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Abstract

The chiral edge modes of a topological superconductor support two types of
excitations: fermionic quasiparticles known as Majorana fermions and π-phase
domain walls known as edge vortices. Edge vortices are injected pairwise into
counter-propagating edge modes by a flux bias or voltage bias applied to a
Josephson junction. An unpaired edge mode carries zero electrical current
on average, but there are time-dependent current fluctuations. We calculate
the shot noise power produced by a sequence of edge vortices and find that
it increases logarithmically with their spacing — even if the spacing is much
larger than the core size so the vortices do not overlap. This nonlocality
produces an anomalous V lnV increase of the shot noise in a voltage-biased
geometry, which serves as a distinguishing feature in comparison with the
linear-in-V Majorana fermion shot noise.
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1 Introduction

A chiral p-wave superconductor is the superconducting counterpart to a quantum Hall in-
sulator [1]: Both are two-dimensional materials with a gapped bulk and gapless modes that
circulate unidirectionally (chirally) along the boundary. Backscattering is suppressed when
the counterpropagating edge modes are widely separated. The resulting unit transmission
probability for quasiparticles injected into an edge mode implies a quantized thermal con-
ductance for both systems — half as large in the superconductor because the quasiparticles
are Majorana fermions [2–4] (coherent superpositions of electrons and holes) rather than
the Dirac fermions (independent electrons and holes) of an integer quantum Hall edge
mode.

This close correspondence [5] between topological insulators, as in the integer quantum
Hall effect, and topological superconductors, as in chiral p-wave superconductivity, refers
to their fermionic quasiparticle excitations. The superconducting phase allows for an
additional collective degree of freedom, a winding of the phase field forming a vortex,
with non-Abelian rather than fermionic exchange statistics [3, 6]. Vortices are typically
immobile, pinned to defects in the bulk, but they may also be mobile phase boundaries
in the edge mode. The 2π winding of the superconducting phase around a bulk vortex
corresponds on the edge to a π-phase domain wall for Majorana fermions [7].

It is the purpose of this work to identify electrical signatures of edge vortices, and to
distinguish these from the familiar electronic transport properties of Majorana fermions [8–
16]. For that purpose we contrast the two injection geometries shown in Fig. 1. Majorana
fermions are injected by a voltage source, contacted via a tunnel junction to an edge mode.
The analogous edge vortex injector is a flux-biased Josephson junction. A 2π increment
of the superconducting phase difference φ injects one vortex into each of the opposite
edges [17].

Since the π-phase domain wall on the edge is pinned to the fermionic degrees of freedom,
edge vortices propagate with the same velocity as the Majorana fermions. If the edge
modes on opposite edges would propagate in the same direction, the vortices could fuse
in a metal contact [18]. This fusion process is associated with a noiseless charge transport
of ±e/2 [19, 20]. (The sign depends on how the world lines of the vortices are braided.)
For counterpropagating edge modes as in Fig. 1 the vortices cannot fuse, they will enter
different contacts to the left and to the right of the Josephson junction. The charge transfer
into each contact is zero on average, but it is not noiseless: the injection process produces

Figure 1: Topological superconductor with chiral Majorana edge modes. In panel a) a
voltage bias across a tunnel junction injects Majorana fermions into the right-moving
edge mode. In panel b) a flux bias across a Josephson junction injects edge vortices in
the counter-propagating edge modes. The two injection processes can be detected and
distinguished by shot noise measurements.
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shot noise, in the case of edge vortices as well in the case of Majorana fermions.
The equal-weight electron-hole superposition that is characteristic of a Majorana fermion

results in a charge variance of e2 per injected fermion, producing a quantized shot noise
power [21]. We find that the charge variance per edge vortex is nonlocal, it depends
logarithmically on the separation L between pairs of vortices on the same edge:

VarQvortex =
e2

π2
ln(L/λ), for L� λ. (1.1)

Here λ is the width of the π-phase domain wall, which sets the size of the edge vortex core.
The dependence on the ratio L/λ persists when L� λ, so when the domain walls do not
overlap. This nonlocality signals the long-range correlation that exists between vortices
in a topological superconductor.

