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Abstract

Many theoretical problems in quantum technology can be formulated and ad-
dressed as constrained optimization problems. The most common quantum
mechanical constraints such as, e.g., orthogonality of isometric and unitary ma-
trices, CPTP property of quantum channels, and conditions on density matri-
ces, can be seen as quotient or embedded Riemannian manifolds. This allows to
use Riemannian optimization techniques for solving quantum-mechanical con-
strained optimization problems. In the present work, we introduce QGOpt, the
library for constrained optimization in quantum technology. QGOpt relies on
the underlying Riemannian structure of quantum-mechanical constraints and
permits application of standard gradient based optimization methods while
preserving quantum mechanical constraints. Moreover, QGOpt is written on
top of TensorFlow, which enables automatic differentiation to calculate neces-
sary gradients for optimization. We show two application examples: quantum
gate decomposition and quantum tomography.
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1 Introduction

Application of the variational method in quantum physics is akin to a constrained opti-
mization problem. For example, the ground state of a quantum system with Hamiltonian
H can be found by use of the variational principle [1]:

|Ω〉 = argmin
|ψ〉

〈ψ|H |ψ〉
〈ψ|ψ〉 , (1)

where |ψ〉 is a trial, non-normalized state, |Ω〉 is the non-normalized ground state. This
formulation of a ground state search problem was successfully used for characterization of
many-body quantum systems [2, 3]. In particular, the ground state of a correlated spin
system can be found in the following forms: matrix product states [4–6], projected entan-
gled pair states [7, 8] or neural networks [9–11]. To perform optimization of variational
energy one can utilize optimization algorithms such as density matrix renormalization
group [12, 13], time evolving block decimation [14–16] for tensor network architectures,
quantum natural gradient [17], and adaptive first order optimization methods like Adam
optimizer [18] for neural networks based quantum parametrization.

Problems of reconstruction of quantum states, quantum channels, quantum processes,
etc. from measurements data can also be formulated as optimization problems. For
example, the state of a many-body quantum system can be reconstructed in a neural
network form [19–22] by maximization of the logarithmic likelihood function on a set
of measurement outcomes. The Choi matrix of an unknown quantum channel can be
reconstructed in a form of tensor network via Kullback-Leibler divergence minimization
[23]. Model of non-Markovian quantum dynamics can be reconstructed from measured
data in different ways [24,25] by use of optimization algorithms.

Some problems of quantum mechanics require nonstandard optimization methods. For
example, a well known entanglement renormalization technique, that is used for charac-
terization of quantum phase transitions, requires to perform optimization over isometric
matrices. To solve this problem, Vidal and Evenbly suggested an algorithm [26–28] that
does not have analogs in standard optimization theory. Further, some optimization prob-
lems such as entanglement renormalization or quantum tomography, require preservation
of natural “quantum” constraints, such as the completely positive and trace preserving
(CPTP) property of quantum channels [29] or the orthogonality constraints of isomet-
ric or unitary matrices. Preservation of constraints can be achieved by introduction of
a particular parametrization or by adding a regularization term to a loss function that
enforces the satisfaction of constraints. However, a naive parametrization may lead to
over-parametrization, which causes optimization slowing down.

Highly specialized algorithms such as the Vidal–Evenbly algorithm, are only suitable
for a restricted set of problems. Additional regularization terms in a loss function are also
not a universal solution because they provide only approximate constraints preservation.
One therefore needs a universal approach to the optimization in quantum technology. As
many natural “quantum” constraints can be seen as Riemannian manifolds, Riemannian
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optimization is a right candidate for the role of a universal framework for constrained
optimization in quantum mechanics. In the present work, we introduce QGOpt (Quan-
tum Geometric Optimization) [30], our library for Riemannian optimization in quantum
mechanics and quantum technologies. It allows one to perform an optimization with all
typical constraints of quantum mechanics.

