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Abstract

We investigate entanglement dynamics for a nanomechanical resonator coupled
to an optical cavity field through the analysis of the associated entanglement
entropies. The effects of time variation of several parameters, such as the
optical frequency and the coupling strength, on the evolution of entanglement
entropies are analyzed. We consider three kinds of entanglement entropies as
the measures of the entanglement of subsystems, which are the linear entropy,
the von Neumann entropy, and the Rényi entropy. The analytic formulae of
these entropies are derived in a rigorous way using wave functions of the sys-
tem. In particular, we focus on time behaviors of entanglement entropies in
the case where the optical frequency is modulated by a small oscillating factor.
We show that the entanglement entropies emerge and increase as the coupling
strength grows from zero. The entanglement entropies fluctuate depending
on the adiabatic variation of the parameters and such fluctuations are signif-
icant especially in the strong coupling regime. Our research may deepen the
understanding of the optomechanical entanglement, which is crucial in realiz-
ing hybrid quantum-information protocols in quantum computation, quantum
networks, and other domains in quantum science.
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1 Introduction

Many novel quantum phenomena and related effects are important in realizing next gener-
ation quantum technologies. Most of such phenomena can be produced by coupling nano-
and micromechanical oscillators with a variety of other systems, such as electrons [1], pho-
tons [2], qubits [3], and magnetic devices [4]. In particular, photonic couplings provide a
powerful platform for state-of-the-art optomechanical techniques applicable to signal rout-
ing and protection [5, 6], control of phononic structures [7], producing slow/fast light [8],
and chiral cooling [9]. Besides, coupled optomechanical systems are promising candidates
for highly sensitive quantum devices required in quantum information processes and quan-
tum state tomographies.

The entanglement of mechanical modes with cavity fields through the effect of radiation
pressure [10] provides a key paradigm for precision measurements in quantum metrology.
Such entanglement can be employed, for example, to construct information networks which
connect flying bits with solid bits [11,12], and to store quantum information [13]. Hence,
the generation of quantum entanglement and its control are very important in optomechan-
ics. Fundamental quantum properties associated with nonclassical correlations, quantum
coherence, and decoherence can also be understood from entanglement dynamics.

It is possible to generate steady-state entanglement in optomechanical systems in-
corporated with mechanical oscillators by adjusting the effective frequency of a movable
mirror [14,15]. Although optomechanical systems serve as good coupling mediums for en-
tanglement [9,16], the mechanism related to such entanglement is not fully understood yet.
We should resolve this problem, together with the lack of the knowledge for determining
parameters for wide range of practical applications of them.

If we think of the fact that maximally entangled states often serve as optimal inputs
in the quantum-information protocols [17], a rigorous quantification of such an entangle-
ment is highly required. The entanglement can be quantified by several measures, such
as entanglement entropies [18–21], the logarithmic negativity [14], the generalized con-
currence [22], or Gaussian-type basis functions [23]. Among those, we are interested in
entanglement entropies in this work, which are deeply related to entanglement properties
of a state. Entanglement entropies provide a bedrock concept of entanglement on the basis
of quantum statistical mechanics, quantifying how strongly the subsystems are entangled.

The purpose of this work is to quantify the entanglement of an optomechanical system
from a strict mathematical framework of the entanglement entropies. The system that we
consider is a coupling of a nanomechanical resonator and a cavity field, where parameters of
the system vary adiabatically in time. In particular, we see the effects of a small sinusoidal
variation of the frequency of the optical oscillator on the entanglement entropies. The time
behavior of the entanglement entropies in that case will be analyzed from various angles.

Organization of this article is as follows. In Sec. 2, we will show how to describe the
optomechanical system that we manage based on Hamiltonian dynamics. The quantum
solutions of the system will be derived in Sec. 3 using the unitary transformation method,
which is a useful mathematical tool for treating time-dependent Hamiltonian systems
[24, 25]. Due to time variation of the parameters, our system is described by a time-
dependent Hamiltonian. Based on such quantum solutions, we will derive a reduced
density matrix in Sec. 4. Several types of entanglement entropies will be evaluated by
taking advantage of the reduced density matrix. The linear entropy will be investigated at
first in Sec. 5 separately for mechanical and optical parts of the system. And then, we will
extend our development to the von Neumann entropy and the Rényi entropy in Sec. 6. As
well as the characteristics of such entanglement entropies, the differences and similarities
between them will be analyzed. Concluding remarks are given in the last section.
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Figure 1: Schematic of the nanomechanical resonator coupled to a cavity field.

2 Preliminary description of the optomechanical system

We consider a nanoresonator coupled to a cavity field via a time-dependent coupling
strength g(t), whereas the cavity field is driven by a laser field of which frequency is
ωL (see Fig. 1). The nanomechanical resonator interacts with the cavity field through
the radiation-pressure force carried by the momentum of light. We assume that, as well
as g, the frequency ∆ of the optical oscillator and the frequency ωm of the mechanical
resonator exhibit possible variations in time. The consideration of such time variations of
the parameters is the difference of our description of the system from that of Ref. [2], which
corresponds to the case that all parameters are independent of time. We further suppose
that the time variations of the three parameters, g(t), ∆(t), and ωm(t), are sufficiently
slow so that the evolution of the coupled system satisfies the adiabatic condition.

If we consider that cavity is driven by a laser field, the relation between the optical
frequency ∆ and the cavity frequency ωc is given by ∆ = ωc−ωL−δrp, where δrp is the shift
of the cavity frequency by radiation pressure [2]. On the other hand, the coupling strength
is given by g(t) = G(t)

√
〈nc〉, where G(t) = [ωc(t)/L(t)]

√
h̄/[mωm(t)], m is effective mass

of the resonator, L is the cavity length, and 〈nc〉 is the mean cavity photon number [2].
Strong coupling in optomechanical systems is favorable for preparing entangled states

or squeezed entangled states, because it is difficult to obtain steady-state entanglement
if the interaction between subsystems is too weak [2, 15]. Furthermore, the effects of
decoherence in coupled systems can be overcome or at least reduced, if we adopt a strong
coupling. Hence, the strong coupling, fortified by these advantages, enables us to carry
out quantum experiments with proper control of mechanical quantum states. [2].

