

Area law and OPE blocks in conformal field theory

Jiang Long

School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

? [longjiang@hust.edu.cn](mailto:[email])

4th International Conference on Holography, String Theory and Discrete Approach Hanoi, Vietnam, 2020 doi:10.21468/[SciPostPhysProc.4](https://doi.org/10.21468/SciPostPhysProc.4)

Abstract

This is an introduction to the relationship between area law and OPE blocks in conformal field theory.

Copyright J.Long This work is licensed under the Creative Commons [Attribution 4.0 International License.](http://creativecommons.org/licenses/by/4.0/) Published by the SciPost Foundation.

Received ??-??-20?? Accepted ??-??-20?? Published ??-??-20?? doi:10.21468/[SciPostPhysProc.4.??](https://doi.org/10.21468/SciPostPhysProc.4.??)

1

² **Contents**

1 Introduction

 This report consists a summary of our recent progress on the relationship between area law and $_{21}$ OPE blocks. Area law has been a continuous topic in physics. The prototype of area law dates back to black hole physics in general relativity. The unusual property that the thermal entropy of a black hole is proportional to the event horizon of the black hole [[1,](#page-16-2)[2](#page-17-0)] has stimulated varies modern idea of theoretical physics, including the famous holographic principle. OPE block [[3,](#page-17-1)[4](#page-17-2)], on the other hand, is a relatively new topic in conformal field theory, though it has been noticed at the early stages of conformal field theory [[5,](#page-17-3) [6](#page-17-4)]. The operator product expansion of two primary operators is equivalent to a summation of OPE blocks with corre-sponding three point function coefficients. It is a smeared operator which is generated from

(quasi-)primary operator.

 Modular Hamiltonian, the logarithm of the reduced density matrix [[7](#page-17-5)], plays a central role in the context of geometric entanglement entropy $[8-11]$ $[8-11]$ $[8-11]$. Entanglement entropy is a von Neumann entropy generated from reduced density matrix of a subregion of spacetime. An intriguing fact of entanglement entropy is that it obeys area law in the leading order, though 34 one should introduce a cutoff to secure the divergent behaviour. Its connection to gravity has been established by the work of Ryu and Takayanagi [[12](#page-17-8)], in which they proposed that the entanglement entropy of a CFT is equal to the area of a minimal surface in the bulk AdS spacetime. Modular Hamiltonian is a special OPE block generated by stress energy-momentum tensor

 for a ball region. This leads to the conjecture that OPE block may be related to area law as modular Hamiltonian. Indeed, in a series of papers [[13](#page-17-9)[–16](#page-17-10)], we have shown that the quantity which satisfies area law is type-(*m*) connected correlation function (CCF). More explicitly, the leading term of the type-(*m*) CCF is proportional to the area of the boundary of the ball. In the subleading terms, we find a logarithmic divergence with degree *q*. The degree *q* is a natural μ_{4} number which is no larger than 2 in general dimensions. The coefficient p_{q} for the logarithmic 45 term with degree *q* is cutoff independent. We establish a relationship between p_q and type- (*m* − 1, 1) CCF of OPE blocks for two balls which are far away to each other. The coefficient p_q obeys a cyclic identity which is independent of the order of the operators.

 This paper is organised as follows. In section 2, we will introduce basic concepts and conven- tions used in this paper. Section 3 is devoted to the study of the new area law which is related to OPE blocks. Varies generalizations have been given in section 4. We conclude in section 5 with a number of general open problems that deserve, in our opinion, more work.

2 Setup

In this section, we introduce some basic concepts and conventions used in this paper.

⁵⁴ **2.1 Area law**

 ϵ ₅₅ In continues quantum field theory(QFT), physical degrees exist at each point (t, x^i) , $i = 1, \cdots, d-1$ ϵ of spacetime *M*. At each time slice $t = t_0$, data on the Cauchy surface Σ determines the evalu-⁵⁷ ation of fields. One can divide the surface *Σ* into a spacelike subregion *A* and its complement ⁵⁸ *A*¯, *Σ* = *A*∪*A*¯. The boundary *∂ A* is a codimension 2 surface whose area is A. The causal devel-⁵⁹ opment of A is denoted by D(*A*). Physical data on *A* can only determine the evaluation of fields 60 in $\mathcal{D}(A)$. The causal development $\mathcal{D}(A)$ is an independent subsystem of original spacetime M. 61 Operators in this subsystem are collected to form an algebra $a(A)$. Assume QFT in spacetime 62 *M* is described by a density matrix $ρ$, then by integrating out the degree of freedom in the

complement of \overline{A} , one achieves a reduced density matrix ρ_A 63

$$
\rho_A = \text{tr}_{\bar{A}} \rho. \tag{2.1}
$$

64 Reduced density matrix $ρ_A$ is a special operator in $a(A)$ since it describes the subsystem $D(A)$

65 effectively. A general quantity $Q(A)$ in $a(A)$ is said to obey area law if its leading term is ⁶⁶ proportional to the area of boundary *∂ A*,

$$
Q(A) \propto A + \cdots. \tag{2.2}
$$

⁶⁷ One typical example is the black hole entropy in Einstein gravity.Black hole entropy is propor-⁶⁸ tional to the area of the event horizion,

$$
S_{bh} = \frac{A}{4G} \tag{2.3}
$$

⁶⁹ where *G* is Newton constant. At the loop level, black hole entropy requires logarithmic correc-⁷⁰ tions [[17](#page-17-11)[–22](#page-18-0)]. Usually, the logarithmic correction is in the form *C* logA where the constant *C* ⁷¹ may encode useful information of the black hole.

⁷² Sometimes the area law is divergent, one typical example is the geometric entanglement en-

⁷³ tropy

$$
S_A = -\text{tr}_A \rho_A \log \rho_A. \tag{2.4}
$$

 74 In this case, one should insert a cutoff $\epsilon > 0$,

$$
S_A = \gamma \frac{\mathcal{A}}{\epsilon^{d-2}} + \cdots \,. \tag{2.5}
$$

⁷⁵ In the subleading terms, there may be a logarithmic term whose coefficient is independent of ⁷⁶ the cutoff,

$$
S_A = \gamma \frac{R^{d-2}}{\epsilon^{d-2}} + \dots + p \log \frac{R}{\epsilon} + \dots \tag{2.6}
$$

⁷⁷ where the parameter *R* is the characteristic length of region *A*.

 78 In this report, we will present a quantity $Q(A)$ which has a slightly different logarithmic be-⁷⁹ haviour

$$
Q(A) = \gamma \frac{R^{d-2}}{\epsilon^{d-2}} + \dots + p_q \log^q \frac{R}{\epsilon} + \dots
$$
 (2.7)

⁸⁰ The maximum power *q* of the logarithmic terms is a natural number. We will call it the degree

 \mathfrak{g}_1 of the quantity $\mathcal{Q}(A)$. The coefficient p_q is cutoff independent, it encodes useful information 82 of the theory. In the special case that the subregion *A* is a ball, *R* could be chosen as its radius.

83 Subregion *A* and its causal development $D(A)$ are in one-to-one correspondence, we will not

⁸⁴ distinguish them in the following.

⁸⁵ In two dimensions, there is no polynomial terms of $\frac{R}{\epsilon}$, the modified "area law" is

$$
Q(A) = p_q \log^q \frac{R}{\epsilon} + \dotsb. \tag{2.8}
$$

⁸⁶ **2.2 OPE block**

 87 In d dimensional CFT, operators are classified into (quasi-)primary operators \mathcal{O} and their de-

scendants *∂µ∂^ν* ⁸⁸ ···O. A general primary operator is characterized by two quantum numbers,

as conformal weight *∆* and *so*(*d* −1) spin *J*_{ij} with magnitude *J*. Under a global conformal trans- \overrightarrow{p} formation $x \rightarrow x'$, a primary spin 0 operator transforms as

$$
\mathcal{O}(x) \to |\frac{\partial x'}{\partial x}|^{-\Delta/d} \mathcal{O}(x). \tag{2.9}
$$

where |*∂ x* 0 ⁹¹ */∂ x*| is the Jacobian of the conformal transformation of the coordinates, *∆* is the ⁹² conformal weight of the primary operator. Operator product expansion(OPE) of two separated 93 primary scalar operators $\mathcal{O}_i(x_1)\mathcal{O}_j(x_2)$ is to expand their product in a local orthogonal and ⁹⁴ complete basis around a suitable point

$$
\mathcal{O}_i(x_1)\mathcal{O}_j(x_2) = \sum_k C_{ijk} |x_{12}|^{\Delta_k - \Delta_i - \Delta_j} (\mathcal{O}_k(x_2) + \cdots),
$$
\n(2.10)

⁹⁵ where \cdots are descendants of the primary operator \mathcal{O}_k . Its form is fixed by global conformal ⁹⁶ symmetry, therefore it just contains kinematic information of the CFT. Here we expand the ⁹⁷ product around the point x_2 . The distance of any two points x_i, x_j is written as $|x_{ij}|$. The ⁹⁸ constant C_{ijk} is called OPE coefficient which is related to the three point function of primary ⁹⁹ operators

$$
\langle \mathcal{O}_i(x_1)\mathcal{O}_j(x_2)\mathcal{O}_k(x_3)\rangle = \frac{C_{ijk}}{|x_{12}|^{\Delta_{12,3}}|x_{23}|^{\Delta_{23,1}}|x_{13}|^{\Delta_{13,2}}}, \quad \Delta_{ij,k} = \Delta_i + \Delta_j - \Delta_k. \tag{2.11}
$$

