LMY 2
no L %:4 (2L + 1) (11012 0[L 0)(lymy lamao| LM)Y7", (25)

e coefficients of e1? in (21c) will get highly involved concerning 6, however the structure
of (21b) as the function f would be no changed (see the last of Sec.D.2), since C
depends only on 8 and ¢ by definition.

Therefore, if the two conditions above are satisfied, one could always get the 2D near-
horizon effective action with the f same with (20) as the structure. On the other hand,

e if the correction of € were involved more than 3rd-order, the feasibility of the analysis
to get the free 2D theory as in Sec.B.5 gets unclear. See the last line in Sec.B.5.
Namely, if the same behavior with (91) were not held, the analysis to get the free
2D theory would be impossible.

e If ¢-dependence were mixed in the C, the formulas (25) might get unavailable, and
I could not get the 2D action like (20).

It is considered from our result, no changes, that Hawking temperature and flux may
be the conserved quantities under the asymptotic symmetry. Lastly I'd like to write down
personally interesting talks (not general sense): [29]- [50].
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Appendix
A Metrices with supertranslation correction

This appendix is the detailed description of [2], and in this section, we obtain the metrices
for a 4D Schwarzschild blackhole spacetime with supertranslations to the second-order.
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A.1 Introduction of supertranslation

We start with the following coordinate system for a 4D Schwarzschild blackhole spacetime:
ds* = —(1 = 2m/ry)dt? 4+ (1 — 2m/rg) " tdr? + r2dQ2. (26)

We refer to this type of coordinate system as the “Schwarzschild coordinates”. In order to
involve the supertranslations, we rewrite (26) into (15), where ry = p, (1 +m/2ps)*. We
refer to this type of expression as “isotoropic coordinates”.

Note that in this relation, two ps correspond to one r; as

ps = (—m+rsEt/—2mrs+1r2)/2. (27)

See Fig.1. We can see 1) positions of horizon in isotropic and Schwarzschild coordinates
correspond each other, 2) isotropic coordinates do not cover the inside of the horizon.

Figure 1: Plot for ry = ps (14 m/2ps)? for m = 1.

We denote the supertranslated isotropic coordinates as (¢, p, 8, ¢). These and (ts, x5, ys, 2s)
are related like (16), where

dp? + p2dQ? in (15) = dz? + dy? + d2?, t,in (15) =t. (28)

We take C' we consider as (17). Description here overlaps with the one under (17) (but
one comment; if we employ Y as C, r.h.s. of (28) results in just dp? + p2d6? + p? sin® 0d¢?,
namely no supertranslation corrections, which get involved from (31), supertranslated p.)

A.2 Isotropic coordinates with supertranslations
We now write (15) in terms of (¢, p, 6, ¢). For the parts in (15), we can write as
pe=al s+ 2 (29a)
(1 +m/2ps)"(dpF + p3dS23) = gppdp® + gopdb” + gopdd”. (29D)

2

We can evaluate dp? + dp2dQ? as (28), with which we obtain gp/n from now. We write

gun for the metrices of the supertranslated isotropic coordinates (30a)

jmn for the metrices of the supertranslated Schwarzschild coordinates (30Db)

in what follows, where M, N in gy/n and jan refer to (¢, p,6,¢) and (t,7,0,¢).
We can obtain p, by calculating (31) using (16) to £2-order as

1 /5 45¢2m? sin?(20)
s=p— =/ = 20) + 1 3. 1
ps=p— 3 ﬂsm(Scos( )+ 1)+ 32mp +O(e”) (31)
With this we can obtain gy as
(m—2p)* 5 5 (m—2p) 5e?m? )
= Zemr— 20)+1) — ———(22mp —

it CESTE —em CESHE (3cos(20) + 1) Srp(m £ 2p)4( mp — 9m

+ 14p% + 9 cos(40)(m? + 2mp — 6p?) + 24pcos(20)(m — p)) + O(e?), (32a)
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20)4 5 20)3 52 3 920)2
gog= A 2077 B 2 (M2 g o) ) 4 M 20 g o,
T

16 3200 102476
+ 12 cos(260)(5m 4 4p) 4 27 cos(40)(3m + 4p)) + O(e3), (32b)
(m + 2p)? \/g 3 3¢cos(20)(5m + 6p) + m —2p  5e2m2(m + 2p)?
=" 4 ,/Z 2
9o0="qg 2~ T\ zEmlm+20) 6473 v
12 cos(20)(39m? 4 T6mp + 20p%) + 9 cos(46)(27m? + 44mp + 4p*)
+ 249m? 4 484mp + 236p?) + O(e?), (32¢)
9 4 (302 0 9 3
Gob= m & 1[25)p28m ©) + \/gﬁ:m% sin?(0)(cos(20)(9m + 6p) + Tm + 10p)
2072 (32 0 9 2
seTmZsin (0)(m + 20)7 010,02 1 484mp + 23607 + 12 cos(20) (39m? + T6mp
20487 p?

+ 20p%) + 9cos(46)(27Tm? + 44mp + 4p?)) + O(£%). (32d)

A.3 Rewriting from Schwarzschild to isotropic coordinates

Since we have obtained the metrices in the supertranslated isometric coordinates (¢, p, 6, ¢),
we will rewrite these to the following Schwarzschild coordinates:
ds? = —(1 = 2p/r)dt® + (1 = 2p/7) " dr® + jpgd¢® + jppdd®. (33)

Then, we will find the mass part 4 cannot remain constant (if analysis is to e'-order, it
can be constant). Therefore, we treat p as p(p). In what follows, we obtain 1) a relation
between r and p, and 2) u(p) as the solution, by solving the following relations:

o —(1—=2u(p)/r) = gu, (34a)
1 dr\ 2
* T 2u(p)/r (d_p> e (34)

The argument in p(p) should be p. If we express p(p) in terms of r, (38) is plugged in.
We can obtain the 7 satisfying (34a) to e2-order as

p o BOm A 207 | e @<3COS<29>+1>u<p><m2—4p2>

dmp 32p2
2
—I—%(Q cos(49)(3m2 — 8p2) + 12m? cos(26) — Tm2 + 72p2) + 0(83). (35)

Let us obtain the u(p). For this, look (34b), then plugging (35) into the r, solve it for
u(p) order by order to e2-order. As a result we can obtain
c1pe g2
(m + 2p)? + 647 p%(m + 2p)?
+ 8p%(8meap(m + 2p) — VEmeym(m — 2p))
+ 30m3 sin?(260) (m + 2p)(m?* — 12p%)} + O(&%), (36)

w(p) = m+ {—24v/5mcimp? cos(20)(m — 2p)

where we took the integral constant at e’-order so that €’-order becomes m. c1,2 are the
integral constants at e!2-orders (these can depend on (6, ¢) and determined at (42)).

Now we have obtained the relation “r = ---” as in (35), with which, rewriting the
Schwarzschild to the isotropic coordinates to e?-order is possible:

—(1 = 2p(p) /r)dt? + (1 = 2u(p) /1)~ dr® + jogdb* + jppdd”

1 or\ 2 2 or Or
2 2 . ur 2 vy . 2
— gudt? + gppdp? + (y99+71_m(89) )ao b g g 00 + deedd®, (3T

T

However what is needed is rewriting from the isotropic to Schwarzschild coordinates.

10
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A.4 Rewriting from isotropic to Schwarzschild coordinates

We will obtain the relation between p and r in the form “p = ---” to e%-order to become
possible to rewrite (37) in the opposite direction. For this, there are two ways: to solve
1) (34b) or 2) (35). As a result of our try, if we solve to e'-order, we can get the same p
from either of them (we checked this sameness numerically). However, if we try to obtain
to e?-order, we can obtain only from 2) (for some technical reason of mathematica).