From standard mean-field expansion of the interaction, we have a coupled harmonic
oscillator description of the system in terms of the dimensionless mechanical position
operator X̂m and the dimensionless optical quadrature operator X̂c. These two operators
are given in the form

X̂m =
1√
2

(âm + â†m) X̂c =
1√
2

(âc + â†c), (1)

where âm (âc) and â†m (â†c) are annihilation and creation operators, respectively, for the
mechanical mode (optical mode). Their canonical conjugate operators are given, respec-
tively, by P̂m = −i∂/∂Xm and P̂c = −i∂/∂Xc. These operators can also be represented as

P̂m =
i√
2

(â†m − âm) P̂c =
i√
2

(â†c − âc). (2)

We confirm that the canonical operators satisfy the commutation relations, [X̂m, P̂m] =
[X̂c, P̂c] = i.
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The linearized Hamiltonian for the optomechanical system that we have considered in
the time-dependent regime is now expressed to be

Ĥ =
h̄ωm(t)

2
(X̂2

m + P̂ 2
m) +

h̄∆(t)

2
(X̂2

c + P̂ 2
c )− h̄g(t)X̂mX̂c. (3)

For the case in which the parameters, ∆, ωm, and g, are constants, this Hamiltonian
reduces to that of Ref. [2].

Quantum solutions of the system can be derived through diagonalization of the Hamil-
tonian. For a coupled system, we may need to consider the unitary transformation or the
canonical transformation approach for its exact diagonalization. However, conventionally,
many authors adopt some approximations in such a case, considering a Hamiltonian in a
frame of simply rotated coordinates. We confirm that such a rotation is described as

X̂m

X̂c

P̂m

P̂c

 =


cos θ(t) sin θ(t) 0 0
− sin θ(t) cos θ(t) 0 0

0 0 cos θ(t) sin θ(t)
0 0 − sin θ(t) cos θ(t)




X̂+

X̂−
P̂+

P̂−

 , (4)

where X̂± and P̂± are canonical operators in the rotated frame. If we take θ(t) in the
above equation in the form

θ(t) =
1

2
tan−1

(
2g(t)

ωm(t)−∆(t)

)
, (5)

the Hamiltonian, Eq. (3), is represented to be

Ĥ = Ĥ+ + Ĥ− + ĥ, (6)

where

Ĥ± =
h̄

2
[ωX,±(t)X̂2

± + ωP,±(t)P̂ 2
±], (7)

ĥ =
h̄

2
[ωm(t)−∆(t)] sin[2θ(t)]P̂+P̂−, (8)

with

ωX,+ = ωm(t) cos2 θ(t) + ∆(t) sin2 θ(t) + g(t) sin[2θ(t)], (9)

ωX,− = ωm(t) sin2 θ(t) + ∆(t) cos2 θ(t)− g(t) sin[2θ(t)], (10)

ωP,+ = ωm(t) cos2 θ(t) + ∆(t) sin2 θ(t), (11)

ωP,− = ωm(t) sin2 θ(t) + ∆(t) cos2 θ(t). (12)

From this procedure, we have eliminated the cross term that involves X̂mX̂c in the original
Hamiltonian. However, a new cross term described by P̂+P̂− has appeared. We can easily
confirm from Eq. (8) that this new term disappears in the case of resonance (ωm(t) =
∆(t)). For this reason, some authors manage the system considering only the resonance
case in order to avoid mathematical complexity (see, for example, Refs. [2, 20,21,26,27]).

3 Unitary transformation and wave functions

For a general treatment of the system including non-resonance cases, a rigorous mathe-
matical procedure beyond the simple rotation method may be necessary. We use the uni-
tary transformation method [24, 25] in order to meet this demand. The intricate original
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Hamiltonian can be transformed to a simple form by means of a unitary transformation.
Then the Schrödinger solutions in the transformed system may be easily obtained due to
the simplicity of the transformed Hamiltonian. From the inverse transformation of such
solutions using the same unitary operator, it is also possible to obtain the Schrödinger
solutions in the original system without difficulty. This is the main idea of the unitary
transformation method, which is incorporated to the purpose of deriving complete quan-
tum solutions. The effect of the quantum properties resulting from entanglement of the
wave packets may also be better envisioned by adopting this alternative approach.

We now introduce a unitary operator as

Û = exp{−iϕ(t)[β(t)P̂mX̂c − β−1(t)P̂cX̂m]}, (13)

where

ϕ =
1

2
tan−1

(
2g(t)

βωm(t)− β−1∆(t)

)
, (14)

β =

√
ωm(t)

∆(t)
. (15)

From the transformation of the original Hamiltonian by means of Û using the relation

Ĥ = Û−1ĤÛ − ih̄Û−1∂Û

∂t
, (16)

we can have the Hamiltonian Ĥ associated to the transformed system. A straightforward
evaluation of the above equation gives

Ĥ =
h̄

2
[ωX,m(t)X̂2

m + ωm(t)P̂ 2
m + ωX,c(t)X̂

2
c + ∆(t)P̂ 2

c ]

−h̄[ϕ̇1(t)P̂mX̂c − ϕ̇2(t)P̂cX̂m], (17)

where ϕ1(t) = ϕ(t)β(t), ϕ2(t) = ϕ(t)β−1(t), and

ωX,m = ωm(t) cos2 ϕ(t) + ∆(t)β−2(t) sin2 ϕ(t) + g(t)β−1(t) sin[2ϕ(t)], (18)

ωX,c = ωm(t)β2(t) sin2 ϕ(t) + ∆(t) cos2 ϕ(t)− g(t)β(t) sin[2ϕ(t)]. (19)

Let us assume that the variations of ϕ1(t) and ϕ2(t) over time are sufficiently slow. This
assumption is actually equivalent to the previous assumption that the variations of g(t),
∆(t), and ωm(t) are slow. Then it is possible to neglect the last term that involves ϕ̇1(t)
and ϕ̇2(t) in Eq. (17), leading to a simple diagonalized Hamiltonian:

Ĥ =
h̄

2
[ωX,m(t)X̂2

m + ωm(t)P̂ 2
m + ωX,c(t)X̂

2
c + ∆(t)P̂ 2

c ]. (20)

The manage of the system based on this Hamiltonian may be much easier from quantum-
mechanical point of view than the use of the original Hamiltonian. By the way, if we
choose β = 1 instead of Eq. (15), Eq. (14) reduces to θ(t) given in Eq. (5). This means
that the previous simple rotation procedure is available only for the resonance case, as
expected.

