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Abstract

As an approximation to the near horizon regime of black hols, the Rindler fluid was pro-
posed on an accelerating cutoff surface in the flat spacetime. The concept of the Rindler
fluid was then generalized into a flat bulk with the cutoff surface of the induced de Sitter
and FRW universe, such that an effective description of dark fluid in the accelerating
universe can be investigated.
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1 Introduction10

The origin and properties of the dark fluid, mainly including the dark energy and dark matter,11

are still mysterious in the current universe. The model of Lambda Cold Dark Matter (ΛCDM)12

treats dark energy as the cosmological constant and dark matter as the collision-less parti-13

cles, and explains the cosmic evolution and large-scale structures well. However, the tension14

between local measurements of the Hubble constant and the Planck’s observation based on15

ΛCDM model becomes more important [1, 2]. Besides, the dark matter particles have not16

been detected directly. Thus, alternative models of the dark fluid such as modified gravity17

need to be reconsidered. One recent example is the emergent gravity by Verlinde [3], which18

is inspired by the volume law correction to the entropy on a holographic screen, whereas the19

Einstein gravity is related to the area law [4].20

So is there a model which can unify these two scenarios of dark fluid and modified gravity?21

In this article, we show that a holographic model of the emergent dark universe (hEDU) can22

naturally realize the duality between the dark fluid in (3+1)-dimension and a modified gravity23

in (4+1)-dimension. We consider that the dark fluid in the universe emerges as the holographic24

stress-energy tensor on the hypersurface in one higher dimensional flat bulk [5, 6]. After25

adding the localized stress-energy tensor Tµν on the hypersurface with intrinsic metric gµν26

and extrinsic curvature Kµν, the induced Einstein field equations on the holographic screen27

are modified as28

Rµν −
1
2

gµνR= κ4

�

Tµν + 〈T 〉dµν
�

, (1)

where 〈T 〉dµν denotes the induced Brown-York stress-energy tensor [7],29

〈T 〉dµν ≡
1
κ4 L

�

Kµν −Kgµν
�

. (2)

Here, κ4 = 8πG4/c
4 is the Einstein constant and the length scale L = κ5/κ4 is related to the30

positive cosmological constant Λ = 3/L2. At the cosmological scale, we assume that Tµν only31

includes the components of normal matter, and 〈T 〉dµν represents the total dark components32

in our universe, such as dark energy and dark matter. The stress-energy tensor 〈T 〉dµν as we33

formulated is similar to the Verlinde’s elastic response of emergent gravity [3], in the way that34

it will back react on the background geometry.35

The using of the Brown-York stress-energy tensor in (2) is inspired by the Wilsonian renor-36

malization group (RG) flow approaches of fluid/gravity duality [8–14]. Where the holographic37

stress-energy tensor on the holographic cutoff surface is identified with the stress energy ten-38

sor of the dual fluid directly. When taking the near horizon limit, one can reach the so-called39

Rindler fluid [15–22], which is a new perspective on the membrane paradigm of black holes,40

where the Brown-York stress-energy tensor is used.41

2 Dark Fluid on Holographic Cutoff42

To see more clearly how the Einstein equation (1) works, it is interesting to consider a de Sitter43

hypersurface as the holographic screen in flat spacetime firstly. Then the dual stress tensor44

could contribute to the dark energy as 〈T 〉Λµν = −(ρcΩ̃Λ)gµν. After adding the baryonic matter45

with typical 4-velocity uµ and stress-energy tensor Tµν = (ρcΩ̃B)uµuν on the screen, both of46

dark matter and dark energy can be described by the stress-energy tensor of holographic dark47

fluid 〈T 〉µν = 〈T 〉µν + 〈T 〉Dµν, where 〈T 〉Dµν = (ρcΩ̃D)
�

(1+ w̃D)uµuν + w̃D gµν
�

and w̃D is the48
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equation of state of the emergent dark matter. From the Hamiltonian constraint equation49

in higher dimensional spacetime, an interesting relation between these components can be50

derived [5],51

hEDU : Ω̃2
D =

Ω̃Λ
2(1+ 3w̃D)

�

Ω̃D(1− 3w̃D)− Ω̃B

�

. (3)

Once setting w̃D = 0, we can compare (3) with the ΛCDM parameterization and it is52

straightforward to take the values from the observational data by Planck collaboration [23].53

The toy constraint relation (3) can be satisfied within the margin of errorΩ2
D−

1
2ΩL(ΩD−ΩB)® 1%.54

After considering 1 ' ΩL +ΩB +ΩD, we also have ΩB ' ΩD − 3Ω2
D −Ω

2
B. In order to see this55

relation more clearly we plot it in Fig. 1, together with Verlinde’s relation ΩB =
3
4Ω

2
D.56

hEDU:ΩB=ΩD-3ΩD
2-ΩB

2

Verlinde: ΩB=
3

4
ΩD
2
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Figure 1: The schematic diagram of the relations between the components of bary-
onic matterΩB and dark matterΩD in the present universe. The green circle indicates
the rough regime from the observation with ΩB ' 0.05± 0.01,ΩD ' 0.26± 0.02.

