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Abstract: Boundary conditions for Majorana fermions in d = 1 + 1 dimensions fall

into one of two SPT phases, associated to a mod 2 anomaly. Here we consider boundary

conditions for 2N Majorana fermions that preserve a U(1)N symmetry. In general, the

left-moving and right-moving fermions carry different charges under this symmetry,

and implementation of the boundary condition requires new degrees of freedom, which

manifest themselves in a boundary central charge g.

We follow the boundary RG flow induced by turning on relevant boundary operators.

We identify the infra-red boundary state. In many cases, the boundary state flips SPT

class, resulting in an emergent Majorana mode needed to cancel the anomaly. We show

that the ratio of UV and IR boundary central charges is given by g2
IR/g

2
UV = dimO, the

dimension of the perturbing boundary operator. Any relevant operator necessarily has

dimO < 1, ensuring that the central charge decreases in accord with the g-theorem.
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1 Introduction

Quantum field theories with boundaries are interesting for many reasons, from the role

of edge modes in condensed matter physics, to impurity problems, to D-branes in string

theory.

In this paper we return to an old and well explored subject: boundary conditions

for free, massless fermions in d = 1 + 1 dimensions. As we review below, given such a

collection of fermions there are an infinite number of boundary conditions that one can

impose. Typically, these boundary conditions involve the introduction of new degrees

of freedom at the boundary. At low energies, below any interaction scale, the number

of such degrees of freedom is captured by a boundary central charge g, first introduced

by Affleck and Ludwig [1].

The d = 0+1 dimensional boundary behaves, in many ways, like any other quantum

field theory. There are operators restricted to the boundary and these can be classified

as relevant, irrelevant or marginal. Operators that are exactly marginal move among

a continuous family of boundary conditions. Meanwhile, boundary operators that are

relevant initiate an RG flow within the space of boundary conditions without endan-

gering the gapless nature of the bulk modes. As in higher dimensional situations, the

number of boundary degrees of freedom g necessarily decreases under RG flow [2, 3].

The purpose of this paper is to study such RG flows between different boundary

conditions for massless fermions. We will find a simple, and elegant story in which,

with some reasonable assumptions, one can follow boundary RG flows from one fixed

point to another. There are a number of different aspects to this story, not least the fact

that boundary conditions for fermions are classified by a Z2 anomaly, and so fall into

one of two different classes. In this extended introduction, we review this Z2 anomaly

before summarising our main results.

1.1 The Mod 2 Anomaly

A single Majorana fermion in quantum mechanics provides what is arguably the sim-

plest system suffering an anomaly. To see this, we can start by taking two copies of a

Majorana fermion, λ1 and λ2. Canonical quantisation gives rise to a 2d Clifford algebra

{λi, λj} = δij which acts irreducibly on a Hilbert space of dimension 2. This means

that a single Majorana fermion would act on a Hilbert space of dimension
√

2, which

is nonsensical.
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Indeed, the dimension of the Hilbert space is counted by the path integral for a single

Majorana mode, with anti-periodic boundary conditions in the temporal direction. This

can be computed and is given by

ZMajorana =
√

2 (1.1)

This reflects the fact that there is no way to consistently quantise a single Majorana

mode in d = 0 + 1 dimensions. This simple fact is the essence of the mod 2 anomaly,

and the telltale factor of
√

2 will be a recurring motif throughout this paper.

As described in [4, 5], this same anomaly is lurking when we attempt to place fermions

in d = 1 + 1 dimensions on a manifold with boundary. (A beautifully clear explanation

of this from the continuum perspective can be found in the talk [6].) Consider a single,

massive Majorana fermion χ, now in d = 1 + 1 dimensions. There are two possible

boundary conditions that one can impose, reflecting the left-moving fermion χL into

the right-moving fermion χR,

χL = ±χR (1.2)

Solving the Dirac equation, one finds that for one choice of sign there is a single Ma-

jorana zero mode localised on the boundary, while for the other there is not. The

sign choice that gives rise to the zero mode is therefore inconsistent unless something

else comes to the rescue to cancel the anomaly. (Which boundary condition suffers a

zero mode depends on both the sign of the fermion mass, and the orientation of the

boundary.)

The anomaly manifests itself in a slightly different way when we consider a complex,

Dirac fermion ψ = χ1 + iχ2. There is no problem if we impose a boundary condition

that preserves the vector U(1)V symmetry,

V : ψL = ψR (1.3)

This translates to the same sign (1.2) on both χ1 and χ2. This means that, if ψ is

massive in the bulk, then there are either two boundary zero modes or none. Either

way, the system does not suffer an anomaly.

In contrast, we could impose boundary conditions of the form

A : ψL = ψ†R (1.4)

Such boundary conditions arise in wires attached to superconductors, where an incident

electron rebounds as a hole, a process known as Andreev reflection. If the bulk fermion
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is massless, then the Andreev boundary conditions preserve the U(1)A axial symmetry

of the fermion. We will consider such massless bulk fermions shortly, but for now it

will be useful to keep the fermion massive. In this case, the discussion above tells us

that we have a problem: the two Majorana fermions χ1 and χ2 have opposite signs for

their boundary conditions, meaning that one has a zero mode and the other does not.

The axial boundary condition is anomalous.

There are various ways of dealing with this. One obvious approach is simply to add

by hand a quantum mechanical Majorana mode λ, which then pairs with the zero mode

to render the theory consistent.

Alternatively, the anomaly can be cancelled through an inflow mechanism [7]. On

a d = 1 + 1 Riemann surface without boundary, but endowed with a spin structure,

there exists a particular SPT phase whose partition function is given by (−1)Arf , where

the Arf invariant takes values ±1 depending on whether the spin structure is even

or odd. This SPT phase arises, for example, as the infra-red limit of two Majorana

fermions with masses of opposite sign and, in the condensed matter literature, it is

better known as the topological phase of the Kitaev chain [5, 8] . Recent applications

of this topological field theory can found [9–20]. However, on a Riemann surface with

boundary, the Arf topological field theory is not well defined: it suffers the same mod

2 anomaly that we saw above. This anomaly can be cancelled if we have a single Dirac

fermion ψ living on the Riemann surface and impose the boundary condition (1.4).

The upshot of this is that, if we chose not to add further Majorana modes by hand,

then a trivial bulk theory requires that we impose the vector boundary condition (1.3),

while the non-trivial SPT phase requires that we impose the axial boundary condition

(1.4). Note, in particular, that on a finite cylinder it is inconsistent to impose vector

boundary conditions on one end, and axial boundary conditions on another.

The story above was told for massive bulk fermions. It is convenient to introduce

such a mass because it makes the Z2 anomaly manifest in the presence of normalisable

Majorana zero modes. However, anomalies are famously independent of the mass, and

our Z2 anomaly is no different. This means that the boundary conditions (1.3) or (1.4)

are also dictated by the bulk topological SPT phase for massless fermions.

An Application to D-Branes

A particularly elegant application of the discussion above can be found in the context

of D-branes in string theory [4, 6, 21, 22]. Although not directly relevant for our story,

it is lovely enough to warrant a quick advertisement.

– 4 –



First, various GSO projections, which characterise the different types of string theo-

ries, arise from the inclusion of various Arf invariants on the string worldsheet. When

the dust settles, one finds familiar results, viewed through a new lens. The fact that

BPS D-branes in Type IIA string theory have odd worldvolume dimension, while those

in Type IIB have even worldvolume dimension can be traced to the Arf invariants on

the worldsheet, which put different restrictions on the number of worldsheet fermions

that obey the boundary conditions (1.3) and (1.4)

Furthermore, both Type IIA and Type IIB string theories are known to have non-

BPS D-branes whose worldvolume dimensions are the complement of the BPS D-branes.

To avoid the Z2 anomaly, the end point of the string must necessarily come with an

extra Majorana mode. This provides a unified explanation for a number of previously

observed properties of non-BPS D-branes, including the fact that their tension is a

factor of
√

2 larger than their BPS counterparts [23, 24]. This
√

2 can be traced

directly to the partition function (1.1) of the excess Majorana mode.

1.2 Chiral Boundary Conditions

Our interest in this paper lies in boundary conditions for multiple massless fermions.

Here there are many more possibilities, ones that do not involve simple repetitions of

the boundary conditions (1.2), (1.3) and (1.4).

These novel boundary conditions can be distinguished by the symmetries that they

preserve. The two boundary conditions (1.3) and (1.4) preserve the U(1)V and U(1)A
symmetry of a single, massless Dirac fermion respectively. However, in general it is

possible to impose boundary conditions that preserve chiral symmetries, under which

the left- and right-moving fermions carry different charges. Indeed, there is a general

expectation that one can impose boundary conditions preserving any symmetry that

does not suffer a ’t Hooft anomaly. (See, for example, [25, 26].)

For example, if we have N left-moving Weyl fermions in d = 1 + 1 with charges Qi

under a U(1) symmetry, and N right-moving fermions with charges Q̄i, then one can

impose boundary conditions that preserve the U(1) symmetry provided that

N∑
i=1

Q2
i =

N∑
i=1

Q̄2
i

which is the requirement that this symmetry does not suffer a ’t Hooft anomaly.
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There is no way to impose such boundary conditions directly on the fermion fields

in the Lagrangian. Instead, one should introduce new boundary degrees of freedom,

which interact with the fermions, typically in a strongly coupled fashion. However,

in the far infra-red, any boundary condition for massless, bulk fermions in d = 1 + 1

dimensions can be encoded in a conformal boundary state [27]. The degrees of freedom

necessary to impose chiral boundary conditions now show up as a contribution to the

boundary central charge g [1]. In this paper, we work with such conformal boundary

states, a technology that we review in Section 2. The relationship between SPT phases

and conformal boundary field theory was previously explored in [28–31].