The characterization of quantum properties of a (composite) system starts from the
explicit mathematical formulation of the wave functions. The mysterious property of
nonlocality associated with quantum entanglement may also be understandable through
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the wave functions from the most fundamental level. If we write the Schrödinger equation
for the simple but time-dependent Hamiltonian Ĥ as

ih̄
∂Ψn,l(Xm, Xc, t)

∂t
= ĤΨn,l(Xm, Xc, t), (21)

the overall wave functions in the transformed system are a linear product of the mechanical
and optical parts of the wave functions, such that

Ψn,l(Xm, Xc, t) = Ψn(Xm, t)Ψ̃l(Xc, t). (22)

If we regard Eq. (20), each component in the above equation is of the form (see Appendix
A)

Ψn(Xm, t) = Φn(Xm, t) exp[iδn(t)], (23)

Ψ̃l(Xc, t) = Φ̃l(Xc, t) exp[iδ̃l(t)], (24)

where δn(t) and δ̃l(t) are phases. Here, Φn(Xm, t) and δn(t) (Φ̃l(Xc, t) and δ̃l(t)) are given
in terms of ηm(t) and γm(t) (ηc(t) and γc(t)) which are time-dependent factors of the
classical solution given in Eq. (112) (Eq. (113)) in Appendix A, such that

Φn(Xm, t) = 4

√
γ̇m(t)

πωm(t)

1√
2nn!

Hn

(√
γ̇m(t)

ωm(t)
Xm

)
exp

[
−Ym(t)X2

m

]
, (25)

δn(t) = −(n+ 1/2)γm(t), (26)

Φ̃l(Xc, t) = 4

√
γ̇c(t)

π∆(t)

1√
2ll!

Hl

(√
γ̇c(t)

∆(t)
Xc

)
exp

[
−Yc(t)X

2
c

]
, (27)

δ̃l(t) = −(l + 1/2)γc(t), (28)

where Hn are nth order Hermite polynomials, while

Ym(t) =
1

2ωm(t)

(
γ̇m(t)− i η̇m(t)

ηm(t)

)
, (29)

Yc(t) =
1

2∆(t)

(
γ̇c(t)− i

η̇c(t)

ηc(t)

)
. (30)

The wave functions ψn,l(Xm, Xc, t) in the original system (untransformed system) can
be obtained from the inverse unitary transformation:

ψn,l(Xm, Xc, t) = ÛΨn,l(Xm, Xc, t). (31)

From a minor computation using Eq. (13) and Eq. (22) with subsequent equations, we
have

ψn,l(Xm, Xc, t) = ψn(Xm, Xc, t)ψ̃l(Xm, Xc, t), (32)

where

ψn(Xm, Xc, t) = φn(Xm, Xc, t) exp[iδn(t)], (33)

ψ̃l(Xm, Xc, t) = φ̃l(Xm, Xc, t) exp[iδ̃l(t)], (34)

with

φn(Xm, Xc, t) = 4

√
γ̇m(t)

πωm(t)

1√
2nn!

Hn

(√
γ̇m(t)

ωm(t)
Xm

)
exp

[
−Ym(t)X 2

m

]
, (35)
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φ̃l(Xm, Xc, t) = 4

√
γ̇c(t)

π∆(t)

1√
2ll!

Hl

(√
γ̇c(t)

∆(t)
Xc

)
exp

[
−Yc(t)X 2

c

]
, (36)

while

Xm = Xm cosϕ(t)− β(t)Xc sinϕ(t), (37)

Xc = Xc cosϕ(t) + β−1(t)Xm sinϕ(t). (38)

Thus, using Eq. (32) with Eqs. (33)-(38) and Eqs. (26) and (28), we can represent the
full wave function in the form

ψ(Xm, Xc, t) =

∞∑
n=0

∞∑
l=0

cn,lψn,l(Xm, Xc, t), (39)

where cn,l are complex numbers which obey the condition
∑∞

n=0

∑∞
l=0 |cn,l|2 = 1. In the

subsequent sections, the wave functions in the original system developed here will be used
in analyzing the entanglement properties of the system through the quantification of the
entanglement entropies.

4 Reduced density matrix

It is possible to derive the analytical formula of the entanglement entropies by using the
reduced density matrix. Let us see the reduced density matrix before the main develop-
ment of the entanglement structure of the system. The reduced density matrices in the
Fock state are easily calculated from the density matrices which are given by

ρn,l(Xm, Xc, X
′
m, X

′
c, t) = ψ∗n,l(X

′
m, X

′
c, t)ψn,l(Xm, Xc, t). (40)

According to fundamental quantum mechanics, we can quantitatively describe mixed
states in optomechanical systems as well as the pure state through the use of these matri-
ces.

Preparing the ground state for the mechanical resonator using the technique of optical
laser cooling has been a goal of continuing research [11, 21, 28, 29]. Ground-state cooling
provides a new route for exploring the quantum regime of mechanical systems with prepa-
ration of nonclassical states such as squeezed, entangled, and superposition states. If we
regard this, it may be preferable to focus on the reduced density matrix in the ground
state.