This article is organized as follows. In Sec. 2, we give an overview of Riemannian
optimization. We then turn to Riemannian manifolds in quantum mechanics in Sec. 3. In
Sec. 4, we present the QGOpt application programming interface (API), and we illustrate
its utilization in Sec. 5, with two examples: quantum gate decomposition and quantum
channel tomography.

2 Overview of the Riemannian optimization

While optimizing an objective function defined on the Euclidean space, one performs a
sequence of elementary operations like points and vectors transportation. Optimization
on curved spaces requires a generalization of these elementary operations in a certain
way. As an example we consider a case of gradient descent with momentum [31] and its
Riemannian generalization [32, 33]. Here, we keep our overview simple. For an in-depth
introduction into the topic, we recommend the following references [34,35].

Let us assume that we aim to minimize the value of a function f : Rn 7−→ R, and that
we have access to its gradient ∇f(x). In the Euclidean space Rn, a gradient descent with
momentum consists of the following steps wrapped into a loop:

1. Calculating the momentum vector mt+1 = βmt + (1− β)∇f(xt),

2. Taking a step along the direction of a momentum vector xt+1 = xt − ηmt+1,

where the initial momentum vector m0 is the null vector, β is a hyperparameter whose
value is usually taken around β ≈ 0.9, and η is the size of the optimization step. The sign
before η indicates whether we search for a local minimum or maximum.

Let us assume now that a function f is defined on a Riemannian manifold M that is
embedded in the Euclidean space: f :M 7−→ R. Then we can no longer apply the standard
scheme of gradient descent with momentum, because it clearly takes xt out of the manifold
M. This scheme can be generalized step by step. First, we have to generalize the notion
of a gradient. The standard Euclidean gradient is not a tangent vector to a manifold
and it does not take into account the metric of a manifold. One may then introduce the
Riemannian gradient that can be constructed based on the standard gradient ∇f(x). The
Riemannian gradient lies in the space tangent to a point x and properly takes the metric
of a tangent space into account. Although an optimization algorithm takes a step along a
tangent vector to a manifold, it still takes a point out of the manifold. In order to fix this
issue, one can replace a straight line step with a curved line step that is called retraction.
The retraction Rx(v) is a result of the transportation of x along a curve that completely
lies in the manifold and directed along v.

The gradient descent with momentum also requires to transport the momentum vector
at each iteration from a previous point to a new point. The Euclidean version of the
gradient descent with momentum does not have an explicit step with transportation of
the momentum vector, because in the Euclidean space transportation of a vector is trivial.
However, this step is necessary in the Riemannian case, where the trivial Euclidean vector
transportation takes a vector out of a tangent space. A vector transport τx,w(v) is the
result of transportation of a vector v along a vector w which takes into account that a
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tangent space varies from one manifold’s point to another in the Riemannian case. The
overall Riemannian generalization of the gradient descent with momentum reads:

1. Calculating the momentum vector m̃t+1 = βmt + (1− β)∇Rf(xt),

2. Taking a step along a new direction of the momentum xt+1 = Rxt(−ηm̃t+1),

3. Transporting of the momentum vector to a new point xt+1: mt+1 = τxt,−ηm̃t+1(m̃t+1).

Other first-order optimization methods can be generalized in a similar fashion.

3 Riemannian manifolds in quantum mechanics

Many objects of quantum mechanics can be seen as elements of smooth manifolds. How-
ever, their mathematical description, suitable for numerical algorithms, may involve some
abstract constructions that should be clarified. In this section we consider an illustrative
example of a Choi matrices set and describe this set as a smooth quotient manifold. We
restrict our consideration to a plain description of all necessary mathematical concepts.
At the end of the section, we also list all the manifolds implemented in the QGOpt library
and describe their possible use.