The outline of this paper is as follows. In the next section we formulate the general
scattering theory on which our analysis is based. The Majorana nature of the quasiparticle
excitations implies that expectation values of pairs of creation operators do not vanish — as
they would for Dirac fermions. This technical complication plays no role for dc transport,
but needs to be accounted for in the case of time dependent perturbations, when energy-
nonconserving scattering plays a role [22]. In Sec. 3 we generalize a relationship between
the charge variance and the average particle current derived in Ref. 21 for dc transport
to the time dependent setting. The charge noise of the edge vortices is calculated in
Sec. 4 and compared with the known result [23] for Majorana fermions in Sec. 5. We
propose a voltage-biased geometry in which the edge vortices produce a shot noise power
that increases ∝ V lnV — in contrast to the linear voltage dependence of the Majorana
fermion noise power.

2 Trace formula for the variance of the transferred charge

We start with a general scattering formulation, in terms of a set of fermionic quasiparticle
operators an(E) for the incoming modes and bn(E) for the outgoing modes, related by the
energy dependent scattering matrix,

bn(E) =

∫ ∞
−∞

dE′

2π

∑
mSnm(E,E′)am(E′). (2.1)

Each mode index n = 1, 2, . . . N contains an electron and hole component in a Nambu
spinor. Pauli matrices σx, σy, σz act on the spinor degree of freedom (with σ0 the 2 × 2
unit matrix). The scattering matrix is unitary and constrained by particle-hole symmetry,

S(E,E′) = σxS
∗(−E,−E′)σx. (2.2)

For a periodic time dependence the energy differences E −E′ are integer multiples of the
driving frequency.

We seek the charge transferred by quasiparticle excitations at E > 0 into a subset M of
the N outgoing electron-hole modes, when the incoming modes are in thermal equilibrium.
The projector D selects these M modes and the projector P+ selects positive energies.
The charge operator for the outgoing modes is

Q = e

∫ ∞
0

dE

2π

M∑
n=1

b†n(E)σzbn(E) ≡ eb†σzDP+b. (2.3)
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The scattering matrix converts this into an expression in terms of the incoming mode
operators,

Q = ea† · S†σzDP+S · a. (2.4)

In these equations the Pauli matrix σz accounts for the opposite charge ±e of the electron
and hole components of the Nambu spinor. (For ease of notation we will set e ≡ 1 in many
of the equations.)

Moments of Q are evaluated by taking pairwise contractions of a, a†, each of which are
given by the Fermi function f(E),

〈a†n(E)am(E′)〉 = f(E)σ0δnmδ(E − E′), 〈a†n(E)a†m(E′)〉 = f(E)σxδnmδ(E + E′). (2.5)

The second contraction is anomalous [22], it does not vanish because of the particle-hole
symmetry relation a(E) = σxa

†(−E). If the scattering is elastic the anomalous contraction
which couples +E to −E does not contribute — but in the more general case of energy-
nonconserving scattering it cannot be ignored for any moment higher than the first.

In the zero-temperature limit the Fermi function f(E) = (1 + eE/kBT )−1 becomes a
projector P− onto negative energies. We will take that limit in what follows. This also
means that thermal noise from the incoming modes need not be considered.

Carrying out the contractions we find the average 〈Q〉 and the variance VarQ =
〈Q2〉 − 〈Q〉2 of the transferred charge,

〈Q〉 = TrP−S†σzDP+S, (2.6)

VarQ = TrP−S†DP+S − TrP−S†σzDP+SP−S†σzDP+S
− TrP−S†σzDP+SP−S†σzDP−S. (2.7)

The third term in Eq. (2.7) originates from the anomalous contraction in combination
with the particle-hole symmetry relation (2.2). The third term combines with the second
term to remove one energy projector,

VarQ = TrP−S†DP+S − TrP−S†σzDP+SP−S†σzDS. (2.8)

While Eq. 2.6 for the average charge has an intuitive interpretation of scattering from
filled states at E < 0 to empty states at E > 0, the formula (2.8) for the charge noise is
less intuitive. As a check, we show in App. A that it agrees with the more general Klich
formula of full counting statistics [25].

3 Correspondence between charge variance and average par-
ticle number

We apply the general scattering theory to the setting of Fig. 1b. There are M electron-hole
modes in each metal contact, N = 2M in total, coupled via a pair of counterpropagating
Majorana edge modes. The coupling does not conserve energy because of a time dependent
phase difference φ(t) across the Josephson junction that separates the two contacts. The
2π increment of φ imposed by a flux bias injects an edge vortex into each contact, and we
wish to determine the charge noise associated with that injection process.