Reduced ground-state density matrices for mechanical and optical parts of the system
are given respectively by [28,30]

ρR
0,0(Xm, X

′
m, t) =

∫ ∞
−∞

ψ∗0,0(X ′m, Xc, t)ψ0,0(Xm, Xc, t)dXc, (41)

ρ̃R
0,0(Xc, X

′
c, t) =

∫ ∞
−∞

ψ∗0,0(Xm, X
′
c, t)ψ0,0(Xm, Xc, t)dXm. (42)

Let us first see for the mechanical part. A straightforward evaluation of the integration
given in Eq. (41) using Eq. (32) with n = l = 0 results in

ρR
0,0(Xm, X

′
m, t) =

√
Nm

π
exp{−[AmX

2
m +A∗mX

′2
m] +BmXmX

′
m}, (43)
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where

Am =
1

β2Wm
{(Yc + Y ∗c )Ymβ

2 cos4 ϕ+ Yc(Ym + Y ∗m)β2 sin4 ϕ

+[YmY
∗

mβ
4 + Yc(Y

∗
c + 2Ymβ

2)] cos2 ϕ sin2 ϕ}, (44)

Bm =
1

2Wm
[Ymβ − Yc/β][Y ∗mβ − Y ∗c /β] sin2(2ϕ), (45)

Nm = 2Re[Am]−Bm =
γ̇mγ̇c

Wmωm∆
, (46)

Wm = (Yc + Y ∗c ) cos2 ϕ+ (Ym + Y ∗m)β2 sin2 ϕ

=
γ̇c

∆
cos2 ϕ+

γ̇m

ωm
β2 sin2 ϕ. (47)

We see that the normalization factor Nm is represented in terms of the real part of Am,
which can be written as Re[Am] = 1

2(Am +A∗m). By the way, the imaginary part of Am is
given by Im[Am] = 1

2i(Am −A∗m). Using Eq. (44), we can easily confirm that

Re[Am] =
1

8β2Wm
{YcY

∗
c + YmY

∗
mβ

4 + [3(Y ∗c Ym + YcY
∗

m) + 4(YcYm + Y ∗c Y
∗

m)]β2

−(Yc − Ymβ
2)(Y ∗c − Y ∗mβ2) cos(4ϕ)}, (48)

Im[Am] =
1

2iWm
[YcYm − Y ∗c Y ∗m + (Y ∗c Ym − YcY

∗
m) cos(2ϕ)]. (49)

We also derive the ground-state density matrix for the optical part from a similar
evaluation, such that

ρ̃R
0,0(Xc, X

′
c, t) =

√
Nc

π
exp{−[AcX

2
c +A∗cX

′2
c ] +BcXcX

′
c}, (50)

where

Ac =
1

β2Wc
{(Ym + Y ∗m)Ycβ

2 cos4 ϕ+ Ym(Yc + Y ∗c )β2 sin4 ϕ

+[YmY
∗

mβ
4 + Yc(Y

∗
c + 2Ymβ

2)] cos2 ϕ sin2 ϕ}, (51)

Bc =
1

2Wc
[Ymβ − Yc/β][Y ∗mβ − Y ∗c /β] sin2(2ϕ), (52)

Nc = 2Re[Ac]−Bc =
γ̇mγ̇c

Wcωm∆
, (53)

Wc = (Ym + Y ∗m) cos2 ϕ+ (Yc + Y ∗c )β−2 sin2 ϕ

=
γ̇m

ωm
cos2 ϕ+

γ̇c

∆
β−2 sin2 ϕ. (54)

The real and imaginary parts of Ac can also be confirmed to be

Re[Ac] =
1

8β2Wc
{YcY

∗
c + YmY

∗
mβ

4 + [3(Y ∗c Ym + YcY
∗

m) + 4(YcYm + Y ∗c Y
∗

m)]β2

−(Yc − Ymβ
2)(Y ∗c − Y ∗mβ2) cos(4ϕ)}, (55)

Im[Ac] =
1

2iWc
[YcYm − Y ∗c Y ∗m − (Y ∗c Ym − YcY

∗
m) cos(2ϕ)]. (56)

The information of the system embedded in the reduced density matrices, Eqs. (43) and
(50), can be used as a basic tool in estimating the entanglement between the subsystems.
The entanglement entropies take place in each subsystem as a signal of the entanglement
between subsystems, provided that the associated reduced density matrix is non-zero. In
the subsequent sections, these matrices will be used in dynamical analysis of entanglement
on the basis of the entanglement entropies.
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5 Linear entropy

Optical and mechanical subsystems share a non-separable quantum correlation through
the entanglement between them, leading the system being distinctly nonclassical. An en-
tangled quantum state cannot be represented as a simple product of the states of each
subsystem. In such a case, the degree of entanglement can be estimated by, for example,
entanglement entropies which are the most common entanglement measure [31]. It may be
possible to quantify quantum entanglement contained in a state for many independently
or identically distributed sub-quantum-systems, as well as the mutually coupled two sub-
systems. When estimating such entanglement for a subsystem, the information pertaining
to the remaining part in the system is usually ignored.

The most basic entanglement entropy is the linear entropy, which is defined on the
basis of the purity [18]. The linear entropy is zero for the case of pure states, whereas it
is unity for completely mixed states. In general, we can represent the linear entropies of
reduced states of which density matrices are ρR

n,l(X,X
′, t) as [28,29]:

SL;n,l(t) = 1− Tr[ρR
n,l(t)]

2, (57)

where

Tr[ρR
n,l(t)]

2 =

∫ ∞
−∞

∫ ∞
−∞

ρR
n,l(X,X

′, t)ρR
n,l(X

′, X, t)dX ′dX. (58)

Let us first see the linear entropy for the mechanical subsystem in the ground state,
whose density matrix is ρR

0,0(Xm, X
′
m, t). By evaluating Eq. (58) using Eq. (43), we have

the linear entropy for this case as

SL;0,0(t) = 1− Nm

κm
, (59)

where
κm =

√
4[Re[Am]]2 −B2

m. (60)

The linear entropy for the optical subsystem characterized by the reduced density matrix
ρ̃R

0,0(Xc, X
′
c, t) can also be derived in a similar way using Eq. (50). This procedure gives

S̃L;0,0(t) = 1− Nc

κc
, (61)

where
κc =

√
4[Re[Ac]]2 −B2

c . (62)

Thus, we confirm that the mathematical expressions of the two entropies, SL;0,0(t) and
S̃L;0,0(t), are very similar to each other.