The evolution of any quantum system that interacts with its environment can be
described by a quantum channel. Here, we consider quantum channels defined as the
following CPTP linear map: Φ : Cn×n 7−→ Cn×n. Any quantum channel can be repre-
sented through its Choi matrix [29]. A Choi matrix is a positive semi-definite operator
C ∈ Cn2×n2

that has a constraint Trp(C) = 1, where Trp is a partial trace over the first
subsystem and 1 is the identity matrix. To make the notion of the partial trace less ab-
stract, let us consider a piece of TensorFlow code, that computes a partial trace of a Choi
matrix. First of all, we apply a reshape operation to a Choi matrix that changes the shape
of a matrix as follows

1 C_resh = tf.reshape(C, (n, n, n, n)).

The tensor Cresh ∈ Cn×n×n×n is an alternative representation of the Choi matrix. Further
in the text, we distinguish two equivalent representations of a Choi matrix: C and Cresh.
Partial trace of a Choi matrix can be calculated by using Cresh as follows [Trp(C)]i1i2 =∑

j [Cresh]i1ji2j . Practically it can be done by running of the following line of code:

1 tf.einsum(’ikjk ->ij’, C_resh),

which means that we take a trace over first and third indices (numeration of indices starts
from 0).

The Choi–Jamio lkowski isomorphism [36] establishes a one-to-one correspondence be-
tween quantum channels and Choi matrices. One can calculate the Choi matrix of a known
quantum channel as follows

C = 1⊗ Φ |Ψ+〉 〈Ψ+| , (2)

where |Ψ+〉 =
∑n

i=1 |i〉 ⊗ |i〉 and {|i〉}ni=1 is an orthonormal basis in Cn. In order to show
that the Choi matrix essentially is a quantum channel itself, we consider the representation
of Eq.(2) in terms of tensor diagrams [37, 38]. The reshaped version of a Choi matrix
[Cresh]i1j1i2j2 is shown in Fig. 1. Thus, one can conclude that the Choi matrix is a quantum
channel itself.

One can see that the set of all Choi matrices of size n2×n2 (the corresponding quantum
channel acts on density matrices of size n× n) Cn is the following subset of Cn2×n2

Cn =
{
C ∈ Cn

2×n2∣∣C ≥ 0, Trp(C) = 1
}
, (3)
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Figure 1: a) Diagrammatic representation of the Choi matrix. b) One can note that the
state of a two-component quantum system |Ψ+〉 can be seen as the identity matrix. c)
Finally, we note that the Choi matrix is a quantum channel itself.

Figure 2: a) Decomposition of a Choi matrix into A and A†. b) Diagrammatic represen-
tation of the isometric property of A.

where C ≥ 0, Trp(C) = 1 corresponds to the CPTP property of the corresponding
quantum channel. This subset can be described as a Riemannian manifold that admits
different Riemannian optimization algorithms. Now, we may parametrize the Choi matrix
with an auxiliary matrix A ∈ Cn2×n2

C = A†A. (4)

The matrix C is a positive semi-definite by construction. We also distinguish A ∈ Cn2×n2

and its reshaped version Aresh ∈ Cn2×n×n that are connected by the reshape operation.
The condition on a partial trace of a Choi matrix transforms to the following equality:

[Trp(C)]i1i2 = [Trp(A
†A)]i1i2 =

∑
kj

[Aresh]∗ki1j [Aresh]ki2j = δi1i2 (5)

which shows that a set of all Aresh is the set of isometric tensors. Indeed, one can notice
that convolution between Aresh and its complex conjugated version A∗resh is the identity
matrix which means that any Aresh is an isometric tensor. A diagrammatic form of the
Eq.(5) is shown in Fig. 2. The set of all complex isometric matrices of fixed size forms a
Riemannian manifold called complex Stiefel manifold [39] that we denote as St.

At first glance, it looks like we have shown that the set of Choi matrices can be seen
as a Stiefel manifold, but there is a problem that invalidates this statement: the matrices
A and QA, where Q is an arbitrary unitary matrix, correspond to the same Choi matrix;
in other words we have an equivalence relation QA ∼ A. Indeed

C = A†Q†QA = A†A. (6)
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Figure 3: Diagrammatic representation of the Eq.(6.)