The scattering matrix decomposes into transmission blocks t, t′ and reflection blocks
r, r′, each of dimension M ×M ,

S(E,E′) =

(
r(E,E′) t(E,E′)
t′(E,E′) r′(E,E′)

)
. (3.1)
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The projector

D =

(
1 0
0 0

)
(3.2)

selects the matrices t and r in the expressions (2.6) and (2.8) for the mean and variance
of the charge transferred into the right contact,

〈Q〉 = TrP−
(
t†σzP+t+ r†σzP+r

)
, (3.3)

VarQ = TrP−
(
t†P+t+ r†P+r

)
− 2 Re TrP−r†σzP+tP−t†σzr

− TrP−
(
r†σzP+rP−r†σzr + t†P+σztP−t†σzt

)
. (3.4)

We consider the structure of the matrices t and r in more detail.
The M ×M transmission matrix t(E,E′) describes propagation from the left contact

into the right contact via the right-moving Majorana mode. It can be decomposed as

tnm(E,E′) = un(E)vm(E′)τ(E,E′), (3.5)

in terms of the transmission amplitude τ(E,E′) of the Majorana mode. The n = 1, 2, . . .M
spinors un(E) and vn(E), normalized to unity,

M∑
n=1

|un(E)|2 = 1 =

M∑
n=1

|vn(E)|2, (3.6)

describe the elastic coupling between the Majorana mode and the electron-hole modes at
the interface with the right contact (un) and the left contact (vn).

The M ×M reflection matrix r(E,E′) for reflection of an electron-hole mode incident
from the right contact can be decomposed as

rnm(E,E′) = dnm(E)δ(E − E′) + un(E)wm(E′)ρ(E,E′). (3.7)

The first term dnm describes direct elastic reflection at the interface between the supercon-
ductor and the right contact. The second term describes energy-nonconserving reflection
at the Josephson junction, decomposed as the product of the transmission amplitude wm
from the right contact into the left-moving Majorana mode, the reflection amplitude ρ
from the Josephson junction, and the transmission amplitude un from the right-moving
Majorana mode into the right contact. Both un and wm are normalized to unity. Note
that un appears also in the decomposition (3.5) of tnm.

We make the key assumption that the elastic scattering at the superconductor–contact
interface is only weakly energy dependent near the Fermi level, E = 0, so that we may
approximate un(E) ≈ un(0).

To justify this approximation, we note, on the one hand, that the energy-conserving
(elastic) scattering amplitudes vary on the scale of Eelastic ' ~vF/ξ0, where vF is the
Fermi velocity and the superconducting coherence length ξ0 sets the effective width of
the interface. On the other hand, the energy-nonconserving (inelastic) scattering by the
Josephson junction couples energies differing by at most Einelastic = ~(W/ξ0)φ̇, where W
is the junction width and φ̇ the rate of change of the superconducting phase [17]. It is
consistent to neglect the energy dependence of un(E) if Einelastic � Eelastic, hence if the
junction is sufficiently narrow:

Einelastic � Eelastic ⇒W � vF/φ̇. (3.8)
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As we show in App. B, this single assumption combined with particle-hole symmetry
implies that the following matrix products vanish:

P−t†σzP+tP− = 0,

P−r†σzP+rP− = 0,

P−r†σzP+tP− = 0.

(3.9)

What underlies these three identities is that the energy-nonconserving contributions to
the transmission and reflection matrices are rank-one matrices in the mode index.

It follows upon combination of Eqs. (3.3) and (3.9), and noting that TrP−(· · · ) =
TrP−(· · · )P−, that there is no charge transfer into the right contact on average,

〈Q〉 = 0. (3.10)

For the charge noise (3.4), Eq. (3.9) implies that the second and third trace vanish, only
the first trace remains:

VarQ = e2 TrP−
(
t†P+t+ r†P+r

)
P−

= e2
∫ ∞
0

dE

2π

∫ 0

−∞

dE′

2π

(
|τ(E,E′)|2 + |ρ(E,E′)|2

)
. (3.11)

Eq. (3.11) states that the charge variance (divided by e2) equals the average number
of quasiparticles injected into the right contact by the time dependent phase difference
across the Josephson junction. This relationship is analogous to the known relationship
between electrical shot noise and thermal conductance in a setting without time-dependent
driving [21,23,24].

