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1 Introduction19

This report consists a summary of our recent progress on the relationship between area law and20

OPE blocks. Area law has been a continuous topic in physics. The prototype of area law dates21

back to black hole physics in general relativity. The unusual property that the thermal entropy22

of a black hole is proportional to the event horizon of the black hole [1,2] has stimulated varies23

modern idea of theoretical physics, including the famous holographic principle.24

OPE block [3,4], on the other hand, is a relatively new topic in conformal field theory, though25

it has been noticed at the early stages of conformal field theory [5, 6]. The operator product26

expansion of two primary operators is equivalent to a summation of OPE blocks with corre-27

sponding three point function coefficients. It is a smeared operator which is generated from28

(quasi-)primary operator.29

Modular Hamiltonian, the logarithm of the reduced density matrix [7], plays a central role30

in the context of geometric entanglement entropy [8–11]. Entanglement entropy is a von31

Neumann entropy generated from reduced density matrix of a subregion of spacetime. An32

intriguing fact of entanglement entropy is that it obeys area law in the leading order, though33

one should introduce a cutoff to secure the divergent behaviour. Its connection to gravity34

has been established by the work of Ryu and Takayanagi [12], in which they proposed that35

the entanglement entropy of a CFT is equal to the area of a minimal surface in the bulk AdS36

spacetime.37

Modular Hamiltonian is a special OPE block generated by stress energy-momentum tensor38

for a ball region. This leads to the conjecture that OPE block may be related to area law as39

modular Hamiltonian. Indeed, in a series of papers [13–16], we have shown that the quantity40

which satisfies area law is type-(m) connected correlation function (CCF). More explicitly, the41

leading term of the type-(m) CCF is proportional to the area of the boundary of the ball. In the42

subleading terms, we find a logarithmic divergence with degree q. The degree q is a natural43

number which is no larger than 2 in general dimensions. The coefficient pq for the logarithmic44

term with degree q is cutoff independent. We establish a relationship between pq and type-45

(m− 1,1) CCF of OPE blocks for two balls which are far away to each other. The coefficient46

pq obeys a cyclic identity which is independent of the order of the operators.47

This paper is organised as follows. In section 2, we will introduce basic concepts and conven-48

tions used in this paper. Section 3 is devoted to the study of the new area law which is related49

to OPE blocks. Varies generalizations have been given in section 4. We conclude in section 550

with a number of general open problems that deserve, in our opinion, more work.51

2 Setup52

In this section, we introduce some basic concepts and conventions used in this paper.53
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2.1 Area law54

In continues quantum field theory(QFT), physical degrees exist at each point (t, x i), i = 1, · · · , d−155

of spacetime M . At each time slice t = t0, data on the Cauchy surface Σ determines the evalu-56

ation of fields. One can divide the surface Σ into a spacelike subregion A and its complement57

Ā, Σ= A∪ Ā. The boundary ∂ A is a codimension 2 surface whose area is A. The causal devel-58

opment of A is denoted by D(A). Physical data on A can only determine the evaluation of fields59

in D(A). The causal development D(A) is an independent subsystem of original spacetime M .60

Operators in this subsystem are collected to form an algebra a(A). Assume QFT in spacetime61

M is described by a density matrix ρ, then by integrating out the degree of freedom in the62

complement of Ā, one achieves a reduced density matrix ρA63

ρA = trĀρ. (2.1)

Reduced density matrix ρA is a special operator in a(A) since it describes the subsystem D(A)64

effectively. A general quantity Q(A) in a(A) is said to obey area law if its leading term is65

proportional to the area of boundary ∂ A,66

Q(A)∝A+ · · · . (2.2)

One typical example is the black hole entropy in Einstein gravity.Black hole entropy is propor-67

tional to the area of the event horizion,68

Sbh =
A
4G

(2.3)

where G is Newton constant. At the loop level, black hole entropy requires logarithmic correc-69

tions [17–22]. Usually, the logarithmic correction is in the form C logA where the constant C70

may encode useful information of the black hole.71

Sometimes the area law is divergent, one typical example is the geometric entanglement en-72

tropy73

SA = −trAρA logρA. (2.4)

In this case, one should insert a cutoff ε > 0,74

SA = γ
A
εd−2

+ · · · . (2.5)

In the subleading terms, there may be a logarithmic term whose coefficient is independent of75

the cutoff,76

SA = γ
Rd−2

εd−2
+ · · ·+ p log

R
ε
+ · · · (2.6)

where the parameter R is the characteristic length of region A.77

In this report, we will present a quantity Q(A) which has a slightly different logarithmic be-78

haviour79

Q(A) = γRd−2

εd−2
+ · · ·+ pq logq R

ε
+ · · · . (2.7)

The maximum power q of the logarithmic terms is a natural number. We will call it the degree80

of the quantity Q(A). The coefficient pq is cutoff independent, it encodes useful information81

of the theory. In the special case that the subregion A is a ball, R could be chosen as its radius.82

Subregion A and its causal development D(A) are in one-to-one correspondence, we will not83

distinguish them in the following.84

In two dimensions, there is no polynomial terms of R
ε , the modified “area law” is85

Q(A) = pq logq R
ε
+ · · · . (2.8)
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2.2 OPE block86