We can further investigate the linear entropy for diverse particular cases with a specific
choice of time dependence for parameters, ωc(t), ωm(t), etc. Abundant physical phenom-
ena associated with frequency modulations in optomechanical systems have been reported
so far [32–37]. Quantum effects of optomechanical systems can be practically enhanced by
periodic modulations of the frequencies [34–36]. For instance, arbitrary bosonic squeezing
in coupled optomechanical systems can be achieved by modulating one or both frequen-
cies among the two which are associated with optical and mechanical modes respectively.
Through this squeezing, it is possible to improve the measurement accuracy for weak sig-
nals [35,36]. An optimal optomechanical-cooling scheme by suppressing the Stokes heating
process via periodical modulations of the frequencies of cavity and mechanical resonators
has also been proposed [37].
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It is known that entanglement can also be improved by modulating optomechanical
parameters, such as the frequencies [36], the coupling parameter [38–40] and the amplitude
of the cavity mode laser [36,41]. In order to see the influence of the periodical modulation
of the optical frequency on the variation of the entanglement entropy, let us consider the
case that ωc(t) is modulated by a small sinusoidal perturbation, i.e., [28, 42]

ωc(t) = ωc,0[1 + ε cos (Ωt)], (63)

where ωc,0, ε, and Ω are constants, while ε � 1. Meanwhile, we suppose, along with it,
that the mechanical frequency does not depend on time:

ωm(t) = ωm,0 (constant). (64)

We can easily confirm that these suppositions make the system satisfy the adiabatic con-
dition which was mentioned in Sec. 3 (see sentences given immediately after Eq. (19)).
Then, from a minor evaluation, we have

∆(t) = ω̄c,0[1 + ε̄ cos (Ωt)], (65)

g(t) = g0[1 + ε cos (Ωt)], (66)

ϕ(t) ' ϕ0 =
1

2
tan−1

(
2g0

ω
3/2
m,0/ω̄

1/2
c,0 − ω̄

3/2
c,0 /ω

1/2
m,0

)
, (67)

where ω̄c,0 = ωc,0−ωL− δrp, ε̄ = εωc,0/ω̄c,0, and g0 =
√
〈nc〉h̄/(mωm,0)ωc,0/L. Using Eqs.

(65)-(67), Eqs. (18) and (19) can be rewritten as

ωX,m = ωm,0 cos2 ϕ0 +
ω̄2

c,0

ωm,0
[1 + 2ε̄ cos(Ωt)] sin2 ϕ0

+g0

√
ω̄c,0

ωm,0
[1 + (ε+ ε̄/2) cos(Ωt)] sin[2ϕ0], (68)

ωX,c =
ω2

m,0

ω̄c,0
[1− ε̄ cos(Ωt)] sin2 ϕ0 + ω̄c,0[1 + ε̄ cos(Ωt)] cos2 ϕ0

−g0

√
ωm,0

ω̄c,0
[1 + (ε− ε̄/2) cos(Ωt)] sin[2ϕ0]. (69)

In the above equations, we have considered only up to the first order of ε (and ε̄) for
simplicity.

Recall that the wave functions (and, consequently, the linear entropy) are represented
in terms of the time functions, ηm(t), ηc(t), γm(t), and γc(t). Hence, in order to see the
time behavior of the linear entropy, it is necessary to derive the formula of them from the
corresponding classical equations of motion. From the substitution of Eqs. (68) and (69)
into Eqs. (108) and (109) in Appendix A, we have the formulae of ωx and ωq. This leads
the equations of motion given in Eqs. (110) and (111) in the form

ẍ+ [c1 + c2 cos(Ωt) +O(ε2)]x = 0, (70)

q̈ + [c̄1 + c̄2 cos(Ωt) +O(ε2)]q = 0, (71)

where

c1 = ω2
m,0 cos2 ϕ0 + ω̄2

c,0 sin2 ϕ0 + g0

√
ωm,0ω̄c,0 sin(2ϕ0), (72)

c2 = 2ε̄ω̄2
c,0 sin2 ϕ0 + g0(ε+ ε̄/2)

√
ωm,0ω̄c,0 sin(2ϕ0), (73)

c̄1 = ω2
m,0 sin2 ϕ0 + ω̄2

c,0 cos2 ϕ0 − g0

√
ωm,0ω̄c,0 sin(2ϕ0), (74)

c̄2 = 2ε̄ω̄2
c,0 cos2 ϕ0 − g0(ε+ ε̄/2)

√
ωm,0ω̄c,0 sin(2ϕ0). (75)

10
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The classical solutions of Eqs. (70) and (71) are given in terms of the Mathieu functions
Ceν and Seν , such that

x(t) = C1Ceν

(
Ωt

2
,−2c2

Ω2

)
+ C2Seν

(
Ωt

2
,−2c2

Ω2

)
, (76)

q(t) = C̄1Ceν̄

(
Ωt

2
,−2c̄2

Ω2

)
+ C̄2Seν̄

(
Ωt

2
,−2c̄2

Ω2

)
, (77)

where ν = 4c1/Ω
2 and ν̄ = 4c̄1/Ω

2, whereas Ci (i = 1, 2) and C̄i are constants. For the
characteristics of the Mathieu functions including their stability, refer, for example, to
Refs. [42, 43].

We can also represent the solutions in another form as given in Eqs. (112) and (113)
in Appendix A (e.g., see Ref. [42]), with

ηm(t) =

[
Ceν

2

(
Ωt

2
,−2c2

Ω2

)
+ Seν

2

(
Ωt

2
,−2c2

Ω2

)]1/2

, (78)

ηc(t) =

[
Ceν̄

2

(
Ωt

2
,−2c̄2

Ω2

)
+ Seν̄

2

(
Ωt

2
,−2c̄2

Ω2

)]1/2

, (79)

γm(t) = tan−1

[
Seν(Ωt

2 ,−
2c2
Ω2 )

Ceν(Ωt
2 ,−

2c2
Ω2 )

]
, (80)

γc(t) = tan−1

[
Seν̄(Ωt

2 ,−
2c̄2
Ω2 )

Ceν̄(Ωt
2 ,−

2c̄2
Ω2 )

]
. (81)

We have depicted the time behavior of the linear entropies for this case in Fig. 2 using
the formulae of time functions given in Eqs. (78)-(81). From a close inspection of Fig. 2,
we confirm that the linear entropies for the mechanical and the optical parts coincide each
other. Evidently, the entanglement is shared between the two subsystems through their
coupling.

