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1 Introduction19

This report consists a summary of our recent progress on the relationship between area law and20

OPE blocks. Area law has been a continuous topic in physics. The prototype of area law dates21

back to black hole physics in general relativity. The unusual property that the thermal entropy22

of a black hole is proportional to the event horizon of the black hole [1,2] has stimulated varies23

modern idea of theoretical physics, including the famous holographic principle.24

OPE block [3,4], on the other hand, is a relatively new topic in conformal field theory, though25

it has been noticed at the early stages of conformal field theory [5, 6]. The operator product26

expansion of two primary operators is equivalent to a summation of OPE blocks with corre-27

sponding three point function coefficients. It is a smeared operator which is generated from28

the so-called (quasi-)primary operator.29

Modular Hamiltonian, the logarithm of the reduced density matrix [7], plays a central role30

in the context of geometric entanglement entropy [8–11]. Entanglement entropy is a von31

Neumann entropy generated from reduced density matrix of a subregion of spacetime. An32

intriguing fact of entanglement entropy is that it obeys area law in the leading order, though33

one should introduce a cutoff to secure the divergent behaviour. Its connection to gravity34

has been established by the work of Ryu and Takayanagi [12], in which they proposed that35

the entanglement entropy of a CFT is equal to the area of a minimal surface in the bulk AdS36

spacetime.37

Modular Hamiltonian is a special OPE block generated by the stress energy-momentum tensor38

for a ball region. This leads to the conjecture that OPE block may be related to area law as39

modular Hamiltonian. Indeed, in a series of papers [13, 14, 16, 17], we have shown that the40

quantity which satisfies area law is the type-(m) connected correlation function (CCF). More41

explicitly, the leading term of the type-(m) CCF is proportional to the area of the boundary of42

the ball. In the subleading terms, we find a logarithmic divergence with degree q. The degree43

q is a natural number which is no larger than 2 in general dimensions. The coefficient pq for44

the logarithmic term with degree q is cutoff independent. We establish a relationship between45

pq and the type-(m− 1,1) CCF of OPE blocks for two balls which are far away to each other.46

The coefficient pq obeys a cyclic identity which is independent of the order of the operators.47

This paper is organised as follows. In section 2, we will introduce some basic concepts and48

conventions used in this paper. Section 3 is devoted to the study of the new area law which is49

related to the OPE blocks. Varies generalizations have been given in section 4. We conclude50

in section 5 with a number of general open problems that deserve, in our opinion, more work.51

2 Setup52

In this section, we introduce some basic concepts and conventions used in this paper.53
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2.1 Area law54

In any continues quantum field theory(QFT), physical degrees exist at each point (t, x i), i = 1, · · · , d−155

of spacetime M . At each time slice t = t0, the data on the Cauchy surface Σ determines the56

evolution of the fields. One can divide the surface Σ into a spacelike subregion A and its com-57

plement Ā, Σ = A∪ Ā. The boundary ∂ A is a codimension 2 surface whose area is A. The58

causal development of A is denoted by D(A). The physical data on A can only determine the59

evolution of the fields in D(A). The causal development D(A) is an independent subsystem of60

the original spacetime M . Operators in this subsystem are collected to form an algebra a(A).61

Assume the QFT in the spacetime M is described by a density matrix ρ, then by integrating62

out the degree of freedom in the complement of Ā, one achieves a reduced density matrix ρA63

ρA = trĀρ. (2.1)

The reduced density matrix ρA is a special operator in a(A) since it describes the subsystem64

D(A) effectively. A general quantity Q(A) in a(A) is said to obey area law if its leading term is65

proportional to the area of the boundary ∂ A,66

Q(A)∝A+ · · · . (2.2)

One typical example is the black hole entropy in Einstein gravity. The black hole entropy is67

proportional to the area of its event horizion,68

Sbh =
A
4G

(2.3)

where G is the Newton constant. At the loop level, black hole entropy requires logarithmic cor-69

rections [18–23]. Usually, the logarithmic correction is in the form C logA where the constant70

C may encode useful information of the black hole.71

Sometimes the area law is divergent, one typical example is the geometric entanglement en-72

tropy73

SA = −trAρA logρA. (2.4)

In this case, one should insert a cutoff ε > 0,74

SA = γ
A
εd−2

+ · · · . (2.5)

In the subleading terms, there may be a logarithmic term whose coefficient is independent of75

the cutoff,76

SA = γ
Rd−2

εd−2
+ · · ·+ p log

R
ε
+ · · · (2.6)

where the parameter R is the characteristic length of the region A.77

In this report, we will present a quantity Q(A) which has a slightly different logarithmic be-78

haviour79

Q(A) = γRd−2

εd−2
+ · · ·+ pq logq R

ε
+ · · · . (2.7)

The maximum power q of the logarithmic terms is a natural number. We will call it the degree80

of the quantity Q(A). The coefficient pq is cutoff independent and encodes useful information81

of the theory. In the special case that the subregion A is a ball, R could be chosen as its radius.82

The subregion A and its causal development D(A) are in one-to-one correspondence, we will83

not distinguish them in the following.84

In two dimensions, there is no polynomial terms of R
ε , the modified “area law” is85

Q(A) = pq logq R
ε
+ · · · . (2.8)
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2.2 OPE block86