In d dimensional CFT, operators are classified into (quasi-)primary operators O and their de-87

scendants ∂µ∂ν · · ·O. A general primary operator is characterized by two quantum numbers,88

conformal weight∆ and so(d−1) spin Ji j with magnitude J . Under a global conformal trans-89

formation x → x ′, a primary spin 0 operator transforms as90

O(x)→ |∂ x ′

∂ x
|−∆/dO(x). (2.9)

where |∂ x ′/∂ x | is the Jacobian of the conformal transformation of the coordinates, ∆ is the91

conformal weight of the primary operator. Operator product expansion(OPE) of two separated92

primary scalar operators Oi(x1)O j(x2) is to expand their product in a local orthogonal and93

complete basis around a suitable point94

Oi(x1)O j(x2) =
∑

k

Ci jk|x12|∆k−∆i−∆ j (Ok(x2) + · · · ), (2.10)

where · · · are descendants of the primary operator Ok. Its form is fixed by global conformal95

symmetry, therefore it just contains kinematic information of the CFT. Here we expand the96

product around the point x2. The distance of any two points x i , x j is written as |x i j|. The97

constant Ci jk is called OPE coefficient which is related to the three point function of primary98

operators99

〈Oi(x1)O j(x2)Ok(x3)〉=
Ci jk

|x12|∆12,3 |x23|∆23,1 |x13|∆13,2
, ∆i j,k =∆i +∆ j −∆k. (2.11)

They are the only dynamical parameters in a CFT. The constants ∆i ,∆ j ,∆k are conformal100

weights of the corresponding primary operators. By collecting all kinematic terms in the sum-101

mation, we can rewrite OPE (2.10) as102

Oi(x1)O j(x2) = |x12|−∆i−∆ j

∑

k

Ci jkQi j
k (x1, x2). (2.12)

The objects Qi j
k (x1, x2) are called OPE blocks [3,5,6]. They are non-local operators in the CFT103

and depend on the position x1 and x2 of external operators. The upper index i and j show104

that it also depends on the quantum number of the external operators Oi and O j . It is easy to105

see that OPE block has dimension zero. Under a global conformal transformation x → x ′, an106

OPE block Qi j
k (x1, x2) will transform as107

Qi j
k (x1, x2)→ f (x ′1, x ′2)Q

i j
k (x

′
1, x ′2). (2.13)

The explicit form of f (x ′1, x ′2) is not important in this work. When the two external operators108

are the same, we have f (x ′1, x ′2) = 1 and OPE block will be invariant under global conformal109

transformation. One can also show that the OPE block is independent of the external operator110

in this special case. Due to this reason, we relabel such kind of OPE block as111

QA[Ok] =Qii
k (x1, x2). (2.14)

The subscript A denotes the region determined by the two points x1 and x2 where the two112

external operators insert into. The operator in square bracket reflects the fact that OPE block is113

generated by a primary operatorOk. We omit the information of i since OPE block is insensitive114

to the external operators in this case. We will classify the primary operator Ok into conserved115
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currents J and non-conserved operators O. A general symmetric traceless primary operator116

obeys the following unitary bound [23]117

�

∆≥ J + d − 2, J ≥ 1,
∆≥ d−2

2 , J = 0.

A conserved current J with spin J(J ≥ 1)will satisfy∆= J+d−2. All other primary operators118

are non-conserved operators. Correspondingly, the OPE block (2.14) generated by conserved119

currents J will be called type-J OPE block. On the other hand, the OPE block (2.14) generated120

by non-conserved operators O will be called type-O OPE block.121

When two operators are time-like separated, region A is a causal diamond. The two operators122

are at the sharp corner of the diamond A. We can use conformal transformation to fix123

x1 = (1, ~x0), x2 = (−1, ~x0), (2.15)

then the causal diamond A intersects t = 0 slice with a unit ball which we will also denote it124

as A125

A= {(0, ~x)|(~x − ~x0)
2 ≤ 1}. (2.16)

The center of the ball is ~x0. The boundary of the ball A is a unit sphere ∂ A. In the context of126

geometric entanglement entropy, the surface ∂ A is an entanglement surface which separates127

the ball A and its complement. Leading term of entanglement entropy is proportional to the128

area of surface ∂ A in general higher dimensions (d > 2). In two dimensions, the entanglement129

entropy is logarithmically divergent with the logarithmic degree q = 1. There is a conformal130

Killing vector K which preserves the diamond A,131

Kµ =
1
2
(1− (~x − ~xA)

2 − t2,−2t ~x). (2.17)

Conformal Killing vector K is null on the boundary of the diamond A. It generates modular132

flow of the diamond A. Type-O OPE block corresponds to point pair (2.15) or unit ball A (2.16)133

is [4]134

QA[Oµ1···µJ
] = cOµ1 ···µJ

∫

D(A)
dd xKµ1 · · ·KµJ |K |∆−d−JOµ1···µJ

, (2.18)

where the primary operator Oµ1···µJ
is non-conserved135

∂ µ1Oµ1···µJ
6= 0. (2.19)

It has dimension ∆ and spin J . When the operator is a conserved current136

∂ µ1Jµ1···µJ
= 0, (2.20)

the corresponding type-J OPE block is137

QA[Jµ1···µJ
] = cJµ1 ···µJ

∫

A
dd−1~x(K0)J−1J0···0. (2.21)

It can be obtained from (2.18) by using conservation law (2.20) and reducing it to a lower138

d−1 dimensional integral. The coefficient cJµ1 ···µJ
is also redefined at the same time. In (2.18)139

and (2.21), the coefficients cOµ1 ···µJ
and cJµ1 ···µJ

are free parameters, we set them to be 1.140
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2.3 Modular Hamiltonian and area law141