4 Evaluation of the charge noise

We evaluate Eq. (3.11) for the case that the phase difference φ across the junction is ad-
vanced at a constant rate φ̇ = 2π/T , via a linearly increasing flux bias Φ(t) = (h/2e)t/T .
We work in the adiabatic regime that the propagation time τW = W/vF along the Joseph-
son junction is small compared to the inelastic scattering time,

τW � ~/Einelastic ⇒W � (ξ0/W )vF/φ̇. (4.1)

The adiabaticity condition is stronger than the earlier assumption (3.8) for W > ξ0.
The adiabatic scattering matrix depends only on the energy difference,

S(E,E′) =

∫ ∞
−∞

dt ei(E−E
′)tS(t), (4.2)

it is the Fourier transform of the “frozen” scattering matrix S(t) — evaluated for fixed value
φ(t) of the superconducting phase difference. The transmission and reflection amplitudes
τ(E,E′) = τ(E − E′) and ρ(E,E′) = ρ(E − E′) are likewise the Fourier transform of the
“frozen” counterparts τ(t) and ρ(t).

The frozen scattering matrix of a Josephson junction between counterpropagating edge
modes is given by [8]

S(t) =

(
1/ coshβ(t) tanhβ(t)
tanhβ(t) −1/ coshβ(t)

)
, β(t) =

W

ξ0
cos(πt/T ). (4.3)
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Figure 2: Plot of the transmission and reflection amplitudes (4.4), calculated for a linearly
increasing phase difference φ(t) = 2πt/T across the Josephson junction. The junction
fully reflects the counterpropagating Majorana edge modes when φ = π modulo 2π.

The corresponding transmission and reflection amplitudes

τ(t) = tanhβ(t), ρ(t) = 1/ coshβ(t) (4.4)

are plotted in Fig. 2. The transmission amplitude is periodic with period 2T , twice the
period of the superconducting phase φ(t) because a 2π increment of φ is a π increment of
the fermionic phase.

We write the charge noise formula (3.11) in the time domain, with a detection window
(0, 2NT ) that is a multiple of the periodicity 2T ,

VarQ = − e2

4π2

∫ 2NT

0
dt

∫ 2NT

0
dt′

τ(t)τ(t′) + ρ(t)ρ(t′)

(t− t′ + iε)2
. (4.5)

The singularity at t = t′ is regularized by the infinitesimal ε > 0. The charge noise per
vortex is

VarQvortex =
1

2
lim
N→∞

1

N
VarQ, (4.6)

the factor of 1/2 is there because two vortices are injected into each edge in a time 2T .
In view of the periodicity τ(t+ 2T ) = τ(t), ρ(t+ 2T ) = ρ(t) we have

VarQvortex = − lim
N→∞

e2

8Nπ2
N∑
n=0

N∑
m=0

∫ 2T

0
dt

∫ 2T

0
dt′

τ(t)τ(t′) + ρ(t)ρ(t′)

(t− t′ + 2T (n−m) + iε)2

= − e2

32T 2

∫ 2T

0
dt

∫ 2T

0
dt′

τ(t)τ(t′) + ρ(t)ρ(t′)

sin2[12(π/T )(t− t′ + iε)]

= − e2

32π2

∫ 2π

0
dt

∫ 2π

0
dt′

sinh
(
W
ξ0

cos t
)

sinh
(
W
ξ0

cos t′
)

+ 1

sin2
[
1
2(t− t′ + iε)

]
cosh

(
W
ξ0

cos t
)

cosh
(
W
ξ0

cos t′
) .

(4.7)

Because of the identity∫ 2π

0
dt

∫ 2π

0
dt′

1

sin2
[
1
2(t− t′ + iε)

] = 0, (4.8)
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Figure 3: Plot of the charge noise per vortex as a function of the ratio W/ξ0 (logarithmic
scale). The solid curve is computed from Eq. (4.9), the dashed curves are the asymptotes
(4.10).

we may rewrite the integral (4.7) as

VarQvortex = − e2

32π2

∫ 2π

0
dt

∫ 2π

0
dt′

1− cosh
(
W
ξ0

(cos t− cos t′)
)

sin2
[
1
2(t− t′)

]
cosh

(
W
ξ0

cos t
)

cosh
(
W
ξ0

cos t′
) . (4.9)

The infinitesimal ε may now be set to zero, the integral remains finite.
The W -dependence of VarQvortex is plotted in Fig. 3. The asymptotics for small and

for large W/ξ0 are1

VarQvortex =
e2

8
(W/ξ0)

2 for W/ξ0 � 1,

VarQvortex =
e2

π2
ln(2πW/ξ0) for W/ξ0 � 1.