To our knowledge, the general class of boundary states for 2N massless Majorana

fermions is not known1. To make progress, we will restrict ourselves to boundary

conditions which preserve a manifest U(1)N symmetry2. It is then straightforward to

construct the boundary state preserving your favourite chiral, non-anomalous symme-

try. Early examples of such states were introduced in [33, 34].

Given the discussion of the mod 2 anomaly in the previous section, the first question

that we should ask is: into what class does a given boundary state fall? Does it describe

a boundary condition that is allowed in the trivial bulk theory, or in the SPT phase?

This was answered in [35] where it was shown that all chiral boundary states do indeed

fall into two, mutually incompatible, classes that, following the notation of (1.3) and

(1.4), we denote as vector and axial.

There is a slightly different perspective that one can take on this. As explained in [28],

there is a close connection between conformal boundary states and the gapped phases

of a theory. Specifically, one could consider turning on a gapping interaction only in

one half of space. Low energy excitations incident from the gapless phase will then

be reflected, experiencing the gapped half-space as a conformal boundary condition.

Yet, as we have described above, there is a Z2 classification of such fermionic SPT

phases: trivial and non-trivial, where non-trivial means (−1)Arf . The vector and axial

classification of boundary states tells us whether these boundary states arise from trivial

(vector) or non-trivial (axial) gapped phases.

1In the special case N = 1, the complete classification is known [37, 38]. In addition to the vector

and axial states there is an interval’s worth of extra states [39] that interpolate between superpositions

of states in different classes, and so appear to be ruled out as pathological, at least from the perspective

of SPT phases.
2We impose this requirement as a necessary crutch that allows us to construct the boundary states.

The full symmetry group may be larger than U(1)N ; the conditions under which such an enhancement

occurs are detailed in [32].
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RG Flows: A Summary of Our Results

The purpose of this paper is to describe the boundary RG flows between different

chiral boundary states when we perturb by a relevant operator. Any such relevant

perturbation necessarily breaks one or more of the U(1)N symmetries. However, we

propose that, while the RG flow breaks the symmetry, a new emergent U(1)N symmetry

is restored at the end of the RG flow. It is not obvious that this is the case: one might

have anticipated that, by flowing away from states preserving a full U(1)N symmetry,

we would leave them for good. Instead we argue that, like the famous hotel, you can

check out from these states, but you can never leave.

Assuming that a full U(1)N emerges in the infra-red allows us to track the RG flow.

There are a number of interesting features that emerge from our analysis. First, one

can ask: is it possible to flow from one class of boundary states to the other? Say, from

vector-like boundary conditions to axial-like boundary conditions? Given the anomaly

restrictions described above, one might have thought that such flows are forbidden.

Instead, we find that they are very much allowed. However, whenever such a flow

occurs, the resulting boundary state comes equipped with an extra Majorana mode λ,

needed to cancel the anomaly.

Secondly, we find the following surprising and simple formula: if we initiate an RG

flow by turning on a single, relevant boundary operator O with dimension dimO, then

the UV and IR central charges are related by

gIR = gUV
√

dimO (1.5)

Since a relevant boundary operator necessarily has dimO < 1, this relation is consis-

tent with the g-theorem [1–3], which states that the boundary central charge g must

decrease.

The result (1.5) is rather striking. In this paper, we show that it holds in free fermion

systems. An obvious and interesting question is whether some version of this result

continues to hold in other systems. One particular concern is that the RG flows studied

in this paper are initiated by relevant boundary operators for which dimO < 1. It is not

obvious how (1.5) would extend to, say, marginally irrelevant operators of the kind that

initiate RG flow in the Kondo problem. Nonetheless, it would clearly be interesting to

understand whether some version of the simple result (1.5) holds more generally.

1.3 The Plan of the Paper

We start in Section 2 by reviewing the construction of boundary states that preserve

chiral symmetries. We also take this opportunity to introduce our notation. In Section
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3 we compute the partition function for free fermions on an interval, with the same

boundary state imposed on each end. This allows us to determine the spectrum of

boundary operators and, in particular, extract the possible relevant boundary operators

for each symmetry.

The RG analysis is given in Section 4. We explain how, for each relevant boundary

operator, there is a unique candidate for the end-point of the flow, and elaborate on a

number of subtleties that arise including the emergence of Majorana bound states and

what string theorists refer to as Chan-Paton factors. The statements of the results are

more straightforward than the proofs; these statements are placed front and centre,

and we refrain as long as possible from wallowing in the glorious technicalities. The

wallowing finally occurs in Section 5.

A Slightly Different Application to D-Branes

As far as we are aware, the kinds of chiral boundary conditions that we discuss do not

have application to the fermions on the superstring worldsheet. However, there is a

more indirect connection. We could consider bosonizing our fermions so that the chiral

boundary conditions now describe the end-point of a string moving on a torus TN ,

with radius of order the string length.

In this context, the chiral boundary conditions are nothing more than D-branes in

bosonic string theory, wrapping TN with fluxes. Even translated to this familiar con-

text, our results appear novel. Things are simplest for N = 2 fermions, corresponding

to a D2-brane wrapping T2. After a T-duality, the general chiral boundary state simply

translates to a D-string wrapped (p, q) times around the two cycles of T2. We describe

this in Appendix D.

2 Chiral Boundary States

In this section we describe the general set-up, and the symmetries that we wish to

preserve in the presence of a boundary.

Our starting point is the theory of 2N , free Majorana fermions in d = 1 + 1 di-

mensions. When this theory is placed on a spatial manifold without boundary, these

fermions have a O(2N)L × O(2N)R global symmetry, independently rotating the left-

and right-moving Majorana-Weyl fermions. However, in the presence of a boundary,

this symmetry group is necessarily reduced.
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A particularly straightforward class of boundary conditions can be implemented by

imposing linear restrictions on the fermionic fields, such as (1.2), (1.3) or (1.4). How-

ever, these are not the most general class of boundary conditions. Instead, the generic

boundary condition does not arise by restricting the value of the field on the boundary;

instead it arises by imposing certain conditions on currents.

We will ask that the boundary preserves a subgroup

U(1)N ⊂ U(1)NL × U(1)NR ⊂ SO(2N)L × SO(2N)R (2.1)

The left-moving and right-moving fermions are assigned non-degenerate charges Qαi

and Q̄αi respectively, where i = 1, . . . , N labels the species of complex fermion, while

α = 1, . . . , N labels the U(1) symmetry group. The simple linear boundary conditions

described above arise, for example, if Q = ±Q̄. Our interest in this paper lies in

the more interesting boundary conditions in which the left- and right-moving fermions

carry different charges. These are chiral boundary conditions.

It is not true that any choice of U(1)N symmetry can be preserved by the boundary.

Only those symmetries that do not suffer a ’t Hooft anomaly give suitable boundary

conditions. (See, for example, [25, 26].) This means that the charge matrices necessarily

obey the condition

QαiQβi = Q̄αiQ̄βi (2.2)

We will need a few further objects constructed from these charges. First, we introduce

Rij = (Q̄−1)iαQαj

where the non-degenerate nature of the charges ensures that Q−1 exists. This rational,

orthogonal matrix will be sufficient to encode the charges preserved by the boundary.

The boundary condition (1.3) in which each left-moving fermion is reflected into a

right-mover corresponds to R = 1. Imposing Andreev reflection (1.4) on each fermion

corresponds to R = −1.

We also associate a charge lattice Λ[R] ⊆ ZN to our choice of boundary condition.

This is defined by

Λ[R] =
{
λ ∈ ZN : Rλ ∈ ZN

}
(2.3)

In words: the lattice Λ[R] consists of all integer-valued vectors λ ∈ ZN which remain

in ZN when rotated by the rational matrix R. As we will see, this lattice plays an

important role in our story.

– 9 –



For both standard and Andreev boundary conditions, this lattice is simply Λ[R =

±1] = ZN . For chiral boundary conditions, the lattice is sparser and more interesting.

2.1 Constructing Boundary States

We wish to construct boundary conditions that preserve a chiral U(1)N symmetry. The

key idea is due to Cardy [27]: using modular invariance, the boundary conditions at

the end of an interval are mapped into a state in the Hilbert space of the theory defined

on a spatial circle. This state is called the boundary state.

To this end, we start by working with the theory on a spatial circle. There is a non-

chiral u(1)N current algebra, with both holomorphic currents Ji and anti-holomorphic

currents J̄i, acting in the obvious way on theN left- and right-moving complex fermions.

These are not the currents that we wish to preserve. Instead, the chiral currents are

defined by

Jα = QαiJi and J̄α = Q̄αiJ̄i (2.4)

The boundary state |R〉 is defined by the property that no current flows into the

boundary. The Sugawara construction then ensures that no energy flows into the

boundary either. In terms of the mode expansion of the currents (labelled by n ∈ Z),

this condition reads

(Jα,n + J̄α,−n)|R〉 = 0 ⇒ (RijJj,n + J̄i,n)|R〉 = 0 (2.5)

It is not hard to show that solutions to this condition exist if and only if the anomaly

constraint (2.2) is satisfied.

The solutions are given in terms of Ishibashi states [36]. To define these, first recall the

the Hilbert space decomposes into charge sectors under the current algebra generated

by Ji and J̄i. In each sector, labelled by its charges (λi, λ̄i) ∈ Z, the ground state obeys

Ji,0|λ, λ̄〉 = λi|λ, λ̄〉 and J̄i,0|λ, λ̄〉 = λ̄i|λ, λ̄〉 (2.6)

These ground states are unique and annihilated by the positive modes, so Ji,n|λ, λ̄〉 =

Ji,n|λ, λ̄〉 = 0 for n ≥ 1. Excitations above the ground state are then generated by the

negative modes, Ji,−n and J̄i,−n for n ≥ 1.