3 Modified Friedmann equation57

The consistent embedding of a Friedmann–Lemaitre–Robertson–Walker (FLRW) universe in58

4+ 1 dimensional flat spacetime has been studied in [24, 25]. In the spirit of the membrane59

paradigm [26,27], we remove half part of the bulk spacetime, which can be effectively replaced60

by the holographic stress tensor 〈T 〉dµν in (2). The energy density and pressure in 〈T 〉dµν are61

calculated to be ρd(t) = ρc
p

ΩL

È

H(t)2

H2
0
+ ΩI

a(t)4 , where the critical density and other parame-62

ters are given by ρc =
3H2

0 M2
P

ħhc , ΩL =
c2

L2H2
0

and ΩI ≡
I c2

L2H2
0
. Considering the relation between the63

redshift z and the scale factor via a(t)/a(t0) = 1/(1+ z), we arrive at the normalized Hubble64

parameters H(z)/H0 in terms of the redshift z, which is the modified Friedmann equation in65

the hEDU model,66

H(z)2

H2
0

=
ΩL

2
+Ωm(1+ z)3 +Ωr(1+ z)4 +

ΩL

2

√

√

1+
4
ΩL

�

Ωm(1+ z)3 + (Ωr +ΩI)(1+ z)4
�

. (4)

Notice here that at the current universe z = 0, we have 1 = Ωm +Ωr +
p

ΩL(1+ΩI), and67

we will consider the fact that the radition compoents Ωr � 1. By setting ΩI = 0, we can68

recover the usual Friedmann equation of the self-accelerating branch of the DGP braneworld69

model (sDGP) [28, 29]. When ΩI � 1, the behavior of ΩI(1 + z)4 is more like the dark70

radiation [30]. However, in this hEDU model, ΩI � Ωr turns out not to be so small, such71
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that the whole dark sector, including dark energy and apparent dark matter, is expected to be72

included in the holographic dark fluid [5]. In Fig. 2, we plot the equation of state parameter73

of the holographic dark fluid w̃d(z) in terms of the redshift z, as well as the w̃D(z) of apparent74

dark matter where the effective components of cosmological constant Λ has been deducted.75

hEDU

sDGP

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

z

w
˜
d(z)

hEDU

sDGP

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

z

w
˜
D(z)

Figure 2: Left: the equation of state of the holographic dark fluid w̃d(z) in terms
of the redshift z. Right: the equation of state of apparent dark matter w̃D(z), after
deducting an effective cosmological constant. We adopt the following value for sDGP:
ΩI = 0, Ωm = 0.21 [31] and hEDU: ΩI = 0.4, Ωm = 0.04 [6].

In [6], the Markov-chain Monte Carlo (MCMC) sampling analysis together with the obser-76

vational data of Type Ia supernovae (SNIa) and the direct measurement of Hubble constant77

H0 [32] are employed. The two-dimensional observational contours are plotted in Fig. 3, with78

the 1-3σ confidence contours for various parameters in the hEDU model [6]. The best-fit79

values turn out to be ΩI = 0.43 ± 0.13 and Ωm = 0.03 ± 0.05. The matter component is80

small enough and matches well with our theoretical assumption that only the normal matter81

is required.82

We comment on the possible constraints from gravitational wave observations. It is argued83

that in general the modified gravity models are constrained from two aspects [33]. One is84

the constraint of the energy loss rate from ultra high energy cosmic rays, which indicates85

that gravitational waves should propagate at the speed of light. The other is the observed86

gravitational waveforms from LIGO, which are consistent with Einstein’s gravity and suggest87

that the gravitational wave should satisfy linear equations of motion in the weak-field limit.88

For our model, the Bianchi identity leads to 0≡∇µGµν = κ4∇µTµν+κ4∇µ〈T 〉µν. If we do not89

put additional sources in the bulk, the Brown-York stress-energy tensor (2) itself is conserved90

∇µ〈T 〉µν = 0. Thus, it is similar to the effects of particle dark matter and it does not conflict91

with the observations from LIGO so far [34].92

4 Summary93

In summary, we construct a model of the dark fluid in our universe, which originates from the94

holographic stress-energy tensor 〈T 〉dµν of higher dimensional spacetime. The toy hEDU model95

on a de-Sitter screen in flat bulk spacetime produces one additional constraint from ΛCDM96

parameterization to the components of the late-time universe. We derive the corresponding97

Friedmann equation and present a good fitting result with the observational data. Finally, we98

would like to mention the literature on modified Newtonian dynamics (MOND) from a brane-99

world picture [35,36], as well as the holographic big bang model in [37,38] which describes100

the early universe with a 3-brane out of a collapsing star in (4+1)- dimensional bulk. These101

concepts are all related to our setups in the hEDU model. These models propose a possible102

origin of dark matter and dark energy and shed light on the underlying construction of the103
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Figure 3: The 1-3σ confidence contours for various parameters in the hEDU model,
Ωm, ΩI , h = H0/(100km s−1 Mpc−1), with figures taken from [6]. It is based on the
MCMC sampling analysis with the observational data of Type Ia supernovae (SNIa)
and the direct measurement of Hubble constant H0.

universe.104
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