Writing what we did, plugging u(p) in (36) into the p in (35), then expanding it to
e2-order, we can obtain p order by order. As a result, four solutions are obtained. At this
time, the e%order in the two of these do not agree with (27), while those of the rest two
can agree with (27). Therefore, we employ the latter two, which are

p12) (1) = l(r—m:F r(r—2m)) + -

5 {meyr(r —2m) £ meyma/r(r — 2m)

8rmr(2m — r)
2

Freyry/r(r — 2m) — V5rm2r(3cos(20) + 1)(r — 2m)} — 1287rmr2€(r — 2m)2[

16mea (rt T /r7(r — 2m)) — 120m*r(4r + \/r(r — 2m))

+60m> (1673 + 9/75(r — 2m)) — 8m2{(60/r7(r — 2m) F 8wear?) + 4 £ 75

+4mear/r(r — 2m)} + m{120r° £+ 1201/r9(r — 2m) F 2re12\/r(r — 2m)

—64meyr® £ 48mea /15 (r — 2m)} 4 60mr(2m — 1) cos(46){

m2(4r + \/r(r —2m)) + 2(r® £ /r3(r — 2m)) — 2mr(3r + 23/r(r — 2m))}

where the 1 and 2 in the p(va) (r

) correspond as
(1,2) — (+,—) of £ and (—,+) of F. (39)

Let us determine which p(1:?) (1) we employ and determine ¢; o. For this, plugging p*-?)
in (38) into p(p) in (36), write it in terms of r to e-order as

2

p2) (p02 (1)) = m + E
dr  8emr(\/r(r — 2m) Fr)3(\/r(r —2m) £ m F r)?
m{—dcom*r\/r(r — 2m) 4+ 48com®\/r5(r — 2m) — ¢12m3\/r(r — 2m)
—80cam?\/77(r — 2m) + 12¢1*m?r\/r(r — 2m) + 32com\/r9(r — 2m)
+r(£7m® F 28m%r + 28mr? F 8r%) (dcomr + 1) + 8¢ 2/ (r — 2m)
—20¢12mA/r5(r — 2m)} — 30m*r sin(20){m?(\/r(r — 2m) T 7r)
+£3mr(5r F 3y/7(r — 2m)) + 6(Fr° + /3 (r — 2m))} + O(%).  (40)

Behavior of these at the distant region is given as

15r2sin?(20)  45sin%(20)r N 45m sin?(20)

B () =m e+ 0 (7)) + <

2mm 27 47
2 o2
. 15m* sin iie)/ﬂ—i-@ +O(7“_2)) L O, (41a)
2 2 402 42
(2)( (2) _ 1 _6 g% rcg | 2c1” —46m”sin®(26) /7 45m” sin®(26)
(P ) m+5(4r+0(r )+ 4< * 8mr? 813

105m° sin(20)  135m° sin?(26) 6 3
- - T 10 (7)) + 0 (). (41b)

It can be seen from the above we should discard ¥ by the reason: It is always diverged
15r2sin®(20)  45rsin®(26) Thus. it is

2mm 2

at the distant region irrelevantly of c; o for the terms,

11
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enough only with () in the following, but we proceed with both just in case.

Now we determine ¢ 2. Since these are integral constants, we are allowed to take these
arbitrarily. However in this study, by the reason written in what follows we will take as

Cl12 = 0. (42)

Looking u(p®(r)), we can find that it diverges at m = 0 unless ¢; is zero for the
term 3321”,2 at its e2-order. Hence we take ¢; to 0.

As for our logic for ¢y, 1) consider starting with just a flat spacetime patched by
Schwarzschild coordinates with the zero mass, therefore u(?) at the starting stage is zero.
2) Suppose changing it to the isotropic coordinates, involve the supretranslations. Then,
back the coordinates to the Schwartzshild. At this time, the expanded p(? is given by
(41b). 3) At this time, the mass should be zero, therefore ;(? should be zero. However,
if ¢y is not zero, we can see u(? is not zero for the terms % at the el-order and £ at the
g2-order. 4) As c¢; has been taken to zero in the above, we take ¢y to zero.

Above, we have considered in terms of the supertanslation toward the flat spacetime
and based on the consideration that mass in the spacetime should not be changed by the
supertanslation. The same issue is taken up in Sec.24.2 in [55]. There, again mass is not
introduced, though C,, and C5; are introduced.

With (42), (38) and (40) are fixed as

1 1 /5 152 sin?(26)
(1,2) — = — _ i _
p 2(:F r(r—2m)—m-+r)+ 5 \/;Em(?) cos(20) + 1) Tomr2(r 2m)2{
—10mrt F 8mA/rT(r — 2m) + 2(r° £ /19 (r — 2m)) — 2m3r(4r + \/r(r — 2m))
+m?(16r° £ 9v/r5(r — 2m))} + O(e?), (43)

(12 ()12 (1)) — m 15e2m3sin?(20)(m? — 3(\/r(r — 2m) £ m F r)?) 3
W) = m 8 (r F \/r(r —2m))2(\/r(r —2m) £ m F r)? O, (44)

Using these we can rewrite the isotropic to the Schwarzschild coordinates as

gudt® + g,pdp® + goed0* + gupdd?
o (1 - QMT(/))>dt2 + (1 - 2"—(’))>_1dr2 + <909 + gpp(%>2>d92

0 dp
dpd9+g¢¢d¢ = judt® + jrrdr® + joed0® + 2j.drdd + jssde?, (45)

+29 Ppa 90

where p = p(r,0) and gyn are in (32). We give the expressions of jj;n in the next.

A.5 Metrices with correction to s?-order in 4D Schwarzschild coord.
We give the expression of jy/n in (45) in the case of (42).

. .]t(t12) (1_2_m) 152 sin%(20)(m® — 3m3(\/r(r — 2m) £ m F r)? +O(63), (46a)
r 4rr(r F /r(r —2m))2(\/r(r —2m) £ m F r)?

2m\ -1 15¢%sin?(26)
(1,2) _ idad 200 P ) )3 — 3
o ;b (1 . ) + Trm(r — 2m)2{ + 3m%r — 6mr? £ 2(\/r3(r — 2m) + %)

F dmr/r(r — 2m)} + O(e3), (47a)

12
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’109—

Jro

(1)

° j¢¢—7’ sin?

+(2)

j¢¢—7’ sin?

3\/7€m cos(20)(r — \/r(r — 2m))* 1562m?2

Submission

2(y/r(r=2m)+m—r)3 " &rr(r —2m)2(\/r(r —2m) +m —r)3

x {r?(r — 2m)*(cos(40)(m?* + 6mr — 9r?) — (m? — 18mr + 15r?))
+ 12m3/r3(r — 2m)(cos(40) — 1) + m?\/r7(r — 2m)(24 cos(46) + 72)

— mA/r9(r — 2m) (33 cos(40) + 63) + /r11(r — 2m)(9cos(46) + 15)} + O(?),

3\/>€m cos(20)(y/r(r — 2m) +r)*
2(y/r(r—2m) —m+r)3

- &rr(r — 2m)2{m* — 4m3 \/m +4r) + QOmQT(M + 2r)

15e2m?2

(12) _

—24m/7%(r — 2m) — 32mr3 + 8(\/77(r — 2m) +r4)}
512 4 8mA(24/75(r — 2m) + 13r%) — 5m3(32/r7(r — 2m) + 73r%)

(48a)

+ m2(268+/79(r — 2m) + 4097%) + cos(46){4m5r? — 8m* (2/r3(r — 2m) + %)