The condition (2.5) must be solved separately in each charge sector. Acting on the

ground states, we have

Rijλj + λ̄i = 0 (2.7)

The charge sectors λi that obey this equation for some choice of λ̄i are precisely those

that live in the charge lattice Λ[R] defined in (2.3). Only these charge sectors arise in

the boundary state |R〉.
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In charge sector λ ∈ Λ[R], we can construct the Ishibashi state as the usual coherent

sum over excitations [36]. We take λ̄ = −Rλ, to obey (2.7) and write

‖λ, λ̄〉〉 = exp

(
−
∞∑
n=1

1

n
RijJ̄i,−nJj,−n

)
|λ, λ̄〉

The boundary state |R〉 that we’re looking for is then a suitable sum over the Ishibashi

states ‖λ, λ̄〉〉 with λ ∈ Λ[R]. The coefficients of this sum are fixed by the Cardy-

Lewellen sewing conditions [41, 42]. The final result for the boundary state is given

by

|θ;R〉 = gR
∑

λ∈Λ[R]

eiγR(λ) eiθ·λ‖λ, λ̄ = −Rλ〉〉 (2.8)

There are a number of new ingredients in this expression. The least important is the

phase eiγR(λ). An expression for this phase can be found in Appendix B of [35], but it

will not play a role in what follows.

More interesting is the phase factor eiθ·λ. This arises because there is not a unique

solution to the sewing conditions. This means that, for each R, we have a manifold of

possible boundary states parameterised by N phases θi.

These phases arise even for the simplest boundary conditions, where the reflection of a

single left-moving fermion into a right-moving fermion can, in general, be implemented

by the boundary condition ψL = eiθψR. The N phases θi that appear in the boundary

state (2.8) are generalisation to multiple fermions with a chiral boundary condition R.

The Central Charge

The most important new element in (2.8) is the normalisation factor gR. This is

determined by insisting that the overlap between any two boundary states can be

interpreted, using modular invariance, as the partition function of a sensible theory on

the interval. (There is an important caveat in this statement regarding the possible

existence of Majorana zero modes; this will be discussed further in Section 4.1.) In

[35], we showed that this normalisation factor is given by

gR =
√

Vol(Λ[R]) (2.9)

Here Vol(Λ[R]) is the volume of the primitive unit cell of the lattice Λ. This result was

previously derived in a somewhat different context in [40].
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The normalisation factor is important because it coincides with the Affleck-Ludwig

central charge, defined by

gR = 〈0, 0 | θ;R〉

Hence, gR should be thought of as a count of the number of boundary degrees of

freedom. This number must strictly decrease in any boundary RG flow.

The trivial boundary conditions, corresponding to R = ±1 (or, indeed, to any

diagonal R with entries ±1.) has gR = 1. This is the smallest value of the central

charge. Any chiral boundary conditions necessarily has gR > 1. In other systems, it is

quite possible to have stable boundary states with g > 1. (The tri-critical Ising model

provides a simple example.) However, this is not the case for the free fermions studied

in this paper. Any chiral boundary condition has gR > 1 and necessarily comes with

a number of relevant operators which induce RG flows and destabilise the boundary

condition. The rest of this paper is concerned with understanding these operators and

flows.

2.2 Some Examples

With N = 2 Dirac fermions, there is a rather simple classification of boundary states.

A large class of these arise from taking co-prime integers (p, q) with one odd, one even,

and setting

Qαi =

(
p q

−q p

)
, Q̄αi =

(
p −q
q p

)
⇒ Rij =

1

c

(
a b

−b a

)
(2.10)

Here a, b and c form a Pythogorean triple a2 +b2 = c2 with the Euclid parameterisation

a = p2 − q2 , b = 2pq , c = p2 + q2

The boundary central charge of these states is simply gR =
√
c.

The state (2.10) always lies in the vector class of boundary conditions [35]. However,

for any choice of central charge, it is not hard to find states that lie in either class. For

example, after the trivial states, the simplest states have gR =
√

5. If we take p = 2

and q = 1, we get a vector-like boundary state with

Rij =
1

5

(
3 4

−4 3

)
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However, flipping the sign of a single row, we get an axial-like boundary state with

Rij =
1

5

(
3 4

4 −3

)
As we proceed, many of the key ideas will be illustrated by this gR =

√
5 state. For

now, there are a couple of points worth highlighting.

First, the fact that sign-flipping a row or column of R changes the topological class

is a property of all boundary states. Meanwhile, permuting rows or columns leaves the

class unchanged. In general, one can transform R → PRRPL where PL and PR are

signed permutation matrices. This transformation corresponds to acting with a Weyl

group element (WL,WR) ∈ O(2N)L × O(2N)R on the boundary state; the class then

changes if det(WL) det(WR) = −1, while gR always stays the same. This illustrates the

fact that, for any given choice of gR, there are boundary states that lie in both classes.

Secondly, a number of different charges Q and Q̄ share the same boundary state,

characterised by R. For example, we could also take

Qαi =

(
3 4

−4 3

)
, Q̄αi =

(
5 0

0 5

)
⇒ Rij =

1

5

(
3 4

−4 3

)
In contrast to the charge matrices in (2.10), here the U(1)2 symmetry does not act

faithfully on the bulk fermions. The fermions are untouched by a discrete Z5 which

acts on the left-movers as ψi → eiβαQαiψi and on the right-movers as ψ̄i → eiβαQ̄αiψ̄i,

with β = (2π
5
, 4π

5
).

In what follows, the key physics will depend only on R; for example, the collection of

relevant boundary operators and their dimensions depend only on R. Nonetheless, we

will see that the charges of these operators are inherited from Q and Q̄ and so require

extra information beyond a knowledge of R.

Another Example: the Maldacena-Ludwig state

Our second example involves N = 4 Dirac fermions. The boundary conditions are,

perhaps, most simply described by requiring an SU(4) × U(1) global symmetry un-

der which the left-movers transform in the 4+1 representation, while the right-movers

transform as 4−1. There is no linear boundary condition on the fermions that reflects

one into another, a fact first noted in the context of monopole physics [43, 44]. Instead,
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Figure 1: The various conformal identifications used, including those which correspond

to an S transformation of the argument of the partition function.

the boundary condition is implemented by the boundary state with

Qαi =


+ + + +

+ −
+ −

+ −

 , Q̄αi =


− − − −
+ −

+ −
+ −

 ⇒ Rij = δij −
1

2
(2.11)

This boundary state was previously introduced by Maldacena and Ludwig [34]. It

manifestly implements the symmetry of the Cartan subalgebra U(1)4 ⊂ SU(4)×U(1).

Less manifestly, it also preserves the full SU(4) × U(1). Remarkably, in this special

four-fermion case, it preserves yet a larger SO(8)/Z2 symmetry group, whose existence

can be traced to triality. This state has boundary central charge gR =
√

2. Once again,

by acting with Weyl group transformations we have such states of either Z2 SPT class.

The Maldacena-Ludwig state also has a somewhat different avatar: it is the state

that implements the Fidkowski-Kitaev gapped phase of 8 Majorana fermions, an inter-

pretation that was first made in [28].

3 The Partition Function

Our goal in this section is to determine the relevant boundary operators, and their

charges, for each choice of boundary condition R. To do this, we compute the partition

function of the theory on an interval, with boundary conditions R imposed on each
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end. This encodes the information about the states in the Hilbert space on the interval.

We then use the state-operator map to determine the spectrum of boundary operators.

The partition function ZAB, for two distinct boundary conditions A and B at either

end of the interval is defined as the trace over the Hilbert space, HAB. After imple-

menting a conformal transformation to the half-annulus, as shown in Figure 1 along

the bottom row, this partition function is given by

ZAB(q) = TrHAB
(
qL0−c/24

)
In the presence of a boundary, only one copy of the Virasoro generators survives. These

we label as Ln, though they are distinct from the bulk holomorphic generators. The

usual Cardy trick is to relate this “open string” partition function to the “closed string”

partition function of free fermions on a cylinder which, after the conformal map shown

along the top of Figure 1, becomes the annulus

Zclosed(q) = 〈B|q
1
2

(L0+L̄0−c/12)|A〉

which now includes contributions from both holomorphic L0 and anti-holomorphic L̄0

generators. The fermions are given periodic boundary conditions on the annulus (in-

herited, in the usual way, from anti-periodic boundary conditions on the cylinder before

the conformal map.) The open and closed string partition functions are then related

by a modular S-transformation of q.

Consider two boundary states A = |θ,R〉 and B = |θ′,R〉 of the form (2.8). Note

that these states share the same R matrix, but differ in the theta angles. The general

closed string partition function was computed in [35]; it is

Zclosed(q) = g2
R

∑
λ∈Λ[R]

ei(θ−θ
′+π)·λ q

λ2/2

η(τ)N
(3.1)

Here q = e2πiτ . The slightly unusual factor of eiπ·λ := eiπ(λ1+···+λN ) arises from an

insertion of holomorphic fermion parity (−1)F = (−1)λ1+···+λN , whose necessity was

pointed out in [29]. The partition function for the theory on the interval is then found

by applying a modular S-transformation; it is

ZAB(q) =
∑

ρ∈Λ[R]?

q
1
2

(ρ+ θ−θ′
2π

+ 1
2

)2

η(τ)N
(3.2)

with Λ[R]? the dual lattice, defined by ρ · λ ∈ Z for all λ ∈ Λ[R] and ρ ∈ Λ[R]?.
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(a) Contour C used to define Qα. (b) Corresponding defect operator.