(4.10)

The large-W asymptotics can be written equivalently as Eq. (1.1), with a logarithmic
dependence on the ratio of the separation L = 2πvF/φ̇ between subsequent edge vortices
and the width λ = (vF/φ̇)(ξ0/W ) of the phase boundary which represents the core of the
edge vortex.2

5 Discussion

The experimental observable in a shot noise measurement is the noise power P , being the
correlator of the time dependent current fluctuations δI(t):

P =

∫ ∞
−∞

dt 〈δI(0)δI(t)〉 = lim
t→∞

1

t

(
〈Q(t)2〉 − 〈Q(t)〉2

)
. (5.1)

Here Q(t) is the transferred charge in a time t.
For the flux-biased vortex injector of Fig. 1b the result (1.1) implies that

Pvortex =
1

T
VarQvortex =

e2

h

2eΦ̇

π2
ln(L/λ), for L� λ. (5.2)

1For the small-W asymptotics, expansion of the integrand in Eq. (4.9) to second order in W/ξ0 gives
(W/ξ0)2[cos(t+ t′)− 1], which is then readily integrated. For the large-W asymptotics, see App. C.

2The time λ/vF = ~/Einelastic is the width of the peaks in ρ(t) in Fig. 2.
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Figure 4: Variation on the geometry of Fig. 1b, with two Josephson junctions instead of a
single junction, and a voltage bias instead of a flux bias. The shot noise power increases
as V lnV with the applied voltage.

We contrast this with the shot noise power of the fermion injector of Fig. 1a (a different
device, without a Josephson junction), given by [23]

Pfermion =
e2

h

eV

2
. (5.3)

A flux rate of change Φ̇ is equivalent to a voltage bias V , so the replacement Φ̇ ↔ V
in the two formulas is expected. The key difference is the appearance of a logarithmic
dependence of the vortex shot noise on the separation of subsequent vortices. There is no
such dependence on the Majorana fermion separation. This nonlocality suggests that an
unpaired edge vortex has a divergent charge noise, which indeed it does (see App. D).

To observe the anomalous dependence of Pvortex on the edge vortex separation, one
would need to be able to vary the ratio L/λ. In the geometry of Fig. 1b one has L/λ =
2πW/ξ0, so this ratio is fixed by the parameters of the Josephson junction. Since it
might be problematic to engineer a junction with adjustable width, we show in Fig. 4
an alternative double-junction geometry where the ratio L/λ can be varied at a fixed
geometry by a voltage bias.

A 2π increment of φ injects two vortices on each edge, one for each Josephson junc-
tion. The separation L of the edge vortices now equals the spacing between the two
Josephson junctions, so this length is fixed by the geometry. However, the vortex core size
λ = (vF/φ̇)(ξ0/W ) = (hvF/2eV )(ξ0/W ) can be adjusted by varying the voltage bias V ,
allowing for a measurement of the anomalous L/λ dependence of the shot noise power in
a fixed geometry. The resulting logarithmic voltage dependence of the shot noise power,3

Pvortex =
e2

h

4eV

π2
ln(V/Vc), Vc =

~vFξ0
2eLW

, (5.4)

holds over a voltage range

1� V/Vc � min(W/ξ0, L/W ) (5.5)

which is wide if L � W � ξ0. This V lnV increase of Pvortex contrasts with the purely
linear voltage dependence of Pfermion and serves as a distinguishing signature between
these two types of excitations of a Majorana edge mode, a signature that is accessible by
a purely electrical transport measurement.

3The calculation of the charge variance for the geometry of Fig. 4 is worked out in App. E.
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A Consistency of Eq. (2.8) with the Klich formula for the
cumulant generating function

In the main text we derived the formula (2.8) for the variance of the transmitted charge
directly from the contractions (2.5). We showed that the anomalous contraction of two
creation operators has the effect of eliminating one of the projectors onto positive energies.
As a check, we show here how the same result follows from the Klich formula [25] in the
theory of full counting statistics.