3(=324/77(r — 2m) — 115r%) 4+ m?(1164/7r9(r — 2m) + 1917°)
— 84m/r1L(r — 2m) — 102mr® + 18(\/rB(r — 2m) + ")}
+ 30(\/TB(r — 2m) + ) — 6m(261/r11(r — 2m) + 31r%)] + O(£?),

3\/§5m sin(260)(r ¥ /r(r —2m))* 15e2m™r sin(46)

(48b)

8/r(r —2m)(\/r(r —2m) £ mFr)3  4r(2m —r)(\/r(r —2m) £ m Fr)3

+ O(?),

3\/76msm 20)(r — /r(r —2m))*
8(\/r(r—2m)+m—r)3
n 15e2m? sin?(26)
8mr(r — 2m)2(\/r(r —2m) +m —r)3

{12m3 cos(20)\/75(r — 2m)

(49a)

—12m3\/75(r — 2m) 4 24m2\/r7(r — 2m) + 12 cos(260) (r — 2m)*(m?* — 3r?)
—72(r — 2m)?3(m? — 6mr + 3r?) 4 3cos(20)/r1(r — 2m) 4 3y/r1L(r — 2m)

— 9m cos(20)\/r(r — 2m) — 15m/r2(r — 2m)} + O(e%)

3\/76m sin?(20)(y/r(r — 2m) +r)*

8(y/r(r—2m)—m+r)3
15e2m? sin?(26)

Ar2(r —2m)2(y/r(r —2m) —m+r)*

— m3(64/r9(r — 2m) + 1257°) + m%(76/r1L(r — 2m) + 1097°)

(50a)

[—4mSr3 4+ 8m* (24/r7(r — 2m) + 7r?)

+ c0s(20){4mP®r® — 16m*(\/r7(r — 2m) + 2r*) + m3(16+/79(r — 2m) + 5r%)

+ m?(201/r1L(r — 2m) + 41r%) + 6(\/r15(r — 2m) + )
— 6m(4/rB(r — 2m) + 5r7)} + 6(y/r1B(r — 2m) + %)
— 6m(6+/r13(r — 2m) + 7r7)] + O(e%).

(50b)

1) numbers in the superscripts mean those jyn are associated with which of p(2) in (43)
with (39). (Origin of j](\}[]%,) is (38), then it turns out above (42) that u) is unphysical

13
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and p®? is physical. j](é)N is associated with p(?) .) 2) Killing vector in the system above
is €M = (1,0,0,1) as well. With either jz(w v+ 3) Einstein eq. is satisfied to e2-order. Also

from either ]](V[N, 4) (32) can be obtained using following one, (35) with (36) and (42):

_W+_%+ﬁWW—WWWWHU_Mﬂbmmm%mmm»Q
TTg, TR 32,2 c 51277 c

A.6 Comment on c;»

Positions of the horizon in supertranslated isotropic and Schwarzschild coordinates are

“m 1[5 5, s
prap = 5 + 8\/;m6(3cos(29) +1) 6. msin (20) + O(e”), (52)

15
Thap = 2m — Qazm sin?(26) + O(e?), (53)

where 7, 4p gets to this above regardless of ](1 2) Then it turns out pp4p can be trans-
formed to rp 4p through (35) (u(p) is replaced by (36)), but 7 4p is transformed to

452m sin?(26)

mo 5 (3 cos(20) +
167

—me \/6 —1 4 cos( 49))) +0(%).  (54)
2 m 8
through (43).

Since jpsn can be transformed to gy by (43), r-coordinate corresponds to p-coordinate
by (43). However, as mentioned above (42), there is freedom for how to take ¢; 2. Moreover,
as the problem of how the coordinates are patched toward a spacetime, there is ambiguity
up to cy2 for the mapping of each point in r-coordinate to each point in p-coordinate
through (43), and vice verse through (35).

Actually, the position of horizon in the Schwarzschild coordinate is obtained if one

proceeds calculation with unfixed ¢ 2 as

om 4 G | 2 (c_g _ 15msin®(26)

— ) +0(). (55)

dm 8w
Here, the position of horizon in the Schwarzschild coordinate obtained from pj, 4p through
(35) (this (35) is given with unfixed ¢; 2) is (55). Therefore, the position of horizon in the
isotropic coordinate is always mapped to that in the Schwarzschild coordinate.

Toward (55), if we take as ¢; = 0 and ¢y = W, ph,ap can be obtained through
(43) (this (43) is given with these c12). However, the 7, 4p at that time is 2m + O(g3).

One may consider to determine ¢; 2 based on agreement of the positions of horizon.
However these should be zero for the reason under (42), therefore the positions of horizon

determine to those obtained from c¢; 2 = 0, (52) and (53).

B 2D effective near-horizon action
We have obtained the metrices with the supertranslation correction to the second-order

in the Schwarzschild coordinates. In this section, obtaining the near-horizon expression
of these, we consider the scalar field theory. Then, expanding the field by the spherical

14
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harmonics, we integrate out its (6, ¢). We will finally obtain 2D effective near-horizon
action. The scalar field theory we consider is

1
Sscalar = §/d4l‘ Vv _ngNaM¢*aN¢7 (56)

where M, N = t,r,0, ¢, and ;M mean j@MN_ We do not include the mass and interac-
tion terms, since these are ignorable in the near-horizon [57]°.

B.1 Near-horizon metrices

+(2)

To obtain the near-horizon expression of (56), we first obtain the 4D metrices j,/y in

Sec.A.5 in the near-horizon. For this, we replace r in those g](j)N with rp, ap + Ar (rpap is

given in (53))%, then expand around Ar = 0. Writing these as ¢y,

in2 3/2 2
(B S 0T s

2 4m 2t dm dm  m3/? 4m?
Arb/? 3 3
+W+O(AT ) }+O(E ), (57)
. :(2_m+1+0(m)) 215sin2(29){3m_\/2m+§_3\/Ar+_
" A T AAr  VAr 4 2v2m  4m
3Ar3/2 5
= /2 3
o O (Ar ) } +O(eY), (58)

tog = (4m2 +4Arm + Ar® + O (AT‘S) ) + 524\/2008(29){7712 — m32V2V Ar

9 3/2 | O A2 5/2 90¢” 2 .2
+2mAr 4v2mAr + 4Ar +0 <AT ) } + - {Qm cos“(20)
—4v/2m3/? cos? (20)V Ar + m(4l COS(489) +39)Ar im (14 cos(40) + 13)Ar3/2
5(21 cos(46) + 19)Ar? 5/2 3
+ = +0 (ar )}+O(€), (59)
tos =sin®(0) (4m* + 4Arm + Ar? + O (A \/78111 2m? — 2v/2m>*2V A
+4mAr — 5/mAr?? 4 BA 10 < 5/2> } 245 sin” 26) {m2 cos(20)
11 cos(260) — 1) Ar?
—2v2m3/? cos(20)V Ar + Z(Ql cos(20) — 1)Ar + 5( COS( Z) Jar
—i—?\/Qm(Q 29 ¢0s(20))Ar¥/2 4 O <Ar5/2> } +0(e%), (60)

31t is considered that theories effectively become 2D free massless in the near-horizon at the classical
level as the particles effectively fall freely and these longitudinal motions get dominant.