In any d dimensional CFT, operators are classified into (quasi-)primary operators O and their87

descendants ∂µ∂ν · · ·O. A general primary operator is characterized by two quantum num-88

bers, conformal weight ∆ and so(d − 1) spin Ji j with magnitude J . Under a global conformal89

transformation x → x ′, a primary spin 0 operator transforms as90

O(x)→ |∂ x ′

∂ x
|−∆/dO(x). (2.9)

where |∂ x ′/∂ x | is the Jacobian of the conformal transformation of the coordinates, ∆ is the91

conformal weight of the primary operator. Operator product expansion(OPE) of two separated92

primary scalar operators Oi(x1)O j(x2) is to expand their product in a local orthogonal and93

complete basis around a suitable point94

Oi(x1)O j(x2) =
∑

k

Ci jk|x12|∆k−∆i−∆ j (Ok(x2) + · · · ), (2.10)

where · · · are descendants of the primary operator Ok. Its form is fixed by global conformal95

symmetry, therefore it just contains kinematic information of the CFT. The summation is over96

all possible primary operators of the CFT. Here we expand the product around the point x2.97

The distance of any two points x i , x j is written as |x i j|. The constant Ci jk is called the OPE98

coefficient which is related to the three point function of primary operators99

〈Oi(x1)O j(x2)Ok(x3)〉=
Ci jk

|x12|∆12,3 |x23|∆23,1 |x13|∆13,2
, ∆i j,k =∆i +∆ j −∆k. (2.11)

They are the only dynamical parameters in the CFT. The constants ∆i ,∆ j ,∆k are conformal100

weights of the corresponding primary operators. By collecting all kinematic terms in the sum-101

mation, we can rewrite the OPE (2.10) as102

Oi(x1)O j(x2) = |x12|−∆i−∆ j

∑

k

Ci jkQi j
k (x1, x2). (2.12)

The objects Qi j
k (x1, x2) are called OPE blocks [3,5,6]. They are non-local operators in the CFT103

and depend on the position x1 and x2 of the external operators. The upper index i and j show104

that it also depends on the quantum number of the external operators Oi and O j . It is easy to105

see that OPE block has dimension zero. Under a global conformal transformation x → x ′, an106

OPE block Qi j
k (x1, x2) will transform as107

Qi j
k (x1, x2)→ f (x ′1, x ′2)Q

i j
k (x

′
1, x ′2). (2.13)

The explicit form of f (x ′1, x ′2) is not important in this work. When the two external operators108

are the same, we have f (x ′1, x ′2) = 1 and OPE block will be invariant under the global con-109

formal transformation. One can also show that the OPE block is independent of the external110

operator in this special case. Due to this reason, we relabel such kind of OPE block as111

QA[Ok] =Qii
k (x1, x2). (2.14)

The subscript A denotes the region determined by the two points x1 and x2 where the two112

external operators insert into. The operator in the square bracket reflects the fact that OPE113

block is generated by a primary operator Ok. We omit the information of i since the OPE block114

is insensitive to the external operators in this case. We will classify the primary operators115
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Ok into conserved currents J and non-conserved operators O. A general symmetric traceless116

primary operator obeys the following unitary bound [24]117

�

∆≥ J + d − 2, J ≥ 1,
∆≥ d−2

2 , J = 0.

A conserved current J with spin J(J ≥ 1) will satisfy ∆ = J + d − 2. All other primary118

operators are non-conserved operators. Correspondingly, the OPE block (2.14) generated by119

a conserved current J will be called a type-J OPE block. On the other hand, the OPE block120

(2.14) generated by a non-conserved operator O will be called a type-O OPE block.121

When two operators are time-like separated, the region A is a causal diamond. The two oper-122

ators are at the sharp corner of the diamond A. We can use the conformal transformation to123

fix124

x1 = (1, ~x0), x2 = (−1, ~x0), (2.15)

then the causal diamond A intersects t = 0 slice with a unit ball which we will also denote it125

as A126

A= {(0, ~x)|(~x − ~x0)
2 ≤ 1}. (2.16)

The center of the ball is ~x0. The boundary of the ball A is a unit sphere ∂ A. In the context of127

geometric entanglement entropy, the surface ∂ A is an entanglement surface which separates128

the ball A and its complement. The leading term of entanglement entropy is proportional to129

the area of the surface ∂ A in general higher dimensions (d > 2). In two dimensions, the130

entanglement entropy is logarithmically divergent with the logarithmic degree q = 1. There131

is a conformal Killing vector K which preserves the diamond A,132

Kµ =
1
2
(1− (~x − ~xA)

2 − t2,−2t ~x). (2.17)

The conformal Killing vector K is null on the boundary of the diamond A. It generates a133

modular flow of the diamond A. A type-O OPE block corresponds to point pair (2.15) or unit134

ball A (2.16) is [4]135

QA[Oµ1···µJ
] = cOµ1 ···µJ

∫

D(A)
dd xKµ1 · · ·KµJ |K |∆−d−JOµ1···µJ

, (2.18)

where the primary operator Oµ1···µJ
is non-conserved136

∂ µ1Oµ1···µJ
6= 0. (2.19)

It has dimension ∆ and spin J . When the operator is a conserved current137

∂ µ1Jµ1···µJ
= 0, (2.20)

the corresponding type-J OPE block is138

QA[Jµ1···µJ
] = cJµ1 ···µJ

∫

A
dd−1~x(K0)J−1J0···0. (2.21)

It can be obtained from (2.18) by using the conservation law (2.20) and reducing it to a lower139

d−1 dimensional integral. The coefficient cJµ1 ···µJ
is also redefined at the same time. In (2.18)140

and (2.21), the coefficients cOµ1 ···µJ
and cJµ1 ···µJ

are free parameters, we set them to be 1.141
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2.3 Modular Hamiltonian and area law142