 $_1$ 00 $\,$ They are the only dynamical parameters in a CFT. The constants $\Delta_i, \Delta_j, \Delta_k$ are conformal ¹⁰¹ weights of the corresponding primary operators. By collecting all kinematic terms in the sum- 102 mation, we can rewrite OPE (2.10) as

$$
\mathcal{O}_i(x_1)\mathcal{O}_j(x_2) = |x_{12}|^{-\Delta_i - \Delta_j} \sum_k C_{ijk} Q_k^{ij}(x_1, x_2).
$$
\n(2.12)

The objects Q_k^{ij} 103 The objects $Q_k^{ij}(x_1, x_2)$ are called OPE blocks [[3,](#page-17-1)[5,](#page-17-3)[6](#page-17-4)]. They are non-local operators in the CFT 104 and depend on the position x_1 and x_2 of external operators. The upper index *i* and *j* show $_{105}$) that it also depends on the quantum number of the external operators \mathcal{O}_i and $\mathcal{O}_j.$ It is easy to see that OPE block has dimension zero. Under a global conformal transformation $x \to x'$, an OPE block Q_k^{ij} ¹⁰⁷ OPE block $Q_k^{ij}(x_1, x_2)$ will transform as

$$
Q_k^{ij}(x_1, x_2) \to f(x_1', x_2')Q_k^{ij}(x_1', x_2').
$$
\n(2.13)

The explicit form of $f(x_1)$ x'_1, x'_2 108 The explicit form of $f(x'_1, x'_2)$ is not important in this work. When the two external operators are the same, we have $f(x_1)$ $\int_{1}^{2} x'_2$ 109 are the same, we have $f(x'_1, x'_2) = 1$ and OPE block will be invariant under global conformal ¹¹⁰ transformation. One can also show that the OPE block is independent of the external operator ¹¹¹ in this special case. Due to this reason, we relabel such kind of OPE block as

$$
Q_A[\mathcal{O}_k] = Q_k^{ii}(x_1, x_2). \tag{2.14}
$$

112 The subscript *A* denotes the region determined by the two points x_1 and x_2 where the two ¹¹³ external operators insert into. The operator in square bracket reflects the fact that OPE block is $_{114}$ generated by a primary operator $\mathcal{O}_k.$ We omit the information of i since OPE block is insensitive $_{115}$ to the external operators in this case. We will classify the primary operator \mathcal{O}_k into conserved

116 currents $\mathcal J$ and non-conserved operators $\mathcal O$. A general symmetric traceless primary operator 117 obeys the following unitary bound [[23](#page-18-1)]

$$
\begin{cases} \Delta \ge J + d - 2, \quad J \ge 1, \\ \Delta \ge \frac{d - 2}{2}, \quad J = 0. \end{cases}
$$

¹¹⁸ A conserved current J with spin *J*(*J* ≥ 1) will satisfy *∆* = *J*+*d*−2. All other primary operators 119 are non-conserved operators. Correspondingly, the OPE block [\(2.14\)](#page-3-2) generated by conserved 120 currents J will be called type-J OPE block. On the other hand, the OPE block [\(2.14\)](#page-3-2) generated 121 by non-conserved operators $\mathcal O$ will be called type-O OPE block.

¹²² When two operators are time-like separated, region *A* is a causal diamond. The two operators ¹²³ are at the sharp corner of the diamond *A*. We can use conformal transformation to fix

$$
x_1 = (1, \vec{x}_0), \quad x_2 = (-1, \vec{x}_0), \tag{2.15}
$$

 124 then the causal diamond *A* intersects $t = 0$ slice with a unit ball which we will also denote it ¹²⁵ as *A*

$$
A = \{ (0, \vec{x}) | (\vec{x} - \vec{x}_0)^2 \le 1 \}. \tag{2.16}
$$

126 The center of the ball is \vec{x}_0 . The boundary of the ball *A* is a unit sphere *∂A*. In the context of 127 geometric entanglement entropy, the surface ∂A is an entanglement surface which separates ¹²⁸ the ball *A* and its complement. Leading term of entanglement entropy is proportional to the ¹²⁹ area of surface *∂ A* in general higher dimensions (*d >* 2). In two dimensions, the entanglement 130 entropy is logarithmically divergent with the logarithmic degree $q = 1$. There is a conformal ¹³¹ Killing vector *K* which preserves the diamond *A*,

$$
K^{\mu} = \frac{1}{2}(1 - (\vec{x} - \vec{x}_A)^2 - t^2, -2t\vec{x}).
$$
 (2.17)

¹³² Conformal Killing vector *K* is null on the boundary of the diamond *A*. It generates modular ¹³³ flow of the diamond *A*. Type-O OPE block corresponds to point pair [\(2.15\)](#page-4-0) or unit ball *A* [\(2.16\)](#page-4-1) ¹³⁴ is [[4](#page-17-2)]

$$
Q_{A}[\mathcal{O}_{\mu_{1}\cdots\mu_{J}}] = c_{\mathcal{O}_{\mu_{1}\cdots\mu_{J}}} \int_{\mathcal{D}(A)} d^{d}x K^{\mu_{1}} \cdots K^{\mu_{J}} |K|^{\Delta - d - J} \mathcal{O}_{\mu_{1}\cdots\mu_{J}},
$$
(2.18)

¹³⁵ where the primary operator $\mathcal{O}_{\mu_1 \cdots \mu_J}$ is non-conserved

$$
\partial^{\mu_1} \mathcal{O}_{\mu_1 \cdots \mu_J} \neq 0. \tag{2.19}
$$

¹³⁶ It has dimension *∆* and spin *J*. When the operator is a conserved current

$$
\partial^{\mu_1} \mathcal{J}_{\mu_1 \cdots \mu_J} = 0, \tag{2.20}
$$

¹³⁷ the corresponding type-J OPE block is

$$
Q_A[\mathcal{J}_{\mu_1\cdots\mu_J}] = c_{\mathcal{J}_{\mu_1\cdots\mu_J}} \int_A d^{d-1} \vec{x} (K^0)^{J-1} \mathcal{J}_{0\cdots 0}.
$$
 (2.21)

¹³⁸ It can be obtained from [\(2.18\)](#page-4-2) by using conservation law [\(2.20\)](#page-4-3) and reducing it to a lower *d* − 1 dimensional integral. The coefficient $c_{\mathcal{J}_{\mu_1\cdots\mu_J}}$ is also redefined at the same time. In [\(2.18\)](#page-4-2) $_1$ 40 $\,$ and [\(2.21\)](#page-4-4), the coefficients $c_{\mathcal{O}_{\mu_1\cdots\mu_J}}$ and $c_{\mathcal{J}_{\mu_1\cdots\mu_J}}$ are free parameters, we set them to be 1.

¹⁴¹ **2.3 Modular Hamiltonian and area law**

¹⁴² A very special type-J OPE block is modular Hamiltonian [[7,](#page-17-5)[24](#page-18-2)] of the ball *A*,

$$
H_A = 2\pi \int_A d^{d-1} \vec{x} K^0 T_{00} = 2\pi \int_A d^{d-1} \vec{x} \frac{1 - (\vec{x} - \vec{x}_0)^2}{2} T_{00}(0, \vec{x}).
$$
 (2.22)

Modular Hamiltonian is the logarithm of the reduced density matrix ρ_A 143

$$
H_A = -\log \rho_A. \tag{2.23}
$$

¹⁴⁴ It plays a central role in the context of entanglement entropy,

$$
S_A = -\text{tr}_A \rho_A \log \rho_A = \text{tr}_A e^{-H_A} H_A.
$$
 (2.24)

¹⁴⁵ More generally, Rényi entanglement entropy

$$
S_A^{(n)} = \frac{1}{1 - n} \log \text{tr}_A \rho_A^n
$$
 (2.25)

¹⁴⁶ has been shown to satisfy an area law generally

$$
S_A^{(n)} = \gamma \frac{\mathcal{A}}{\epsilon^{d-2}} + \cdots, \tag{2.26}
$$

147 where A is the area of the entanglement surface ∂A and ϵ is a UV cutoff. The constant γ is ¹⁴⁸ cutoff dependent. The subleading terms \cdots contain a logarithmic term with degree $q = 1$ in ¹⁴⁹ even dimensions

$$
S_A^{(n)} = \gamma \frac{A}{\epsilon^{d-2}} + \dots + p_1(n) \log \frac{R}{\epsilon} + \dots, \tag{2.27}
$$

150 where we have inserted back the radius $R = 1$. The area A is related to the radius R through ¹⁵¹ the power law

$$
\mathcal{A} \sim R^{d-2}.\tag{2.28}
$$

 The coefficient $p_1(n)$ encodes useful information of the CFT. The relation between modular Hamiltonian and area law motivates the conjecture that OPE block maybe related to area law in a suitable way. We will give the framework to discuss this problem in the following subsection.