4We give the Jacobian and partial derivatives when we change from r to Ar. We denote the old
and new coordinates as (r, 8) to (Ar, §). The relations between these are Ar = 7 — r1,(f) and 6 = 6.

or or
BAT o3 ~ 5 a(Ar
Then, drdf = Ziiri g_g ‘d(AT)dG = d(Ar)df. Further, % = (B'r )B(gr) + gf% = —a(f\.r) and % =
T o6
A(Ar) 9 90 0 _ _9rp(8) 0 el
50 9(ar) T 0095 — 56 atan T a6

15
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5 m3/2\/2 7 Im 2TAP3/2 Ar?
tro = —3ey )~ sin(20)d X2 — o 4+ L VAT —6A -
0 6\/;Sm( ){ N ) A R BTN s v

+0 <AT5/2> } + &2 15sin(46) m* _ 3m®/? n 19m 41y/mvAr
g 2Ar  \2V/Ar 4 42

+0 (Ar5/2) } + O, (61)

33Ar 329Ar3/2 N 5Ar?
4 32v/2m m

Contravariant metrices toward these are obtained as

w_ ( 2m .  Ar 9 2455.11& (20) 2v2m _ VAr
b= < Ar e tOAY )) 21 <2Ar svar T Vam
7A7’ 3/2
+%+O(Ar ))+0( ) (62)
r Ar 15sin?(20) /3Ar  Ar®/?
07 = (5 +0(ar%) )+ (35 - NoRTE +0(ar?) ) +0 (), (63)
1 Ar ) 1 VAr
100 _ (W ~ 45 +0 (Ar?) ) + 35\/jcos(29)( 5z NGTTE +0 (A 3/2) )
n 2&(11 cos(40) + 13 (11cos(49) +13)VAr  (65cos(46) + 79)Ar
 &r 4m? J2mp? 8m?
+0 (ar¥2) ) + 0(=?), (64)

tre:%\/gsin@e)(% m2 ( 3/2))

_ ,15sin(46) /1 6VAr  16Ar 3/2
s i O (ar?) ) + 0, (65)
¢¢_CSC€ __H i 2 _ 1 V 3/2
t . <m2 +O(Ar))+3€\/27rcot o( Norehe O/2+O<Ar ))
N 545 cot2(0) (cos(29) +2  (cos(20) +2)VAr  (11cos(26) 4 25)Ar
y T 4m? \/2m5/2 16m?3
+0 <Ar3/2> ) +O(E%). (66)

We can check these are the inverse each other in the range of €2. (Leading of these are the
same with just a Schwarzschild, which is the technical reason for our result, no change.)

B.2 Hawking temperature in the original 4D

We have given the Killing vector in (A.5), and obtained the position of the horizon in (53)
and the near-horizon metrices. With these and the formula: x? = —%DM ENDyén, the
Hawking temperature in the original 4D spacetime can be obtained as

Ty = 1/8mm + O(e3). (67)

This is the same with the one in just the Schwarzschild. We can understand this as follows.
Generally, Ty = %|8rf(r)‘rzrh| for ds? = — f(r)dt*+f~1(r)dr®+- - -, where f(r)|r=p, =
0 (these f(r) and 7, are irrelevant with this study). However, our f(r) behaves same with
just the Schwarzschild at Ar =0 (r = r4p) as in (57).
Our Hawking temperature might have been expected to depend on the angular di-
rections, which breaks the zeroth law of blackhole thermodynamics. However, we could
expect from the result above that it would be always out of the analysis’s order.
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B.3 Near-horizon action

Having obtained 4D near-horizon metrices, let us obtain near-horizon action. For this, we
write down (56) term by term, then express each line order by order as to e2-order as

£ of (56) = =40 { (V=1 + V=1 + V1) (110 4 )9, ) (68a)
—o o { (v + v +r< ) (7O 4+ )3, } o (68b)
—¢*, {(\/_t(O vy ) (00 4@ gy L (68¢)
—¢*0p{ (V=2 + vTEY 4 VD) (10 4 900 0916 (684)
—6*0p{ (V=1 + V=t 1 v (0D 147025, 1 (68¢)
— ¢ 0L (VIR + v/ 4 ) (1900 4 90 () 406 ) g, Y6 (68f)

where the numbers in the superscripts mean the part of that quantity at that order when
that quantity is expanded with regard to ¢ °.
We write the order behavior of the ingredients in (68a)-(68f) based on (62)-(66) as

o vt 4+ vt 1 VT (1 Ar) + (14 VAP + (1 + VAT)E?
o £10) 4 41) (AP 4 2(Ar) L,

o t7O0) 4 477 U Ap 4 Are?,

0 4470~ V/Are + (1 4+ VAr)e?,

o 1700 14900 14902 o (14 Ar) + (1 + VAr)e + (1 + VAr)e?,

o 1#9(0) L 420(1) 4 49¢() o (1 4+ Ar) + (1 + VAr)e + (1 + VAr)e?

With these, we can get the order behavior of the each line (68a)-(68f) as

(65)~ (5o +1+0(ar) ) +o( 5o+ = +0 (ar2))
+s2<% \/1A_r (ar*2) ) + 0,
(655) ~ (14280 + 0 (ar%) ) +¢(1+ 227 4 0 (ar) )
+e2(2+ 3\/25 +24r+0 (Ar%2) ) + O,
680) ~e (i + 2T w0 (a) ) v (S 24 2 0 (ar) ) 4 0,

(68d) ~ (1 +2Ar + O(Ar?)) + &(2 + 2VAT + 247 + O(ArY/?))

+e2(3+ 4VAT + 3Ar + O(Ar*2)) + O(<),
(68¢) ~ e(VAr + O(Ar*?)) + 2 (1+ 2V Ar + 2Ar + O(Ar*?)) + O(%),
(68f) ~ (1+ 2Ar + O(Ar?)) +£(2+ 2VAr + 2Ar + O(Ar®/?))

+e2(3 4+ 4VAr + 3Ar + O(Ar%?)) + O(%).

We find (68a) is dominant and others are vanish or ignorable compared with (68a)
at Ar — 0. Therefore, from the viewpoint of which parts remain at Ar — 0, we may

°E.g., V=BV 4= 4+ =t means the first three terms writing as v/—t = (- )4(-- - Je+ (- )e2 4+
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remain only (68a). However, since the (¢, r)-space is crucial in the analysis of Hawking
temperature and flux, the parts on and tangling with the (¢, r)-space are indispensable
in our analysis. (Also note that (68b) makes the action at Ar — 0 finite.) Therefore,
remaining (68b), (68c) and (68e) in addition to (68a), we consider the following action:

(68) = V/—t(t"8,* Oyp — t"" 8,0 Orp — 700, * Dpp — t‘%a@(z)* P +

* rr * t@r * t@r 2 *
VT 00+ 7 (006" + 006 (0,6 + 000) — L L ayor000), (60
as the near-horizon action, where “ --” is (68d), (68f) (the terms vanishing at Ar — 0
and irrelevant for the (¢, r)-space) and terms under e3-order.

Let us look (t9)2/t™ and t7 /t™" in (69). Using (62)-(66), we can write these as

o g:&tg\/gsm(Qﬁ)(\/_\/_ m—i—O(\/A_r>>
— 525 s1n(49)( ! \/2_”?\/_ O (Ar?) ) + O(e%), (70a)

()2 _ 245sin (29)( 4V A
trr 167 m2 \/§m5/2

Thus, (t7)2/t™ is ignorable in the limit Ar — 0, but t7/t'" is not. However t77/t'" is
ignorable finally in the analysis of Hawking temperature and flux for the following facts:

+0 (Arh) ) +O(%). (70b)

e We can regard if—:@gqb as the r-component of U(1) gauge field in the sense that we
can evaluate the anomalies and currents associated with it using the way to evaluate
those for U(1) gauge field. The point here is that it is composed of the t-independent
r-component only, therefore we can see by looking at (4) in [54] the gauge anomalies

do not arise from if—:é?g(b. Hence, ﬁi—:[?g(b is irrelevant of this study.

e Next, as for the gravitational anomalies, since J* is zero according to (4) in [54], the
second term in r.h.s. in (16) in [54] is some constants. The first term in the (16) will
be also zero, since our gauge field is composed of only t-independent r-component.