Figure 2

3.1 Adding Fugacities

Here we wish to extend this computation to include fugacities for the U(1)N symmetry,

providing information about the charges of the states. This means that we weight the

contribution of states in the open-string partition function according to their charges

under

Qα =
1

2πi

∫
C

dz Jα(z)− dz̄ J̄α(z̄)

where the contour C is the counter-clockwise semi-circle shown in Figure 2a. The

partition function now depends both on the modular parameter q and the chemical

potentials µα,

ZAB(q;µ) = TrHAB
(
qL0−c/24eiµαQα

)
Again, this object is simplest to compute in the closed-string picture. The operator

eiµαQα is now a defect, oriented along the “temporal” or “thermal” direction, as shown

in Figure 2b. Its role is to shift each fermion by a phase as we move around the spatial

circle. The left-moving fermion ψi picks up a phase eiµαQαi , while the right-moving

fermion ψ̄i picks up eiµαQ̄αi .

This, in turn, affects the quantisation of the charges λi and λ̄i defined in (2.6). Rather

than living in the integer lattice ZN , we instead have

λi ∈ Z +
µαQαi

2π
and λ̄i ∈ Z− µαQ̄αi

2π
(3.3)

Note that left- and right-moving charges are shifted in opposite directions. (This com-

putation leaves an ambiguity in the overall sign of the shifts, which is unimportant for

what follows.)
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The boundary condition (2.5) still requires that left- and right-moving charges are

related by (2.7)

Qαiλi + Q̄αiλ̄i = 0

which is only possible for all choices of µ if

µβ(QαiQβi − Q̄αiQ̄βi) = 0

Happily this follows from the condition for vanishing ’t Hooft anomalies (2.2).

The closed string partition function is now easily computed by implementing the

shift (3.3) in our previous result (3.1). The contribution from the ei(θ−θ
′+π)·λ term gives

an overall phase which we ignore. We’re then left with

Zclosed(q;µ) = g2
R

∑
λ∈Λ[R]

ei(θ−θ
′+π)·λ q

1
2

(λi+µαQαi/2π)2

η(τ)N

We can now invoke the usual modular transformation to compute the open-string

partition function of interest. We pull back the function Zclosed under a modular S-

transformation of q, to find

ZAB(q;µ) = Vol(Λ[R])

∫
dNx eiµαQαixi

qx
2/2

η(τ)N

∑
λ∈Λ[R]

ei(θ−θ
′+π+2πx)·λ

Upon doing the integral, we have

ZAB(q;µ) =
∑

ρ∈Λ[R;∆θ]?

eiµ
TQρ qρ

2/2

η(τ)N
(3.4)

The difference from our previous result (3.2) lies in both the explicit µ dependent factor

eiµαQαiρi , and in the sum which now runs over the shifted dual lattice

Λ[R; ∆θ]? := Λ[R]? +
θ′ − θ + π

2π

The highest weight states are labelled by vectors ρ ∈ Λ[R; ∆θ]?. From (3.4), we can

read off their charges

Qα = Qαiρi (3.5)

and energy

L0 =
1

2
ρ2 =

1

2
QαM−1

αβ Qβ (3.6)

where we have introduced the matrix Mαβ = QαiQβi = Q̄αiQ̄βi. This latter equality,

relating the charges to the energy, is consistent with the Sugawara construction.
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3.2 Boundary Operators

The state-operator map means that the partition function also contains information

about the spectrum of boundary operators. To extract this information, we set θ = θ′

and drop the contribution of π from the (−1)F factor. The boundary operators are then

labelled by ρ ∈ Λ[R]?. Like the states, the operators have charges Qα and dimension

L0, again given by (3.5) and (3.6).

Boundary operators also come in one of two classes: they are fermionic or bosonic.

This fermion parity will play a key role in Section 4 where we discuss RG flows initiated

by such operators. We pause here to discuss how to classify operators. As we now

explain, it is possible to assign a fermion parity to the lattice vectors ρ ∈ Λ[R]?.

First, recall that by definition, under a U(1)NL × U(1)NR transformation

(eiµαQαi , eiµαQ̄αi)

belonging to the preserved U(1)N subgroup, the boundary operator labelled by ρ picks

up a phase eiµαQα = eiµαQαiρi . Importantly, the bulk fermion parity operator (−1)F+F̄

is of the above form [32]. That is, there exists a choice of µα for which the above

transformation is

(eiµαQαi , eiµαQ̄αi) = (−1, . . . ,−1,−1, . . . ,−1)

It will be more convenient to work not with µα, but with the vector fi = µαQαi/π. We

shall refer to this as the “fermion vector”. (One can show that the fermion vector is

entirely determined by R; a proof of this can be found in [32].) The above condition

can then be written

(eiπf , eiπRf ) = (−1, . . . ,−1,−1, . . . ,−1)

which shows that f is characterised by the requirement that both f and Rf are odd-

integer vectors. It therefore naturally lives in Λ[R]/2Λ[R]. With this notation in hand,

the key point is then that since fermion parity lies within U(1)N , the charge ρ dictates

the fermion parity (−1)F of the boundary operator3, through

(−1)F = eiµαQαiρi = (−1)f ·ρ (3.7)

We therefore classify vectors ρ ∈ Λ[R]? as bosonic or fermionic depending on whether

ρ · f is even or odd, respectively.

3Just as for the Virasoro generators Ln, the notation (−1)F is ambiguous, and means something

different depending on whether one is working in the open or closed sector.
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Relevant boundary operators are associated to lattice vectors ρ ∈ Λ[R]? with ρ2 < 2

and can be either bosonic or fermionic. These will be our primary focus in Section 4

where we discuss RG flows initiated by such operators. Here we describe the relevant

operators in the two examples introduced in Section 2.2.

The First Example: g =
√

5

As we’ve seen, the simplest, non-trivial two fermion boundary state has

Rij =

(
3/5 4/5

−4/5 3/5

)
and gR =

√
5. One possible choice of the fermion vector in this case is f = (5, 5).

As we explained in Section 2.2, there are many choices of Qαi and Q̄αi that give rise

to this boundary state. The dimension of boundary operators depends only on Rij

while, as we see from (3.5), the charges of these operators depend on the choice of Q.

The operators are further distinguished by fermion number (−1)F . The operators with

L0 ≤ 1 are associated to the following lattice sites ρ,

L0 (−1)F ρ ∈ Λ[R]?

0 + (0, 0)
1/10 − ±(2

5
, 1

5
), ±(1

5
,−2

5
)

1/5 + ±(1
5
, 3

5
), ±(3

5
,−1

5
)

2/5 + ±(4
5
, 2

5
), ±(2

5
,−4

5
)

1/2 − ±(3
5
, 4

5
), ±(4

5
,−3

5
), ±(1, 0), ±(0, 1)

4/5 + ±(2
5
, 6

5
), ±(6

5
,−2

5
)

9/10 − ±(6
5
, 3

5
), ±(3

5
,−6

5
)

1 + ±(7
5
, 1

5
), ±(1

5
,−7

5
), ±(1, 1), ±(1,−1)

As we proceed, we’ll see the interpretation of a number of these operators.

The Other Example: The Maldacena-Ludwig State

The relevant boundary operators for the Maldacena-Ludwig state (2.11) are

L0 (−1)F ρ ∈ Λ[R]?

0 + (0, 0)
1/2 + ±(1

2
, 1

2
, 1

2
, 1

2
), (1

2
, 1

2
,−1

2
,−1

2
) (and all permutations)

1/2 − (±1, 0, 0, 0), ±(1
2
, 1

2
, 1

2
,−1

2
) (and all permutations)

1 + (±1,±1, 0, 0) (and all permutations)
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As we briefly mentioned previously, the Maldacena-Ludwig state represents the gapped

Fidkowski-Kitaev state. This has the property that it preserves both left and right

fermion parity (−1)F and (−1)F̄ . Furthermore, it is the state with the smallest gR
with this property. This latter statement is reflected in the fact that the dimension

L0 = 1
2

bosonic operators are charged under both of the two fermionic parities. We will

return to these aspects of the boundary states in [32].

Marginal Operators

Marginal boundary operators have L0 = 1. If such operators are exactly marginal,

they give rise to continuous families of boundary states. As we now explain, marginal

operators fall into a number of different categories.

First, we can take the vacuum module, ρ = 0, and form a level-1 descendent under the

current algebra. From the perspective of the interval Hilbert space, these correspond to

states Jα,−1|0〉. Similarly, the existence of the boundary operators follows on symmetry

grounds: they are associated to the symmetries broken by the boundary in the reduction

U(1)NL × U(1)NR → U(1)N . Acting with these operators changes the θ-angles that, as

we saw in (2.8), are needed to characterise the boundary state.

The second class of marginal operators are highest weight states associated to lattice

vectors ρ ∈ Λ[R]? with ρ2 = 2. We have listed these operators in the table above for

the simple examples. Many of these operators also have an interpretation in terms of

symmetries. But not all.

To understand this, first recall that the symmetry breaking pattern, as shown in

(2.1), is generically

so(2N)L × so(2N)R → u(1)N

The broken, off-diagonal elements of so(2N)L× so(2N)R will also give rise to marginal

operators. Acting with them simply rotates the unbroken Cartan sub-algebra.

It is straightforward to identify these states. The off-diagonal elements of so(2N)L
arise from vectors with ρ2 = 2 that sit in ρ ∈ ZN . The off-diagonal elements of so(2N)R
arise from vectors with ρ2 = 2 that sit in ρ ∈ R−1ZN .