Figure 4: Graphical representation of the transition from the manifold St of all matrices A,
to the quotient manifold St/Q that eliminates undesirable symmetry of the parametriza-
tion. Red curve represents a particular equivalence class F that is also called a fiber.

A diagrammatic version of Eq.(6) is depicted in Fig. 3. It shows that for any A there
is a family of equivalent matrices [A] = {QA|Q ∈ Cn2×n2

, Q†Q = QQ† = 1} that is
called equivalence class of A, and leads to the same Choi matrix. One can eliminate
this symmetry by turning to a quotient manifold St/Q = {[A]|A ∈ St} that consists of
equivalence classes. This rather abstract construction can be imagined as a projection
of a manifold along surfaces representing equivalence classes (see Fig. 4). Having a map
π(A) = [A] and a map called horizontal lift [34], that connects tangent spaces of St/Q and
tangent spaces of St, one can describe the abstract manifold St/Q through St. It allows
one to perform a Riemannian optimization on the abstract quotient manifold St/Q.

The example Choi matrices manifold shows all the necessary steps that emerge while
building the mathematical description of quantum mechanical manifolds. The set of all
manifolds implemented in QGOpt library is listed below.

• Complex Stiefel manifold Stn,p =
{
V ∈ Cn×p|V †V = 1

}
is a set of all isometric

matrices of fixed size. A particular case of this manifold is a set of all unitary
matrices of fixed size; therefore, this manifold can be used for different tasks related
to quantum control. Some architectures of tensor networks may include isometric
matrices as building blocks [40,41]; thus, one can use this manifold to optimize such
tensor networks.

• Quotient manifold of density matrices %n =
{
% ∈ Cn×n

∣∣∣% = %†, Tr(%) = 1, % � 0
}

is

a set of all fixed-size Hermitian positive semi-definite matrices with unit trace. Since
density matrices represent states of quantum systems, one can use this manifold to
perform state tomography and optimization of initial quantum states in different
quantum circuits.

• Quotient manifold of Choi matrices Cn =
{
C ∈ Cn

2×n2
∣∣∣C = C†, Trp(C) = 1, C � 0

}
is a set of all fixed-size hermitian positive semi-definite matrices with auxiliary lin-
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ear constraint (equality of the partial trace to the identity matrix). Choi matrices
are used as representations of quantum channels; hence, one may use this manifold
to perform quantum channel tomography and optimization of quantum channels in
different quantum circuits.

• Manifold of Hermitian matrices Hn =
{
H ∈ Cn×n

∣∣∣H = H†
}

is essentially a linear

subspace of a space Cn×n. Since Hermitian matrices represent measurable physical
operators in the quantum theory, one can use this manifold to perform a search of
optimal measurable physical operators in different problems.

• Manifold of hermitian positive definite matrices Sn++ =
{
S ∈ Cn×n

∣∣∣S = S†, S � 0
}

is a set of all positive definite matrices of fixed size. One can use it to search the
optimal non-normalized quantum state in different tasks.

• Quotient manifold of positive operator-valued measure (POVM)

POVMm,n =

{
{Ei}ni=1 ∈ Cn×d×d

∣∣∣∣∣Ei = E†i , Ei � 0,

n∑
i=1

Ei = 1

}
can be considered

as a fixed-size tensor with hermitian positive semi-definite slices that sum into the
identity matrix. Since POVMs describe generalized measurements in quantum the-
ory, one can use this manifold to perform a search of optimal measurements that
give the largest information gain.

4 QGOpt API

4.1 Manifolds API

The central class of the QGOpt library is the manifold base class. All particular manifold
types are inherited from the manifold base class. All manifold subclasses admit working
with the direct product of several manifolds. Any manifold has a set of typical methods
that are used in Riemannian optimization. This list of methods allows one not to pay
particular attention to the underlying Riemannian geometry details.

Let us consider basic illustrative examples. First, one needs to import all necessary
libraries and create an example of a manifold. As an example we consider the complex
Stiefel manifold.