Hence, since t77 /t"™" has nothing to do with gauge and gravitational anomalies, we can
ignore it in our analysis and are allowed to write the near-horizon action we consider as

Sun = / da THE 0,6 0u + 177,60, 0). (71)

Let us obtain the concrete expression for (71). For this we write as

L of (71) = — ¢*{(vV=1) V" D}8,0,6 — ¢*0.{(v/ =)Vt 09,4} (72a)
— " {(V=) 0" 1 (V=) + (V1)) g"D}0,0,0 (72b)
— " 0, { (V=D D" + (V=)D + (V=5)@)t* 5,4}, (72c)

where the meaning of the numbers in the superscripts are the same with (68).
We list the ingredients needed to calculate (72) as

o (V=09 = 4msin(8)(Ar + m), (73a)
; 2m? sin(0 20 20) —1
. Z (V=t)® = 90e7m” sin )cosﬂ( JBcos(20) — 1) + 6\/%67712 sin(#)(3 cos(20) + 1),
i=1,2
(73b)
o O = _om/Ar, 7O = Ar/2m, (73c)
o t"? = _45e%msin®(20) /4 Ar, 7" = 45Are? sin(20) /167m. (73d)
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Using these, we can obtain the concrete expression of (71) to e2-order as

(711) = — / d*z (2m)? sin(@){l + g\/g(l + 3cos(20)) e + ;i (smi b _ cos*(0)
+3cos?(0) cos(29)) 62}¢* (t" 010 + 0.(t""0,)) b (74)

e (3 8)

B ( 2m 15e?m?sin?(20) r —2m  15¢2 sin2(29)) (75)
N r—2m dm(r —2m)2 ' 2m 167 '
Note that the mass parts in the denominator of —2—m and numerator of % do not agree

each other. We fix this point in (81b) by defining the effective mass (81d).

B.4 Integrate out of (6, ¢)

We will obtain the 2D effective near-horizon action by integrating out (0, ¢) of (74). For
this, we first expand ¢ by the spherical harmonics as

o(t,r,0,¢) = ZgblmtrYl 0, ). (76)

Then defining the following Ay, kn (dQ = dfd¢sin ), we can write (74) as

A, kn Z/dﬂ{l + g\/g(l + 3cos(20)) e

() cox?(0) + 3 cos?(6) cos(20)) <} (7)Y (77a)
ZZ/dtdr 2m

Im kn

2m 15m?2e?
* _ —A [
¢lm< r—2m mhn 47t(r — 2m)?

15m2€2 .2 m\*y n
o / dQsin2(26)(Y, )Yk)(?rqbkn}. (77b)

/ A2 sin® (260) (V") ¥ ) i

‘ r—2m
+ (blmaT( 2 AlTrL, kn —
m
We can evaluate all kinds of the (6, ¢)-integrals in (77b) (totally four) using (78) as®

. / dQcos 20 (Y)Y,

2m (141)2—m2)((14+-2)2 —m?2)
. 4m? — 1 (5 5 \/ (2I+1)(2045) Sios
= 412 T4l — kl9nm 20 +3 k—2,19nm
= IA Ok10nm + Il 2 02 l(snm = Iﬁn, kn>» (79&)

SNecessary formulas for the calculations (79a)-(79d):

(07 = (Y[R O Y = Gabuss, [ A2 sin20(7) Y =0 and

my\* mo\*y, M (
/dQ () (Y)Y = L+ D) (11 012 0|L 0)(Iy my la ma|L M),

where (limilamz|LM) mean Clebsch-Gordan coefficients [56]. We can obtain (79a)-(79d) using (78) by
rewriting these integrands into the form of the 3 products of spherical harmonics. To be concrete, express
cos(20), cos 0, sin?(26) and cos® 0 cos(20) by Yy, Y3 and Y} (e.g. cos(26) = 3\/_Y2 — 2\FY0 ).
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. / dQ cos® 6 (Y)Y,

2 ((141)2—m?2)((1+2)2 —m?)
202+ 20 —2m? — 1 55 -1) m\/ 2121 )(20+5) =
kl9nm

T al+12-4(+1)-3 20+ 3
= Ilfr(z,) 5kl(5nm + Ile2 5k—2,l5nm = Iﬁn’ kn» (79b)
. /dQsm (20) (V) Yy
8(=1)2™(I(1 + 1)(I> + 1 = 5) + 21(Il + 1)m? — 3m* + 3)

5k—2,l5nm

- (20 —3)(20 — 1)(21 + 3)(21 + 5) OkiOnm
o [ D2 —m2) (1 2 —m?)
+4(—1)? 21\/ e (e
(_1)2l(2l - 1)20+7) - 4(—1)2m(l(l +3) — 7m2)
) Ok—2,10nm

7(20 — 1)(20 4 3) (2L + 7)
_M_wm¢w+n%w#wuaﬁ—mma+atw#wu4v—m%

Ok—4,10nm
(204 1)(20 + 3)2(20 + 5)2(20 + 7)2(2L + 9) hodd

= Z.0 81a0nm + Ip2 OpmOk—2,0 + L2 SnmOk—a1 = Lo joms (79c¢)
o / d€2 cos 20 cos? 0 (Y;)*Y;™

_ GRS+ Dm0+ DRI+ D) = 7) +6m) +30m +3) ¢
N (20 — 3)(20 — 1)(21 + 3)(21 + b) klOnm

m—2t | (L+1)> —m?)((l +2)> —m?)
(-1 2l\/ 42 + 120+ 5
8(—=1)2(1(1 + 3) — Tm?) + 5(—1)2 (21 — 1)(21 + 7)

S
% 72— )2 +3)(2+7) k=2,

+m—wm¢w+””ﬂﬁmunﬁ—mmu+mtwﬁmu4v—m%
(20 +1)(20 + 3)2(20 + 5)2(20 + 7)2(21 + 9)

== Il?n(,) (Sklénm + Ile2 5nm5k—2,l + I% 5nm5k—4,l = Il%%kn (79d)

(Snm(sk—él,l

Next problem is it is not diagonalized with regard to k& and [. This reflects the shape
of the horizon of our 4D blackhole is not a sphere. Actually, it depends on (6, ¢) as in
(53) (for zeroth law of blackhole thermodynamics, see Sec.B.2). In the next subsection, we
diagonalize these by redefining fields, which corresponds to rearrange appropriate bases.

B.5 2D effective near-horizon metrices

Using (79a)-(79d), we can write (77b) as

X 2m 15m2e?
%: %: / dtdr (2m)* ¢’m( = QmAlm,kn - mflm lm) 010 Pim
. r—2m 15m2€
= Z Z/dtdr (2m)* Ao, 1m ((Gett )i, 1m Ot D ron Ot Bim + (Gett Vi, 1 Or Do Orbim ), (80)
kn Im
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where (geg)};tn, 1m a0d (geft )iy, 1, are the 2D effective near-horizon metrices given as
3 /5 45
Aknim = (14 24/ = (14+3Z720) e + = (=Z2° + 3720 £2) 6110mn
) 2oV = im At im im

9/ /5 ) 135
+ —< ;IlAnfe + ; <—Ile2 + 3Ile2> 62) 5k—2,l5mn + _Il?,f525k—4,l5mn

2 27
= A 5118mn + A2 6 016mm + A4 16m, (81a)
(G i = o etiin o, (s1b)
r—om — ﬁ% 7 — 2(Meft ) kn, tm
(et )i = ((Geft)iin,im) ™ ) (81c)
(M )k, tm =M + %I&lmg +0@E) =m+ Msg, (81d)
where 1) Akfjlm =1+ 0(?) in (81d), 2) we defined Al(?n’2’4), Akn’ im and (Mef)kn, im, and

3) (Meft)kn,1m get depended on r, which may be concerned. However metrices before the
near-horizon limit in SecA.5 satisfy Einstein equation, and

r 15ZF 225 (I, 1m)?