A very special type-J OPE block is the modular Hamiltonian [7,25] of the ball A,143

HA = 2π

∫

A
dd−1~xK0T00 = 2π

∫

A
dd−1~x

1− (~x − ~x0)2

2
T00(0, ~x). (2.22)

Modular Hamiltonian is the logarithm of the reduced density matrix ρA144

HA = − logρA. (2.23)

It plays a central role in the context of entanglement entropy,145

SA = −trAρA logρA = trAe−HAHA. (2.24)

More generally, Rényi entanglement entropy146

S(n)A =
1

1− n
log trAρ

n
A (2.25)

has been shown to satisfy an area law generally147

S(n)A = γ
A
εd−2

+ · · · , (2.26)

where A is the area of the entanglement surface ∂ A and ε is a UV cutoff. The constant γ is148

cutoff dependent. The subleading terms · · · contain a logarithmic term with degree q = 1 in149

even dimensions150

S(n)A = γ
A
εd−2

+ · · ·+ p1(n) log
R
ε
+ · · · , (2.27)

where we have inserted back the radius R = 1. The area A is related to the radius R through151

the power law152

A∼ Rd−2. (2.28)

The coefficient p1(n) encodes useful information of the CFT. The relation between modular153

Hamiltonian and area law motivates the conjecture that OPE block maybe related to area154

law in a suitable way. We will give the framework to discuss this problem in the following155

subsection.156

2.4 Deformed reduced density matrix and connected correlation function157

Given a primary operator O in a ball A, one can always define a corresponding OPE block158

QA[O]. We construct an exponential operator formally [14]159

ρA = e−µQA (2.29)

which is still in the subregion A. The constant µ is free. Operators of the form (2.29) is called160

deformed reduced density matrix. Note we use the same symbol ρA to label deformed reduced161

density matrix. Recall that the modular Hamiltonian is a special OPE block, if one replaces the162

OPE block by the modular Hamiltonian (2.29) and set µ = 1, the deformed reduced density163

matrix becomes the reduced density matrix exactly. We can relax the definition, namely, QA in164

(2.29) could be a linear superposition of several OPE blocks. Note our definition of deformed165

reduced density matrix is a direction extension of the generalized reduced density matrix in166

the context of the so-called charged Rényi entropy [15]. In that work, QA is a charge which167

is generated by a U(1) current. The corresponding charged Rényi entropy is holographically168
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dual to the thermal entropy of a charged black hole with hyperbolic horizon. However, in our169

definition, QA is just a general OPE block or their linear superposition. As a naive generalization170

of Rényi entanglement entropy, we construct the logarithm of the vacuum expectation value171

of the deformed reduced density matrix,172

TA(µ) = log〈ρA〉= log〈e−µQA〉. (2.30)

When QA is modular Hamiltonian, the above quantity is related to the Rényi entropy for the173

vacuum state.174

However, a direct computation of TA(µ) is hard in general. A much more severe problem is175

that OPE block has no lower bound in general, therefore the definition is not valid for general176

OPE blocks. To solve this problem, we observe that TA(µ) could be expanded for small µ,177

TA(µ) =
∞
∑

m=1

(−µ)m

m!
〈Qm

A 〉c . (2.31)

The Tayler expansion coefficient178

〈Qm
A 〉c = (−1)m

∂ m

∂ µm
TA(µ)|µ→0 (2.32)

is called Type-(m) connected correlation function (CCF) of the OPE block QA. For each definite179

m, one can always calculate the corresponding CCF without knowing TA(µ). The first few CCFs180

are181

〈Q2
A〉c = 〈Q2

A〉 − 〈QA〉2,

〈Q3
A〉c = 〈Q3

A〉 − 3〈Q2
A〉〈QA〉+ 2〈QA〉3. (2.33)

Using CCF, there is no issue of lower bound of the OPE block. As an application of the concept182

of CCF, we choose the OPE block as the modular Hamiltonian, then it is easy to show that183

CCF of modular Hamiltonian HA satisfies area law with logarithmic degree q = 1 in even184

dimensions,185

〈Hm
A 〉c = γ̃

A
εd−2

+ · · ·+ p̃(m)1 log
R
ε
+ · · · , m≥ 1. (2.34)

The coefficient p̃(m)1 is determined from p1(n) by186

p̃(m)1 = (−1)m∂ m
n (1− n)p1(n)|n→1. (2.35)

There could be multiple spacelike-separated balls A1, A2, · · · , each region has associate OPE187

block QAi
. We insert mi OPE blocks into region Ai , then we can define the corresponding188

type-Y CCF189

〈Qm1
A1

Qm2
A2
· · · 〉c (2.36)

where the Young diagram Y is190

Y = (m1, m2, · · · ), m1 ≥ m2 ≥ · · · ≥ 1. (2.37)

The generator of all type-Y CCFs is191

T∪Ai
(µ1,µ2, · · · ) = log

〈e−
∑

i µiQAi 〉
∏

i〈e
−µiQAi 〉

. (2.38)
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When there are only two balls A and B, the generator is192

TA∪B(µ1,µ2) = log
〈e−µ1QA−µ2QB〉
〈e−µ1QA〉〈e−µ2QB〉

=
∑

m1≥1,m2≥1

(−1)m1+m2µ
m1
1 µ

m2
2

m1!m2!
〈Qm1

A Qm2
B 〉c . (2.39)