This pattern can be clearly seen in the two fermion boundary state with gR =
√

5.

The final line of the table shows the 8 boundary operators that are associated to the

off-diagonal elements of SO(4)L × SO(4)R.
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However, in other examples things may not be so straightforward. First, it may

be that there is an overlap between the operators associated to so(2N)L and those

associated to so(2N)R. This occurs if there are lattice sites with ρ2 = 2 that sit in

ρ ∈ ZN ∩R−1ZN . But the intersection of the latter two lattices is simply

Λ[R] = ZN ∩R−1ZN

This overlap has a very natural interpretation. As explained in [32], vectors ρ ∈ Λ[R]

with ρ2 = 2 correspond to enhanced symmetries of the boundary state. As expected,

the presence of such hidden symmetries reduces the number of marginal boundary

operators. For example, in the table for the Maldacena-Ludwig boundary state shown

above, there are 24 marginal operators. This is lower than the number 48 of off-diagonal

generators of SO(8)L × SO(8)R. The difference can be accounted for by the enhanced

SO(8)/Z2 symmetry, which eliminates 24 generators.

Finally, some boundary states have marginal operators that do not correspond to

symmetries. These are lattice vectors with ρ2 = 2 that sit in ρ ∈ Λ[R]? but with

ρ /∈ ZN ∪ R−1ZN . In such cases, one must work harder to determine whether the the

boundary operator is exactly marginal, or marginally relevant or irrelevant. We will

not explore this issue further.

3.3 An Aside: The Unitarity “Paradox”

There is an interesting structure to the charges carried by states in the Hilbert space

HAB. To illustrate our point, it’s simplest if we ignore the shift of the lattice by the

theta angles for now, so ρ ∈ Λ[R]?. In this case, the states of the Hilbert space carry

charges in the lattice (3.5)

Q ∈ QΛ[R]?

We can compare this to the charges of states that we get by acting with left- and

right-moving operators. Acting with the holomorphic fermions ψi produce states with

charges in QZN , while acting with anti-holomorphic fermions ψ̄i produce states with

charges in Q̄ZN . It is not hard to show that this accounts for the full charge lattice

QΛ[R]? = QZN + Q̄ZN

However, there’s a twist. It’s not true that one can reach states of all charges by

acting only with, say, holomorphic operators. This is, at heart, what it means for our

boundary states to be chiral. Indeed, we have the following:[
QΛ[R]? : QZN

]
=
[
QΛ[R]? : Q̄ZN

]
= Vol(Λ[R])
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This means that, while one cannot access states of any charge by acting on the vacuum

with only holomorphic operators, we can do so by acting on an appropriate choice of

g2
R = Vol(Λ[R]) states (one of which is the ground state). These can be viewed as

holomorphic superselection sectors.

Similarly, there are a different set of g2
R states in the Hilbert space, from which we

can access states of any charge by acting with anti-holomorphic operators.

In the context of scattering off a single boundary, this leads to a seeming “unitarity

paradox”. It is not hard to set up situations in which a single left-moving fermion scat-

ters off the boundary, but cannot return as any combination of right-moving fermions.

This is captured by the vanishing correlation function in the presence of a boundary,

〈0|ψi(z)ψ̄j1(z̄1) . . . ψ̄jN (z̄N)|0〉 = 0 for all N

Such behaviour was seen, for example, in [33, 34, 43, 44]. Our general discussion above

shows that the right-moving fermions are not excitations above the ground state, but

instead above one of the other Vol(Λ[R]) superselection sectors.

4 RG Flows: Statements

We now turn to the main results of this paper. We will follow the RG flow between

different boundary states.

We start with a given UV boundary state, preserving the U(1)N symmetry charac-

terised by the charge matrix RUV . As we have seen, relevant boundary operators are

labelled by a vector ρ ∈ Λ[RUV ]? and carry charge

Qα = Qαiρi

We turn on a single, relevant, bosonic boundary operator of definite charge to initiate

an RG flow. Along the flow, the symmetry is broken to

U(1)N → U(1)N−1

In what follows, we make the following, important assumption: At the end of the flow,

an emergent U(1)N symmetry is again restored. This means that, in the infra-red, the

physics is again described by a boundary state of the form (2.8), now with a different

charge matrix RIR.
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Although this is an assumption, we stress that no one has succeeded in constructing

boundary states that do not have a full U(1)N symmetry4 and it seems plausible that

no such states outside this class exist. Indeed, as this paper progresses we will see

that this assumption passes a stringent test: the infra-red central boundary charge

g is always lower than the ultra-violet central charge, in accord with the g-theorem

[1–3]. This didn’t have to be the case and, moreover, the system passes this test in a

mathematically non-trivial manner, often just by the skin of its teeth. This provides

some evidence for the assumption that the full U(1)N symmetry is restored at the end

of the RG flow.

The importance of the restoration of the full U(1)N lies in the fact that it leaves a

unique choice for RIR for each relevant operator labelled by ρ. This follows because of

the U(1)N−1 symmetry that exists along the RG flow. This symmetry must be preserved

by the IR boundary state, a condition which translates into the simple requirement that

RIR

∣∣∣
ρ⊥

= RUV

∣∣∣
ρ⊥

(4.1)

or in other words, that the two matrices must agree on the orthogonal complement of ρ.

But for orthogonal matrices, this condition is highly constraining. In particular, there

are only two options for RIR. One is RUV itself, but this is quickly ruled out by the

fact that gIR = gUV , in contravention of the g-theorem which states that the central

charge must strictly decrease under relevant perturbations. This only leaves the second

option, which is that the matrices differ by a reflection along the vector ρ:

(RIR)ik = (RUV )ij

(
δjk −

2

ρ2
ρjρk

)
(4.2)

The second factor is the matrix implementing the reflection along ρ.

One might think that the infra-red central charge is, following (2.9),

gnaive =
√

Vol(Λ[RIR]) (4.3)

And, for some of the RG flows, where no subtleties arise, this indeed the correct answer.

However, it is not true in general. There are two rather interesting effects that may

occur, both of which leave us with an infra-red central charge larger than (4.3). First,

certain RG flows necessarily result in a Majorana zero mode stuck on the boundary.

This phenomenon, which is explained in Section 4.1, increases the normalisation of the

boundary state and its central charge by a factor of
√

2. Secondly, some RG flows

result in a superposition of primitive boundary states, and larger central charge. This

phenomenon is explained in 4.2.

4One seeming counterexample is the state constructed by Janik in [39]. This state appears to be

pathological as it interpolates continuously between two different SPT phases.

– 23 –



4.1 Majorana Zero Modes

As we explained in the introduction, boundary conditions fall into two distinct topo-

logical classes, characterised by a mod 2 anomaly. One might have thought that RG

flows would remain within a given class. However, as we now describe, our conjecture

(4.2) does not have this property. It is not difficult to find RG flows that go from

one class to another, and we present examples below. We will explain why this is not

problematic.

First, we review the result of [35] that determines the topological class in which a

given boundary state, labelled by R, sits. Given a CFT on an interval, we can impose

different boundary conditions R and R′ on either end. In [35], we derived a simple

formula for the number of ground states G[R,R′] of this system:

G[R,R′] =

√
Vol(Λ[R]) Vol(Λ[R′])

Vol(Λ[R,R′])
√

det′(1−RTR′) (4.4)

Here the intersection lattice Λ[R,R′] is defined to be those integer vectors λ for which

Rλ = R′λ ∈ ZN . The notation det′ denotes the product over non-vanishing eigenvalues.

The ground state degeneracy has an interesting property. If the two boundary states

R and R′ lie in the same class (i.e. either both vector, or both axial) then the number

of ground states is integer as expected

G[R,R′] ∈ Z

In contrast, if the two boundary states lie in different classes, then

G[R,R′] ∈
√

2Z

The
√

2 factor reflects the existence of a bulk Majorana zero mode. This is telling us

that it is not consistent to put boundary conditions from different classes at the two

ends of an interval. A discussion of which class a general boundary condition R sits in

can be found in [35].

What to make of the fact that RG flows take us from one class to another? Clearly, a

consistent quantum system, with compatible boundary conditions on each end, cannot

flow to an inconsistent quantum system. It must be that the bulk Majorana mode that

appears in the infra-red is accompanied by a second, boundary Majorana mode. This

boundary Majorana mode contributes a further factor of
√

2 to the partition function,

as in (1.1), and hence to the boundary central charge. This means that, if there’s no

further subtlety, RG flows which interpolate between different classes have

gIR =
√

2 Vol(Λ[RIR]) (4.5)
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The condition for the appearance of a boundary Majorana mode is encoded in a

simple property of ρ. First, we recall that although ρ ∈ Λ[RUV ]?, it need not be

primitive within this lattice. Instead, it may be possible to write it as some multiple

n ≥ 1 of an underlying primitive vector, which we denote as ρ̂:

ρ = nρ̂ (4.6)

Since we must perturb by a bosonic relevant operator, ρ is always required to be bosonic.

But there is no such condition on ρ̂. In particular, it is perfectly acceptable for ρ̂ to be

fermionic provided that n is even. The property of ρ which determines the existence of

a boundary mode is then the fermionic/bosonic nature of ρ̂. This follows by computing

the ground state degeneracy (4.4) between RIR and RUV ; as we show in Section 5, is

given by

G[RUV ,RIR] =

{
1 if ρ̂ is bosonic√

2 if ρ̂ is fermionic
(4.7)

In other words, there is a bulk Majorana zero mode only if the relevant operator is

associated to a lattice vector ρ = nρ̂ built on a fermionic primitive vector ρ̂.