¹⁵⁶ **2.4 Deformed reduced density matrix and connected correlation function**

157 Given a primary operator $\mathcal O$ in a ball A, one can always define a corresponding OPE block $_{158}$ $\,$ $\,$ $Q_{A}[\mathcal{O}]$. We construct an exponential operator formally [[14](#page-17-12)]

$$
\rho_A = e^{-\mu Q_A} \tag{2.29}
$$

159 which is still in subregion *A*. The constant μ is free. Operators of the form [\(2.29\)](#page-5-2) is called deformed reduced density matrix. Recall that modular Hamiltonian is a special OPE block, if 161 one replaces OPE block by modular Hamiltonian in [\(2.29\)](#page-5-2) and set $\mu = 1$, the deformed reduced density matrix becomes reduced density matrix exactly. We can relax the definition, namely, $_{163}$ allow Q_{A} in [\(2.29\)](#page-5-2) is a linear superposition of several OPE blocks. Note we use the same symbol $-\rho_{A}$ to label deformed reduced density matrix. As a naive generalization of Rényi entanglement entropy, we construct logarithm of the vacuum expectation value of the deformed reduced density matrix,

$$
T_A(\mu) = \log \langle \rho_A \rangle = \log \langle e^{-\mu Q_A} \rangle. \tag{2.30}
$$

Sci <mark>Pos</mark>t

167 When Q_A is modular Hamiltonian, the above quantity is related to Rényi entropy for vacuum ¹⁶⁸ state.

 $_{169}$ However, a direct computation of $T_A(\mu)$ is hard in general. A much more severe problem is 170 that OPE block has no lower bound in general, therefore the definition is not valid for general

171 OPE blocks. To solve this problem, we observe that $T_A(\mu)$ could be expanded for small μ ,

$$
T_A(\mu) = \sum_{m=1}^{\infty} \frac{(-\mu)^m}{m!} \langle Q_A^m \rangle_c.
$$
 (2.31)

172 The Tayler expansion coefficient

$$
\langle Q_A^m \rangle_c = (-1)^m \frac{\partial^m}{\partial \mu^m} T_A(\mu)|_{\mu \to 0}
$$
 (2.32)

is called Type-(m) connected correlation function (CCF) of OPE block *Q^A* ¹⁷³ . For each definite *m*, ¹⁷⁴ one can always calculate the corresponding CCF without knowing $T_A(\mu)$. The first few CCFs ¹⁷⁵ are

$$
\langle Q_A^2 \rangle_c = \langle Q_A^2 \rangle - \langle Q_A \rangle^2,
$$

\n
$$
\langle Q_A^3 \rangle_c = \langle Q_A^3 \rangle - 3 \langle Q_A^2 \rangle \langle Q_A \rangle + 2 \langle Q_A \rangle^3.
$$
\n(2.33)

¹⁷⁶ Using CCF, there is no issue of lower bound of OPE block. As an application of the concept CCF, 177 we set the OPE block to modular Hamiltonian, then it is easy to show that CCF of modular $_{178}$ Hamiltonian H_{A} satisfies area law with logarithmic degree $q=1$ in even dimensions,

$$
\langle H_A^m \rangle_c = \tilde{\gamma} \frac{A}{\epsilon^{d-2}} + \dots + \tilde{p}_1^{(m)} \log \frac{R}{\epsilon} + \dots, \quad m \ge 1.
$$
 (2.34)

179 The coefficient $\tilde{p}_1^{(m)}$ is determined from $p_1(n)$ by

$$
\tilde{p}_1^{(m)} = (-1)^m \partial_n^m (1-n) p_1(n) \big|_{n \to 1}.
$$
\n(2.35)

 $_1$ 80 There could be multiple spacelike-separated balls A_1, A_2, \cdots , each region has associate OPE 181 block Q_{A_i} . We insert m_i OPE blocks into region A_i , then we can define corresponding type-Y 182 CCF

$$
\langle Q_{A_1}^{m_1} Q_{A_2}^{m_2} \cdots \rangle_c \tag{2.36}
$$

¹⁸³ where the Young diagram *Y* is

$$
Y = (m_1, m_2, \cdots), \quad m_1 \ge m_2 \ge \cdots \ge 1.
$$
 (2.37)

¹⁸⁴ The generator of all type-Y CCF is

$$
T_{\cup A_i}(\mu_1, \mu_2, \cdots) = \log \frac{\langle e^{-\sum_i \mu_i Q_{A_i}} \rangle}{\prod_i \langle e^{-\mu_i Q_{A_i}} \rangle}.
$$
\n(2.38)

¹⁸⁵ When there are only two balls *A* and *B*, the generator is

$$
T_{A\cup B}(\mu_1, \mu_2) = \log \frac{\langle e^{-\mu_1 Q_A - \mu_2 Q_B} \rangle}{\langle e^{-\mu_1 Q_A} \rangle \langle e^{-\mu_2 Q_B} \rangle} = \sum_{m_1 \ge 1, m_2 \ge 1} \frac{(-1)^{m_1 + m_2} \mu_1^{m_1} \mu_2^{m_2}}{m_1! m_2!} \langle Q_A^{m_1} Q_B^{m_2} \rangle_c.
$$
 (2.39)

¹⁸⁶ We parameterize *A* and *B* as

$$
A = \{(0, \vec{x}) | (\vec{x} - \vec{x}_0)^2 \le 1\}, \quad B = \{(0, \vec{x}) | \vec{x} \le R^2\}.
$$
 (2.40)

ScilPos[.]

¹⁸⁷ There is only one cross ratio

$$
\xi = \frac{4R'}{x_0^2 - (1 - R')^2}.\tag{2.41}
$$

 α when the two regions A and B are spacelike-separated, $|x_0| > 1 + R'$, the cross ratio is between ¹⁸⁹ 0 and 1,

$$
0 < \xi < 1. \tag{2.42}
$$

¹⁹⁰ In some cases, it is more convenient to use an equivalent cross ratio

$$
\eta = \frac{\xi}{1 - \xi} = \frac{4R'}{x_0^2 - (1 + R')^2}.
$$
\n(2.43)

¹⁹¹ For spacelike-separated regions *A* and *B*, the range of the cross ratio *η* is

$$
0 < \eta < \infty. \tag{2.44}
$$

- ¹⁹² Since OPE block $Q_A[\mathcal{O}]$ is invariant under conformal transformation, any type- (m_1, m_2) CCF
- ¹⁹³ should be a function of cross ratio *ξ* or *η*. Actually the OPE block is an eigenvector of the ¹⁹⁴ conformal Casimir

$$
[L^2, Q_A[\mathcal{O}]] = C_{\Delta, J} Q_A[\mathcal{O}]
$$
\n(2.45)

where *L* 2 is the Casimir operator of global conformal group. The eigenvalue *C∆*,*^J* ¹⁹⁵ is

$$
C_{\Delta,J} = -\Delta(\Delta - d) - J(J + d - 2). \tag{2.46}
$$

¹⁹⁶ Therefore, any type-(*m* − 1, 1) CCF should be a conformal block

$$
\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_{m-1}] Q_B[\mathcal{O}_m] \rangle_c = D^{(d)}[\mathcal{O}_1, \cdots, \mathcal{O}_m] G^{(d)}_{\Delta_m, J_m}(\xi). \tag{2.47}
$$

 The subscript *∆m*, *J^m* are the conformal weight and spin of the primary operator O*m*. The index (*d*) is used to label the dimension of spacetime. The conformal block can be constructed ex- plicitly in even dimensions [[25,](#page-18-3)[26](#page-18-4)]. In this paper, we just need the diagonal limit of conformal 200 block [[27](#page-18-5)]. Any type- (m_1, m_2) CCF with $m_1 \ge m_2 \ge 2$ is not a conformal block.