A very special type-J OPE block is modular Hamiltonian [7,24] of the ball A,142

HA = 2π

∫

A
dd−1~xK0T00 = 2π

∫

A
dd−1~x

1− (~x − ~x0)2

2
T00(0, ~x). (2.22)

Modular Hamiltonian is the logarithm of the reduced density matrix ρA143

HA = − logρA. (2.23)

It plays a central role in the context of entanglement entropy,144

SA = −trAρA logρA = trAe−HAHA. (2.24)

More generally, Rényi entanglement entropy145

S(n)A =
1

1− n
log trAρ

n
A (2.25)

has been shown to satisfy an area law generally146

S(n)A = γ
A
εd−2

+ · · · , (2.26)

where A is the area of the entanglement surface ∂ A and ε is a UV cutoff. The constant γ is147

cutoff dependent. The subleading terms · · · contain a logarithmic term with degree q = 1 in148

even dimensions149

S(n)A = γ
A
εd−2

+ · · ·+ p1(n) log
R
ε
+ · · · , (2.27)

where we have inserted back the radius R = 1. The area A is related to the radius R through150

the power law151

A∼ Rd−2. (2.28)

The coefficient p1(n) encodes useful information of the CFT. The relation between modular152

Hamiltonian and area law motivates the conjecture that OPE block maybe related to area153

law in a suitable way. We will give the framework to discuss this problem in the following154

subsection.155

2.4 Deformed reduced density matrix and connected correlation function156

Given a primary operator O in a ball A, one can always define a corresponding OPE block157

QA[O]. We construct an exponential operator formally [14]158

ρA = e−µQA (2.29)

which is still in subregion A. The constant µ is free. Operators of the form (2.29) is called159

deformed reduced density matrix. Recall that modular Hamiltonian is a special OPE block, if160

one replaces OPE block by modular Hamiltonian in (2.29) and set µ= 1, the deformed reduced161

density matrix becomes reduced density matrix exactly. We can relax the definition, namely,162

allow QA in (2.29) is a linear superposition of several OPE blocks. Note we use the same symbol163

ρA to label deformed reduced density matrix. As a naive generalization of Rényi entanglement164

entropy, we construct logarithm of the vacuum expectation value of the deformed reduced165

density matrix,166

TA(µ) = log〈ρA〉= log〈e−µQA〉. (2.30)
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When QA is modular Hamiltonian, the above quantity is related to Rényi entropy for vacuum167

state.168

However, a direct computation of TA(µ) is hard in general. A much more severe problem is169

that OPE block has no lower bound in general, therefore the definition is not valid for general170

OPE blocks. To solve this problem, we observe that TA(µ) could be expanded for small µ,171

TA(µ) =
∞
∑

m=1

(−µ)m

m!
〈Qm

A 〉c . (2.31)

The Tayler expansion coefficient172

〈Qm
A 〉c = (−1)m

∂ m

∂ µm
TA(µ)|µ→0 (2.32)

is called Type-(m) connected correlation function (CCF) of OPE block QA. For each definite m,173

one can always calculate the corresponding CCF without knowing TA(µ). The first few CCFs174

are175

〈Q2
A〉c = 〈Q2

A〉 − 〈QA〉2,

〈Q3
A〉c = 〈Q3

A〉 − 3〈Q2
A〉〈QA〉+ 2〈QA〉3. (2.33)

Using CCF, there is no issue of lower bound of OPE block. As an application of the concept CCF,176

we set the OPE block to modular Hamiltonian, then it is easy to show that CCF of modular177

Hamiltonian HA satisfies area law with logarithmic degree q = 1 in even dimensions,178

〈Hm
A 〉c = γ̃

A
εd−2

+ · · ·+ p̃(m)1 log
R
ε
+ · · · , m≥ 1. (2.34)

The coefficient p̃(m)1 is determined from p1(n) by179

p̃(m)1 = (−1)m∂ m
n (1− n)p1(n)|n→1. (2.35)

There could be multiple spacelike-separated balls A1, A2, · · · , each region has associate OPE180

block QAi
. We insert mi OPE blocks into region Ai , then we can define corresponding type-Y181

CCF182

〈Qm1
A1

Qm2
A2
· · · 〉c (2.36)

where the Young diagram Y is183

Y = (m1, m2, · · · ), m1 ≥ m2 ≥ · · · ≥ 1. (2.37)

The generator of all type-Y CCF is184

T∪Ai
(µ1,µ2, · · · ) = log

〈e−
∑

i µiQAi 〉
∏

i〈e
−µiQAi 〉

. (2.38)

When there are only two balls A and B, the generator is185

TA∪B(µ1,µ2) = log
〈e−µ1QA−µ2QB〉
〈e−µ1QA〉〈e−µ2QB〉

=
∑

m1≥1,m2≥1

(−1)m1+m2µ
m1
1 µ

m2
2

m1!m2!
〈Qm1

A Qm2
B 〉c . (2.39)

We parameterize A and B as186

A= {(0, ~x)|(~x − ~x0)
2 ≤ 1}, B = {(0, ~x)|~x ≤ R′2}. (2.40)
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There is only one cross ratio187

ξ=
4R′

x2
0 − (1− R′)2

. (2.41)