In Appendix C, we give more details illustrating the coupling between the boundary

mode and the bulk fermions using a simple model.

An Example

We can illustrate these ideas with the example that we met in Section 2.2: two fermions

with

RUV =

(
3/5 4/5

−4/5 3/5

)
The boundary central charge is gUV =

√
5.

We listed the relevant and marginal operators for this boundary state in Section 3.2.

Here we are interested only in the relevant, bosonic operators. For each of these, we

can determine the infra-red charge matrix and whether or not there exists a boundary

Majorana zero mode at the end of the flow.
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ρ L0 RIR Majorana?

(1
5
, 3

5
) 1

5

(
0 −1

−1 0

)
No

(3
5
,−1

5
) 1

5

(
0 1

1 0

)
No

(4
5
, 2

5
) 2

5

(
−1 0

0 1

)
Yes

(2
5
,−4

5
) 2

5

(
1 0

0 −1

)
Yes

(2
5
, 6

5
) 4

5

(
0 −1

−1 0

)
No

(6
5
,−2

5
) 4

5

(
0 1

1 0

)
No

The middle two rows are built on the underlying fermionic vectors±(2
5
, 1

5
) and±(1

5
,−2

5
),

while the remaining rows are built on bosonic vectors. Note that the ρ-vectors for the

operators with dimension 4
5

are proportional to those with dimension 1
5
. We’ll see the

difference between these two RG flows in the next section.

An analogous table, for a more complicated example, is given in Appendix B.

Flows with Fermionic Operators

RG flows are always initiated by bosonic, relevant operators. As we’ve seen, at the end

of an RG flow we may end up with a localised Majorana fermion. We could also ask:

what happens if we start from a boundary condition with such a Majorana mode?

The boundary state including such a Majorana mode is simply given by5
√

2 |θ;RUV 〉,
and has central charge

gUV =
√

2 Vol(Λ[RUV ])

Starting with such a state opens up a new possibility, because we could dress boundary

fermionic operators with the Majorana mode to give a bosonic boundary operator, and

then use this to initiate the RG flow.

Such fermionic boundary operators are characterised by ρ = nρ̂, as in (4.6), with ρ̂

fermionic, n odd. Because ρ̂ is fermionic, this means that such flows always flip the

SPT class, and the Majorana mode is absorbed along the flow. The absorption of the

Majorana mode means that the infra-red central charge is reduced by an extra factor

of
√

2.

5This normalisation for the axial boundary state was recently advocated in [48] to ensure compat-

ibility with the vector-like boundary conditions, although the connection to the mod 2 anomaly was

not made.
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The Maldacena-Ludwig state serves as a good example of fermionic flows. Recall that

this state has boundary central charge g =
√

2. If we further add a Majorana mode,

the central charge is gUV = 2. We can now perturb this state by relevant fermionic

operators.

These operators were listed in the table in Section 3.2: there are two kinds, with

charge given by permutations of

ρ = (1, 0, 0, 0) and ρ = (1
2
, 1

2
, 1

2
,−1

2
)

These are primitive vectors, and both have dimension L0 = 1
2
. Deforming by any of

these operators gives us back another Maldacena-Ludwig state, related to the original

by a Weyl group transformation of O(8)L × O(8)R. In other words, the sole effect of

the flow is to eliminate the Majorana mode from the boundary.

In fact, this kind of flow, in which the Majorana is killed is possible for all boundary

states. All such states have a boundary fermionic operator of dimension 1
2
, since this is

simply the bulk fermion brought to the boundary. Deforming by this operator initiates

an RG flow from
√

2 |R〉 to |R′〉, where R′ differs from R only by the sign flip of a row

or column.

A particularly simple example of such a flow occurs for a single Dirac fermion. In

Appendix C, we show explicitly how the absorption of a boundary Majorana mode

exchanges the boundary conditions (1.3) and (1.4).

4.2 Non-Primitive Boundary States

We now turn to the second subtlety in the RG flows. We have seen that turning on a

single, relevant operator in the UV breaks U(1)N → U(1)N−1. However, this is not the

full story. There is also a remnant discrete symmetry, so that

U(1)N → U(1)N−1 × Zn

Here, the integer n is the same one introduced in (4.6), which measures the failure of

ρ to be a primitive vector.

This discrete symmetry Zn is preserved along the RG flow. However, one finds that

the näıve IR boundary state is not invariant under the full Zn symmetry. To rectify

this, the infra-red boundary state must be a linear sum of states of the form (2.8) such

that the overall sum is Zn invariant. The different states in this sum have the same

RIR charge matrix, but differ in their theta angles. This then shows up in the infra-red

central charge, with each state in the sum contributing a factor of
√

Vol(Λ[RIR]). We’ll

discuss this further in Section 4.3.
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(a) ρ̂ bosonic (b) ρ̂ fermionic, n even (c) ρ̂ fermionic, n odd

Figure 3: How (−1)F+F̄ sits in U(1)N−1 × Zn ⊂ U(1)N .

To put some flesh on these ideas, we will need to understand how the Zn symmetry

acts on our candidate infra-red boundary state (2.8),

|θ;RIR〉 = gR
∑

λ∈Λ[RIR]

eiγ(λ) eiθ·λ‖λ,−RIRλ 〉〉 (4.8)

Under a transformation by k ∈ Zn, the sole effect on the infra-red boundary state is is

to shift the theta angles θi by

θ

2π
7→ θ

2π
+

2k

ρ2
ρ

The unbroken subgroup of Zn will consist of those k for which this shift has no effect

on the boundary state. To determine when this is the case, we note that the theta

angles in (4.8) appear in the phase eiθ·λ, which means that θ/2π is naturally defined

mod Λ[RIR]?. Therefore, the above shift is trivial whenever (2k/ρ2)ρ ∈ Λ[RIR]?. We

introduce the integer m ≥ 1, defined as the least integer such that

2m

ρ2
ρ ∈ Λ[RIR]? (4.9)

Then m divides n, and in the infra-red, the Zn symmetry is spontaneously broken by

the boundary state (4.8) to

Zn → Zn/m (4.10)

Just like the criterion for whether a boundary Majorana mode appears, the integer

m can also be determined in terms of basic properties of ρ. It is given by

m =

{
n if ρ̂ is bosonic

n/ gcd(n, 2) if ρ̂ is fermionic
(4.11)
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The upshot is that there are only two possibilities for the residual discrete symmetry:

Zn → 1 or Z2

As we now explain, the presence or absence of the unbroken Z2 has a simple physical

explanation: it remains unbroken when fermion parity (−1)F+F̄ forces it to. This is

illustrated in Figure 3. Here we have depicted the UV U(1)N symmetry group, the

U(1)N−1×Zn subgroup left unbroken by the perturbation, and the location of fermion

parity in relation to both. From Section 3.2, we know that (−1)F+F̄ always lies within

U(1)N . But by definition, it only lies in U(1)N−1×Zn if ρ is bosonic. This information

alone is enough to fix the location of (−1)F+F̄ – it belongs to the coset k = 0 in case

(a), to k = n/2 in case (b), and to none of them in case (c).

The transformation (−1)F+F̄ is a sacrosanct symmetry. Being part of the conformal

group, it is automatically preserved by all the boundary states (2.8). This means that

if ever a coset k contains (−1)F+F̄ , that coset is automatically preserved. We see that

this happens precisely in case (b), which coincides with condition (4.11) for a Z2 to

remain unbroken. In other words, the discrete Zn is completely broken, except for the

part fermion parity forces to stay unbroken.

Finally, we should ask: what is the infra-red boundary state? Clearly the boundary

state must be invariant under the Zn symmetry. The obvious choice is to take a non-

fundamental boundary state, consisting of a sum over the various theta angles

|IR〉 =
m−1∑
k=0

|θ + 2k
ρ2
ρ;RIR〉 (4.12)

This captures the symmetry breaking (4.10) in a minimal way, with the least possible

number of fundamental boundary states in the sum. The boundary central charge picks

up a contribution from each term in (4.12). Furthermore, it turns out that, in some

examples, any attempt to add further boundary states to this sum results in a violation

of the g-theorem. This gives credence to this minimalist conjecture. The result is that,

if there is no emergent Majorana zero mode, then the infra-red central charge is given

by

gIR = mVol(Λ[RIR]) (4.13)

If, in addition, there is an emergent Majorana mode then we have an additional factor

of
√

2, as in (4.5).
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An Example

The simplest example of a non-primitive boundary state can be found in the two fermion

theory with gR =
√

5.

A glance at the table in Section 4.1 shows that there are two operators with dimension

L0 = 1
5
, characterised by the primitive vectors

ρ̂1 =

(
1

5
,
3

5

)
and ρ̂2 =

(
3

5
,−1

5

)
Deforming by either of these operators breaks U(1)2 → U(1).

There are also two operators with dimension L0 = 4
5
, which have ρa = 2ρ̂a, with

a = 1, 2. Deforming by either of these operators breaks U(1)2 → U(1)× Z2.

From the previous table, we see that deforming by either ρ̂a or ρa = 2ρ̂a results in the

same infra-red charge matrixRIR. This is a trivial, non-chiral state with Vol(RIR) = 1.

However, when we deform by the non-primitive vector, we must sum over two infra-red

boundary states to preserve the Z2. The net result is that the two deformations give

different infra-red central charges

ρ̂a ⇒ gIR = 1

ρa = 2ρ̂a ⇒ gIR = 2

4.3 The Boundary Central Charge

All the ingredients are now in place to determine the boundary state in the infra-red

and its central charge. We start from a UV boundary state |θ;RUV 〉, with

gUV =
√

Vol(ΛUV )

where ΛUV = Λ[RUV ]. We deform by a relevant, bosonic, boundary operator charac-

terised by ρ ∈ Λ?
UV . The IR boundary state is then determined by several factors:

• The infra-red charge matrix RIR, given by (4.2). It contributes a factor of√
Vol(ΛIR) to the central charge, where ΛIR = Λ[RIR].