We parameterize A and B as193

A= {(0, ~x)|(~x − ~x0)
2 ≤ 1}, B = {(0, ~x)|~x ≤ R′2}. (2.40)

There is only one cross ratio194

ξ=
4R′

x2
0 − (1− R′)2

. (2.41)

When the two regions A and B are spacelike-separated, |x0|> 1+R′, the cross ratio is between195

0 and 1,196

0< ξ < 1. (2.42)

In some cases, it is more convenient to use an equivalent cross ratio197

η=
ξ

1− ξ
=

4R′

x2
0 − (1+ R′)2

. (2.43)

For spacelike-separated regions A and B, the range of the cross ratio η is198

0< η <∞. (2.44)

Since the OPE block QA[O] is invariant under conformal transformation, any type-(m1, m2)199

CCF should be a function of cross ratio ξ or η. Actually the OPE block is an eigenvector of the200

conformal Casimir201

[L2,QA[O]] = C∆,JQA[O] (2.45)

where L2 is the Casimir operator of the global conformal group. The eigenvalue C∆,J is202

C∆,J = −∆(∆− d)− J(J + d − 2). (2.46)

Therefore, any type-(m− 1,1) CCF should be a conformal block203

〈QA[O1] · · ·QA[Om−1]QB[Om]〉c = D(d)[O1, · · · ,Om]G
(d)
∆m,Jm

(ξ). (2.47)

The subscript∆m, Jm are the conformal weight and spin of the primary operator Om. The index204

(d) is used to label the dimension of spacetime. The conformal block can be constructed ex-205

plicitly in even dimensions [26,27]. In this paper, we just need the diagonal limit of conformal206

block [28]. Any type-(m1, m2) CCF with m1 ≥ m2 ≥ 2 is not a conformal block .207

3 Area law208

We conjecture that the type-(m) CCF of OPE blocks obeys the following area law209

〈QA[O1] · · ·QA[Om]〉c = γ
Rd−2

εd−2
+ · · ·+ pq logq R

ε
+ · · · . (3.1)

The leading term is proportional to the area of the boundary ∂ A. We inserted the radius R= 1210

into the formula to balance the dimension. The small positive constant ε is the UV cutoff which211

is roughly the distance from the cutoff to the boundary ∂ A. The constant γ depends on the212
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choice of the cutoff and the method of regularization, we will not be interested in its explicit213

value. The · · · terms are subleading and cutoff dependent. Therefore we omit their forms.214

The degree q characterizes the maximal power of the logarithmic terms. The coefficient pq is215

invariant under the rescaling of the cutoff, therefore it encodes detail universal information of216

the theory. When all the OPE blocks are equal to the modular Hamiltonian, the degree q = 1217

for even dimensions according to (2.34). However, as we will see, q is not necessary equal to218

1 in general. To distinguish different type-(m) CCFs in different dimensions, we write the area219

law (3.1) more explicitly as220

〈QA[O1] · · ·QA[Om]〉c = γ[O1, · · · ,Om]
Rd−2

εd−2
+ · · ·+ p(d)q [O1, · · · ,Om] logq R

ε
+ · · · . (3.2)

3.1 Continuation221

The two formulas (2.47) and (3.2) are actually related to each other through an analytic222

continuation. We use the example of the two dimensional modular Hamiltonian to illustrate223

this relation. For any CFT2, the modular Hamiltonian can be decomposed into the holomorphic224

and anti-holomorphic part, we focus on the holomorphic part225

HA = −
∫ 1

−1

dz
1− z2

2
T (z + x0) + c. (3.3)

The constant c can be fixed by the normalization condition226

trAρA = trAe−HA = 1. (3.4)

Its value doesn’t affect the type-Y CCF with any
∑

i mi ≥ 2. We also used the convention227

T (z) = −2πTzz where the subscript z is the holomorphic coordinate z = t + x . The radius of228

the interval A is 1, we have shifted the variable z such that the dependence of the center x0 is229

in the stress tensor. The modular Hamiltonian of region B can be obtained by setting x0 = 0230

and restoring the radius R′. The type-(m− 1,1) CCF of the modular Hamiltonian is231

〈Hm−1
A HB〉c = D(2)[Tµ1ν1

, · · · , Tµmνm
]G(2)2 (η). (3.5)

The two dimensional conformal block for a chiral operator can be labeled by the conformal232

weight h of the operator233

G(2)h (η) = (−η)
h

2F1(h, h, 2h,−η). (3.6)

We can move the interval A to B such that they coincide. In this limit, any type-(m−1, 1) CCF234

should approach a type-(m) CCF . This is equivalent to set η→ −1. We can set x0 → 0 and235

then take the limit R′→ 1,236

xA→ 0, R′ = 1− ε, ε→ 0. (3.7)

The cross ratio ξ→−∞ or η→−1 by237

ξ= −
4(1− ε)
ε2

≈ −
4
ε2

, η= −
4(1− ε)
(2− ε)2

≈ −1+
ε2

4
. (3.8)

On the right hand side of (3.5), we find a logarithmic divergent term in this limit238

G(2)2 (η) = 12 log
2
ε
+ · · ·= 12 log

R
ε
+ · · · (3.9)
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The left hand side of (3.5) approaches type-(m) CCF, therefore239

〈Hm
A 〉c = 12D(2)[Tµ1ν1

, · · · , Tµmνm
] log

R
ε
+ · · · . (3.10)