" kn,lm 2
= —]_ _—
(geff)kn,lm T 2m 16 mm ¢ 128 mm2r

Therefore, r-dependence is out of the analysis’s order. (Hawking temperature and flux are
obtained without any problems later.)

We perform the summation with regard to k£ and n. Then, the indeces k and n in all
the (geg)}tfn,lm, (Meft)kn, tm and Ay 1, become [ and m for the delta-functions in (81a).
Therefore, to shorten the expressions of equations, we in what follows denote these as

e+ 0 (55) . (82)

(geff)ﬁn, Im (geff)ffna (meff)lm, Im — (meff)lma Alm7 Im — Alm- (83)

In what follows, tt- and rr-parts are basically same. We check rr-part only at the
checkpoint.

In (80), we consider to change the front factor (2m)? to (2(Meg)im)?. For this we

evaluate %Akm im- With

m 2 A
(2(7(73«3&31771)2 -1 et +0(), (84

and Agp 1 given in (81a), we can calculate in e2-order as

(2m)? 0 _ y0 _ 2Bim o 3y — o0
o (2(meﬁ)lm)2Alm =A,, et O(’)=09,,, (85a)
@2m)? o) _ o 3
a2 ~ om0 (%0
2m)? @) _ @, o3
———— A=A+ 0(e”). 85¢
(Q(meff)lm)Q im im ( ) ( )
Therefore, we can write the tt-part in (80) as
lmaz—4 l
80) = Y 3 / B (2(meg)im) (L0 + £ + £ (86a)
=0 m=-I
lnaz—2 |
+ 3> / A2 (2(me)im) (L) + £7)) (86D)

lI=lmaz—3 m=—1
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lmam

+ Z Z /d2 (Meft )im,) El(gz, (86¢)

lI=lmaz—1m=—1

where £&) = A( ) Jeff 0197 Oy Py, for K =0,2,4, 86d
Im l+Km I+Km

Imaz is finally taken to co. The ¢y, with [ larger than [,,,; are zero, since no such ¢y, exist
by definition. Calculation from (80) to (86) proceeds irrelevantly of either t¢- or rr-part.

Focusing on (86a), we write its integrand as

(e )i o AL
(geff)ﬁn @(0

Qi = (2(mett)im)* (Get ) i1

(9e){" am Al
8t¢l+2m ﬁ@l(o t¢l+4m>3t¢lm> (87)

im Im

0 <at¢z‘mat<z>zm + (

@,{23 are in (85a), and we defined €2, to shorten the expression. Rescaling as’

¢lm
Oim — W

Im

for all I, m, (88)

we can rewrite (87) as

(geff);z-2m A(2)

it
e (O000)

(87) = (amz‘mamm ¥ < .
(e)ar Al

it 0) (0
(9e)im (0f6(,,,)

1/2 at¢?+4m> at¢lm> . (89)

We here would like to look at the calculation from (87) to (89) via (88) in the rr-part,

since @( ) depend on r as can be seen in (85a), and at (89) in the calculation of the rr-part,
the followmg equation appears, and which can be calculated as

(Gett )i’ K m Al(g) P1+K m Dim
( Jo-(—sor)
(9ex)i, 0 (@z(i) 172 (O0)172

m Im
(K)

8@ Ol K m . N 0) i .
(geff)lm @l(gz( l+K I+K Or P14 K ><2(9 <75z Oy )

200,07 (09,0 28l (012

Im im
= (geff);j‘Km Al(r[ri) 7"¢l+Km 8r¢lm 3
- (gen)i, 0 (09, Y7 (o)1 +0(e7). (90)
m I+Km I

where K = 2,4 and

(geﬁ)ﬁ"_K 2 (K) K 0) B A(K)
KM 14 e? A K2 00 mltet (L), S L K2 (91
(Gert )17, Im Im ( ) o (91)

from the definitions of (81b), (81a) and (85a). Therefore, the extra terms drop and the
rr-part at (89) can be obtained in the same way with (89) except 9; and (gesr)!" .

"To be exact, writing as (653)71/2(952)1/2@”“ treated (@522)1/2¢zm as ¢um as just a difference of
configurations in the path-integral.
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Then, for the parts in (89), the following calculation can be held in e?-order:

K K
Glirem Ay AL e w0 gy
it 0) ~(0 1/2 0) ~ (0 1/2 B m
(et )im (OO0 ,) """ (01102,

for all I, m, where K = 2,4.

The one above can be actually checked with the (gegs)! , A,(fs ) and @,ng given in (81b),

(81a) and (85a) respectively, and can hold in the case of rr, namely if (ges)}, ,, and
(gest)it, are (gewr)]} i A0 (gesr)]h,- Using (92), we can write (89) as

(89) = le (atqb?matgblm + 2(Kl(r2r2 81551)7-1-2 m + Kl(;lrz at¢?+4 m)at¢lm) ’ (93)
We here define
FI(Q) = Kl(;)at@wm, F/(4) = Kz(f,f Nbryam + Kl(:;) OrPr+am, (94)

L™, L™,

to shorten the expression of the equations (F% is not used immediately). Then,

(93) = le(‘atgblm + Fl(;l,z |2 - (Kl(g)28t¢7+2m8t¢l+2m)a (95)

(K) e&/2 from (92) and F(4)*I‘(4) = K@) 28 * 5, + 0(e?).
( ) m lm t¢l+2m t¢l+2m ( )

where A;,,

Performing the calculation regarding (86b) likewise, we can write (86) as

Ilm

lmaxz—4 l

69 = > Y [P+ T - ({20007 2 Oh6120)
=0 |m|=0
lmaz—2 l

+ Y / 22 (|0160m + T 217 = (B2)) 047 omOs b1 2m)
I=lmaz—3 |m|=0

lmaz l

b3 Y [ Eatud0,00m+OE), (96)

l:lmaz_l |m|:0

Calculation for the rr-part from (89) to (96) can be proceeded without problems, and the
rr-part at (96) is also obtained basically same with (96).

Now we consider to do uniformly slide each “Q,, (Kl(2))28tgb;‘ om0t Pirom” appearing in

the line of [ to the line of [ 4+ 2 in (96). For this, let us check €, (Kﬁgf:
A2\2
—@)n2  405m3(Z;2)? , 3
Qum, = — M ) 7
! ( lm) 27r(7“—2m) € +O(€ ) (9 )
where Il‘?n? are numbers in (79a). Thus we can write €, (Kl(frz)g changing its [ to [ + 2 as
A2\2
—(2 Im —(2 —
Qi (Al(m))2 = (1427)2914_2”1(‘/\[(_'_)2”1)2 + 0(63) = WromZiom, (98)
(Il—l-? m)

where

(T2 @947 (412 —m?) (L +2)* —m? (99a)

—~
—~
~—

(774,02 @143 (1 +3)2 —m?) (1 +4)? —m?)’
Eltam = —(IlAﬂs)Q (K1(2)2 )2- (99b)
(72,02
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With (98), we can replace as

~+(2)\2 * — *
Vi (AN 2007 1 mOrb142m — QprmEiramOidtsamOibriam forall [, m.  (100)

Therefore, uniformly sliding each “$2,, (K}ii)%’@f omOtPiyam” by 2 regarding [ in (96),