1 import QGOpt as qgo

2 import tensorflow as tf

3

4 # example of complex Stiefel manifold

5 m = qgo.manifolds.StiefelManifold ()

Here m is an example of the complex Stiefel manifold that contains all the necessary
information on the manifold’s geometry. Some manifolds allow one to specify a type of
metric and retraction as well. Using this example of a manifold one can sample a random
point from a manifold:

1 u = m.random ((4, 3, 2))

Here we sample a random tensor u, that is a complex valued TensorFlow tensor of size
4 × 3 × 2. This tensor represents a point from the direct product of four complex Stiefel
manifolds. The first index of this tensor enumerates a manifold and the last two indices
are matrix indices. Therefore, the tensor u can be seen as a set of four isometric matrices.
One can generate a random tangent vector drawn from u.
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1 v = m.random_tangent(u)

Here v is a complex valued TensorFlow tensor of the same size and type as u that represents
the random tangent vector drawn from u. Now let us assume that we have a random vector
w which is of the same size and type, but is not tangent. One can make the orthogonal
projection of this vector on the tangent space of u:

1 w = m.proj(u, w)

The updated vector w is an element of the tangent space of u now. To get the scalar
product of two tangent vectors one can use the following line of code:

1 wv_inner = m.inner(u, w, v)

Here we pass u to the inner product method to specify the tangent space where we compute
the inner product, because in Riemannian geometry the metric and inner product are
point-dependent in general.

To implement first-order Riemannian optimization methods on a manifold one needs
to be able to move points and vectors along the manifold. There are retraction and vector
transport methods for this purpose. As an example let us move a point u along a tangent
vector v via the retraction map:

1 u_tilde = m.retraction(u, v)

The new point ũ is the result of transportation of u along vector v. To perform trans-
portation of a vector along some other vector one can run the following line of code:

1 v_tilde = m.vector_transport(u, v, w)

Here we start from point u and transport a tangent vector v along a tangent vector w,
and obtain ṽ that is the result of the vector transportation.

The last important method converts the Euclidean gradient of a function to the Rie-
mannian gradient. Riemannian gradient is the search direction that takes into account the
metric of a manifold and the tangent space in a given point. To calculate the Riemannian
gradient one can use the following piece of code:

1 r = m.egrad_to_rgrad(u, e)

where we denote the Euclidean gradient as e and the Riemannian gradient as r.

4.2 Optimizers

Riemannian optimizers implemented in QGOpt are inherited from TensorFlow optimizers
and hence have the same API. The main difference is that one should also pass an example
of manifold while defining an optimizer. An example of manifold guides the optimizer and
preserves the manifold’s constraints. Two optimizers are implemented, that are among
the most popular in machine learning: Riemannian versions of Adam [18] and SGD [42].

If m is a manifold element and lr is a learning rate, then the Adam and SGD optimizers
can be initialized as follows:

1 # Riemannian ADAM optimizer

2 opt = qgo.optimizers.RAdam(m, lr)

3 # Riemannian SGD optimizer

4 opt = qgo.optimizers.RSGD(m, lr).

Note, that some other attributes, like value of momentum of SGD optimizer or AMSGrad
modification of Adam optimizer, can be passed exactly as for TensorFlow Adam and SGD
optimizers.
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4.3 Auxiliary functions

It is important to have in mind that TensorFlow optimizers work well only with real vari-
ables. Therefore, one cannot use complex variables to represent a point on a manifold
because they are being tuned while optimizing. The simplest way of representing a point
from a complex manifold through real tensors is introducing an additional index that
enumerates real and imaginary parts of a tensor. For example a complex-valued tensor
of shape (a, b, c) can be represented as a real-valued tensor of shape (a, b, c, 2). During
calculations, we need to convert tensors from the real representation to the complex rep-
resentation and back. Let us assume that we initialize a complex-valued tensor, which
represents a point from a manifold by using method “random”. In order to make this ten-
sor a variable suitable for an optimizer, one needs to convert it to the real representation.
Then, while building a computational graph, one may need to have a complex form of a
tensor again. To make this transition simple, we introduced two auxiliary functions that
allow performing conversion from the real representation to the complex and back:

1 # a random real tensor , last index enumerates

2 # real and imaginary parts

3 w = tf.random.normal ((4, 3, 2),

4 dtype=tf.float64)

5 # corresponding complex tensor of shape (4, 3)

6 wc = qgo.manifolds.real_to_complex(w)

7 # corresponding real tensor (wr = w)

8 wr = qgo.manifolds.complex_to_real(wc)

5 Examples of application of QGOpt

5.1 Quantum gate decomposition

In this subsection we consider an illustrative example of a quantum gate decomposition.
It is known, that any two qubit quantum gate U can be decomposed in the following
way [43]:

U = [ũ11 ⊗ ũ12]UCNOT[ũ21 ⊗ ũ22]× UCNOT[ũ31 ⊗ ũ32]UCNOT[ũ41 ⊗ ũ42], (7)

where UCNOT is the CNOT gate and {ũij}4,2i,j=1 is a set of unknown one qubit gates. Since

a set {ũij}4,2i,j=1 can be seen as the direct product of 8 complex Stiefel manifolds, one can
use Riemannian optimization methods to find all ũij . First we initialize randomly a trial

set {uij}4,2i,j=1 that will be tuned by Riemannian optimization methods. For the sake of
simplicity let us denote the decomposition introduced above in the following way

D (uij) = [u11 ⊗ u12]UCNOT[u21 ⊗ u22]× UCNOT[u31 ⊗ u32]UCNOT[u41 ⊗ u42] (8)

The problem of gate decomposition can be formulated as the following optimization prob-
lem:

‖U −D(uij)‖F → min
{uij}4,2i,j=1

(9)

where each uij obeys the unitarity constraint and ‖ · ‖F is the Frobenius distance.
Before considering the main part of the code that solves the problem above, we need

to introduce a function that calculates the Kronecker product of two matrices:
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1 def kron(A, B):

2 AB = tf.tensordot(A, B, axes =0)

3 AB = tf.transpose(AB, (0, 2, 1, 3))

4 AB = tf.reshape(AB, (A.shape [0]*B.shape [0],

5 A.shape [1]*B.shape [1]))

6 return AB.

Then we define an example of the complex Stiefel manifold:

1 m = qgo.manifolds.StiefelManifold ().

As a target gate that we want to decompose, we use a randomly generated one:

1 U = m.random ((4, 4), dtype=tf.complex128).

We initialize the initial set {uij}4,2i,j=1 randomly as a 4th rank tensor:

1 u = m.random ((4, 2, 2, 2), dtype=tf.complex128).

The first two indices of this tensor enumerate a particular one-qubit gate, the last two
indices are matrix indices of a gate. We turn this tensor into its real representation in
order to make it suitable for an optimizer and wrap it up into the TensorFlow variable:

1 u = qgo.manifolds.complex_to_real(u)

2 u = tf.Variable(u).

We initialize the CNOT gate UCNOT as follows:

1 cnot = tf.constant ([[1, 0, 0, 0],

2 [0, 1, 0, 0],

3 [0, 0, 0, 1],

4 [0, 0, 1, 0]],

5 dtype=tf.complex128).

As the next step, we initialize Riemannian Adam optimizer:

1 lr = 0.2 # optimization step size

2 opt = qgo.optimizers.RAdam(m, lr),

and run the forward pass of computations:

1 with tf.GradientTape () as tape:

2 # turning u back into its

3 # complex representation

4 uc = qgo.manifolds.real_to_complex(u)

