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Superradiant instability and black resonators in AdS
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Abstract

Rapidly rotating Myers-Perry-AdS black holes are unstable against rotational superra-
diance. From the onset of the instability, cohomogeneity-1 black resonators are con-
structed in five-dimensional asymptotically AdS space. By using the cohomogeneity-1
metric, perturbations of the cohomogeneity-1 black resonators are also studied.

Copyright T. Ishii et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received ??-??-20??
Accepted ??-??-20??
Published ??-??-20??
doi:10.21468/SciPostPhysProc.4.??

1

Contents2

1 Introduction 13

2 Cohomogeneity-1 black resonators and geons 24

3 Photonic black resonators 35

4 Superradiant instability of black resonators 46

5 Summary 67

References 68

9

10

1 Introduction11

In asymptotically AdS space, rotational gravitational superradiance leads to superradiant insta-12

bility to rotating AdS black holes [1,2]. From the onset of the instability, solutions called black13

resonators branches off [3]. They are connected to geons in the limit of the zero horizon size.14

These solutions are characterized by having a helical Killing vector, where the time and rota-15

tion translations of the rotating black hole are broken to a helical one. Black resonators hence16
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have less isometries than the stationary rotating black holes. Indeed, they are non-stationary17

solutions. Black resonators and geons were first constructed in four dimensions [3], where the18

helical Killing vector is the only continuous symmetry. Recently, by going to five dimensions19

and exploiting the extra symmetries in the case of equal angular momenta, black resonators20

and geons with cohomogeneity-1 metric have been constructed [4]. Solutions coupled to elec-21

tromagnetic waves have also been obtained [5]. By making use of the cohomogeneity-1 met-22

ric, perturbations of the black resonators have been studied in [6]. A similar five-dimensional23

cohomogeneity-1 resonating AdS soliton geometry was also found [7].24

2 Cohomogeneity-1 black resonators and geons25

Cohomogeneity-1 black resonators and geons are obtained in Einstein gravity in asymptotically26

global AdS space in five dimensions [4]. The metric ansatz is27

ds2 = −(1+ r2) f (r)dτ2 +
dr2

(1+ r2)g(r)

+
r2

4

�

α(r)σ2
1 +

1
α(r)

σ2
2 + β(r)(σ3 + 2h(r)dτ)2

�

, (1)

where σa (a = 1,2, 3) are one-forms given by28

σ1 = − sinχdθ + cosχ sinθdφ,

σ2 = cosχdθ + sinχ sinθdφ,

σ3 = dχ + cosθdφ.

(2)

The angular coordinates (θ ,φ,χ) are defined in 0 ≤ θ < π, 0 ≤ φ < 2π, and 0 ≤ χ < 4π.29

The range of the radial coordinate r is from either the origin r = 0 (for geons) or some horizon30

radius r = rh (for black holes) to asymptotic infinity r →∞. The metric is assumed to be31

asymptotically AdS5 in r →∞ where h approaches a constant and f , g,α,β → 1.32

The Myers-Perry AdS black hole with equal angular momenta is a solution to the Einstein33

equations within the metric ansatz (1). It is given by34

g(r) = 1−
2µ(1− a2)
r2(1+ r2)

+
2a2µ

r4(1+ r2)
, β(r) = 1+

2a2µ

r4
,

h(r) = Ω−
2µa

r4 + 2a2µ
, f (r) =

g(r)
β(r)

, α(r) = 1,
(3)

where the angular velocity Ω is35

Ω=
2µa

r4
h + 2a2µ

. (4)

The horizon radius rh is given by the largest real root of g(rh) = 0. The isometry group of36

a general Myers-Perry black hole with independent rotations is R× U(1) × U(1), where R is37

the time translation and the U(1) are for the rotations. When the two angular momenta are38

equal, it is enhanced to R×U(2). There are SU(2) angular momentum operators Li satisfying39

[Li , L j] = iεi jk Lk, and each 1-form σa is invariant under the SU(2): Liσa ≡ LLi
σa = 0, where40

LLi
denotes the Lie derivative. The U(1) ⊂ U(2) is generated by a shift of χ: Rz ≡ i∂χ .41

This Myers-Perry AdS black hole has a gravitational superradiant instability that breaks the42

U(1) isometry. Here we focus on a τ-independent linear perturbation of the form43

δgµνdxµdxν =
r2

4
δα(r)(σ2

1 −σ
2
2) =

r2

2
δα(r)(σ2

+ +σ
2
−), (5)
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where we defined44

σ± =
1
2
(σ1 ∓ iσ2) =

1
2

e∓iχ(∓idθ + sinθdφ). (6)

This perturbation is SU(2)-invariant, but the terms with σ2
± have the U(1)-charges ±2, respec-45

tively, and hence it is not invariant under the U(1) shift of χ: χ → χ+const. This perturbation46

results in a decoupled perturbation equation for δα,47

δα′′ +

�

g ′

g
+

3+ 5r2

r(1+ r2)