When the two regions A and B are spacelike-separated, |x0|> 1+R′, the cross ratio is between188

0 and 1,189

0< ξ < 1. (2.42)

In some cases, it is more convenient to use an equivalent cross ratio190

η=
ξ

1− ξ
=

4R′

x2
0 − (1+ R′)2

. (2.43)

For spacelike-separated regions A and B, the range of the cross ratio η is191

0< η <∞. (2.44)

Since OPE block QA[O] is invariant under conformal transformation, any type-(m1, m2) CCF192

should be a function of cross ratio ξ or η. Actually the OPE block is an eigenvector of the193

conformal Casimir194

[L2,QA[O]] = C∆,JQA[O] (2.45)

where L2 is the Casimir operator of global conformal group. The eigenvalue C∆,J is195

C∆,J = −∆(∆− d)− J(J + d − 2). (2.46)

Therefore, any type-(m− 1,1) CCF should be a conformal block196

〈QA[O1] · · ·QA[Om−1]QB[Om]〉c = D(d)[O1, · · · ,Om]G
(d)
∆m,Jm

(ξ). (2.47)

The subscript∆m, Jm are the conformal weight and spin of the primary operator Om. The index197

(d) is used to label the dimension of spacetime. The conformal block can be constructed ex-198

plicitly in even dimensions [25,26]. In this paper, we just need the diagonal limit of conformal199

block [27]. Any type-(m1, m2) CCF with m1 ≥ m2 ≥ 2 is not a conformal block .200

3 Area law201

We conjecture that the type-(m) CCF of OPE blocks obeys the following area law202

〈QA[O1] · · ·QA[Om]〉c = γ
Rd−2

εd−2
+ · · ·+ pq logq R

ε
+ · · · . (3.1)

The leading term is proportional to the area of the boundary ∂ A. We inserted the radius R= 1203

into the formula to balance the dimension. The small positive constant ε is the UV cutoff which204

is roughly the distance from the cutoff to the boundary ∂ A. The constant γ depends on the205

choice of the cutoff and the method of regularization, we will not be interested in its explicit206

value. The · · · terms are subleading and cutoff dependent. Therefore we omit their forms. The207

degree q characterizes the maximal power of the logarithmic terms. The coefficient pq is not208

invariant under the rescaling of the cutoff, therefore it encodes detail universal information of209

the theory. When all the OPE blocks are equal to modular Hamiltonian, the degree q = 1 for210

even dimensions according to (2.34). However, as we will see, q is not necessary equal to 1211

in general. To distinguish different type-(m) CCFs in different dimensions, we write the area212

law (3.1) more explicitly as213

〈QA[O1] · · ·QA[Om]〉c = γ[O1, · · · ,Om]
Rd−2

εd−2
+ · · ·+ p(d)q [O1, · · · ,Om] logq R

ε
+ · · · . (3.2)
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3.1 Continuation214

The two formulas (2.47) and (3.2) are actually related to each other through an analytic215

continuation. We use the example of two dimensional modular Hamiltonian to illustrate this216

relation. For CFT2, the modular Hamiltonian can be decomposed into holomorphic and anti-217

holomorphic part, we focus on the holomorphic part218

HA = −
∫ 1

−1

dz
1− z2

2
T (z + x0) + c. (3.3)

The constant c can be fixed by the normalization condition219

trAρA = trAe−HA = 1. (3.4)

Its value doesn’t affect the type-Y CCF for any
∑

i mi ≥ 2. We also used the convention220

T (z) = −2πTzz where the subscript z is the holomorphic coordinate z = t + x . The radius221

of the interval A is 1, we have shifted variable z such that the dependence of the center x0 is222

in the stress tensor. The modular Hamiltonian of region B can be obtained by setting x0 = 0223

and restoring the radius R′. The type-(m− 1,1) CCF of modular Hamiltonian is224

〈Hm−1
A HB〉c = D(2)[Tµ1ν1

, · · · , Tµmνm
]G(2)2 (η). (3.5)

The two dimensional conformal block for a chiral operator can be labeled by the conformal225

weight h of the operator226

G(2)h (η) = (−η)
h

2F1(h, h, 2h,−η). (3.6)

We can move the interval A to B such that they coincide. In this limit, type-(m − 1,1) CCF227

should approach type-(m) CCF . This is equivalent to set η→−1. We can set x0→ 0 and then228

take the limit R′→ 1,229

xA→ 0, R′ = 1− ε, ε→ 0. (3.7)

The cross ratio ξ→−∞ or η→−1 by230

ξ= −
4(1− ε)
ε2

≈ −
4
ε2

, η= −
4(1− ε)
(2− ε)2

≈ −1+
ε2

4
. (3.8)

On the right hand side of (3.5), we find a logarithmic divergent term in this limit231

G(2)2 (η) = 12 log
2
ε
+ · · ·= 12 log

R
ε
+ · · · (3.9)

The left hand side of (3.5) approaches type-(m) CCF, therefore232

〈Hm
A 〉c = 12D(2)[Tµ1ν1

, · · · , Tµmνm
] log

R
ε
+ · · · . (3.10)

We read out the cutoff independent coefficient233

p(2)1 [Tµ1ν1
, · · · , Tµmνm

] = 12D(2)[Tµ1ν1
, · · · , Tµmνm

]. (3.11)