²⁰¹ **3 Area law**

²⁰² We conjecture that the type-(*m*) CCF of OPE blocks obeys the following area law

$$
\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_m] \rangle_c = \gamma \frac{R^{d-2}}{\epsilon^{d-2}} + \cdots + p_q \log^q \frac{R}{\epsilon} + \cdots. \tag{3.1}
$$

 The leading term is proportional to the area of the boundary *∂ A*. We inserted the radius *R* = 1 into the formula to balance the dimension. The small positive constant ϵ is the UV cutoff which is roughly the distance from the cutoff to the boundary *∂ A*. The constant *γ* depends on the choice of the cutoff and the method of regularization, we will not be interested in its explicit value. The ··· terms are subleading and cutoff dependent. Therefore we omit their forms. The $_2$ ₀₈ degree *q* characterizes the maximal power of the logarithmic terms. The coefficient p_q is not invariant under the rescaling of the cutoff, therefore it encodes detail universal information of ²¹⁰ the theory. When all the OPE blocks are equal to modular Hamiltonian, the degree $q = 1$ for even dimensions according to [\(2.34\)](#page-6-0). However, as we will see, *q* is not necessary equal to 1 in general. To distinguish different type-(*m*) CCFs in different dimensions, we write the area law [\(3.1\)](#page-7-1) more explicitly as

$$
\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_m] \rangle_c = \gamma[\mathcal{O}_1, \cdots, \mathcal{O}_m] \frac{R^{d-2}}{\epsilon^{d-2}} + \cdots + p_q^{(d)}[\mathcal{O}_1, \cdots, \mathcal{O}_m] \log^q \frac{R}{\epsilon} + \cdots. \tag{3.2}
$$

²¹⁴ **3.1 Continuation**

 The two formulas [\(2.47\)](#page-7-2) and [\(3.2\)](#page-7-3) are actually related to each other through an analytic continuation. We use the example of two dimensional modular Hamiltonian to illustrate this $_{217}$ relation. For CFT₂, the modular Hamiltonian can be decomposed into holomorphic and anti-holomorphic part, we focus on the holomorphic part

$$
H_A = -\int_{-1}^{1} dz \frac{1 - z^2}{2} T(z + x_0) + c.
$$
 (3.3)

²¹⁹ The constant *c* can be fixed by the normalization condition

$$
tr_A \rho_A = tr_A e^{-H_A} = 1.
$$
 (3.4)

220 Its value doesn't affect the type-Y CCF for any $\sum_i m_i \geq 2$. We also used the convention $T(z) = -2\pi T_{zz}$ where the subscript *z* is the holomorphic coordinate $z = t + x$. The radius 222 of the interval A is 1, we have shifted variable z such that the dependence of the center x_0 is 223 in the stress tensor. The modular Hamiltonian of region *B* can be obtained by setting $x_0 = 0$ 224 and restoring the radius R' . The type- $(m-1, 1)$ CCF of modular Hamiltonian is

$$
\langle H_A^{m-1} H_B \rangle_c = D^{(2)} [T_{\mu_1 \nu_1}, \cdots, T_{\mu_m \nu_m}] G_2^{(2)}(\eta). \tag{3.5}
$$

²²⁵ The two dimensional conformal block for a chiral operator can be labeled by the conformal ²²⁶ weight *h* of the operator

$$
G_h^{(2)}(\eta) = (-\eta)^h {}_2F_1(h, h, 2h, -\eta). \tag{3.6}
$$

- 227 We can move the interval *A* to *B* such that they coincide. In this limit, type- $(m-1, 1)$ CCF
- 228 should approach type-(*m*) CCF. This is equivalent to set $\eta \rightarrow -1$. We can set $x_0 \rightarrow 0$ and then 229 take the limit $R' \rightarrow 1$,

$$
x_A \to 0, \quad R' = 1 - \epsilon, \quad \epsilon \to 0. \tag{3.7}
$$

230 The cross ratio $\xi \rightarrow -\infty$ or $η \rightarrow -1$ by

$$
\xi = -\frac{4(1-\epsilon)}{\epsilon^2} \approx -\frac{4}{\epsilon^2}, \quad \eta = -\frac{4(1-\epsilon)}{(2-\epsilon)^2} \approx -1 + \frac{\epsilon^2}{4}.
$$
\n(3.8)

²³¹ On the right hand side of [\(3.5\)](#page-8-1), we find a logarithmic divergent term in this limit

$$
G_2^{(2)}(\eta) = 12 \log \frac{2}{\epsilon} + \dots = 12 \log \frac{R}{\epsilon} + \dots
$$
 (3.9)

²³² The left hand side of [\(3.5\)](#page-8-1) approaches type-(*m*) CCF, therefore

$$
\langle H_A^m \rangle_c = 12D^{(2)} [T_{\mu_1 \nu_1}, \cdots, T_{\mu_m \nu_m}] \log \frac{R}{\epsilon} + \cdots. \tag{3.10}
$$

²³³ We read out the cutoff independent coefficient

$$
p_1^{(2)}[T_{\mu_1\nu_1},\cdots,T_{\mu_m\nu_m}] = 12D^{(2)}[T_{\mu_1\nu_1},\cdots,T_{\mu_m\nu_m}].
$$
\n(3.11)

 The relation [\(3.11\)](#page-8-2) is a typical UV/IR relation for modular Hamiltonian. The left hand side is the universal coefficient for *B* and *A* coincides (UV). On the right hand side, the *D* coefficient characterizes the leading order behaviour of CCF when *B* and *A* are far away to each other (IR). They provide equivalent information of the CFT since the constant 12 is completely fixed by conformal symmetry. The continuation of conformal block can be generalized to higher

²³⁹ dimensions. For example, in four dimensions, the conformal block associated with stress tensor ²⁴⁰ becomes divergent as *A* approaches *B*,

$$
G_{4,2}^{(4)} \approx \tilde{\gamma} \frac{R^2}{\epsilon^2} + \dots - 120 \log \frac{R}{\epsilon} + \dots
$$
 (3.12)

 241 The leading term is exactly area law and the logarithmic divergent term also appears in the ²⁴² subleading terms. We can read type-(*m*) CCF of modular Hamiltonian in four dimensions

$$
\langle H_A^m \rangle_c = \gamma \frac{R^2}{\epsilon^2} + \dots + p_1^{(4)} [T_{\mu_1 \nu_1}, \dots, T_{\mu_m \nu_m}] \log \frac{R}{\epsilon} + \dots
$$
 (3.13)

²⁴³ with

$$
p_1^{(4)}[T_{\mu_1\nu_1}, \cdots, T_{\mu_m\nu_m}] = -120D^{(4)}[T_{\mu_1\nu_1}, \cdots, T_{\mu_m\nu_m}].
$$
\n(3.14)

 Note we obtain the area law and logarithmic behaviour of type-(*m*) CCF of modular Hamil- tonian without using any knowledge of Rényi entanglement entropy. The method of ana- lytic continuation can be applied for general dimensions and OPE blocks. A conformal block *G* (*d*) *∆*,*J* ²⁴⁷ (*ξ*) obeys area law in the limit *ξ* → −∞ in even dimensions. It has degree *q* = 1 only for $\Delta = J + d - 2$,

$$
G_{\Delta,J}^{(d)}(\xi) = \tilde{\gamma} \frac{R^{d-2}}{\epsilon^{d-2}} + \dots + E^{(d)}[\Delta, J] \log \frac{R}{\epsilon} + \dots, \quad \xi \to -\infty.
$$
 (3.15)

²⁴⁹ This means that type-(*m*) CCF of type-J OPE blocks may always obey area law with degree $250 \text{ } q=1$, the cutoff independent coefficient is

$$
p_q^{(d)}[\mathcal{O}_1, \cdots, \mathcal{O}_m] = E^{(d)}[\mathcal{O}_m] \times D^{(d)}[\mathcal{O}_1, \cdots, \mathcal{O}_m].
$$
\n(3.16)

²⁵¹ We have replaced the quantum numbers in E function by the corresponding primary operator. For non-conserved operators, the conformal block $G_{\Delta,J}^{(d)}$ also obeys area law in the limit ζ → −∞ in even dimension, though it has degree *q* = 2

$$
G_{\Delta,J}^{(d)}(\xi) = \tilde{\gamma} \frac{R^{d-2}}{\epsilon^{d-2}} + \dots + E^{(d)}[\Delta, J] \log^2 \log \frac{R}{\epsilon} + \dots, \quad \xi \to -\infty.
$$
 (3.17)

²⁵⁴ Therefore, type- (m) CCF of type-O OPE blocks obeys area law with degree $q = 2$. We can ²⁵⁵ obtain similar UV/IR relations as [\(3.16\)](#page-9-1). In odd dimensions, the story is the same. The degree ²⁵⁶ *q* is 0 for type-(*m*) CCF of type-J OPE blocks and 1 for type-O OPE blocks.

²⁵⁷ **3.2 Kinematic information**

 $_{{\bf 258}^-}$ The function $E^{(d)}[{\cal O}]$ is completely fixed by conformal symmetry. It can be obtained by reading ²⁵⁹ out the coefficient of the logarithmic term with degree *q*. For each fixed quantum number *∆* $_2$ ₆₀ and *J*, there is a unique number $E^{(d)}[O]$. For type-J OPE block in two dimensions, the primary 261 operator *O* has dimension $\Delta = J = h$. The conformal block [\(3.6\)](#page-8-3) has degree $q = 1$ in the limit ²⁶² *η* → −1. The function $E^{(2)}[O]$ is

$$
E^{(2)}[\mathcal{O}] = \frac{2\Gamma(2h)}{\Gamma(h)^2}, \quad \Delta = J = h.
$$
 (3.18)

263 For type-O OPE block, the primary operator \mathcal{O} has dimension $\Delta = h + \bar{h}$ and spin $J = h - \bar{h}$. ²⁶⁴ The conformal block has degree $q = 2$ in the limit $\eta \rightarrow -1$. The function $E^{(2)}[{\cal O}]$ is

$$
E^{(2)}[\mathcal{O}] = \begin{cases} \frac{2^{4h}\Gamma(h+\frac{1}{2})^2}{\pi\Gamma(h)} & J = 0, h > 0\\ -\frac{4^{2h-1}\Gamma(h-\frac{1}{2})\Gamma(h+\frac{1}{2})}{\pi\Gamma(h-1)\Gamma(h)} & J = 1, h > 1\\ \frac{4^{2h-3}(h-2)(h-1)(2h-3)(2h-1)\Gamma(h-\frac{3}{2})^2}{\pi\Gamma(h)^2} & J = 2, h > 2\\ \cdots & \cdots & \end{cases}
$$
(3.19)