We note the sequence of equalities

VarQ = TrP−S†DP+S − TrP−S†σzDP+SP−S†σzDS
= TrP−S†σzDP+SP+S†σzDS
= TrP−S†σzDP−SP+S†σzDS. (A.1)

For the second equality we substituted SP−S† = 1 − SP+S† and used (σzD)2 = D. The
third equality follows from particle-hole symmetry.4 Hence, by adding the second and
third equality we arrive at

VarQ = 1
2 TrP−S†σzDSP+S†σzDS. (A.2)

Each factor σzD now appears without an energy projector. Similarly, the expression (2.6)
for the average charge can be rewritten identically as5

〈Q〉 = 1
2 TrP−S†σzDS, (A.3)

without the energy projector multiplying σzD.
Eqs. (A.2) and (A.3) agree with the Klich formula for the cumulant generating func-

tion6 [20]

ln〈eiξQ〉 = 1
2 ln Det

[
1− P− + P−S†eiξσzDS

]
= 1

2 iξTrP−S†σzDS − 1
4ξ

2 TrP−S†σzDSP+S†σzDS +O(ξ3). (A.4)

B Proof of Eq. (3.9)

To show that the three matrix products (3.9) all vanish, we substitute the decompositions
(3.5) and (3.7) of the transmission and reflection matrices. Because the reflection matrix

4The particle-hole symmetry relation (2.2) of the scattering matrix implies that traces of the form (A.1)
are invariant upon the replacements: TrM 7→ TrM†, σz 7→ −σz, P± 7→ P∓.

5Eq. (A.3) follows from Eq. (2.6) in view of equalities TrP−S†σzDP+S = −TrP+S
†σzDP+S =

TrP+S
†σzDP−S. The first equality holds because TrS†σzDP+S = 0, the second equality follows from

particle-hole symmetry.
6In Eq. (3.12) of Ref. 20 the generating function contains a σy instead of a σz Pauli matrix, because

there the Majorana basis instead of the electron-hole basis is chosen for the Nambu spinors.
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in Eq. (3.9) is sandwiched between projectors P+ and P−, the elastic contribution dnm
in Eq. (3.7) drops out. The energy-nonconserving contributions to each matrix product
contain the same factor

M∑
n=1

u†n(E)σzun(E) =

M∑
n=1

uTn (−E)(σx · σz)un(E) = −i
M∑
n=1

uTn (−E)σyun(E), (B.1)

where in the second equality we used particle-hole symmetry.
We now make the assumption, valid for W � vF/φ̇, that we can neglect the energy

dependence of the elastic coupling amplitude un(E) ≈ un(0) between the right-moving
Majorana mode and the right contact. Then Eq. (B.1) reduces to zero because σy is an
antisymmetric matrix, hence uTnσyun = 0.

C Computation of the logarithmic asymptote of the charge
noise

To derive the logarithmic large-W asymptotics of Eq. 4.10, we note that for W � ξ0 the
scattering amplitude profile (4.3) is well described by the approximation [17]

τ(t) =

{
− tanh[12(t− T/2)/t0] for 0 < t < T,

tanh[12(t− 3T/2)/t0] for T < t < 2T,
, (C.1a)

ρ(t) =

{
1/ cosh[12(t− T/2)/t0] for 0 < t < T,

1/ cosh[12(t− 3T/2)/t0] for T < t < 2T,
, (C.1b)

t0 = (ξ0/W )(T/2π), (C.1c)

repeated periodically with period 2T . On the scale of Fig. 2, with W/ξ0 = 5, the approx-
imation is nearly indistinguishable from the full result.

The Fourier coefficients

τ(ωn) =

∫ 2T

0
dt eiωntτ(t), ρ(ωn) =

∫ 2T

0
dt eiωntρ(t), ωn = πn/T, (C.2)

in the large-W/ξ0 regime can be calculated from the integrals∫ ∞
−∞

dt eiωt tanh(12 t/t0) =
2πit0

sinh(πωt0)
,∫ ∞

−∞
dt eiωt

1

cosh(12 t/t0)
=

2πt0
cosh(πωt0)

,

(C.3)

with the result

τ(ωn) =
(
eiωnT/2 − eiωn3T/2

) 2πit0
sinh(πωnt0)

⇒ |τ(ωn)|2 = δn,odd
(4πt0)

2

sinh2(πωnt0)
,

ρ(ωn) =
(
eiωnT/2 + eiωn3T/2

) 2πt0
cosh(πωnt0)

⇒ |ρ(ωn)|2 = δn,even
(4πt0)

2

cosh2(πωnt0)
.