The relation (3.11) is a typical UV/IR relation for modular Hamiltonian. The left hand side is234

the universal coefficient for B and A coincides (UV). On the right hand side, the D coefficient235

characterizes the leading order behaviour of CCF when B and A are far away to each other236

(IR). They provide equivalent information of the CFT since the constant 12 is completely fixed237

by conformal symmetry. The continuation of conformal block can be generalized to higher238
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dimensions. For example, in four dimensions, the conformal block associated with stress tensor239

becomes divergent as A approaches B,240

G(4)4,2 ≈ γ̃
R2

ε2
+ · · · − 120 log

R
ε
+ · · · . (3.12)

The leading term is exactly area law and the logarithmic divergent term also appears in the241

subleading terms. We can read type-(m) CCF of modular Hamiltonian in four dimensions242

〈Hm
A 〉c = γ

R2

ε2
+ · · ·+ p(4)1 [Tµ1ν1

, · · · , Tµmνm
] log

R
ε
+ · · · (3.13)

with243

p(4)1 [Tµ1ν1
, · · · , Tµmνm

] = −120D(4)[Tµ1ν1
, · · · , Tµmνm

]. (3.14)

Note we obtain the area law and logarithmic behaviour of type-(m) CCF of modular Hamil-244

tonian without using any knowledge of Rényi entanglement entropy. The method of ana-245

lytic continuation can be applied for general dimensions and OPE blocks. A conformal block246

G(d)∆,J (ξ) obeys area law in the limit ξ→−∞ in even dimensions. It has degree q = 1 only for247

∆= J + d − 2,248

G(d)∆,J (ξ) = γ̃
Rd−2

εd−2
+ · · ·+ E(d)[∆, J] log

R
ε
+ · · · , ξ→−∞. (3.15)

This means that type-(m) CCF of type-J OPE blocks may always obey area law with degree249

q = 1, the cutoff independent coefficient is250

p(d)q [O1, · · · ,Om] = E(d)[Om]× D(d)[O1, · · · ,Om]. (3.16)

We have replaced the quantum numbers in E function by the corresponding primary opera-251

tor. For non-conserved operators, the conformal block G(d)∆,J also obeys area law in the limit252

ξ→−∞ in even dimension, though it has degree q = 2253

G(d)∆,J (ξ) = γ̃
Rd−2

εd−2
+ · · ·+ E(d)[∆, J] log2 log

R
ε
+ · · · , ξ→−∞. (3.17)

Therefore, type-(m) CCF of type-O OPE blocks obeys area law with degree q = 2. We can254

obtain similar UV/IR relations as (3.16). In odd dimensions, the story is the same. The degree255

q is 0 for type-(m) CCF of type-J OPE blocks and 1 for type-O OPE blocks.256

3.2 Kinematic information257

The function E(d)[O] is completely fixed by conformal symmetry. It can be obtained by reading258

out the coefficient of the logarithmic term with degree q. For each fixed quantum number ∆259

and J , there is a unique number E(d)[O]. For type-J OPE block in two dimensions, the primary260

operator O has dimension∆= J = h. The conformal block (3.6) has degree q = 1 in the limit261

η→−1. The function E(2)[O] is262

E(2)[O] = 2Γ (2h)
Γ (h)2

, ∆= J = h. (3.18)

For type-O OPE block, the primary operator O has dimension ∆ = h+ h̄ and spin J = h− h̄.263

The conformal block has degree q = 2 in the limit η→−1. The function E(2)[O] is264

E(2)[O] =























24hΓ (h+ 1
2 )

2

πΓ (h)2 J = 0, h> 0

−42h−1Γ(h− 1
2)Γ(h+ 1

2)
πΓ (h−1)Γ (h) J = 1, h> 1

42h−3(h−2)(h−1)(2h−3)(2h−1)Γ(h− 3
2)

2

πΓ (h)2 J = 2, h> 2
· · ·

(3.19)
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In four dimensions, we also find265

E(4)[O] =











12 ∆= 3, J = 1
−120 ∆= 4, J = 2
840 ∆= 5, J = 3
· · ·

(3.20)

for conserved currents and266

E(4)[O] =



































−22∆−1Γ (∆−1
2 )Γ (

∆+1
2 )

πΓ (∆−2
2 )2

∆> 1, J = 0,
22∆−1Γ (∆2 )Γ (

∆+2
2 )

πΓ (∆−3
2 )Γ (

∆+1
2 )

∆> 3, J = 1,

−4∆−1(∆−2)Γ (∆−3
2 )Γ (

∆+3
2 )

πΓ (∆−4
2 )Γ (

∆+2
2 )

∆> 4, J = 2,

· · ·

(3.21)

for non-conserved operators. In three dimensions, we find267

E(3)[O] =































−22∆−1(∆−1)Γ (∆− 1
2 )p

πΓ (∆−1) ∆> 1
2 , J = 0.