²⁶⁵ In four dimensions, we also find

$$
E^{(4)}[\mathcal{O}] = \begin{cases} 12 & \Delta = 3, J = 1 \\ -120 & \Delta = 4, J = 2 \\ 840 & \Delta = 5, J = 3 \end{cases}
$$
(3.20)

²⁶⁶ for conserved currents and

$$
E^{(4)}[\mathcal{O}] = \begin{cases} -\frac{2^{2\Delta - 1}\Gamma(\frac{\Delta - 1}{2})\Gamma(\frac{\Delta + 1}{2})}{\pi \Gamma(\frac{\Delta - 2}{2})^2} & \Delta > 1, J = 0, \\ \frac{2^{2\Delta - 1}\Gamma(\frac{\Delta}{2})\Gamma(\frac{\Delta + 2}{2})}{\pi \Gamma(\frac{\Delta - 3}{2})\Gamma(\frac{\Delta + 1}{2})} & \Delta > 3, J = 1, \\ -\frac{4^{\Delta - 1}(\Delta - 2)\Gamma(\frac{\Delta - 3}{2})\Gamma(\frac{\Delta + 3}{2})}{\pi \Gamma(\frac{\Delta - 4}{2})\Gamma(\frac{\Delta + 2}{2})} & \Delta > 4, J = 2, \\ \dots \end{cases}
$$
(3.21)

²⁶⁷ for non-conserved operators. In three dimensions, we find

$$
E^{(3)}[\mathcal{O}] = \begin{cases} -\frac{2^{2\Delta - 1} (\Delta - 1) \Gamma(\Delta - \frac{1}{2})}{\sqrt{\pi} \Gamma(\Delta - 1)} & \Delta > \frac{1}{2}, J = 0. \\ \frac{2^{\Delta + 1} \Delta \Gamma(\Delta - \frac{1}{2})}{\Gamma(\frac{\Delta - 2}{2}) \Gamma(\frac{\Delta + 1}{2})} & \Delta > 2, J = 1, \\ -\frac{2^{2\Delta - 1} (\Delta^2 - 1) \Gamma(\Delta - \frac{1}{2})}{\sqrt{\pi} (\Delta - 2)^2 \Delta \Gamma(\Delta - 3)} & \Delta > 3, J = 2, \\ \dots \end{cases}
$$
(3.22)

²⁶⁸ for non-conserved operators. Note for conserved currents in odd dimensions, the function $E^{(3)}[O]$ may depend on explicit choice of cutoff. For example, a transformation *ε* → *ε*(1+ *aε*) ²⁷⁰ may shift its value. This is because the degree is 0, there is no logarithmic divergence at all.

²⁷¹ **3.3 UV/IR relation**

272 The UV/IR relation [\(3.16\)](#page-9-1) relates type- (m) CCF to type- $(m-1,1)$ CCF. This relation may ²⁷³ simplify computation in many cases. To see this point, let's compute the following type-(2) ²⁷⁴ CCF in two dimensions

$$
\langle Q_A[\mathcal{O}]^2 \rangle_c = \int_{-1}^1 dz_1 \int_{-1}^1 dz_2 \frac{(1-z_1^2)^{h-1} (1-z_2^2)^{h-1}}{(z_1-z_2)^{2h}}
$$

$$
= \frac{(-1)^{-h} \sqrt{\pi} \Gamma(h)}{\Gamma(h+\frac{1}{2})} \int_{-1}^1 dz_1 \frac{1}{1-z_1^2}
$$

$$
= \frac{(-1)^{-h} \sqrt{\pi} \Gamma(h)}{\Gamma(h+\frac{1}{2})} \log \frac{2}{\epsilon}.
$$
(3.23)

 $_{275}$ This is a double integral with poles at $z_1 = z_2$. We regularize the integral by ignoring these poles at the second step. At the last step, we insert a UV cutoff to regularize the integral. However, using UV/IR relation, one just need to fix the coefficient *D* which is related to the large distance behaviour of the type- $(1, 1)$ CCF,

$$
\langle Q_A[\mathcal{O}]Q_B[\mathcal{O}]\rangle_c = \int_{-1}^1 dz_1 \int_{-1}^1 dz_2 \frac{(1-z_1^2)^{h-1}(1-z_2^2)^{h-1}}{(z_1-z_2+x_0)^{2h}}.\tag{3.24}
$$

ScilPos[.]

279 In the large distance limit, $x_0 \rightarrow \infty$, the integral becomes simpler

$$
\langle Q_A[\mathcal{O}]Q_B[\mathcal{O}]\rangle_c \approx \int_{-1}^1 dz_1 \int_{-1}^1 dz_2 \frac{(1-z_1^2)^{h-1} (1-z_2^2)^{h-1}}{x_0^{2h}}
$$

= $4^{-h} \left(\frac{\sqrt{\pi} \Gamma(h)}{\Gamma(h+\frac{1}{2})}\right)^2 \eta^h.$ (3.25)

We have used the relation $\eta \approx \frac{4}{\sqrt{3}}$ ²⁸⁰ We have used the relation $\eta \approx \frac{4}{x_0^2}$ in the large distance limit. Then we can read out p

$$
D^{(2)}[\mathcal{O}, \mathcal{O}] = (-1)^{-h} 4^{-h} \left(\frac{\sqrt{\pi} \Gamma(h)}{\Gamma(h + \frac{1}{2})}\right)^2.
$$
 (3.26)

 281 Combining UV/IR relation and (3.18) , we find

$$
p_1^{(2)}[\mathcal{O}, \mathcal{O}] = E^{(2)}[\mathcal{O}] \times D^{(2)}[\mathcal{O}, \mathcal{O}] = \frac{(-1)^{-h} \sqrt{\pi} \Gamma(h)}{\Gamma(h + \frac{1}{2})}.
$$
 (3.27)

²⁸² The result is exactly the same as [\(3.23\)](#page-10-1). We use UV/IR relation to obtain type-(3) CCF for ²⁸³ type-J OPE blocks in two dimensions, the cutoff independent coefficient is

$$
p_1^{(2)}[\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3] = \frac{C_{123}\pi^{3/2}(-1)^{\frac{h_1+h_2+h_3}{2}}\Gamma(h_1)\Gamma(h_2)\Gamma(h_3)\kappa}{\Gamma(\frac{1+h_1+h_2-h_3}{2})\Gamma(\frac{1+h_1+h_3-h_2}{2})\Gamma(\frac{1+h_2+h_3-h_1}{2})\Gamma(\frac{h_1+h_2+h_3}{2})},
$$
(3.28)

where the constant $\kappa = \frac{1}{2}$ ²⁸⁴ where the constant $\kappa = \frac{1}{2}[1 + (-1)^{h_1+h_2+h_3}]$. We notice that the result is totally symmetric ²⁸⁵ under exchange of any two conformal weights. Since there are different ways to uplift type-(*m*) ²⁸⁶ to type-(*m*−1, 1), the cutoff independent coefficient should be identical since they characterize 287 the same CCF after taking the limit $A \rightarrow B$. For $m = 3$, this is a cyclic identity

$$
p_q^{(d)}[\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3] = p_q^{(d)}[\mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_1] = p_q^{(d)}[\mathcal{O}_3, \mathcal{O}_1, \mathcal{O}_2].
$$
\n(3.29)

²⁸⁸ UV/IR relation and the cyclic identity has been checked for type-(*m*) CCF (m=2,3) in four ²⁸⁹ dimensions. We list the cutoff independent coefficients below [[16](#page-17-10)].

²⁹⁰ • Type-(2). The normalization constants are set to 1.

²⁹¹ **–** Spin 1-1 conserved currents.

$$
p_1^{(4)}[\mathcal{J}_{\mu}, \mathcal{J}_{\nu}] = -\frac{\pi^2}{3}.
$$
 (3.30)

²⁹² **–** Spin 2-2 conserved currents.

$$
p_1^{(4)}[T_{\mu\nu}, T_{\rho\sigma}] = -\frac{\pi^2}{40}.
$$
 (3.31)

²⁹³ **–** Spin 0-0 non-conserved operators.

$$
p_2^{(4)}[\mathcal{O}, \mathcal{O}] = -\frac{4\pi^2 (\Delta - 1)\Gamma (\Delta - 2)^2 \Gamma (\frac{\Delta}{2})^4}{\Gamma (\Delta)^2 \Gamma (\Delta - 1)^2}.
$$
 (3.32)

²⁹⁴ **–** Spin 1-1 non-conserved operators.

$$
p_2^{(4)}[\mathcal{O}_{\mu}, \mathcal{O}_{\nu}] = -\frac{4^{1-\Delta}\pi^3 \Delta \Gamma(\frac{\Delta-3}{2}) \Gamma(\frac{\Delta+1}{2})}{\Gamma(\frac{\Delta}{2}+1)^2}, \quad \Delta > 3. \tag{3.33}
$$

²⁹⁵ **–** Spin 2-2 non-conserved operators.

$$
p_2^{(4)}[\mathcal{O}_{\mu\nu}, \mathcal{O}_{\rho\sigma}] = -\frac{3\pi^2 (\Delta - 2)\Delta^2 \Gamma(\frac{\Delta}{2} - 2)^2 \Gamma(\frac{\Delta}{2} - 1)^2}{64\Gamma(\Delta - 4)\Gamma(\Delta + 2)}, \quad \Delta > 4. \tag{3.34}
$$

 296 • Type- (3) .