5 # decomposition

6 D = kron(uc[0, 0], uc[0, 1])

7 D = cnot @ D

8 D = kron(uc[1, 0], uc[1, 1]) @ D

9 D = cnot @ D

10 D = kron(uc[2, 0], uc[2, 1]) @ D

11 D = cnot @ D

12 D = kron(uc[3, 0], uc[3, 1]) @ D

13 # loss function

14 L = tf.linalg.norm(D - U) ** 2

15 # is equivalent to casting to a real dtype

16 L = tf.math.real(L).

The final step is to minimize the loss function L = ‖D(uij) − U‖2F that is calculated on

the previous step. We calculate gradient of L with respect to the set {uij}4,2i,j=1:

1 grad = tape.gradient(L, u),

and pass the gradient to the optimizer:

1 opt.apply_gradients(zip([grad], [u])).
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Figure 5: Frobenius distance between a gate and its decomposition. One can see that the
distance rapidly decreases with the number of iteration towards almost a machine zero.

Adam optimizer performs one optimization step keeping orthogonality constraints. We
repeat the forward pass, gradient calculation and optimization steps several times, wrap-
ping them into a for loop until convergence and end up with a proper decomposition of
the gate U . The optimization result is given in Fig. 5. One can see that at the end of
the optimization process, the error is completely negligible. This section in the form of
tutorial is available at the QGOpt documentation web-page [44].

5.2 Quantum tomography

Another typical problem that can be addressed by Riemannian optimization is the quan-
tum tomography of states [45, 46] and channels [47, 48]. Here we consider an example of
quantum tomography of channels, because it involves a more complicated structure than
quantum tomography of states.

Let H =
⊗n

i=1 C2 be the Hilbert space of a system consisting of n qubits. Let us
assume that one has a set of input states {ρi}Ni=1, where N is a total number of states, and
each ρi is a density matrix on H. One passes initial states through an unknown quantum

channel Φtrue and observes a set of measurement outcomes
{
M tetra
k1i

⊗ · · · ⊗M tetra
kni

}N
i=1

,

where M tetra
k is a tetrahedral POVM [49]:

M tetra
k =

1

4

(
1 + sTkσ

)
, k ∈ (0, 1, 2, 3), (10)

σ = (σx, σy, σz) , s0 = (0, 0, 1), s1 =

(
2
√

2

3
, 0,−1

3

)
,

s2 =

(
−
√

2

3
,

√
2

3
,−1

3

)
, s3 =

(
−
√

2

3
,−
√

2

3
,−1

3

)
.

One can estimate an unknown channel by maximizing the logarithmic likelihood of mea-
surement outcomes:

N∑
i=1

log
(
M tetra
k1i

⊗ · · · ⊗M tetra
kni

Φ(ρi)
)
→ max

Φ is CPTP
. (11)

For the sake of simplicity we assume that the many-body tetrahedral POVM M is already
predefined and has the shape (22n, 2n, 2n), where the first index enumerates the POVM
element. We also assume that we have a data set that consists of a set of initial density
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matrices of shape (N, 2n, 2n) and a set of POVM elements of the same shape that came
true after measurements. In our experiments, an unknown channel has Kraus rank 2 and
is generated randomly, initial density matrices are pure and also generated randomly.

Let us proceed with practical implementation. First, we define an example of the
manifold of Choi matrices:

1 m = qgo.manifolds.ChoiMatrix ().

The manifold of Choi matrices is represented through the quadratic parametrization
with equivalence relation discussed in Section 3. Thus we initialize a variable, that repre-
sents the parametrization of a Choi matrix:

1 # random initial parametrization

2 A = m.random ((2**(2*n), 2**(2*n)),

3 dtype=tf.complex128)

4 # variable should be real

5 # to make an optimizer work correctly

6 A = qgo.manifolds.complex_to_real(A)

7 # variable

8 A = tf.Variable(A).

Then we initialize the Riemannian Adam optimizer:

1 lr = 0.07

2 opt = qgo.optimizers.RAdam(m, lr),

and calculate the logarithmic likelihood function:

1 with tf.GradientTape () as tape:

2 # complex representation of parametrization

3 # shape =(2**2n, 2**2n)