• If the boundary state changes SPT class, as determined by (4.7), there is an

emergent Majorana mode on the boundary. This increases the infra-red central

charge by
√

2.

• If ρ = nρ̂ is not primitive, there is näıvely a discrete symmetry breaking pattern in

which Zn → Zn/m with m determined by (4.11). To avoid spontaneous breaking

of this symmetry, we must sum over m boundary states. This increases the central

charge by m.
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To compute the IR central charge, we need the relation between the volumes of the

IR and UV charge lattices. This will be computed in Section 5: it turns out to be

Vol(ΛIR) = ρ̂2 Vol(ΛUV )×
{

1
2

if ρ̂ is bosonic

1 if ρ̂ is fermionic
(4.14)

We can now consider the following three types of flows.

• Bosonic flows that preserve the SPT class

Flows that leave the SPT class unchanged are initiated by operators with charge

ρ = nρ̂ with ρ̂ bosonic, and n any integer. The discrete symmetry breaking

pattern is Zn → 1, and the boundary state takes the form

|θ;RUV 〉 →
n−1∑
k=0

|θ + 2k
ρ2
ρ;RIR〉

In this case, the ratio of IR to UV central charges is given by

gIR
gUV

= n

√
Vol(ΛIR)

Vol(ΛUV )
=
√
ρ2/2

• Bosonic flows that change the class

Flows that flip the SPT class are initiated by operators with charge ρ = nρ̂ with

ρ̂ fermionic. If this operator is bosonic then n is even. This time the discrete

symmetry breaking is Zn → Z2, and

|θ;RUV 〉 →
√

2

n
2
−1∑

k=0

|θ + 2k
ρ2
ρ;RIR〉

The ratio of IR to UV central charge is now

gIR
gUV

=
√

2× n

2

√
Vol(ΛIR)

Vol(ΛUV )
=
√
ρ2/2

• Fermionic flows

Finally, if we start in the UV with an extra Majorana mode then we can perturb

by a fermionic operator with charge ρ = nρ̂ with ρ̂ fermionic and n odd. The
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discrete symmetry breaking is Zn → 1. We also know that the flow flips the SPT

class, since ρ̂ is fermionic. The flow of boundary states is now

√
2 |θ;RUV 〉 →

n−1∑
k=0

|θ + 2k
ρ2
ρ;RIR〉

and the ratio of IR to UV central charges is

gIR
gUV

=
1√
2
× n

√
Vol(ΛIR)

Vol(ΛUV )
=
√
ρ2/2

The central charge relation

Importantly, we find the same ratio of central charges for each of the three types of RG

flows described above. Moreover, we recognise L0 = ρ2/2 as the dimension of the UV

operator O that initiates the RG flow. We learn that

gIR = gUV
√

dimO

This is the formula (1.5) advertised in the introduction. Since the UV operator is

necessarily relevant, we have ρ2 < 2. This ensures that gIR < gUV , and the g-theorem

is obeyed.

More General RG Flows

In our discussion above, we have restricted attention to RG flows initiated by operators

with a definite charge under U(1)N . This ensures that the original symmetry is broken

to U(1)N−1, which allowed us to identify the infra-red state (4.2).

More generally, we could deform by turning on superpositions of such operators

with different ρ. The resulting RG flows can be understood by following first one

deformation, then the other. For certain UV boundary states, we can reach IR states

this way which cannot be reached by turning on one operator alone.

An example is provided by the g = 9 four-fermion state

RUV =


0 −2

3
1
3

2
3

−2
3

0 −2
3

1
3

−1
3
−2

3
0 −2

3
2
3
−1

3
−2

3
0


Deformations by charge eigenstates will take us to IR states with g = 9, 6, 3. However,

they will not take us the trivial state with g = 1. This can be reached by a more

general perturbation, such as by chaining together the flows 9→ 3→ 1.
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5 RG Flows: Proofs

In Section 4 we stated a number of results without proof. Here we give the proofs.

5.1 The UV Symmetry

Given the charge matrix RUV , the U(1)N symmetry group preserved in the UV is

U(1)N =
{

(e2πitαQαi , e2πitαQ̄αi) : t ∈ RN
}

where Qαi and Q̄αi are the UV charge assignments. Using the definition RUV = Q̄−1Q,

this group can be parametrised in the more useful form

U(1)N =
{

(e2πix, e2πiRUV x) : x ∈ RN
}

The symmetry parameter x is naturally valued in RN/ΛUV .

Given the boundary operator charge ρ ∈ Λ?
UV , we first wish to determine how much

of U(1)N remains unbroken by the perturbation. Under the U(1)N transformation

with parameter x, the boundary operator picks up a phase of e2πix·ρ. This means that

perturbing operator is invariant when

x · ρ ∈ Z

Let us write ρ = nρ̂ with n ≥ 1 and ρ̂ primitive in Λ?
UV . Because ρ̂ is primitive, we can

introduce a special basis for ΛUV with

ΛUV = span {λ1, . . . , λN}
λ1 · ρ̂ = 1

{λ2, . . . , λN} · ρ̂ = 0

Writing x in components with respect to this basis, the above condition for invariance

becomes

x1 ∈ 1
n
Z x2, . . . , xN ∈ R

Since the variables xi are defined mod 1, we see that the first variable x1 parametrises

a discrete Zn, while the remaining variables x2, . . . xN parametrise a U(1)N−1. In other

words, the U(1)N is broken to U(1)N−1 × Zn, with the coset corresponding to k ∈ Zn
being all those transformations with parameter x obeying

x · ρ = k
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This puts us in a position to justify the form of the IR charge matrix. The U(1)N−1

corresponds to those transformations with

x ∈ ρ⊥

The statement that these are also preserved by the IR boundary state is that

RIRx = RUV x

This immediately leads to (4.1).

5.2 The Infra-red Lattice

Given that the IR charge matrix takes the form

RIR = RUV Refρ

where Refρ denotes reflection along ρ, it follows immediately that both ΛIR and ΛUV

share the same intersection with ρ⊥, the hyperplane perpendicular to ρ:

ΛIR ∩ ρ⊥ = ΛUV ∩ ρ⊥ = span {λ2, . . . , λN}

It follows that there is a basis for ΛIR consisting of

ΛIR = span
{
λ̃1, λ2, . . . , λN

}
Here λ̃1 is the single, remaining basis vector of ΛIR, which remains to be determined.

In fact, all we shall need to know about it is provided by the following claim:

Claim: The extra basis vector λ̃1 of ΛIR is of the form

λ̃1 =

{
1
2

if ρ̂ is bosonic

1 if ρ̂ is fermionic

}
ρ̂ mod ρ⊥

Proof: A general vector λ ∈ RN can be written in the form

λ = aρ̂+ η with a ∈ R and η ∈ ρ⊥

We wish to determine the constraints on a and η that arise from insisting λ ∈ ΛIR. In

particular, we are particularly interested in the quantisation condition on a. The first

constraint is that λ must be an integer vector, which we call x:

aρ̂+ η = x (5.1)
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The second constraint is that (RUV Refρ)λ must be an integer vector, which we call y.

Using the fact that Refρ flips ρ̂ while leaving η unaffected, we have

RUV (aρ̂− η) = y ⇒ aρ̂− η = R−1
UV y (5.2)

To proceed, we take the sum and difference of (5.1) and (5.2). First, the sum tells us

that

2aρ̂ = x+R−1
UV y with x, y ∈ ZN (5.3)

We take the inner product with the basis vector λ1 ∈ ΛUV , which obeys λ1 · ρ̂ = 1. On

the right-hand side, we have λ1 · x ∈ Z since both λ1 and x are integral. Furthermore,

λ1 · R−1
UV y ∈ Z since this is equal to RUV λ1 · y and RUV λ1 is integral by definition of

ΛUV . We learn that

2a ∈ Z

Next we invoke the fact that ρ̂ lies in Λ?
UV = ZN + R−1

UVZN . This means that ρ̂ can

be written in the form ρ = v + R−1
UVw for two further integer vectors v and w. The

equation (5.3) then becomes

2a(v +R−1
UVw) = x+R−1

UV y (5.4)

It is obvious that one solution to this equation for (x, y) is x = 2av and y = 2aw.

However, this is not the unique solution since we still have the freedom to shift by any

integer solution to x+R−1
UV y = 0. These are precisely (x, y) = (ζ,−RUV ζ) for ζ ∈ ΛUV .