We read out the cutoff independent coefficient240

p(2)1 [Tµ1ν1
, · · · , Tµmνm

] = 12D(2)[Tµ1ν1
, · · · , Tµmνm

]. (3.11)

The relation (3.11) is a typical UV/IR relation for the modular Hamiltonian. The left hand side241

is the universal coefficient for B and A coincides (UV). On the right hand side, the D coefficient242

characterizes the leading order behaviour of CCF when B and A are far away to each other (IR).243

They provide equivalent information of the CFT since the constant 12 is completely fixed by244

conformal symmetry. The continuation of the conformal block can be generalized to higher245

dimensions. For example, in four dimensions, the conformal block associated with stress tensor246

becomes divergent as A approaches B,247

G(4)4,2 ≈ γ̃
R2

ε2
+ · · · − 120 log

R
ε
+ · · · . (3.12)

The leading term is exactly proportional to the area of the boundary and the logarithmic di-248

vergent term also appears in the subleading terms. We can read out the type-(m) CCF of the249

modular Hamiltonian in four dimensions250

〈Hm
A 〉c = γ

R2

ε2
+ · · ·+ p(4)1 [Tµ1ν1

, · · · , Tµmνm
] log

R
ε
+ · · · (3.13)

with251

p(4)1 [Tµ1ν1
, · · · , Tµmνm

] = −120D(4)[Tµ1ν1
, · · · , Tµmνm

]. (3.14)

Note we obtain the area law and the logarithmic behaviour of the type-(m) CCF of the modular252

Hamiltonian without using any knowledge of Rényi entanglement entropy. The method of253

analytic continuation can be applied to general dimensions and OPE blocks. A conformal254

block G(d)∆,J (ξ) obeys area law in the limit ξ→ −∞ in even dimensions. It has degree q = 1255

only for ∆= J + d − 2,256

G(d)∆,J (ξ) = γ̃
Rd−2

εd−2
+ · · ·+ E(d)[∆, J] log

R
ε
+ · · · , ξ→−∞. (3.15)

This means that type-(m) CCF of type-J OPE blocks may always obey area law with degree257

q = 1, the cutoff independent coefficient is258

p(d)q [O1, · · · ,Om] = E(d)[Om]× D(d)[O1, · · · ,Om]. (3.16)

We have replaced the quantum numbers in E function by the corresponding primary opera-259

tor. For non-conserved operators, the conformal block G(d)∆,J also obeys area law in the limit260

ξ→−∞ in even dimension, though it has degree q = 2261

G(d)∆,J (ξ) = γ̃
Rd−2

εd−2
+ · · ·+ E(d)[∆, J] log2 log

R
ε
+ · · · , ξ→−∞. (3.17)

Therefore, type-(m) CCF of type-O OPE blocks obeys area law with degree q = 2. We can262

obtain similar UV/IR relations as (3.16). In odd dimensions, the story is the same. The degree263

q is 0 for type-(m) CCF of type-J OPE blocks and 1 for type-O OPE blocks.264
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3.2 Kinematic information265

The function E(d)[O] is completely fixed by conformal symmetry. It can be obtained by reading266

out the coefficient of the logarithmic term with degree q. For each fixed quantum number ∆267

and J , there is a unique number E(d)[O]. For any type-J OPE block in two dimensions, the268

primary operator O has dimension ∆= J = h. The conformal block (3.6) has degree q = 1 in269

the limit η→−1. The function E(2)[O] is270

E(2)[O] = 2Γ (2h)
Γ (h)2

, ∆= J = h. (3.18)

For type-O OPE block, the primary operator O has dimension ∆ = h+ h̄ and spin J = h− h̄.271

The conformal block has degree q = 2 in the limit η→−1. The function E(2)[O] is272

E(2)[O] =























24hΓ (h+ 1
2 )

2

πΓ (h)2 J = 0, h> 0

−42h−1Γ(h− 1
2)Γ(h+ 1

2)
πΓ (h−1)Γ (h) J = 1, h> 1

42h−3(h−2)(h−1)(2h−3)(2h−1)Γ(h− 3
2)

2

πΓ (h)2 J = 2, h> 2
· · ·

(3.19)

In four dimensions, we also find273

E(4)[O] =











12 ∆= 3, J = 1
−120 ∆= 4, J = 2
840 ∆= 5, J = 3
· · ·

(3.20)

for conserved currents and274

E(4)[O] =



































−22∆−1Γ (∆−1
2 )Γ (

∆+1
2 )

πΓ (∆−2
2 )2

∆> 1, J = 0,
22∆−1Γ (∆2 )Γ (

∆+2
2 )

πΓ (∆−3
2 )Γ (

∆+1
2 )

∆> 3, J = 1,

−4∆−1(∆−2)Γ (∆−3
2 )Γ (

∆+3
2 )

πΓ (∆−4
2 )Γ (

∆+2
2 )

∆> 4, J = 2,

· · ·

(3.21)

for non-conserved operators. In three dimensions, we find275

E(3)[O] =































−22∆−1(∆−1)Γ (∆− 1
2 )p

πΓ (∆−1) ∆> 1
2 , J = 0.