[
3 /d% Q| Ospim + T2

[m[=0

M-

(96) =

N
Il
o

_l’_

(]

l

lma

[|
N

lmax—4 -2
/ 022 Qupn (0101 + T = S 007,01 01m)
| 0

m|

~ ||

8
|

_l’_

e
= 1

[\)

4
jml=1—

lmaz—2 1-2

b3 Y [ (|0 + T - Zin ddi Do)

I=lmaz—3 |m|=0
lmaz_2 l

£ 3% [datfaon i)

I=lmaz—3 |m|=l—1

lmam

-2
LD DD D KL S A

I1=lmaz—1 |m|=0

lmam l

+ Z Z /de leat¢7mat¢lm + 0(53)' (101)
I=lmaz—1|m|=1—1
We once again perform the rescaling of the fields as
Orm — ﬁimm for 1 =2,3, -+ , ez (I =0,1 are not included)
(1—Zum) and /m|=0,1,--- ,1 — 2 for each [. (102)

(K)

Im

This rescaling is possible by the same reason in the footnote of (88). At this time, A
eK/2 (see under (95)) and ].“l(fi) and Oy ].“l(fi)* can stay same in e2-order as

I S L 0@E®), 9T = 9,01 + 0(e?) (103)
for all [ and m, where K = 2,4.
Therefore, we can exchange the lines in (101) with the squared form as

|0y i + Fl(f,f)|2 — Eim 010 O bim — | Orbum + Tl(f,f)

where “—” meand the rescaling (102). Therefore, we can write (101) as

2
9

(104)

lmaz—4 1

(101) = > 2 /desz\8t¢zm+F§2|2

=0 m=-I

lmaz—2 l
3 3 [ dauloom T
I=lmaz—3 m=—1

lmam l

+ > / &> & Qi 187,,Dsbim.- (105)

l=lmaz—1m=—1
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We here would like to give attention to the rr-part. The point to be checked between
(96) and (105) is the manipulation (102): whether 9, ( ‘z’ll’”)l/Q) Ordim 4 O(e?)

(-2 ~ 0-Em)7?

can be held or not at (102) in the calculation of the rr-part. For this, let us check the

_ _ (IAz)z A2 2 IA2)2
r-dependence of =y, Ep, = —H= 2( . l;" - /2) , where —{#—— are numbers,
(Iz+2m) 2(91("291(+)2m) 1+2m
2 0 — - .. .
Al(nz ~ ¢ and G)l(nz ~1+e+ (14 r1)e2 Therefore, =y, is independent of r in e2-order.

If so, the equation above can be held, and the rr-part at (105) can be obtained as (105)
as well as the tt-part without the difference of 0, and (ges )], -
Since it can be written as follows:

—(2 —(4
Orbum + i) = (Gt + Bt brp2m + Kyt Srsam), (1062)
—(2
b + T = OB + My S12m). (106b)
let us perform the redefinition of the fields as
¢ Gn = G+ M Bizm + M bream for 1= 0,1 lnay — 4, (107a)
L4 Pim = (blm + Kl(frz(ﬁl—i&m for | = lmaa: - 37 lmax - 27 (107b)
o Gim = bim for I = Imaz — 1, lmaz, (107¢)
where m above are 0,+1,--- ,4+(I — 2) for each [. The leadings of K,QQ is e5/2,

(88) and (102) are rescaling which can be absorbed as configurations of the path-
integral for ¢;,,, however (107) is recombinations. Therefore, the Jacobian for ¢y, — @i,
should be checked. Forming a matrix according to (107) We can check it gives unit.

With ¢y, above, we can finally obtain the decoupled 2D effective action which is
equivalent with (71) as a action in the range of €2 as

lmaz l

(105) = > > / 422 By (ot )i, D050t oim + (Gt )i OrDlnOrpim),  (108)
=0 |m|=0

where 1) &y, = (2(meﬂ)lm)2 and the 2D effective metrices are given in (81). 2) Einstein
equation can be satisfied with these effective metrices. 3) Since the labels distinguishing
the effective metrices are irrelevant of the spins, the effective metrices would not be changed
if we considered fermions [58-60] and higher spin fields [61].

Lastly, the behavior (91) is critical in the feasibility of the analysis in this subsection.

C Hawking Temperature in the effective 2D

We have obtained the 2D effective metrices, which are labeled by spherical harmonics
modes. From these, we can naively expect 1) existence of various Hawking temperatures
for each effective metric, 2) correspondingly, breaking of the zeroth law of the blackhole
thermodynamics. (Furthermore, 3) (meft)kn, 1m get depended on r as in (81d), though this
is not problems in the analysis’s order.) Hence, let us check the Hawking temperature.
We can obtain the position of the horizon in the 2D picture from (gesr)s,1m = 0 as

15m 0
(Th,QD)lm =2m + Tlm 62 + 0(63). (109)

As this is labeled by spherical harmonics modes, we can expect the points above. However,
the Hawking temperature obtained from the 2D effective metrices with the one above is

Ty = 1/8mm + O(e?). (110)
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This is just that in the 4D Schwarzschild and free from the concerns above. The reason of
this is the same with those written in Sec.B.2, where it is considered replacing with (82).
The original 4D and effective 2D spacetimes are different each other. However the
Hawking temperature in the effective 2D spacetime is generally considered to coincide
with the one in the original 4D spacetime. Actually the one above coincides with (67).

D Hawking flux by anomaly cancellation

We call the anomaly cancellation method as “anomaly cancellation”. Since our U(1) gauge
field does not arise chiral anomalies, we ignore it as mentioned under (70b). Hence, we do
not consider the Hawking flux of the electric charged current.

D.1 Set up of the radial direction

The key point in the anomaly cancellation is the fact of no outgoing modes on the horizon

at the classical level. To treat this situation in the anomaly cancellation, some interval
from (rpop)im in the radial direction are sharply divided as follows:®

(Th2D)im <7 < (Th2D)im + €im, (111a)

(Th2D)im + €im <7 < (70)im- (111b)

® ¢, represent the divided points, which are finally taken to zero,

(76)1m mean the positions put by hand reasonably supposing that it is the maximum
of the r to where the description by the 2D effective action (108) is possible.

e (111a) is the region where supposed only ingoing modes exist at the classical level,
e (111b) is the region where both ingoing and outgoing modes exist at classical level.

We refer to the two regions, (111a) and (111b), as the regions H and O, respectively.
In what follows we suppose the following corresponding in the 2D effective picture:

the outgoing modes — the right-hand modes,
the ingoing modes — the left-hand modes.