²⁹⁷ **–** Spin 1-1-2 conserved currents. The three point function of zero components are ²⁹⁸ fixed by conformal symmetry

> $\langle T_{00}(x_1) \mathcal{J}_0(x_2) \mathcal{J}_0(x_3) \rangle_c = \frac{C_{TJJ}}{r^4}$ $x_{12}^4 x_{13}^2 x_{23}^2$ (3.35)

²⁹⁹ Then the coefficient

$$
p_1^{(4)}[\mathcal{J}_{\mu}, \mathcal{J}_{\nu}, T_{\rho\sigma}] = -\frac{\pi^3}{2} C_{T\mathcal{J}\mathcal{J}}.
$$
 (3.36)

³⁰⁰ **–** Spin 2-2-2 conserved currents. The three point function of zero components are ³⁰¹ fixed by conformal symmetry

$$
\langle T_{00}(x_1)T_{00}(x_2)T_{00}(x_3)\rangle_c = \frac{C_{TTT}}{x_{12}^4 x_{13}^4 x_{23}^4}.
$$
 (3.37)

³⁰² Then the coefficient

$$
p_1^{(4)}[T_{\mu\nu}, T_{\rho\sigma}, T_{\alpha\beta}] = \frac{\pi^3}{12} C_{TTT}.
$$
 (3.38)

³⁰³ **–** Spin 0-0-0 non-conserved currents.

$$
p_2^{(4)}[\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3] = -2^{4-\Delta_1-\Delta_2-\Delta_3} \pi^3 C_{123} \int_{\mathbb{D}^2} d\zeta d\bar{\zeta}(\zeta+\bar{\zeta})^2 \int_{\mathbb{D}^2} d\zeta' d\bar{\zeta}'(\zeta'+\bar{\zeta}')^2
$$

$$
\times (1-\zeta^2)^{\frac{\Delta_1-4}{2}} (1-\bar{\zeta}^2)^{\frac{\Delta_1-4}{2}} (1-\zeta'^2)^{\frac{\Delta_2-4}{2}} (1-\bar{\zeta}'^2)^{\frac{\Delta_2-4}{2}} \int_0^{\pi} d\theta \frac{\sin \theta}{(a+b\cos\theta)^{\frac{\Delta_{12,3}}{2}}},
$$
(3.39)

 Though the expression [\(3.39\)](#page-12-0) is not symmetric superficially under exchange of any two con- formal weights, we checked explicitly that it satisfies the cyclic identity for integer conformal 306 weights. For $m = 4$, the UV/IR relation and the cyclic identity are much more harder to check. We considered type-(4) CCF for massless free scalar theory [[13,](#page-17-9) [14](#page-17-12)]. In this theory, one can construct an infinite tower of conserved currents with even spin [[28](#page-18-6)]. The four point functions can be calculated explicitly. Therefore we can find type-(3, 1) and type-(4) CCFs and read out the corresponding coefficients. For example, for spin-2-2-2-4 conserved currents [[14](#page-17-12)],

$$
D[2,2,2,4] = \frac{3}{70} D[2,2,4,2].
$$
\n(3.40)

³¹¹ Both of them leads to the cutoff coefficients

$$
p_1^{(2)}[2,2,2,4] = \frac{2\Gamma(8)}{\Gamma(4)^2} D[2,2,2,4] = \frac{2\Gamma(4)}{\Gamma(2)^2} D[2,2,4,2] = p_1^{(2)}[2,2,4,2].
$$
 (3.41)

³¹² The cyclic identity is obeyed.

³¹³ **3.4 Discussion**

³¹⁴ The UV/IR relation should be slightly modified when the CCF contains both type-J and type-O ³¹⁵ OPE blocks. One simple example is the following type-(3) CCF

$$
\langle Q_A[\mathcal{J}]Q_A[\mathcal{O}]Q_A[\tilde{\mathcal{O}}]\rangle_c \tag{3.42}
$$

 $_3$ 16 $\,$ where $Q_A[{\cal J}]$ is a type-J OPE block while $Q_A[{\cal O}]$ and $Q_A[\tilde{\cal O}]$ are type-O OPE blocks. This CCF 317 is related to the following two type- $(2, 1)$ CCFs

$$
\langle Q_A[\tilde{\mathcal{O}}]Q_A[\mathcal{J}]Q_B[\mathcal{O}]\rangle_c = D^{(d)}[\tilde{\mathcal{O}}, \mathcal{J}, \mathcal{O}]G^{(d)}_{\Delta, J}(\xi), \tag{3.43}
$$

$$
\langle Q_A[\mathcal{O}]Q_A[\tilde{\mathcal{O}}]Q_B[\mathcal{J}]\rangle_c = D^{(d)}[\mathcal{O},\tilde{\mathcal{O}},\mathcal{J}]G^{(d)}_{\Delta',J'}(\xi). \tag{3.44}
$$

318 We choose $d = 4$. Taking the limit $A \rightarrow B$ from [\(3.43\)](#page-13-2), we find a type-(3) CCF with degree 319 $q = 2$, the UV/IR relation reads

$$
p_2^{(4)}[\tilde{\mathcal{O}}, \mathcal{J}, \mathcal{O}] = E^{(4)}[\mathcal{O}] \times D^{(4)}[\tilde{\mathcal{O}}, \mathcal{J}, \mathcal{O}]
$$
\n(3.45)

320 We can also take the limit $A \rightarrow B$ from [\(3.44\)](#page-13-2), then we will find a type-(3) CCF with degree $321 \, q = 1$, the UV/IR relation reads

$$
p_1^{(4)}[O,\tilde{O},\mathcal{J}] = E^{(4)}[\mathcal{J}] \times D^{(4)}[O,\tilde{O},\mathcal{J}].
$$
\n(3.46)

³²² The equations [\(3.45\)](#page-13-3) and [\(3.46\)](#page-13-4) are not identical superficially since the subscript *q* are not ³²³ equal to each other. However, an explicit calculation for spin 2-0-0 and spin 2-2-0 in four ³²⁴ dimensions [[16](#page-17-10)] shows that the coefficient $D^{(4)}[O,\tilde{O},\mathcal{J}]$ is actually divergent logarithmically, 325

$$
D^{(4)}[\mathcal{O}, \tilde{\mathcal{O}}, \mathcal{J}] = D_{\text{log}}^{(4)}[\mathcal{O}, \tilde{\mathcal{O}}, \mathcal{J}] \log \frac{R}{\epsilon} + \cdots. \tag{3.47}
$$

 326 The terms in \cdots are finite and depends on cutoff scale. Due to the logarithmic divergence ³²⁷ behaviour of the coefficient $D^{(4)}[O, \tilde{O}, \mathcal{J}]$, the degree of type-(3) CCF from [\(3.44\)](#page-13-2) increases ³²⁸ 1, the modified UV/IR relation becomes

$$
p_2^{(4)}[O,\tilde{O},\mathcal{J}] = E^{(4)}[\mathcal{J}] \times D_{\text{log}}^{(4)}[O,\tilde{O},\mathcal{J}].
$$
\n(3.48)

³²⁹ We checked explicitly that the two constants [\(3.45\)](#page-13-3) and [\(3.48\)](#page-13-5) are equal to each other. The ³³⁰ cyclic identity is still satisfied after counting the logarithmic divergence of the *D* function.

³³¹ **4 Generalizations**

³³² The area law and logarithmic behaviour in the subleading terms can be extended in different ³³³ directions. In this section, we mention several extensions.