2∆+1∆Γ (∆− 1
2 )

Γ (∆−2
2 )Γ (

∆+1
2 )

∆> 2, J = 1,

−22∆−1(∆2−1)Γ (∆− 1
2 )p

π(∆−2)2∆Γ (∆−3) ∆> 3, J = 2,

· · ·

(3.22)

for non-conserved operators. Note for conserved currents in odd dimensions, the function276

E(3)[O]may depend on explicit choice of the cutoff. For example, a transformation ε→ ε(1+aε)277

may shift its value. This is because the degree is 0, there is no logarithmic divergence at all.278

3.3 UV/IR relation279

The UV/IR relation (3.16) relates type-(m) CCF to type-(m − 1,1) CCF. This relation may280

simplify computation in many cases. To see this point, let’s compute the following type-(2)281
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CCF in two dimensions282

〈QA[O]2〉c =

∫ 1

−1

dz1

∫ 1

−1

dz2
(1− z2

1)
h−1(1− z2

2)
h−1

(z1 − z2)2h

=
(−1)−hpπΓ (h)
Γ (h+ 1

2)

∫ 1

−1

dz1
1

1− z2
1

=
(−1)−hpπΓ (h)
Γ (h+ 1

2)
log

2
ε

. (3.23)

This is a double integral with poles at z1 = z2. We regularize the integral by ignoring these283

poles at the second step. At the last step, we insert a UV cutoff to regularize the integral.284

However, using UV/IR relation, one just need to fix the coefficient D which is related to the285

large distance behaviour of the type-(1,1) CCF,286

〈QA[O]QB[O]〉c =
∫ 1

−1

dz1

∫ 1

−1

dz2
(1− z2

1)
h−1(1− z2

2)
h−1

(z1 − z2 + x0)2h
. (3.24)

In the large distance limit, x0→∞, the integral becomes simpler287

〈QA[O]QB[O]〉c ≈
∫ 1

−1

dz1

∫ 1

−1

dz2
(1− z2

1)
h−1(1− z2

2)
h−1

x2h
0

= 4−h(
p
πΓ (h)

Γ
�

h+ 1
2

�)2ηh. (3.25)

We have used the relation η≈ 4
x2

0
in the large distance limit. Then we can read out288

D(2)[O,O] = (−1)−h4−h(
p
πΓ (h)

Γ
�

h+ 1
2

�)2. (3.26)

Combining UV/IR relation and (3.18), we find289

p(2)1 [O,O] = E(2)[O]× D(2)[O,O] = (−1)−hpπΓ (h)
Γ (h+ 1

2)
. (3.27)

The result is exactly the same as (3.23). We use the UV/IR relation to obtain type-(3) CCF for290

type-J OPE blocks in two dimensions, the cutoff independent coefficient is291

p(2)1 [O1,O2,O3] =
C123π

3/2(−1)
h1+h2+h3

2 Γ (h1)Γ (h2)Γ (h3)κ

Γ (1+h1+h2−h3
2 )Γ (1+h1+h3−h2

2 )Γ (1+h2+h3−h1
2 )Γ (h1+h2+h3

2 )
, (3.28)

where the constant κ = 1
2[1 + (−1)h1+h2+h3]. We notice that the result is totally symmetric292

under the exchange of any two conformal weights. Since there are different ways to uplift293

type-(m) to type-(m− 1,1), the cutoff independent coefficient should be identical since they294

characterize the same CCF after taking the limit A→ B. For m= 3, this is a cyclic identity295

p(d)q [O1,O2,O3] = p(d)q [O2,O3,O1] = p(d)q [O3,O1,O2]. (3.29)

The UV/IR relation and the cyclic identity have been checked for type-(m) CCF (m=2,3) in296

four dimensions. We list the cutoff independent coefficients below [17].297

• Type-(2). The normalization constants are set to 1.298
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– Spin 1-1 conserved currents.299

p(4)1 [Jµ,Jν] = −
π2

3
. (3.30)

– Spin 2-2 conserved currents.300

p(4)1 [Tµν, Tρσ] = −
π2

40
. (3.31)

– Spin 0-0 non-conserved operators.301

p(4)2 [O,O] = −
4π2(∆− 1)Γ (∆− 2)2Γ (∆2 )

4

Γ (∆)2Γ (∆− 1)2
. (3.32)

– Spin 1-1 non-conserved operators.302

p(4)2 [Oµ,Oν] = −
41−∆π3∆Γ (∆−3

2 )Γ (
∆+1

2 )

Γ (∆2 + 1)2
, ∆> 3. (3.33)

– Spin 2-2 non-conserved operators.303

p(4)2 [Oµν,Oρσ] = −
3π2(∆− 2)∆2Γ (∆2 − 2)2Γ (∆2 − 1)2

64Γ (∆− 4)Γ (∆+ 2)
, ∆> 4. (3.34)

• Type-(3).304

– Spin 1-1-2 conserved currents. The three point function of zero components are305

fixed by conformal symmetry306

〈T00(x1)J0(x2)J0(x3)〉c =
CTJJ

x4
12 x2

13 x2
23

. (3.35)

Then the coefficient307

p(4)1 [Jµ,Jν, Tρσ] = −
π3

2
CTJJ . (3.36)

– Spin 2-2-2 conserved currents. The three point function of zero components are308

fixed by conformal symmetry309

〈T00(x1)T00(x2)T00(x3)〉c =
CT T T

x4
12 x4

13 x4
23

. (3.37)