(C.4)

The charge noise per vortex then follows by writing Eq. (3.11) as a Fourier series,

VarQvortex =
e2

4π2
π

2T

∞∑
n=0

ωn
(
|τ(ωn)|2 + |ρ(ωn)|2

)
. (C.5)

For T/t0 = 2πW/ξ0 � 1 the sum may be approximated by an integral and produces the
logarithmic growth

VarQvortex →
e2

π2
ln(T/t0), for T � t0. (C.6)
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D Divergent charge noise for an unpaired edge vortex

If a single vortex is injected into each edge, the scattering amplitudes (C.1) in the time
interval (0, T ) hold for all times,

τ(t) = − tanh(12 t/t0)⇒ τ(E,E′) = − 2πit0
sinh[π(E − E′)t0]

,

ρ(t) = 1/ cosh(12 t/t0)⇒ ρ(E,E′) =
2πt0

cosh[π(E − E′)t0]
.

(D.1)

Substitution into Eq. (3.11) gives an expression for the charge noise,

VarQ = e2t20

∫ ∞
0

dE E

(
1

sinh2 πEt0
+

1

cosh2 πEt0

)
, (D.2)

with a logarithmic divergence at E = 0.
For a finite answer we may introduce a finite detection time tdet, cutting off the integral

for E . 1/tdet, which gives

VarQ =
e2

π2
ln(tdet/t0), for tdet � t0. (D.3)

In the case of a periodic sequence of edge vortices considered in the main text, the spacing
T between subsequent vortices takes over from tdet to provide a finite charge variance.

All of this is for zero temperature. At a finite temperature T we expect the logarithmic
increase of the charge noise with increasing tdet to cross over into a linear increase ∝
tdetkBT/~, once ~/tdet drops below kBT .

E Charge noise in a double-Josephson junction geometry

In Fig. 4 we have modified the geometry of Fig. 1b to include a second Josephson junction
next to the first. A flux bias, or equivalently a voltage bias as in the figure, will then inject
two edge vortices on each edge.

The scattering matrix of the pair of Josephson junctions is composed from the scat-
tering matrices SJ1 , SJ2 of the individual junctions, for which we take the adiabatic ap-
proximation,

SJn(E,E′) =

∫ ∞
−∞

dt ei(E−E
′)tSJn(t),

SJn(t) =

(
sinαn(t) cosαn(t)
cosαn(t) − sinαn(t)

)
, αn(t) = arccos tanhβ(t).

(E.1)

Adiabaticity requires that the time W/vF to move from one edge to the opposite edge
along a junction is short compared to the vortex injection time t0 = (ξ0/W )φ̇−1. The time
L/vF to move from one junction to the next may be large compared to t0.

The phase fields α1(t) and α2(t) of the two Josephson junctions switch from 0 to π on
a time scale t0 around t = 0.7 If λ = vFt0 � L the two edge vortices injected by these

7For counterpropagating edge modes the phase α is an even function of the phase difference φ across
the Josephson junction [8]. For co-propagating edge modes, in contrast, α is an odd function of φ and in
that case α1 and α2 would have opposite sign [17].
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switching events do not overlap.8 We consider that regime in what follows and for ease of
notation set vF ≡ 1.

The transmission amplitude τ(E,E′) from left to right and the reflection amplitude
ρ(E,E′) from the right are given in the time domain by

τ(t, t′) = δ(t− t′ − L) cosα2(t
′ + L) cosα1(t

′),

ρ(t, t′) = δ(t− t′) sinα2(t) + δ(t− t′ − 2L) cosα2(t
′ + 2L) sinα1(t

′ + L) cosα2(t
′).

(E.2)

The assumption L � λ prevents the appearance of terms delayed by more than 2L, or
equivalently, there are no multiple reflections at the junctions.