Figure 2 shows additional diverse properties of the linear entropy depending on several
different values of parameters. We can see from Fig. 2(A) that the linear entropies
emerge from zero as the coupling strength g0 grows; in addition, their mean values increase
according to the growth of g0. From this, we can conclude that the entanglement is
relatively high when the coupling between the two subsystems is strong. This consequence
agrees with the result of Ref. [14] in which entanglement was analyzed using other means.
Besides, the linear entropies fluctuate in time in a periodic fashion. Such fluctuations also
become significant as g0 grows.

The effects of ε on the linear entropies can be seen from Fig. 2(B). While the linear
entropies are independent of time when ε = 0, they fluctuate unless ε = 0 and such
fluctuations gradually augment as ε increases. On the other hand, Fig. 2(C) shows that
the fluctuations of the linear entropies do not monotonically increase as Ω grows. The
fluctuations of the linear entropy become greater at first along the grow of Ω from 1.5,
but they eventually collapse for a higher value of Ω (see the green curve in Fig. 2(C)).

6 Von Neumann entropy and Rényi entropy

As well as the linear entropy, the von Neumann entropy is also an essential tool for
quantifying quantum information contained in states [19]. The von Neumann entropy is a
general entanglement entropy and it is known as the quantum counterpart of the classical
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Figure 2: Temporal evolution of linear entropies SL;0,0(t) (solid lines) and S̃L;0,0(t) (cir-
cles) for several different values of g0 (A), ε (B), and Ω (C). The legend of (A) means that
g0 = 0.00 for red curves, g0 = 0.15 for blue curves, and g0 = 0.30 for green curves. The
legends of other panels are also interpreted in this way. We used (ε, Ω)=(0.1, 2) for (A),
(g0, Ω)=(0.2, 2) for (B), and (g0, ε)=(0.2, 0.1) for (C). All other values are common and
given by ωm,0 = 1, ω̄c,0 = 3, and ν ≡ ε̄/ε = 1.2.
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Shannon entropy [44]. The von Neumann entropies for the mechanical and the optical
parts are defined, respectively, as [20,30]

SN ;n,l = −Tr[ρR
n,l(Xm, X

′
m, t) ln ρR

n,l(Xm, X
′
m, t)], (82)

S̃N ;n,l = −Tr[ρ̃R
n,l(Xc, X

′
c, t) ln ρ̃R

n,l(Xc, X
′
c, t)]. (83)

Another usual concept of entanglement entropy is the Rényi entropy. This entropy
is a generalization of the von Neumann entropy [19, 30, 45]: in fact, the Rényi entropy
is the most general type of entropy that is used for measuring entanglement. The Reńyi
entropies of order α (Reńyi-α entropies), respectively for the mechanical and the optical
parts, are given by

Sα;n,l =
1

1− α
ln[Tr[ρR

n,l(Xm, X
′
m, t)]

α], (84)

S̃α;n,l =
1

1− α
ln[Tr[ρ̃R

n,l(Xc, X
′
c, t)]

α], (85)

where α > 0 and α 6= 1. Equations (84) and (85) are defined in a way that the Rényi
entropies preserve the additivity for independent events according to the axiom of prob-
ability. In particular, Rényi entropy of order 2 provides a useful measure of quantum
information for multimode Gaussian states, which can be adopted as a privileged tool for
addressing related correlations via entanglement [19].

We also focus on the ground state for both von Neumann and Reńyi entropies. We
consider the spectral decompositions [20, 30, 46] of the reduced density matrices of the
subsystems as a tackle for obtaining these entropies. Such decompositions for mechanical
and optical parts can be carried out starting from the eigenvalue equations of the form,
respectively ∫ ∞

−∞
dX ′mρ

R
0,0(Xm, X

′
m, t)fj(X

′
m, t) = pj(t)fj(Xm, t), (86)∫ ∞

−∞
dX ′cρ̃

R
0,0(Xc, X

′
c, t)f̃k(X

′
c, t) = p̃k(t)f̃k(Xc, t). (87)

From a straightforward evaluation for these equations, we have

pj(t) = [1− ξm(t)]ξjm(t), (88)

p̃k(t) = [1− ξc(t)]ξ
k
c (t), (89)

fj(Xm, t) = 4

√
κm

π

1√
2jj!

Hj [
√
κmXm] exp{−[κm/2 + iIm[Am]]X2

m}, (90)

f̃k(Xc, t) = 4

√
κc

π

1√
2kk!

Hk[
√
κcXc] exp{−[κc/2 + iIm[Ac]]X

2
c }, (91)

where

ξm(t) =
Bm

2Re[Am] + κm
, (92)

ξc(t) =
Bc

2Re[Ac] + κc
. (93)

Then, as is well known [30], it is possible to carry out the spectral decompositions of the
reduced density matrices, leading to

ρR
0,0(Xm, X

′
m, t) =

∞∑
j=0

pj(t)f
∗
j (X ′m, t)fj(Xm, t), (94)
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Figure 3: Temporal evolution of von Neumann entropies SN ;0,0(t) (solid lines) and
S̃N ;0,0(t) (circles) for several different values of Ω as designated in the legend. We used
g0 = 0.2, ε = 0.1, ωm,0 = 1, ω̄c,0 = 3, and ν ≡ ε̄/ε = 1.2.