Then the coefficient310

p(4)1 [Tµν, Tρσ, Tαβ] =
π3

12
CT T T . (3.38)

– Spin 0-0-0 non-conserved currents.311

p(4)2 [O1,O2,O3] = −24−∆1−∆2−∆3π3C123

∫

D2

dζdζ̄(ζ+ ζ̄)2
∫

D2

dζ′dζ̄′(ζ′ + ζ̄′)2

×(1− ζ2)
∆1−4

2 (1− ζ̄2)
∆1−4

2 (1− ζ′2)
∆2−4

2 (1− ζ̄′2)
∆2−4

2

∫ π

0

dθ
sinθ

(a+ b cosθ )
∆12,3

2

,

(3.39)
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Though the expression (3.39) is not symmetric superficially under the exchange of any two312

conformal weights, we checked explicitly that it satisfies the cyclic identity for integer confor-313

mal weights.314

For m = 4, the UV/IR relation and the cyclic identity are much more harder to check. We315

considered type-(4) CCF for massless free scalar theory [13, 14]. In this theory, one can con-316

struct an infinite tower of conserved currents with even spin [29]. The four point functions317

can be calculated explicitly. Therefore we can find type-(3,1) and type-(4) CCFs and read out318

the corresponding coefficients. For example, for spin-2-2-2-4 conserved currents [14],319

D[2,2, 2,4] =
3

70
D[2, 2,4, 2]. (3.40)

Both of them leads to the cutoff coefficients320

p(2)1 [2, 2,2, 4] =
2Γ (8)
Γ (4)2

D[2, 2,2, 4] =
2Γ (4)
Γ (2)2

D[2, 2,4,2] = p(2)1 [2,2, 4,2]. (3.41)

The cyclic identity is obeyed.321

3.4 Discussion322

The UV/IR relation should be slightly modified when the CCF contains both type-J and type-O323

OPE blocks. One simple example is the following type-(3) CCF324

〈QA[J ]QA[O]QA[Õ]〉c (3.42)

where QA[J ] is a type-J OPE block while QA[O] and QA[Õ] are type-O OPE blocks. This CCF325

is related to the following two type-(2,1) CCFs326

〈QA[Õ]QA[J ]QB[O]〉c = D(d)[Õ,J ,O]G(d)∆,J (ξ), (3.43)

〈QA[O]QA[Õ]QB[J ]〉c = D(d)[O, Õ,J ]G(d)
∆′,J ′(ξ). (3.44)

We choose d = 4. Taking the limit A→ B from (3.43), we find a type-(3) CCF with degree327

q = 2, the UV/IR relation reads328

p(4)2 [Õ,J ,O] = E(4)[O]× D(4)[Õ,J ,O] (3.45)

We can also take the limit A→ B from (3.44), then we will find a type-(3) CCF with degree329

q = 1, the UV/IR relation reads330

p(4)1 [O, Õ,J ] = E(4)[J ]× D(4)[O, Õ,J ]. (3.46)

The equations (3.45) and (3.46) are not identical superficially since the subscript q are not331

equal to each other. However, an explicit calculation for spin 2-0-0 and spin 2-2-0 in four332

dimensions [17] shows that the coefficient D(4)[O, Õ,J ] is actually divergent logarithmically,333

334

D(4)[O, Õ,J ] = D(4)log[O, Õ,J ] log
R
ε
+ · · · . (3.47)

The terms in · · · are finite and depends on cutoff scale. Due to the logarithmic divergence335

behaviour of the coefficient D(4)[O, Õ,J ], the degree of type-(3) CCF from (3.44) increases336

1, the modified UV/IR relation becomes337

p(4)2 [O, Õ,J ] = E(4)[J ]× D(4)log[O, Õ,J ]. (3.48)

We checked explicitly that the two constants (3.45) and (3.48) are equal to each other. The338

cyclic identity is still satisfied after counting the logarithmic divergence of the D function.339
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4 Generalizations340

The area law and logarithmic behaviour in the subleading terms can be extended in different341

directions. In this section, we mention several extensions.342

• UV/IR relation. In general, one can uplift any type-(m) CCF to a type-(p, m− p) CCF343

〈QA[O1] · · ·QA[Om]〉c
upli f t
−→ 〈QA[O1] · · ·QA[Op]QB[Op+1] · · ·QB[Om]〉c , 1≤ p ≤ m−1.

(4.1)
When p is not 1 and m− 1, the type-(p, m− p) CCF is not a conformal block. It is still344

a function of cross ratio ξ, therefore it should reproduce the type-(m) CCF after taking345

the limit A→ B,346

〈QA[O1] · · ·QA[Om]〉c = lim
ξ→−∞

〈QA[O1] · · ·QA[Op]QB[Op+1] · · ·QB[Om]〉c . (4.2)

Obviously, this also defines a UV/IR relation between p(d)q and several coefficients in347

the type-(p, m− p) CCF. Since the right hand side is not proportional to any conformal348

block, it is not easy to write out an explicit formula. Nevertheless, one may still check349

the relation (4.2) case by case. One example is to consider the type-(2,2) CCF of the350

modular Hamiltonian in CFT2. By making use of the universal feature of the CCF of the351

stress tensor, one can fix the generator of type-(m1, m2) CCFs [14]352

TA∪B(µ1,µ2) = −
c
2

tr log[1−
�

A C
D B

�

], (4.3)

where the matrices A,B,C and D are353

Ax x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)i(x−x ′)F(x , x ′, y), (4.4)

Bx x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)−i(x−x ′)F(x ′, x , y),(4.5)

Cx x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)i(x+x ′)F(x ,−x ′, y),(4.6)

Dx x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)−i(x+x ′)F(−x , x ′, y).(4.7)

with354

F(x , x ′, y) = 2F1(1+ i x , 1− i y, 2,−η) 2F1(1− i x ′, 1+ i y, 2,−η)
+2F1(1+ i x , 1+ i y, 2,−η) 2F1(1− i x ′, 1− i y, 2,−η). (4.8)

F and its complex conjugate obey355

F∗(x , x ′, y) = F(x ′, x , y), F∗(−x ,−x ′, y) = F(x , x ′, y). (4.9)

so356

A= B∗, C =D∗. (4.10)
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We read out the first few CCFs357

〈Hm
A 〉c =

cm!
12

log
2
ε

,

〈Hm−1
A HB〉c =

cm!
144

G(2)2 (η).