�

δα′ +
8

(1+ r2)g

�

β − 2
r2β

+
2βh2

(1+ r2)g

�

δα= 0, (7)

where g and β are given in (3). For fixed rh, this equation can be solved by a nontrivial normal48

modes δα at a critical value of Ω that corresponds to the onset of the superradiant instability.49

The Myers-Perry black hole with equal angular momenta is unstable above that frequency, and50

the U(1) isometry is broken when this instability turns up.51

From the superradiant instability, black resonators with R× SU(2) isometries branch off.52

The Einstein equations under the metric ansatz (1) can be solved for α(r) 6= 1, and such53

solutions are no longer invariant under the U(1). To solve the Einstein equations for black54

resonators, we take h = 0 at the horizon and require f , g,α,β → 1 and h → Ω in r →∞.55

These boundary conditions correspond to the rotating frame at infinity, for which we use (τ,χ).56

We can switch to the non-rotating frame at infinity (t,ψ) by57

dt = dτ, dψ= dχ + 2Ωdτ. (8)

In the non-rotating frame, periodic time dependence explicitly appears in the metric as58

ασ2
1 +

1
α
σ2

2 = 2
�

α+
1
α

�

σ̄+σ̄− +
�

α−
1
α

�

(e4iΩtσ̄2
+ + e−4iΩtσ̄2

−). (9)

where σ̄a are the invariant 1-forms for the non-rotating frame at infinity by replacing χ in σa59

(2) with ψ. The τ-translation isometry R is interpreted to be a helical Killing vector60

K ≡
∂

∂ τ
=
∂

∂ t
+Ω

∂

∂ (ψ/2)
. (10)

The (E, J) phase diagram is shown in Fig. 1. The entropy S is shown by the color map.61

The black resonators branch off from the onset of the superradiant instability. Remarkably,62

they can be found even in the region where no regular Myers-Perry solutions exist. While the63

metric in the non-rotating frame at infinity is time dependent (9), the entropy is not. The zero64

horizon size limit (rh → 0) of the black resonators is given by regular horizonless solutions65

called geons. The entropy of the black resonators approaches zero in the geon limit. The blank66

region below the geon curve is not covered by our ansatz.67

3 Photonic black resonators68

Cohomogeneity-1 black resonators equipped with time periodic electromagnetic waves can be69

obtained in Einstein-Maxwell theory. On the metric (1), we turn on a U(1) gauge field as70

A= γ(r)σ1 = γ(r)(σ+ +σ−). (11)

This gives the energy-momentum tensor consistent with the metric ansatz.71

In Fig. 2, the entropies between different solutions are compared at fixed E = 0.2. The72

gravitational and photonic black resonators branch off from the Myers-Perry black hole around73
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Figure 1: Phase diagram. Dots are the numerical data we constructed. The entropy
S is shown by the color map.

Figure 2: Entropy S of the photonic black resonators for E = 0.2. The entropies of
gravitational black resonators and Myers-Perry-AdS black holes are also shown.

J = 0.042 and J = 0.046, respectively. Both solutions can exist in the region where no regular74

Myers-Perry black holes can. Hence the region with regular solutions in the phase diagram is75

extended. However, a photonic black resonator has lower entropy than a purely gravitational76

black resonator at the same (E, J). This implies that the former would be further unstable77

against SU(2)-symmetric perturbations and evolve into the latter if dynamical time evolution78

is considered.79

4 Superradiant instability of black resonators80

Black resonators obtained so far have angular frequency Ω > 1. In the asymptotic infinity81

(r →∞), the norm of the helical Killing vector behaves as82

K2 = gµνKµKν = gττ→−r2(1−Ω). (12)

Thus, the Killing vector is asymptotically spacelike K2 > 0 because Ω > 1. It has been shown83

that solutions with such a property should be unstable [8]. In the case of the cohomogeneity-184

black resonators, we can consider perturbations breaking the SU(2) isometry of the metric.85

For simplicity, we consider only the massless scalar field perturbation in the black resonator86

and geon backgrounds. To find the onset of instability, it is convenient to consider the eigen-87
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Figure 3: Phase diagram for the stability of the black resonators against a scalar
field. The colored curves correspond to the onset of an instability. Black resonators
are unstable to a given mode below each curve.