2∆+1∆Γ (∆− 1
2 )

Γ (∆−2
2 )Γ (

∆+1
2 )

∆> 2, J = 1,

−22∆−1(∆2−1)Γ (∆− 1
2 )p

π(∆−2)2∆Γ (∆−3) ∆> 3, J = 2,

· · ·

(3.22)

for non-conserved operators. Note for conserved currents in odd dimensions, the function268

E(3)[O]may depend on explicit choice of cutoff. For example, a transformation ε→ ε(1+ aε)269

may shift its value. This is because the degree is 0, there is no logarithmic divergence at all.270

3.3 UV/IR relation271

The UV/IR relation (3.16) relates type-(m) CCF to type-(m − 1,1) CCF. This relation may272

simplify computation in many cases. To see this point, let’s compute the following type-(2)273

CCF in two dimensions274

〈QA[O]2〉c =

∫ 1

−1

dz1

∫ 1

−1

dz2
(1− z2

1)
h−1(1− z2

2)
h−1

(z1 − z2)2h

=
(−1)−hpπΓ (h)
Γ (h+ 1

2)

∫ 1

−1

dz1
1

1− z2
1

=
(−1)−hpπΓ (h)
Γ (h+ 1

2)
log

2
ε

. (3.23)

This is a double integral with poles at z1 = z2. We regularize the integral by ignoring these275

poles at the second step. At the last step, we insert a UV cutoff to regularize the integral.276

However, using UV/IR relation, one just need to fix the coefficient D which is related to the277

large distance behaviour of the type-(1,1) CCF,278

〈QA[O]QB[O]〉c =
∫ 1

−1

dz1

∫ 1

−1

dz2
(1− z2

1)
h−1(1− z2

2)
h−1

(z1 − z2 + x0)2h
. (3.24)
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In the large distance limit, x0→∞, the integral becomes simpler279

〈QA[O]QB[O]〉c ≈
∫ 1

−1

dz1

∫ 1

−1

dz2
(1− z2

1)
h−1(1− z2

2)
h−1

x2h
0

= 4−h(
p
πΓ (h)

Γ
�

h+ 1
2

�)2ηh. (3.25)

We have used the relation η≈ 4
x2

0
in the large distance limit. Then we can read out280

D(2)[O,O] = (−1)−h4−h(
p
πΓ (h)

Γ
�

h+ 1
2

�)2. (3.26)

Combining UV/IR relation and (3.18), we find281

p(2)1 [O,O] = E(2)[O]× D(2)[O,O] = (−1)−hpπΓ (h)
Γ (h+ 1

2)
. (3.27)

The result is exactly the same as (3.23). We use UV/IR relation to obtain type-(3) CCF for282

type-J OPE blocks in two dimensions, the cutoff independent coefficient is283

p(2)1 [O1,O2,O3] =
C123π

3/2(−1)
h1+h2+h3

2 Γ (h1)Γ (h2)Γ (h3)κ

Γ (1+h1+h2−h3
2 )Γ (1+h1+h3−h2

2 )Γ (1+h2+h3−h1
2 )Γ (h1+h2+h3

2 )
, (3.28)

where the constant κ = 1
2[1 + (−1)h1+h2+h3]. We notice that the result is totally symmetric284

under exchange of any two conformal weights. Since there are different ways to uplift type-(m)285

to type-(m−1, 1), the cutoff independent coefficient should be identical since they characterize286

the same CCF after taking the limit A→ B. For m= 3, this is a cyclic identity287

p(d)q [O1,O2,O3] = p(d)q [O2,O3,O1] = p(d)q [O3,O1,O2]. (3.29)

UV/IR relation and the cyclic identity has been checked for type-(m) CCF (m=2,3) in four288

dimensions. We list the cutoff independent coefficients below [16].289

• Type-(2). The normalization constants are set to 1.290

– Spin 1-1 conserved currents.291

p(4)1 [Jµ,Jν] = −
π2

3
. (3.30)

– Spin 2-2 conserved currents.292

p(4)1 [Tµν, Tρσ] = −
π2

40
. (3.31)

– Spin 0-0 non-conserved operators.293

p(4)2 [O,O] = −
4π2(∆− 1)Γ (∆− 2)2Γ (∆2 )

4

Γ (∆)2Γ (∆− 1)2
. (3.32)

– Spin 1-1 non-conserved operators.294

p(4)2 [Oµ,Oν] = −
41−∆π3∆Γ (∆−3

2 )Γ (
∆+1

2 )

Γ (∆2 + 1)2
, ∆> 3. (3.33)
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– Spin 2-2 non-conserved operators.295

p(4)2 [Oµν,Oρσ] = −
3π2(∆− 2)∆2Γ (∆2 − 2)2Γ (∆2 − 1)2

64Γ (∆− 4)Γ (∆+ 2)
, ∆> 4. (3.34)

• Type-(3).296

– Spin 1-1-2 conserved currents. The three point function of zero components are297

fixed by conformal symmetry298

〈T00(x1)J0(x2)J0(x3)〉c =
CTJJ

x4
12 x2

13 x2
23

. (3.35)

Then the coefficient299

p(4)1 [Jµ,Jν, Tρσ] = −
π3

2
CTJJ . (3.36)

– Spin 2-2-2 conserved currents. The three point function of zero components are300

fixed by conformal symmetry301

〈T00(x1)T00(x2)T00(x3)〉c =
CT T T

x4
12 x4

13 x4
23

. (3.37)

Then the coefficient302

p(4)1 [Tµν, Tρσ, Tαβ] =
π3

12
CT T T . (3.38)

– Spin 0-0-0 non-conserved currents.303

p(4)2 [O1,O2,O3] = −24−∆1−∆2−∆3π3C123

∫

D2

dζdζ̄(ζ+ ζ̄)2
∫

D2

dζ′dζ̄′(ζ′ + ζ̄′)2

×(1− ζ2)
∆1−4

2 (1− ζ̄2)
∆1−4

2 (1− ζ′2)
∆2−4

2 (1− ζ̄′2)
∆2−4

2

∫ π

0

dθ
sinθ

(a+ b cosθ )
∆12,3

2

,

(3.39)