D.2 Hawking flux of the energy-momentum tensors

We consider the distribution function in the region (rp2p)im < 7 < (70)1m as

Z [(gett Vs Pt = /Dsﬁzm exp 1520 ((Gett) s Pirms im ), (112)

where (et ), Pim and ¢y, are those in (108). Then, consider general coordinate trans-
formation in the region as

e A A C B (113)

Variation toward general coordinate transformations can be written as

(52)im = (31 e 5 + 61 A (114)

(geff)lm 5LA,u, Im

8Radial direction is sharply divided with € in all the papers of the anomaly cancellation, which is
unnatural. This problem is commented in Chap.4 in [57]. There is one more artificial point in the anomaly
cancellation, which is to use two anomalies, the gravitational and consistent anomalies. [64] care this point.
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with  01(9ett ) = = (Vi + Vi lim)» (115a)
LA 1m = Vi imn”s Avim + 1"V im Ap, im, (115b)

(OLAL, = = V1" Avim + 1"V, mAj,)
0P = 1" 04 Pim, (115c¢)

where ¢;, means Lie derivative. [ and m are not summed. We keep A, ;,,, just in case.
We can obtain the conservation laws for the energy-momentum tensors at the classical
level from (8Z);,, = 0. Aside from these, quantum anomalies exist as [65]

L 5 _ ot
V,LLT“V, Im = :t967r(—(geﬂr)lm)1/2 55 8580{].—‘357 Im = ﬂm I (]_163)
(+/— — left- / right-hand modes’s contributions)
- 1 —
VT i = F " Ry = A, (116b)

9671—(_(geﬂ”)lm)1/2 e
(—/+ — left- / right-hand modes’s contributions)

where €” =1 and € = (el ) par, lm(geﬁ)l,@lmﬁaﬂ. Top and bottom are the consistent and
covariant anomalies. T, ;,,, follow the boundary condition as

(fH)uu,lm‘ = 0. (117)

r=("n,2D)im
The conservation laws in the anomaly cancellation are given combining these as
Oy Py 05D

v TH —F JE A+ A, VI —
utd U uim wv, imdm + Av,im Y i, (—(geff)lm)l/Q‘sL(I)lm

+ both /either .o/~

v,lm’

(118a)
0, Pim 059p
(_(geff)lm)l/z 5L(I)lm

VMTMV7 im = Fpu imJl, + A iV Jl — + both/either fngflm,

(118b)

_ 4.5 — 2 .S « 9 wat 9
where J! = L 2D and T, = 2B, “both” or “either
Jlm (_(geff)lm)l/2 éLAﬂu m B, im (_(geff)lm)l/2 6L (geﬂ)#m,

is taken according to both left- and ight-hand mode exist or not. Anomalies vanish in
“both” as the left- and right-hand modes cancel each other.

We show (118) in our case by calculating these for the case v = t and r respectively
using (81b), (81c) and (81b) etc as

Oy T" ¢, 1m = both/either 7% (= £0,N"y 1m), 0Ty im =0, (119a)
3rf“t7 1m = both/either foﬁm(: j:@r]\~f7"t7 im)s 8rf7"r7 m =0, (119b)
Ny = (f2+ £)/1921, Ny im = (ff" = (f)?/2)/96m,

where f means —(gef)u, 1m and ' means d,. We have used the facts that our gauge fields
are ignoble (see under (70b)) and our dilaton is time-independent with our killing vector.
We give the expressions of the energy-momentum tensors we employ as

T”u, Im — (To)uu, lm@lm + (TH)“I/, lmHlma (1203)
TMV, Im — (To)uu, lm@lm + (TH)MV, lmHlma (120b)

where Oy, mean the step function 6 (r — ((74.20)im + €m)) and Hyyy, is 1 —Oyy,. Therefore,

(T )"y, im include only the right-hand modes, (121a)
(To)",, 1m include both hand modes, which leads no anomalies. (121b)
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(fH)”l,, 1m and (fo)“M 1m are likewise. Sharp expressions of (120) is rooted in setting (111).
From (119) and (120) with (121), we can obtain the identities we consider as

8T(TH)rt, Im = ﬂft:i_lm = 8rNrt, im and 8T(To)rt, m =0, (122a)
O (TH)"t,im = Ay 1y — 0Nt i and 0p(L,) ¢, = O, (122b)

From these, we can get the expressions of (T'H,,)"¢,1m and (THW)Q,lm as

(TH)Tt7 Im — (CH)Tt, Im + / dr arNrt, Im> (To)rt, Im — (Co)rt, Ilm» (1233)
(Th,2D)im

(fH)rt, m = (EH)rt,lm + /( : dr 87,]'\77}7 Ims (To)rt,lm = (Eo)rt, Ims (123b)
Th,2D )im

where ((c¢g)"t,ims (CH)"t,1m) and ((¢o)"t,ims (Co)"t,1m) are integral constants. The former
two are the values of those at horizon, the latter two are the values of those at r = (7).
(o)"t,1m is identified with the total amount of the Hawking flux (e.g. [54,62]%).

We consider an equation obtained from (123) as'’
(Tr) tam = (Tu) tim = (FF" = 2(f)?) /192 (124)
We can obtain the value of (cg)" 1, from (124) with (117) as
r 1 " "2 (f')? T2
= ——(ff" —2 - =272, 125
(cm) t,1 1927 (ff (f") )|T=(Th,2D)zm 967 lr—(rman)m 6 H (125)

where f'|,—( = 47Ty, (Ty is (110)). Variation for (113) can be written as

Th,2D)im

(552D)lm = _/d2x(_(geﬂ)lm)1/2 nyvu,lmT“V,lm

= - / d$2 77t( ((TO)Tt, Im — (TH)rt, Im + Nrt, lTrL)(S (T - ((T}L,QD)lm + elrn))
L O, (N H)). (126)

€1m are taken to zero as the near-horizon limit. The last term will vanish [53,54, 66]!.

(052D )1m should vanish, from which (¢,)", im, the total amount of the Hawking flux,
are determined as
= nT%/12. (127)

(Co)rt, lm — (CH)rt, Im — NTt, lm‘r:(rh 2D )im

9(5‘,)%, 1m can be identified with the value of the total amount of the black-body radiation through the
identification of T"; with that ((28) in [54]), where the fermion case is considered in [54,62] to avoid the
problem of superradiance supposing that it would be the same with the bosonic case.

Once one has checked that the value of T"; can agree to the black-body radiations in the 3 kinds of
the fundamental 4D blackholes (Schwarzschild, Kerr and charged), all the papers concerning the anomaly
cancellation compute the value of T"; in various blackholes, and consider that it always represents the
total amount of the black-body radiation. We in this study also follow this way.

10T here is one point. We can see a quantity: (Ts)"¢. 1m — ((€0)"¢.1m — (o)"t.1m) appears when obtaining
(124) from (123). We can see we should redefine it as a new (Tx)"¢, 1m so that new (Tw)"¢. im can vanish
at the horizon as in (117) by appropriately taking the integral constants, (¢,)"¢, im and (¢o)"t, im-

This is because (Tw)"+,im should vanish at the horizon to get (124) (or (24) in [54] or (36) in [62]),
however it does not if it is as it is. We can see this as (TH)Tt,lm‘T:(T’ o) = _Nrt'lm‘r:(rh D) #0

with f’|T:(rh’2D)lm # 0. (This is not written in any papers such as [54,62]. Further, [65] is referred at (36)

in [62], so look it. Then its (6.21) corresponds to (124). There should be some integral constants there
when P, is obtained by performing integration in (6.22), however no comment about this point there.)

(Th,2D)imte
11/ drdr (---) = 0 with e — 0.
(

Th,2D)lm
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This result is the same with just the Schwarzschild [53,54,62]. The reason of this is
that the Hawking flux is determined from the f, f' and f” at r = (rp2p)m as in (124)
and (125), however these are not changed from just the Schwarzschild as can be seen from
(82). This is the same situation with the Hawking temperature in Sec.B.2 and C.

E Comment on result in terms of the information paradox

As mentioned under (110), the result (127) would be the one in the original 4D blackhole,
and if the correction is to e?-order and ¢-independent, we could conclude by the logic in
Sec.6 the black-body radiation of the supertranslated blackholes would be always thermal.

Important problem for us is the information paradox. As an insight obtained from this
work, the Hawking temperature and flux could not be the solution as we have found there
is no breaking of the thermal flux in the range of the analysis in this paper.

Supertranslated blackhole spacetimes would be normal in reality and how to be super-
translated is determined by the initial configuration [6]. Therefore, the information of the
initial configuration would be stored in the configuration of the asymptotic region of the
spacetime, again which would be the key of the information paradox.
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