ρ̃R
0,0(Xc, X

′
c, t) =

∞∑
k=0

p̃k(t)f̃
∗
k (X ′c, t)f̃k(Xc, t). (95)

Using Eqs. (94) and (95), we readily have the formulae of the von Neumann and Reńyi
entropies, such that

SN ;0,0 = − ln(1− ξm)− ξm

1− ξm
ln ξm, (96)

S̃N ;0,0 = − ln(1− ξc)−
ξc

1− ξc
ln ξc, (97)

Sα;0,0 =
1

1− α
ln

(1− ξm)α

1− ξαm
, (98)

S̃α;0,0 =
1

1− α
ln

(1− ξc)
α

1− ξαc
. (99)

If the time dependence of ωm(t), ∆(t), and g(t) disappears, the outcome, Eqs. (96) and
(97), reduces to that in Refs. [20,46]. For an other simple case, the results, Eqs. (96)-(99),
are similar to those of Ref. [30] but not exactly the same.

The time behavior of the von Neumann entropies is shown in Fig. 3 for several different
values of Ω. The pattern of the time behavior of the von Neumann entropies in this figure
is very much the same as that of Fig. 2(C) which corresponds to the linear entropies. In
fact, the linear entropy is an approximation of the von Neumann entropy [18]. The value
of the linear entropy is restricted within the range from 0 to 1. However, the upper bound
of the von Neumann entropy is not so simply determined (see, e.g., Ref. [47]).

Temporal evolution of the Rényi entropies for several different values of α are given in
Fig. 4. We see that Rényi entropies become small as α increases. However, such entropy
changes per unit increase of α is not so large when the value of α is sufficiently high.
Consequently, the Rényi entropies reduce to their minimum values in the limit α → ∞.
The Rényi entropies also exhibit a periodical variation in time. The patterns of such a
variation shown in Figs. 4(A) and 4(B) quite resemble those of Fig. 3 (or Fig. 2(C)) with
Ω = 1.5 and Ω = 2.5, respectively.
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Figure 4: Temporal evolution of Rényi entropies Sα;0,0(t) (solid lines) and S̃α;0,0(t) (cir-
cles) for several different values of α. We used Ω = 1.5 for (A) and Ω = 2.5 for (B).
All other values are common and they are g0 = 0.2, ε = 0.1, ωm,0 = 1, ω̄c,0 = 3, and
ν ≡ ε̄/ε = 1.2.
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Figure 5: The increment of entanglement entropies SL;0,0(t), SN ;0,0(t), and Sα;0,0(t) at
t = 0 for (A) and at t = 1 for (B) through the increase of coupling strength g0. We used
ε = 0.1, Ω = 1.5, ωm,0 = 1, ω̄c,0 = 3, and ν ≡ ε̄/ε = 1.2.

16



SciPost Physics Submission

We see from Fig. 5 that each kind of entanglement entropies grows as the coupling
strength g0 increases. The von Neumann entropy among the three kinds of entropies
exhibits the highest rate of increase in such a growth. The rate of growth of the Rényi
entropy with α = 2 is almost the same as that of the linear entropy. However, strictly
speaking, the growth of the Rényi-2 entropy is slightly faster than that of the linear
entropy. Rényi-2 entropy is an alternative form of the linear entropy, whereas Rényi-1/2
entropy implies quantum uncertainty defined in terms of the skew information [48].

Although we have evaluated entanglement entropies for the case of the ground state of
the optical (and mechanical) oscillators for convenience in part, it may highly be possible
to think of an excited state of the optical oscillator, because it is driven by a laser field.
If such a state is far from the ground state, the entanglement between the optical and the
mechanical modes may be enhanced due the increase of the quadrature uncertainty in the
optical mode. Notice that, if the quantum number in a coupled oscillatory motion is large,
the entanglement between the associated subsystems is enhanced [49–51].

7 Conclusion

We have investigated entanglement entropies for a nanomechanical resonator coupled to a
cavity field. The effects of the time variation of parameters, such as cavity frequency ωc(t)
and the coupling strength g(t), on the evolution of the entanglement entropies have been
analyzed in detail. The wave functions in Fock state and the corresponding reduced density
matrices of the coupled system have been evaluated under the assumption that the system
evolves adiabatically. Using the reduced density matrices, we have derived analytical
formulae of several fundamental entanglement entropies, such as linear entropies, von
Neumann entropies, and Rényi entropies. These entropies emerge and increase as the
coupling strength g0 becomes high, while they disappear for uncoupled systems.

In particular, we have focused our research on the effects of a modulation in the cavity
frequency: The cavity frequency is perturbed by a sinusoidally varying small modulation
term of which frequency is Ω. If g0 and/or the amplitude ε of the modulation term in ωc(t)
grow, the fluctuations of the entropies also increase. However, such fluctuations do not
monotonically increase along the grow of the frequency Ω. Although fluctuations of the
entropies increase as Ω grows provided that Ω is sufficiently low, the fluctuations rather
reduce as Ω reaches a higher value.

From the graphical analyses for the time evolution of the entropies, we have confirmed
that the entanglement entropies of the mechanical part are the same as those of the
optical part. This consequence stems from the fact that the entanglement entropies are
state quantities shared between the nanoresonator and the cavity field. The fluctuation
patterns of the three kinds of entropies resemble one another. However, the entanglement
entropies grow as g0 increases with different rates depending on the type of entropies; we
confirmed that the von Neumann entropy exhibits the highest rate of increase.

Our technique for characterizing entanglement entropies can also be applied to other
states beyond the Fock states, such as the coherent states, squeezed states, and thermal
states. As well as theoretical quantification of entanglement, experimental measurement
of entanglement or entanglement entropies may also be a major concern in this context.
Recently, protocols for measuring entanglement entropies have been proposed using a
universal tool for probing engineered quantum systems associated with entanglement [31,
45].