〈H2
AH2

B〉c = c{
1+η
η2
[4Li3(1+η)− 2 log(1+η)Li2(1+η) +

2 log(1+η)
3

Li2(−η)

+
1+η

3
log2(1+η)−

π2

3
log(1+η)− 4ζ(3)] +

2+η
3η
[2Li2(−η) + 3 log(1+η)]−

4
3
},

(4.11)

where the polylogrithm Lin(z) is358

Lin(z) =
∞
∑

k=1

zk

kn
. (4.12)

The relation (4.2) can be checked for p = 2, m= 4. The right hand side is359

lim
η→−1

〈H2
AH2

B〉c = 2c log
2
ε
+ · · · . (4.13)

The cutoff independent coefficient 2c matches with the one in 〈H4
A〉c .360

• New power law. In the previous discussion, we focus on the case that B and A coincide361

with each other. However, there are other cases that the CCFs are still divergent. One362

can consider the limit that A just attaches the edge of B,363

R′ = 1, x0 = 2+ ε, ε→ 0. (4.14)

The cross ratio ξ does not approach −∞ but 1364

ξ=
4

(2+ ε)2
= 1− ε+ · · · . (4.15)

We can define a new CCF which is also divergent from type-(m− 1, 1) CCF365

〈QA[O1] · · ·QA[Om−1]�QB[Om]〉c = lim
ξ→1
〈QA[O1] · · ·QA[Om−1]QB[Om]〉c (4.16)

The continuation of conformal block tells us that the new CCF obeys a new power law366

〈QA[O1] · · ·QA[Om−1]�QB[Om]〉c = γ̄(
R
ε
)

d−2
2 + · · ·+ p̄(d)q logq R

ε
+ · · · . (4.17)

The leading term is proportional to367

L= R
d−2

2 =
p
A (4.18)

which is the characteristic length of the region A in four dimensions. In two dimensions,368

the leading term is a logarithmic term with power q. In this case, there is a new UV/IR369

relation between p̄q and D coefficient , we write it schematically370

p̄q = Ē × D. (4.19)

The function Ē(d)[O] is proportional to E(d)[O]. The proportional constant is shown371

below.372
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– d is even.373

For conserved current O with conformal weight ∆= J + d − 2,374

Ē(d)[O] = (−1)J

2
E(d)[O]. (4.20)

For non-conserved current O with conformal weight ∆ and spin J ,375

Ē(d)[O] = (−1)J

4
E(d)[O]. (4.21)

We checked the relation for d = 2, 4 and spin J ≤ 2.376

– d is odd.377

For non-conserved current O with conformal weight ∆ and spin J ,378

Ē(d)[O] = (−1)J

2
E(d)[O]. (4.22)

For conserved current O, there is no logarithmic divergent term in the CCF.379

We checked the relation for d = 3 and spin J ≤ 2.380

Since D function is the same, we find a relation between two cutoff independent coeffi-381

cients p and p̄,382

p
E
=

p̄
Ē

. (4.23)

5 Summary and outlook383

In this report, we have introduced the area law (3.1) of type-(m) CCFs of OPE blocks. It is a384

generalization of the area law of entanglement entropy. We will list several open problems for385

future work.386

• Higher m ≥ 4. In most of the work, we restrict to the region m ≥ 3. This is because387

the structure of m-point correlation function of primary operators in CFT is fixed up to388

m= 3. For m≥ 4, it is harder to extract cutoff independent coefficient.389

• UV/IR relation. The UV/IR relation390

p = E × D (5.1)

has been checked for several examples. A rigorous proof is still lacking.391

• Cyclic identity. The cyclic identity of p reflects the fact that p is independent of the way392

to regularize the type-(m) CCF. However, we feel that a direct computation is impossible393

to check this identity.394

• New power law. We generalize the type-(m1, m2) CCF to the case that A and B just395

attaches with each other. The corresponding CCF is divergent with a new power law396

(4.17). The corresponding new UV/IR relation397

p̄ = Ē × D (5.2)

also needs understanding.398
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• Deformed reduced density matrix. This exponential operator is similar to the “Wilson399

loop” in gauge theories [30,31] despite the fact that the OPE block has no lower bound400

in general. When the OPE block has a lower bound, the logarithm of the vacuum expec-401

tation value of the deformed reduced density matrix402

log〈e−µQA〉 (5.3)

should also obey area law with logarithmic divergence. There may be a gravitational403

dual for this quantity as [32, 33]. The similarity of the area law between this program404

and black hole entropy implies that the classical part contributes to the area term while405

quantum effects lead to logarithmic corrections.406

• Multiple integrals. According to the method of continuation of conformal block, area407

law of type-(m) CCF is protected by conformal invariance. However, the method of408

continuation itself cannot guarantee that it always leads to the correct result. One has409

to develop other methods to deal with the multiple integrals. In two dimensions, one410

should generalize Selberg integrals [34,35] to include more parameters [16].411
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