Though the expression (3.39) is not symmetric superficially under exchange of any two con-304

formal weights, we checked explicitly that it satisfies the cyclic identity for integer conformal305

weights. For m= 4, the UV/IR relation and the cyclic identity are much more harder to check.306

We considered type-(4) CCF for massless free scalar theory [13, 14]. In this theory, one can307

construct an infinite tower of conserved currents with even spin [28]. The four point functions308

can be calculated explicitly. Therefore we can find type-(3,1) and type-(4) CCFs and read out309

the corresponding coefficients. For example, for spin-2-2-2-4 conserved currents [14],310

D[2,2, 2,4] =
3

70
D[2, 2,4, 2]. (3.40)

Both of them leads to the cutoff coefficients311

p(2)1 [2, 2,2, 4] =
2Γ (8)
Γ (4)2

D[2, 2,2, 4] =
2Γ (4)
Γ (2)2

D[2, 2,4,2] = p(2)1 [2,2, 4,2]. (3.41)

The cyclic identity is obeyed.312
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3.4 Discussion313

The UV/IR relation should be slightly modified when the CCF contains both type-J and type-O314

OPE blocks. One simple example is the following type-(3) CCF315

〈QA[J ]QA[O]QA[Õ]〉c (3.42)

where QA[J ] is a type-J OPE block while QA[O] and QA[Õ] are type-O OPE blocks. This CCF316

is related to the following two type-(2,1) CCFs317

〈QA[Õ]QA[J ]QB[O]〉c = D(d)[Õ,J ,O]G(d)∆,J (ξ), (3.43)

〈QA[O]QA[Õ]QB[J ]〉c = D(d)[O, Õ,J ]G(d)
∆′,J ′(ξ). (3.44)

We choose d = 4. Taking the limit A→ B from (3.43), we find a type-(3) CCF with degree318

q = 2, the UV/IR relation reads319

p(4)2 [Õ,J ,O] = E(4)[O]× D(4)[Õ,J ,O] (3.45)

We can also take the limit A→ B from (3.44), then we will find a type-(3) CCF with degree320

q = 1, the UV/IR relation reads321

p(4)1 [O, Õ,J ] = E(4)[J ]× D(4)[O, Õ,J ]. (3.46)

The equations (3.45) and (3.46) are not identical superficially since the subscript q are not322

equal to each other. However, an explicit calculation for spin 2-0-0 and spin 2-2-0 in four323

dimensions [16] shows that the coefficient D(4)[O, Õ,J ] is actually divergent logarithmically,324

325

D(4)[O, Õ,J ] = D(4)log[O, Õ,J ] log
R
ε
+ · · · . (3.47)

The terms in · · · are finite and depends on cutoff scale. Due to the logarithmic divergence326

behaviour of the coefficient D(4)[O, Õ,J ], the degree of type-(3) CCF from (3.44) increases327

1, the modified UV/IR relation becomes328

p(4)2 [O, Õ,J ] = E(4)[J ]× D(4)log[O, Õ,J ]. (3.48)

We checked explicitly that the two constants (3.45) and (3.48) are equal to each other. The329

cyclic identity is still satisfied after counting the logarithmic divergence of the D function.330

4 Generalizations331

The area law and logarithmic behaviour in the subleading terms can be extended in different332

directions. In this section, we mention several extensions.333

• UV/IR relation. In general, one can uplift type-(m) CCF to type-(p, m− p) CCF334

〈QA[O1] · · ·QA[Om]〉c
upli f t
−→ 〈QA[O1] · · ·QA[Op]QB[Op+1] · · ·QB[Om]〉c , 1≤ p ≤ m−1.

(4.1)
When p is not 1 and m− 1, the type-(p, m− p) CCF is not a conformal block. It is still335

a function of cross ratio ξ, therefore it should reproduce type-(m) CCF after taking the336

limit A→ B,337

〈QA[O1] · · ·QA[Om]〉c = lim
ξ→−∞

〈QA[O1] · · ·QA[Op]QB[Op+1] · · ·QB[Om]〉c . (4.2)
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Obviously, this also defines a UV/IR relation between p(d)q and several coefficients in the338

type-(p, m − p) CCF. Since the right hand side is not proportional to conformal block,339

it is not easy to write out an explicit formula. Nevertheless, one may still check the340

relation (4.2) case by case. One example is to consider the type-(2,2) CCF of modular341

Hamiltonian in CFT2. By making use of the universal feature of CCF of stress tensor, one342

can fix the generator of type-(m1, m2) CCFs [14]343

TA∪B(µ1,µ2) = −
c
2

tr log[1−
�

A C
D B

�

], (4.3)

where the matrices A,B,C and D are344

Ax x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)i(x−x ′)F(x , x ′, y), (4.4)

Bx x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)−i(x−x ′)F(x ′, x , y),(4.5)

Cx x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)i(x+x ′)F(x ,−x ′, y),(4.6)

Dx x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)−i(x+x ′)F(−x , x ′, y).(4.7)

with345

F(x , x ′, y) = 2F1(1+ i x , 1− i y, 2,−η) 2F1(1− i x ′, 1+ i y, 2,−η)
+2F1(1+ i x , 1+ i y, 2,−η) 2F1(1− i x ′, 1− i y, 2,−η). (4.8)

F and its complex conjugate obey346

F∗(x , x ′, y) = F(x ′, x , y), F∗(−x ,−x ′, y) = F(x , x ′, y). (4.9)

so347

A= B∗, C =D∗. (4.10)

We read out the first few CCFs348

〈Hm
A 〉c =

cm!
12

log
2
ε

,

〈Hm−1
A HB〉c =

cm!
144

G(2)2 (η).