As a final remark, we have rigorously analyzed entanglement entropies which are neces-
sary for the understanding of entanglement dynamics related to quantum optical control of
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optomechanical nano-devices. We hope that this work can further motivate great ideas in
achieving strong entanglement based on optomechanical coupling, which plays a key role in
the field of quantum information, such as quantum computation protocols [52], quantum
secure communication [53], teleportation [54,55], and new cryptographic systems [56].
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Appendix

A Derivation of wave functions in the transformed system

Let us consider a time-dependent harmonic oscillator of which Hamiltonian is given in
terms of a coordinate operator ŷ by

Ĥ =
1

2
[A(t)ŷ2 + B(t)p̂2

y], (100)

where p̂y = −ih̄∂/∂y, while A(t) and B(t) are time functions that are differentiable with
respect to time. The corresponding classical equation of motion can be written as

ÿ − Ḃ(t)

B(t)
ẏ + A(t)B(t)y = 0. (101)

Without loss of generality, let us express the classical solution of the above equation in
the form

y(t) = η(t)[C+e
iγ(t) + C−e

−iγ(t)], (102)

where η(t) and γ(t) are real time functions and C± are real constants. Then, the quantum
wave functions in Fock state are given by [57,58]

Ψn(y, t) = Φn(y, t) exp[iδn(t)], (103)

where Φn(y, t) are the eigenstates which are given in terms of η(t) and γ(t), such that

Φn(y, t) = 4

√
γ̇(t)

h̄πB(t)

1√
2nn!

Hn

(√
γ̇(t)

h̄B(t)
y

)
exp

[
− 1

2h̄B(t)

(
γ̇(t)− i η̇(t)

η(t)

)
y2

]
, (104)

while the phases are given by δn(t) = −(n+ 1/2)γ(t).
Now, let us turn our attention to the optomechanical system given in the text. For the

mechanical part of the system, the dimensionless position operator of the nanomechanical
resonator and its canonical conjugate operator are given by

X̂m =

√
mωm(t)

h̄
x̂ P̂m =

√
1

mωm(t)h̄
p̂x, (105)

where x̂ and p̂x(= −ih̄∂/∂x) are ordinary position and momentum operators of the res-
onator. Similarly, the operator of the dimensionless quadrature and its canonical conjugate
variable in the optical part are represented as

X̂c =

√
ε0∆(t)

h̄
q̂ P̂c =

√
1

ε0∆(t)h̄
p̂q, (106)
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where q̂ and p̂q(= −ih̄∂/∂q) are the ordinary quadrature operator and its canonical con-
jugate variable, respectively. Using these, the Hamiltonian in Eq. (20) can be rewritten
in terms of ordinary coordinates in the form

Ĥ =
1

2

(
mω2

x(t)x̂2 +
p̂2
x

m
+ ε0ω

2
q (t)q̂

2 +
p̂2
q

ε0

)
, (107)

where

ωx(t) =
√
ωX,m(t)ωm(t), (108)

ωq(t) =
√
ωX,c(t)∆(t). (109)

The corresponding equations of motion are given by

ẍ+ ω2
x(t)x = 0, (110)

q̈ + ω2
q (t)q = 0. (111)

The classical solutions of these two equations are of the form

x(t) = ηm(t)[C+e
iγm(t) + C−e

−iγm(t)], (112)

q(t) = ηc(t)[C̄+e
iγc(t) + C̄−e

−iγc(t)]. (113)

The wave functions for the transformed Hamiltonian can be divided into x and q parts;
the x part is given in terms of ηm(t) and γm(t) whereas the q part is in terms of ηc(t) and
γc(t). For the x part, the use of the relation B = 1/m leads to

Φn(x, t) =
4

√
mγ̇m(t)

h̄π

1√
2nn!

Hn

(√
mγ̇m(t)

h̄
x

)
exp

[
−m

2h̄

(
γ̇m(t)− i η̇m(t)

ηm(t)

)
x2

]
, (114)

while, from B = 1/ε0 for the q part, we have

Φ̃l(q, t) =
4

√
ε0γ̇c(t)

h̄π

1√
2ll!

Hl

(√
ε0γ̇c(t)

h̄
q

)
exp

[
− ε0

2h̄

(
γ̇c(t)− i

η̇c(t)

ηc(t)

)
q2

]
. (115)

If we represent the eigenstates, Eqs. (114) and (115), in terms of dimensionless canonical
variables using Eqs. (105) and (106), we have Eqs. (25) and (27) in the text. Notice
that the eigenstates described in terms of the dimensionless canonical variable Xm (Eq.
(25)) are dimensionless, while the dimension of Eq. (114) is L−1/2 where L is the length
dimension. According to this, we have adjusted the normalization factor of Eq. (25) so
that it becomes dimensionless. Similar adjustment has also been applied in Eq. (27) which
corresponds to the optical part.
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[33] T. S. Yin, X. Y. Lü, L. L. Zheng, M. Wang, S. Li, and Y. Wu, Nonlinear ef-
fects in modulated quantum optomechanics. Phys. Rev. A 95(5), 053861 (2017). doi:
10.1103/PhysRevA.95.053861

[34] J. Q. Liao, C. Law, L. M. Kuang, and F. Nori, Enhancement of mechanical effects of
single photons in modulated two-mode optomechanics. Phys. Rev. A 92(1), 013822
(2015). doi: 10.1103/PhysRevA.92.013822

[35] D.-Y. Wang, C.-H. Bat, S. Liu, S. Zhang, and H.-F. Wang, Dissipative bosonic squeez-
ing via frequency modulation and its application in optomechanics. Opt. Express
28(20), 28942-28953 (2020). doi: 10.1364/OE.399687

[36] A. Farace and V. Giovannetti, Enhancing quantum effects via periodic modulations
in optomechanical systems. Phys. Rev. A 86(1), 013820 (2012). doi: 10.1103/Phys-
RevA.86.013820

[37] D. Y. Wang, C. H. Bai, T. S. Liu, S. Zhang, and H. F. Wang, Optomechanical cooling
beyond the quantum backaction limit with frequency modulation. Phys. Rev. A 98(2),
023816 (2018). doi: 10.1103/PhysRevA.98.023816

[38] F. Galve, L. A. Pachón, and D. Zueco, Bringing entanglement to the high temperature
limit. Phys. Rev. Lett. 105(18), 180501 (2010). doi: 10.1103/PhysRevLett.105.180501
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