4 Ac = qgo.manifolds.real_to_complex(A)

5

6 # reshape parametrization

7 # (2**2n, 2**2n) --> (2**n, 2**n, 2**2n)

8 Ac = tf.reshape(Ac, (2**n, 2**n, 2**(2*n)))

9

10 # Choi tensor (reshaped Choi matrix)

11 choi = tf.tensordot(Ac,

12 tf.math.conj(Ac),

13 [[2], [2]])

14

15 # turning Choi tensor to the

16 # corresponding quantum channel

17 phi = tf.transpose(choi , (1, 3, 0, 2))

18 phi = tf.reshape(phi , (2**(2*n), 2**(2*n)))

19

20 # reshape initial density

21 # matrices to vectors

22 rho_resh = tf.reshape(rho_in , (N, 2**(2*n)))

23

24 # passing density matrices

25 # through a quantum channel

26 rho_out = tf.tensordot(phi ,

27 rho_resh ,

28 [[1], [1]])

29 rho_out = tf.transpose(rho_out)

30 rho_out = tf.reshape(rho_out ,

31 (N, 2**n, 2**n))

32

33 # probabilities of measurement outcomes

34 # (povms is a set of POVM elements

35 # came true of shape (N, 2**n, 2**n))

36 p = tf.linalg.trace(povms @ rho_out)

12
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Figure 6: Dependence between Jamio lkowski process distance and number of iteration.
Number of measurement outcomes N = 600000 for all experiments.

37

38 # negative log likelihood (to be minimized)

39 L = -tf.reduce_mean(tf.math.log(p)).

Finally, we calculate the logarithmic likelihood gradient with respect to the parametriza-
tion of the Choi matrix:

1 grad = tape.gradient(L, A),

and apply the optimizer that makes an optimization step that does not violate the CPTP
constraints:

1 opt.apply_gradients(zip([grad], [A])).

We repeat the calculation of the logarithmic likelihood function, gradient calculation and
optimization steps several times, wrapping them into a for loop, until convergence is
reached. To evaluate the quality of an unknown quantum channel estimation we calculate
Jamio lkowski process distance [50]:

J(Φtrue,Φest) =
1

2n
‖Ctrue − Cest‖tr, (12)

where Φtrue(Φest) is the true (estimated) quantum channel, Ctrue(Cest) is the corresponding
Choi matrix, ‖ · ‖tr is the trace norm and 0 ≤ J(Φtrue,Φest) ≤ 1. One can see in Fig. 6
that the Jamio lkowski process distance converges to some small value with the number of
iterations and we end up with a reasonable estimation of an unknown quantum channel.
This section in the form of tutorial is available at QGOpt documentation web-page [44].

6 Discussion and concluding remarks

The range of applications of the QGOpt library to different problems of quantum technol-
ogy is not limited only by quantum gate decomposition and quantum tomography. The six
manifolds implemented in QGOpt give rise to different interesting scenarios of constrained
optimization usage in quantum technology. For example, the complex Stiefel manifold can
be used to address different control problems, where one needs to find an optimal set of
unitary gates driving a quantum system to a desirable quantum state. Is is also possi-
ble to use a complex Stiefel manifold to perform entanglement renormalization [40, 41],
machine learning by unitary tensor networks [51] or non-Markovian quantum dynamics
identification [24]. Besides quantum tomography, quotient manifolds of density matrices

13
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and Choi matrices can be used to maintain natural quantum constraints in different ten-
sor network architectures. Quotient manifold of POVMs can be used for searching an
optimal generalized measurement scheme, that gives maximal information gain. Finally,
all these manifolds can be combined in one optimization task, which allows to address
multi-component problems.

To conclude, we introduce QGOpt library that is aimed at solving constrained opti-
mization problems with natural quantum constraints. We introduce and discuss quite an
abstract concept, such as quotient manifolds, which lie under the hood of QGOpt. We go
through QGOpt API and cover the most important features of it. We also sort out two
examples of code solving two illustrative quantum technology problems.
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