value equation of the Klein-Gordon operator as �Φ = λΦ and search for solutions with zero88

eigenvalues λ= 0.89

The scalar field can be decomposed to modes by using the Wigner D-matrices as90

Φ(τ, r,θ ,φ,χ) = e−iωτ
∑

|k|≤ j

φk(r)Dk(θ ,φ,χ), (13)

where the indices of and summation over ( j, m) are suppressed. Using this, we obtain coupled91

equations for φk with the following structure,92

Lkφk + ck−1φk−2 + ck+1φk+2 = 0, (14)

where93

Lk = (1+ r2)g
d2

dr2
+

�

1+ r2

2

�

f ′

f
+

g ′

g
+
β ′

β

�

+
3+ 5r2

r

�

g
d
dr

−
ε2

k + ε
2
k+1

r2

�

α+
1
α

�

−
4k2

r2β
+
(ω− 2kh)2

(1+ r2) f
−λ, (15)

and94

ck = −
εkεk+1

r2

�

α−
1
α

�

. (16)

Note that φk vanishes if |k| > j. If α = 1 identically such as the Myers-Perry solution, modes95

with different k decouple. In contrast, different-k modes couple in the black resonator back-96

ground because the U(1) isometry for the quantum number k is broken. The mode coupling97

is “double-stepping,” i.e. the mode with k is coupled to those with k± 2.98

We solve the coupled equations (14) and identify the instability ofφk in the black resonator99

background. For a given j, we focus on the set of modes containing the k = j component,100

which would be the mode with the highest growth rate among those with different k. In101

Fig. 3, we show the location of the onsets for the superradiant instability on black resonators102

for modes with j = 9/2, j = 5, and j = 11/2. For j = 5, there are actually two onset curves103

corresponding to even and odd parity modes, but they almost coincide. In the inset, we zoom104

into the region near the geon where it is easier to see the difference between these modes.105
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5 Summary106

We studied the superradiant instability of the five-dimensional Myers-Perry black hole with107

equal angular momenta for SU(2)-invariant metric perturbations. We then constructed black108

resonators that branch off from the onset of the instability and are given by cohomogeneity-1109

metric. In addition to gravitational black resonators in Einstein gravity, we obtained photonic110

black resonators in Einstein-Maxwell theory. By using the cohomogeneity-1 black resonator111

as the background, we studied the perturbation of the black resonators and identified their112

instability.113

Acknowledgments114

The work of T. I. was supported by JSPS KAKENHI Grant Number JP18H01214 and JP19K03871.115

References116

[1] H. K. Kunduri, J. Lucietti and H. S. Reall, Gravitational perturbations of higher di-117

mensional rotating black holes: Tensor perturbations, Phys. Rev. D74, 084021 (2006),118

doi:10.1103/PhysRevD.74.084021, hep-th/0606076.119

[2] K. Murata, Instabilities of Kerr-AdS(5) x S**5 Spacetime, Prog. Theor. Phys. 121, 1099120

(2009), doi:10.1143/PTP.121.1099, 0812.0718.121

[3] O. J. C. Dias, J. E. Santos and B. Way, Black holes with a single Killing vector field: black122

resonators, JHEP 12, 171 (2015), doi:10.1007/JHEP12(2015)171, 1505.04793.123

[4] T. Ishii and K. Murata, Black resonators and geons in AdS5, Class. Quant. Grav. 36(12),124

125011 (2019), doi:10.1088/1361-6382/ab1d76, 1810.11089.125

[5] T. Ishii and K. Murata, Photonic black resonators and photon stars in AdS5, Class. Quant.126

Grav. 37(7), 075009 (2020), doi:10.1088/1361-6382/ab7418, 1910.03234.127

[6] T. Ishii, K. Murata, J. E. Santos and B. Way, Superradiant instability of black resonators128

and geons, JHEP 07, 206 (2020), doi:10.1007/JHEP07(2020)206, 2005.01201.129

[7] M. Garbiso, T. Ishii and K. Murata, Resonating AdS soliton, JHEP 08, 136 (2020),130

doi:10.1007/JHEP08(2020)136, 2006.12783.131

[8] S. R. Green, S. Hollands, A. Ishibashi and R. M. Wald, Superradiant instabilities of132

asymptotically anti-de Sitter black holes, Class. Quant. Grav. 33(12), 125022 (2016),133

doi:10.1088/0264-9381/33/12/125022, 1512.02644.134

??.6

https://scipost.org
https://scipost.org/SciPostPhysProc.4.??
https://doi.org/10.1103/PhysRevD.74.084021
hep-th/0606076
https://doi.org/10.1143/PTP.121.1099
0812.0718
https://doi.org/10.1007/JHEP12(2015)171
1505.04793
https://doi.org/10.1088/1361-6382/ab1d76
1810.11089
https://doi.org/10.1088/1361-6382/ab7418
1910.03234
https://doi.org/10.1007/JHEP07(2020)206
2005.01201
https://doi.org/10.1007/JHEP08(2020)136
2006.12783
https://doi.org/10.1088/0264-9381/33/12/125022
1512.02644

	Introduction
	Cohomogeneity-1 black resonators and geons
	Photonic black resonators
	Superradiant instability of black resonators
	Summary
	References