³³⁴ • UV/IR relation. In general, one can uplift type-(*m*) CCF to type-(*p*, *m* − *p*) CCF

$$
\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_m] \rangle_c \stackrel{\text{uplift}}{\longrightarrow} \langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_p] Q_B[\mathcal{O}_{p+1}] \cdots Q_B[\mathcal{O}_m] \rangle_c, \quad 1 \le p \le m-1. \tag{4.1}
$$

335 When *p* is not 1 and $m-1$, the type- $(p, m-p)$ CCF is not a conformal block. It is still ³³⁶ a function of cross ratio *ξ*, therefore it should reproduce type-(*m*) CCF after taking the 337 limit $A \rightarrow B$,

$$
\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_m] \rangle_c = \lim_{\xi \to -\infty} \langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_p] Q_B[\mathcal{O}_{p+1}] \cdots Q_B[\mathcal{O}_m] \rangle_c.
$$
 (4.2)

338 Obviously, this also defines a UV/IR relation between $p_{q}^{(d)}$ and several coefficients in the 339 type- $(p, m - p)$ CCF. Since the right hand side is not proportional to conformal block, ³⁴⁰ it is not easy to write out an explicit formula. Nevertheless, one may still check the 341 relation [\(4.2\)](#page-13-6) case by case. One example is to consider the type-(2, 2) CCF of modular $_{342}$ Hamiltonian in CFT₂. By making use of the universal feature of CCF of stress tensor, one ³⁴³ can fix the generator of type- (m_1, m_2) CCFs $[14]$ $[14]$ $[14]$

$$
T_{A\cup B}(\mu_1, \mu_2) = -\frac{c}{2} \text{tr} \log[1 - \left(\begin{array}{cc} A & C \\ \mathcal{D} & B \end{array}\right)],\tag{4.3}
$$

344 where the matrices A, B, C and D are p

$$
\mathcal{A}_{xx'} = \frac{\eta^2}{4} \int_0^\infty dy \frac{\sqrt{xx'}y \sinh \pi \mu_1 x \sinh \pi \mu_2 y}{\sinh \pi x' \sinh \pi y \sinh \pi (1 + \mu_1)x \sinh \pi (1 + \mu_2)y} (\frac{x_{13}}{x_{23}})^{i(x-x')} \mathcal{F}(x, x', y), (4.4)
$$
\n
$$
R = \frac{\eta^2 \int_{0}^\infty dy}{\sqrt{xx'}y \sinh \pi \mu_1 x \sinh \pi \mu_2 y} (\frac{x_{13}}{x_{13}})^{-i(x-x')} \mathcal{F}(x', y, y) (4.5)
$$

$$
B_{xx'} = \frac{\eta^2}{4} \int_0^1 dy \frac{Vxx' y \sinh \pi \mu_1 x \sinh \pi \mu_2 y}{\sinh \pi x' \sinh \pi y \sinh \pi (1 + \mu_1)x \sinh \pi (1 + \mu_2)y} (\frac{x_{13}}{x_{23}})^{-i(x-x')} \mathcal{F}(x', x, y), (4.5)
$$

$$
\mathcal{C}_{xx'} = \frac{\eta^2}{4} \int_0^\infty dy \frac{\sqrt{xx'}y \sinh \pi \mu_1 x \sinh \pi \mu_2 y}{\sinh \pi x' \sinh \pi y \sinh \pi (1 + \mu_1)x \sinh \pi (1 + \mu_2)y} (\frac{x_{13}}{x_{23}})^{i(x+x')} \mathcal{F}(x, -x', y) (4.6)
$$

$$
\mathcal{D}_{xx'} = \frac{\eta^2}{4} \int_0^\infty dy \frac{\sqrt{xx'}y \sinh \pi \mu_1 x \sinh \pi \mu_2 y}{\sinh \pi x' \sinh \pi y \sinh \pi (1 + \mu_1)x \sinh \pi (1 + \mu_2)y} (\frac{x_{13}}{x_{23}})^{-i(x+x')} \mathcal{F}(-x, x', y) (4.6)
$$

³⁴⁵ with

$$
\mathcal{F}(x, x', y) = {}_{2}F_{1}(1+ix, 1-iy, 2, -\eta) {}_{2}F_{1}(1-ix', 1+iy, 2, -\eta) \n+{}_{2}F_{1}(1+ix, 1+iy, 2, -\eta) {}_{2}F_{1}(1-ix', 1-iy, 2, -\eta).
$$
\n(4.8)

 346 $\mathcal F$ and its complex conjugate obey

$$
\mathcal{F}^*(x, x', y) = \mathcal{F}(x', x, y), \quad \mathcal{F}^*(-x, -x', y) = \mathcal{F}(x, x', y). \tag{4.9}
$$

³⁴⁷ so

$$
\mathcal{A} = \mathcal{B}^*, \quad \mathcal{C} = \mathcal{D}^*.
$$
\n(4.10)

³⁴⁸ We read out the first few CCFs

$$
\langle H_A^m \rangle_c = \frac{cm!}{12} \log \frac{2}{\epsilon},
$$

\n
$$
\langle H_A^{m-1} H_B \rangle_c = \frac{cm!}{144} G_2^{(2)}(\eta).
$$

\n
$$
\langle H_A^2 H_B^2 \rangle_c = c \{ \frac{1+\eta}{\eta^2} [4\text{Li}_3(1+\eta) - 2\log(1+\eta)\text{Li}_2(1+\eta) + \frac{2\log(1+\eta)}{3} \text{Li}_2(-\eta) + \frac{1+\eta}{3} \log^2(1+\eta) - \frac{\pi^2}{3} \log(1+\eta) - 4\zeta(3) \} + \frac{2+\eta}{3\eta} [2\text{Li}_2(-\eta) + 3\log(1+\eta)] - \frac{4}{3} \},
$$
\n(4.11)

 $\frac{1}{249}$ where the polylogrithm $\text{Li}_n(z)$ is

$$
\mathrm{Li}_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n}.
$$
\n(4.12)

350 The relation [\(4.2\)](#page-13-6) can be checked for $p = 2$, $m = 4$. The right hand side is

$$
\lim_{\eta \to -1} \langle H_A^2 H_B^2 \rangle_c = 2c \log \frac{2}{\epsilon} + \dotsb. \tag{4.13}
$$

The cutoff independent coefficient 2*c* matches with the one in $\langle H_A^4 \rangle_c$.

³⁵² • New power law. In the previous discussion, we focus on the case that *B* and *A* coincide ³⁵³ with each other. However, there are other cases that the CCFs are still divergent. One ³⁵⁴ can consider the limit that *A* just attaches the edge of *B*,

$$
R'=1, \quad x_0=2+\epsilon, \quad \epsilon \to 0. \tag{4.14}
$$

³⁵⁵ The cross ratio *ξ* does not approach −∞ but 1

$$
\xi = \frac{4}{(2+\epsilon)^2} = 1 - \epsilon + \cdots. \tag{4.15}
$$

³⁵⁶ We can define a new CCF which is also divergent from type-(*m* − 1, 1) CCF

$$
\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_{m-1}] \odot Q_B[\mathcal{O}_m] \rangle_c = \lim_{\xi \to 1} \langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_{m-1}] Q_B[\mathcal{O}_m] \rangle_c \tag{4.16}
$$

³⁵⁷ The continuation of conformal block tells us that the new CCF obeys a new power law

$$
\langle Q_A[\mathcal{O}_1] \cdots Q_A[\mathcal{O}_{m-1}] \odot Q_B[\mathcal{O}_m] \rangle_c = \bar{\gamma} \left(\frac{R}{\epsilon}\right)^{\frac{d-2}{2}} + \cdots + \bar{p}_q^{(d)} \log^q \frac{R}{\epsilon} + \cdots. \tag{4.17}
$$

³⁵⁸ The leading term is proportional to

$$
\mathcal{L} = R^{\frac{d-2}{2}} = \sqrt{\mathcal{A}} \tag{4.18}
$$

³⁵⁹ which is the characteristic length of the region *A* in four dimensions. In two dimensions, ³⁶⁰ the leading term is a logarithmic term with power *q*. In this case, there is a new UV/IR 361 relation between \bar{p}_q and *D* coefficient, we write it schematically

$$
\bar{p}_q = \bar{E} \times D. \tag{4.19}
$$

362 The function $\bar{E}^{(d)}[O]$ is proportional to $E^{(d)}[O]$. The proportional constant is shown ³⁶³ below.

 $364 - d$ is even.

365 **• • For conserved current** \mathcal{O} **with conformal weight** $\Delta = J + d - 2$ **,**

$$
\bar{E}^{(d)}[O] = \frac{(-1)^{J}}{2} E^{(d)}[O].
$$
\n(4.20)

³⁶⁶ ∗ For non-conserved current O with conformal weight *∆* and spin *J*,

$$
\bar{E}^{(d)}[\mathcal{O}] = \frac{(-1)^{J}}{4} E^{(d)}[\mathcal{O}]. \tag{4.21}
$$

367 We checked the relation for $d = 2, 4$ and spin $J \leq 2$. $368 - d$ is odd. ³⁶⁹ ∗ For non-conserved current O with conformal weight *∆* and spin *J*,

$$
\bar{E}^{(d)}[O] = \frac{(-1)^{J}}{2} E^{(d)}[O].
$$
\n(4.22)

 \ast For conserved current \mathcal{O} , there is no logarithmic divergent term in the CCF.

- 371 We checked the relation for $d = 3$ and spin $J \leq 2$.
- ³⁷² Since *D* function is the same, we find a relation between two cutoff independent coeffi- 373 cients *p* and \bar{p} ,

$$
\frac{p}{E} = \frac{\bar{p}}{\bar{E}}.\tag{4.23}
$$

5 Summary and outlook

 In this report, we have introduced the area law [\(3.1\)](#page-7-1) of type-(*m*) CCF of OPE blocks. It is a generalization of the area law of entanglement entropy. We will list several open problems for future work.

378 • Higher $m \geq 4$. In most of the work, we restrict to the region $m \geq 3$. This is because the structure of *m*-point correlation function of primary operators in CFT is fixed up to 380 $m = 3$. For $m \ge 4$, it is harder to extract cutoff independent coefficient.