〈H2
AH2

B〉c = c{
1+η
η2
[4Li3(1+η)− 2 log(1+η)Li2(1+η) +

2 log(1+η)
3

Li2(−η)

+
1+η

3
log2(1+η)−

π2

3
log(1+η)− 4ζ(3)] +

2+η
3η
[2Li2(−η) + 3 log(1+η)]−

4
3
},

(4.11)

where the polylogrithm Lin(z) is349

Lin(z) =
∞
∑

k=1

zk

kn
. (4.12)

The relation (4.2) can be checked for p = 2, m= 4. The right hand side is350

lim
η→−1

〈H2
AH2

B〉c = 2c log
2
ε
+ · · · . (4.13)

The cutoff independent coefficient 2c matches with the one in 〈H4
A〉c .351
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• New power law. In the previous discussion, we focus on the case that B and A coincide352

with each other. However, there are other cases that the CCFs are still divergent. One353

can consider the limit that A just attaches the edge of B,354

R′ = 1, x0 = 2+ ε, ε→ 0. (4.14)

The cross ratio ξ does not approach −∞ but 1355

ξ=
4

(2+ ε)2
= 1− ε+ · · · . (4.15)

We can define a new CCF which is also divergent from type-(m− 1, 1) CCF356

〈QA[O1] · · ·QA[Om−1]�QB[Om]〉c = lim
ξ→1
〈QA[O1] · · ·QA[Om−1]QB[Om]〉c (4.16)

The continuation of conformal block tells us that the new CCF obeys a new power law357

〈QA[O1] · · ·QA[Om−1]�QB[Om]〉c = γ̄(
R
ε
)

d−2
2 + · · ·+ p̄(d)q logq R

ε
+ · · · . (4.17)

The leading term is proportional to358

L= R
d−2

2 =
p
A (4.18)

which is the characteristic length of the region A in four dimensions. In two dimensions,359

the leading term is a logarithmic term with power q. In this case, there is a new UV/IR360

relation between p̄q and D coefficient , we write it schematically361

p̄q = Ē × D. (4.19)

The function Ē(d)[O] is proportional to E(d)[O]. The proportional constant is shown362

below.363

– d is even.364

∗ For conserved current O with conformal weight ∆= J + d − 2,365

Ē(d)[O] = (−1)J

2
E(d)[O]. (4.20)

∗ For non-conserved current O with conformal weight ∆ and spin J ,366

Ē(d)[O] = (−1)J

4
E(d)[O]. (4.21)

We checked the relation for d = 2, 4 and spin J ≤ 2.367

– d is odd.368

∗ For non-conserved current O with conformal weight ∆ and spin J ,369

Ē(d)[O] = (−1)J

2
E(d)[O]. (4.22)

∗ For conserved current O, there is no logarithmic divergent term in the CCF.370

We checked the relation for d = 3 and spin J ≤ 2.371

Since D function is the same, we find a relation between two cutoff independent coeffi-372

cients p and p̄,373

p
E
=

p̄
Ē

. (4.23)
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5 Summary and outlook374

In this report, we have introduced the area law (3.1) of type-(m) CCF of OPE blocks. It is a375

generalization of the area law of entanglement entropy. We will list several open problems for376

future work.377

• Higher m ≥ 4. In most of the work, we restrict to the region m ≥ 3. This is because378

the structure of m-point correlation function of primary operators in CFT is fixed up to379

m= 3. For m≥ 4, it is harder to extract cutoff independent coefficient.380

• UV/IR relation. The UV/IR relation381

p = E × D (5.1)

has been checked for several examples. A rigorous proof is still lacking.382

• Cyclic identity. The cyclic identity of p reflects the fact that p is independent of the way383

to regularize the type-(m) CCF. However, we feel that a direct computation is impossible384

to check this identity.385

• New power law. We generalize the type-(m1, m2) CCF to the case that A and B just386

attaches with each other. The corresponding CCF is divergent with a new power law387

(4.17). The corresponding new UV/IR relation388

p̄ = Ē × D (5.2)

also needs understanding.389

• Deformed reduced density matrix. This exponential operator is similar to “Wilson loop”390

in gauge theories [29,30] despite the fact that the OPE block has no lower bound in gen-391

eral. When the OPE block has a lower bound, the logarithm of the vacuum expectation392

value of the deformed reduced density matrix393

log〈e−µQA〉 (5.3)

should also obey area law with logarithmic divergence. There may be a gravitational394

dual for this quantity as [31, 32]. The similarity of the area law between this program395

and black hole entropy implies that the classical part contributes to the area term while396

quantum effects lead to logarithmic corrections.397

• Multiple integrals. According to the method of continuation of conformal block, area law398

of type-(m) CCF is protected by conformal invariance. However, the method of contin-399

uation itself cannot guarantee that it always leads to correct result. One has to develop400

other methods to deal with the multiple integrals. In two dimensions, one should gen-401

eralize Selberg integrals [33,34] to include more parameters [15].402
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