Using again that L� λ we note that cosα2(t
′+2L) cosα2(t

′) ≈ −1 whenever sinα1(t
′+

L) is nonzero, hence we may simplify the expression for ρ into

ρ(t, t′) = δ(t− t′) sinα2(t)− δ(t− t′ − 2L) sinα1(t
′ + L). (E.3)

At the same level of approximation, we have

τ(t, t′) = δ(t− t′ − L)[cosα2(t
′ + L)− cosα1(t

′) + 1]. (E.4)

Transformation to the energy domain gives

τ(E,E′) = eiE
′L
[
c2(E − E′)− ei(E−E

′)Lc1(E − E′) + 2πδ(E − E′)
]
,

ρ(E,E′) = s2(E − E′)− ei(E+E′)Ls1(E − E′),
(E.5)

with the definitions

cn(E) =

∫ ∞
−∞

dt eiEt cosαn(t), sn(E) =

∫ ∞
−∞

dt eiEt sinαn(t). (E.6)

The dominant contribution to the charge noise in Eq. (3.11) comes from the transmis-
sion amplitude, because of the 1/E singularity of c1(E) and c2(E) according to Eq. (D.1).
For the single-vortex noise we needed a finite detection time to cut off the singularity, here
the spacing L of the vortices is an effective cut-off in the case c1 = c2 of two identical
tunnel junctions. Then we find

VarQ ≈ e2λ2
∫ ∞
0

dE E
|1− eiEL|2

sinh2 πEλ
→ 2e2

π2
ln(L/λ), for L� λ. (E.7)

This is twice the result (1.1) because it refers to two vortices.
A constant applied voltage V cause the superconducting phase to increase linearly in

time, φ̇ = 2eV/~, hence λ = vF(ξ0/W )(~/2eV ). If V � ~vF/eL the injected edge vortices
from subsequent periods do not overlap. The resulting shot noise power P = (φ̇/2π) VarQ
takes the form

P =
e2

h

4eV

π2
ln

(
2eV LW

~vFξ0

)
, for

~vF
L

ξ0
W
� eV � ~vF

L
. (E.8)

The upper and lower bound on V ensure nonoverlapping vortices. The adiabaticity condi-
tion (4.1) gives an additional upper bound eV � ~vFξ0/W 2. Together these bounds give
the voltage range (5.5).

8If the Josephson junctions switch at different times T1 and T2, rather than simultaneously at t = 0,
the length L should be replaced by the effective vortex separation Leff = |L+ (T1 − T2)vF|. Such an offset
in the switching times can be avoided by ensuring that the superconducting phase in the two leads has the
same value, fixed by a ground contact to a bulk superconductor.

13



SciPost Physics Submission

References

[1] C. Kallin and J. Berlinsky, Chiral superconductors, Rep. Prog. Phys. 79, 054502
(2016), doi:10.1088/0034-4885/79/5/054502.

[2] T. Senthil and M. P. A. Fisher, Quasiparticle localization in superconductors with
spin-orbit scattering, Phys. Rev. B 61, 9690 (2000), doi:10.1103/PhysRevB.61.9690.

[3] N. Read and D. Green, Paired states of fermions in two dimensions with breaking
of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys.
Rev. B 61, 10267 (2000), doi:10.1103/PhysRevB.61.10267.

[4] M. Banerjee, M. Heiblum, V. Umansky, D. E. Feldman, Y. Oreg, and A. Stern,
Observation of half-integer thermal Hall conductance, Nature 559, 205 (2018),
doi:10.1038/s41586-018-0184-1.

[5] Xiao-Liang Qi and Shou-Cheng Zhang, Topological insulators and superconductors,
Rev. Mod. Phys. 83, 1057 (2011), doi:10.1103/RevModPhys.83.1057.

[6] D. Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors,
Phys. Rev. Lett. 86, 268 (2001), doi:10.1103/PhysRevLett.86.268.

[7] P. Fendley, M. P. A. Fisher, and C. Nayak, Edge states and tunneling of non-Abelian
quasiparticles in the ν = 5/2 quantum Hall state and p + ip superconductors, Phys.
Rev. B 75, 045317 (2007), doi:10.1103/PhysRevB.75.045317.

[8] L. Fu and C. L. Kane, Probing neutral Majorana fermion edge modes with charge
transport, Phys. Rev. Lett. 102, 216403 (2009), doi:10.1103/PhysRevLett.102.216403.

[9] A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Electrically detected interfer-
ometry of Majorana fermions in a topological insulator, Phys. Rev. Lett. 102, 216404
(2009), doi:10.1103/PhysRevLett.102.216404.
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