• UV/IR relation. The UV/IR relation

$$
p = E \times D \tag{5.1}
$$

has been checked for several examples. A rigorous proof is still lacking.

 • Cyclic identity. The cyclic identity of *p* reflects the fact that *p* is independent of the way to regularize the type- (m) CCF. However, we feel that a direct computation is impossible to check this identity.

• New power law. We generalize the type- (m_1, m_2) CCF to the case that *A* and *B* just attaches with each other. The corresponding CCF is divergent with a new power law [\(4.17\)](#page-15-0). The corresponding new UV/IR relation

$$
\bar{p} = \bar{E} \times D \tag{5.2}
$$

also needs understanding.

 • Deformed reduced density matrix. This exponential operator is similar to "Wilson loop" in gauge theories [[29,](#page-18-7)[30](#page-18-8)] despite the fact that the OPE block has no lower bound in gen- eral. When the OPE block has a lower bound, the logarithm of the vacuum expectation value of the deformed reduced density matrix

$$
\log \langle e^{-\mu Q_A} \rangle \tag{5.3}
$$

 should also obey area law with logarithmic divergence. There may be a gravitational dual for this quantity as [[31,](#page-18-9) [32](#page-18-10)]. The similarity of the area law between this program and black hole entropy implies that the classical part contributes to the area term while quantum effects lead to logarithmic corrections.

³⁹⁸ • Multiple integrals. According to the method of continuation of conformal block, area law of type-(*m*) CCF is protected by conformal invariance. However, the method of contin- uation itself cannot guarantee that it always leads to correct result. One has to develop other methods to deal with the multiple integrals. In two dimensions, one should gen-eralize Selberg integrals [[33,](#page-18-11)[34](#page-18-12)] to include more parameters [[15](#page-17-13)].

References

 [1] J. D. Bekenstein, "Black holes and entropy," Phys. Rev. D **7** (1973), 2333-2346 doi:10.1103/PhysRevD.7.2333

- [2] S. W. Hawking, "Particle Creation by Black Holes," Commun. Math. Phys. **43** (1975), 199-220 doi:10.1007/BF02345020
- [3] B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, "A Stereoscopic Look into the Bulk," JHEP **1607**, 129 (2016) doi:10.1007/JHEP07(2016)129 [arXiv:1604.03110 [hep-th]].
- [4] J. de Boer, F. M. Haehl, M. P. Heller and R. C. Myers, "Entanglement, hologra- phy and causal diamonds," JHEP **1608**, 162 (2016) doi:10.1007/JHEP08(2016)162 [arXiv:1606.03307 [hep-th]].
- [5] S. Ferrara, A. F. Grillo and R. Gatto, "Manifestly conformal covariant operator-product expansion," Lett. Nuovo Cim. **2S2**, 1363 (1971) [Lett. Nuovo Cim. **2**, 1363 (1971)]. doi:10.1007/BF02770435
- [6] S. Ferrara, A. F. Grillo and R. Gatto, "Manifestly conformal-covariant expansion on the light cone," Phys. Rev. D **5**, 3102 (1972). doi:10.1103/PhysRevD.5.3102
- [7] R.Haag, " Local quantum physics: fields, particles, algebras ," Springer, Berlin, Germany (1992).
- [8] L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, "A Quantum Source of Entropy for Black Holes," Phys. Rev. D **34**, 373 (1986).
- [9] M. Srednicki, "Entropy and area," Phys. Rev. Lett. **71**, 666 (1993) doi:10.1103/PhysRevLett.71.666 [hep-th/9303048].
- [10] C. G. Callan, Jr. and F. Wilczek, "On geometric entropy," Phys. Lett. B **333**, 55 (1994) doi:10.1016/0370-2693(94)91007-3 [hep-th/9401072].
- [11] H. Araki, "Relative Entropy of States of Von Neumann Algebras," Publ. Res. Inst. Math. Sci. Kyoto **1976**, 809 (1976).
- [12] S. Ryu and T. Takayanagi, "Holographic derivation of entanglement entropy from AdS/CFT," Phys. Rev. Lett. **96**, 181602 (2006) doi:10.1103/PhysRevLett.96.181602 [hep-th/0603001].
- [13] J. Long, "Correlation function of modular Hamiltonians," JHEP **11** (2019), 163 doi:10.1007/JHEP11(2019)163 [arXiv:1907.00646 [hep-th]].
- [14] J. Long, "Correlation function with the insertion of zero modes of modular Hamilto- nians," JHEP **01** (2020), 173 doi:10.1007/JHEP01(2020)173 [arXiv:1911.11487 [hep-th]].
- [15] J. Long, "Logarithmic behaviour of connected correlation function in CFT," [arXiv:2001.05129 [hep-th]].
- [16] J. Long, "Area law of connected correlation function in higher dimensional conformal field theory," [arXiv:2007.15380 [hep-th]].
- [17] S. N. Solodukhin, "The Conical singularity and quantum corrections to entropy of black hole," Phys. Rev. D **51** (1995), 609-617 doi:10.1103/PhysRevD.51.609 [arXiv:hep-th/9407001 [hep-th]].
- [18] S. N. Solodukhin, "On 'Nongeometric' contribution to the entropy of black hole due to quantum corrections," Phys. Rev. D **51** (1995), 618-621 doi:10.1103/PhysRevD.51.618 [arXiv:hep-th/9408068 [hep-th]].

- [19] R. K. Kaul and P. Majumdar, "Logarithmic correction to the Bekenstein-Hawking entropy," Phys. Rev. Lett. **84** (2000), 5255-5257 doi:10.1103/PhysRevLett.84.5255 [arXiv:gr- $449 \qquad \qquad$ qc/0002040 [gr-qc]]. [20] S. Carlip, "Logarithmic corrections to black hole entropy from the Cardy formula," Class. Quant. Grav. **17** (2000), 4175-4186 doi:10.1088/0264-9381/17/20/302 [arXiv:gr- $452 \qquad \qquad qc/0005017 \, [gr-qc]].$ [21] T. R. Govindarajan, R. K. Kaul and V. Suneeta, "Logarithmic correction to the Bekenstein- Hawking entropy of the BTZ black hole," Class. Quant. Grav. **18** (2001), 2877-2886 doi:10.1088/0264-9381/18/15/303 [arXiv:gr-qc/0104010 [gr-qc]]. [22] A. Sen, "Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions," JHEP **04** (2013), 156 doi:10.1007/JHEP04(2013)156 [arXiv:1205.0971 [hep-th]]. [23] S. Minwalla, "Restrictions imposed by superconformal invariance on quantum field the- ories," Adv. Theor. Math. Phys. **2**, 783 (1998) doi:10.4310/ATMP.1998.v2.n4.a4 [hep- th/9712074]. [24] H. Casini, M. Huerta and R. C. Myers, "Towards a derivation of holographic entanglement entropy," JHEP **1105**, 036 (2011) doi:10.1007/JHEP05(2011)036 [arXiv:1102.0440 [hep-th]]. [25] F. A. Dolan and H. Osborn, "Conformal four point functions and the operator product expansion," Nucl. Phys. B **599**, 459 (2001) doi:10.1016/S0550-3213(01)00013-X [hep- th/0011040]. [26] F. A. Dolan and H. Osborn, "Conformal partial waves and the operator product ex- pansion," Nucl. Phys. B **678**, 491 (2004) doi:10.1016/j.nuclphysb.2003.11.016 [hep- th/0309180]. [27] M. Hogervorst, H. Osborn and S. Rychkov, "Diagonal Limit for Conformal Blocks in *d* Di- mensions," JHEP **1308**, 014 (2013) doi:10.1007/JHEP08(2013)014 [arXiv:1305.1321 [hep-th]]. [28] I. Bakas and E. Kiritsis, Nucl. Phys. B **343** (1990), 185-204 [erratum: Nucl. Phys. B **350** (1991), 512-512] doi:10.1016/0550-3213(90)90600-I [29] J. M. Maldacena, "Wilson loops in large N field theories," Phys. Rev. Lett. **80**, 4859 (1998) doi:10.1103/PhysRevLett.80.4859 [hep-th/9803002]. [30] S. J. Rey and J. T. Yee, "Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity," Eur. Phys. J. C **22**, 379 (2001) doi:10.1007/s100520100799 [hep-th/9803001]. [31] D. L. Jafferis and S. J. Suh, "The Gravity Duals of Modular Hamiltonians," JHEP **09** (2016), 068 doi:10.1007/JHEP09(2016)068 [arXiv:1412.8465 [hep-th]]. [32] D. L. Jafferis, A. Lewkowycz, J. Maldacena and S. J. Suh, "Relative entropy equals bulk relative entropy," JHEP **06** (2016), 004 doi:10.1007/JHEP06(2016)004 [arXiv:1512.06431 [hep-th]].
- [33] A. Selberg, "Bemerkninger om et multipelt integral,"Norsk.Mat.Tidsskr.24(1944)71-78.
- [34] P. Forrester and S. Warnaar, "The importance of the Selberg integral,"Bull. Amer. Math. Soc. (N.S.) 45 (2008), 489-534.