The general solution to (5.4) is then

x = 2av + ζ and y = 2aw −RUV ζ

The above equations were derived by taking the sum of (5.1) and (5.2). Next we take

the difference. This gives

2η = x−R−1
UV y ⇒ η = a(v −R−1

UVw) + ζ

The variables a ∈ 1
2
Z and ζ ∈ ΛUV are further constrained by the requirement that

η ∈ ρ⊥. Taking the inner product with ρ̂ and setting this to zero gives

ζ · ρ̂ = −a
[
(v −R−1

UV ) · ρ̂
]

= −a(v2 − w2)

The left-hand side is an integer. But a can be either integer of half-integer. Clearly

the half-integer values can only occur when v2 − w2 is even which, in turn, requires∑N
i=1(vi + wi) to be even. But this is precisely the fermionic parity of ρ̂.
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To see this, note that Λ[R]? = ZN +R−1ZN has a simple physical interpretation: all

boundary operators can be made by taking suitably regularised products of holomorphic

and antiholomorphic fermion fields as they approach the boundary. A product of ni
copies of ψi(z) and mi copies of ψ̄i(z) would give rise to a boundary operator with

charge ρ = n+R−1m. It’s clear that the fermion parity of this operator is

(−1)n1+···+nN+m1+···+mN (5.5)

Using the properties of the fermion vector f , defined in (3.7), this can easily be shown

to agree with the earlier characterisation (−1)f ·ρ. Using the fact that ρ̂ = v +R−1
UVw,

we then learn that

a ∈
{

1
2
Z if ρ̂ is bosonic

Z if ρ̂ is fermionic

The conditions derived above are necessary for λ = aρ̂ + η to lie in ΛIR. The same

derivation can also be followed backwards to show they are sufficient. All of which

means that we finally have an expression for our last remaining basis vector of ΛIR;

λ̃1 =

{
1
2

if ρ̂ is bosonic

1 if ρ̂ is fermionic

}
ρ̂+ η (5.6)

for some η ∈ ρ⊥ whose value is unimportant. This completes the proof of the claim.

We are now in a position to compute the volume of ΛIR. This is

Vol(ΛIR) = Vol(λ̃1, λ2, . . . , λN) = Vol((ρ̂ · λ̃1)λ1, λ2, . . . , λN)

We therefore find

Vol(ΛIR) = ρ̂ · λ̃1 Vol(ΛUV ) =

{
1
2

if ρ̂ is bosonic

1 if ρ̂ is fermionic

}
ρ̂2 Vol(ΛUV ) (5.7)

This provides the justification for (4.14).

The above result also allows us to determine the integer m which governs the amount

of discrete symmetry breaking. Under a general U(1)N transformation with parameter

x, we have

|θ;RIR〉 7→ gR
∑

λ∈Λ[RIR]

eiγ(λ) eθ·λe2πix·λe2πi(RUV x)·(−RIRλ)‖λ,−RIRλ 〉〉
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We see that the effect of this is to shift the theta angles θi of the infra-red boundary

state by

θ

2π
7→ θ

2π
+
(
1−R−1

UVRIR

)
x =

θ

2π
+

2(x · ρ)

ρ2
ρ

where, in the second equality, we have used the expression (4.2) for RIR. We see explic-

itly that the theta angles are invariant under the preserved U(1)N−1 symmetry defined

by those x with x · ρ = 0. But what of the discrete Zn symmetry? A transformation

by k ∈ Zn is enacted by any x for which x · ρ = k, and shifts the theta angles by

θ

2π
7→ θ

2π
+

2k

ρ2
ρ

The theta angles in (4.8) appear in the phase eiθ·λ, which means that they are naturally

valued mod 2πΛ?[RIR]. Therefore the transformation above leaves the theta angles

invariant whenever

2k

ρ2
ρ ∈ Λ?[RIR]

The above condition will be satisfied if the LHS gives an integer when dotted with

every basis vector of ΛIR. Of these, the last N − 1 vectors λ2, . . . , λN give zero. Thus a

constraint only arises by dotting with λ̃1. Recalling the definition (5.6) of λ̃1, this gives{
1
2

if ρ̂ is bosonic

1 if ρ̂ is fermionic

}
· 1

n
· 2k ∈ Z

It is now straightforward to read off the quantisation condition on k. It must be a

multiple of m, where m is defined by

m =

{
n if ρ̂ is bosonic

n/ gcd(n, 2) if ρ̂ is fermionic

This is the statement of (4.11).

5.3 The Emergent Majorana Mode

The final missing ingredient is to determine when a boundary Majorana mode arises.

As explained in section 4, this happens when the UV and IR charge matrices lie in

different classes, which is detected by the ground degeneracy of bulk states (4.4),

G[RUV ,RIR] =

√
Vol(ΛUV ) Vol(ΛIR)

Vol(Λ[RUV ,RIR])

√
2
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where the factor of
√

2 comes from the truncated determinant in (4.4), using the ex-

pression (4.2) for RIR. Clearly, we need to compute the volume of the intersection

lattice

Λ[RUV ,RIR] =
{
λ ∈ ZN : RUV λ = RIRλ ∈ ZN

}
First, we can write

Λ[RUV ,RIR] =
{
λ ∈ ZN : λ · ρ = 0 and RUV λ ∈ ZN

}
= ΛUV ∩ ρ⊥

But using the basis of ΛUV , the intersection lattice takes the particularly simple form

Λ[RUV ,RIR] = span {λ2, . . . , λN}

To determine the volume of this intersection lattice, we need to take the above basis

and add a unit vector orthogonal to them all. This vector is ρ̂/
√
ρ̂2, so

Vol(Λ[RUV ,RIR]) = Vol
(
ρ̂/
√
ρ̂2, λ2, . . . , λN

)
But we could equally well shift the first basis vector by any element in ρ⊥. Using the

property λ1 · ρ̂ = 1, we then have

Vol(Λ[RUV ,RIR]) = Vol
(√

ρ̂2λ1, λ2, . . . , λN

)
=
√
ρ̂2 Vol(ΛUV )

If we now put this together with our expression (5.7) for the volume of ΛIR, we have

the simple result

G[RUV ,RIR] =

{
1 if ρ̂ is bosonic√

2 if ρ̂ is fermionic

which establishes (4.7).

– 38 –



A The Path Integral for a Single Majorana Mode

A single, quantum mechanical Majorana mode is perhaps the simplest theory which is

rendered inconsistent by an anomaly. One way of seeing this is to compute the path

integral, with anti-periodic boundary conditions in the temporal direction. Usually,

this would compute the dimension of the Hilbert space of the theory,

Z = TrH(1)

However, as advertised in the introduction, an explicit computation for a single Majo-

rana mode gives

ZMaj =
√

2

We now derive this result. The action for a single Majorana mode is

S[χ(τ)] =
i

2

∫
dτ χ(τ) ∂τχ(τ)

We place the systemon an anti-periodic circle of circumference β, and expand the field

χ(τ) into modes

χ(τ) =

√
1

β

∑
n∈Z+

1
2

an e
2πinτ/β

The Wick rotation to Euclidean signature means that χ, and hence an, no longer obey

any reality condition. The action is now

S[χ(τ)] = −π
β

∑
n∈Z+

1
2

na−nan

and the partition function becomes

ZMaj[β] = C

∫
Dχ(τ) e−S[χ(t)] = C

∏
n= 1

2
, 3
2
,...

∫
da−n dan e

−πna−nan/β = C
∏

n= 1
2
, 3
2
,...

πn

β

where C is a (divergent) constant which, among other things, renders the partition

function dimensionless. In particular, since Z is dimensionless, it must be independent

of β. (This is appropriate since the Hamiltonian for a single Majorana mode vanishes.)

We similarly take this opportunity to remove the factor of π, leaving us with

ZMaj[β] =
∏

n= 1
2
, 3
2
,...

n
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Clearly we must tame this infinite product. We do so using zeta function regularisation.

We start by writing

ln(ZMaj) =
∑

n= 1
2
, 3
2
,...

ln(n) =
∑

n= 1
2
, 3
2
,...

ln(n)

ns

∣∣∣
s=0

= − d

ds

∑
n= 1

2
, 3
2
,...

1

ns

∣∣∣
s=0

This sum is of the zeta function form. Specifically, we have

ln(ZMaj) = − d

ds
((2s − 1)ζ(s))

∣∣∣
s=0

= −
[
d

ds
(2s − 1)

]
s=0

ζ(0) = − [ln(2)]× (−1
2
)

We find the promised result

ZMaj =
√

2

B A Higher Pythagorean Triple

For N = 2 Dirac fermions, the chiral boundary conditions are in one-to-one correspon-

dence with Pythagorean triples [35]. With the Euclid parameterisation (2.10) with

p = 4 and q = 1, we have the Pythagorean triple 82 + 152 = 172. The charge matrix is

RUV =
1

17

(
8 15

−15 8

)
This boundary state has g2

UV = 17. Various RG flows initiated by bosonic operators

are summarised in the following table:
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ρ L0 RIR Majorana? g2
IR

( 5
17
, 3

17
) 1

17

(
−1 0

0 1

)
No 1

( 3
17
,− 5

17
) 1

17

(
1 0

0 −1

)
No 1

( 8
17
,− 2

17
) 2

17

(
0 1

1 0

)
Yes 2

( 2
17
, 8

17
) 2

17

(
0 −1

−1 0

)
Yes 2

(13
17
, 1

17
) 5

17
1
5

(
−3 4

4 3

)
No 5

(11
17
,− 7

17
) 5

17
1
5

(
3 4

4 −3

)
No 5

( 7
17
, 11

17
) 5

17
1
5

(
−3 −4

−4 3

)
No 5

( 1
17
,−13

17
) 5

17
1
5

(
3 −4

−4 −3

)
No 5

(18
17
, 4

17
) 10

17
1
5

(
−4 3

3 4

)
Yes 10

(14
17
,−12

17
) 10

17
1
5

(
4 3

3 −4

)
Yes 10

(12
17
, 14

17
) 10

17
1
5

(
−4 −3

−3 4

)
Yes 10

( 4
17
,−18

17
) 10

17
1
5

(
4 −3

−3 −4

)
Yes 10

(21
17
,− 1

17
) 13

17
1
13

(
−5 12

12 5

)
No 13

(19
17
,− 9

17
) 13

17
1
13

(
5 12

12 −5

)
No 13

(19
17
,− 9

17
) 13

17
1
13

(
−5 −12

−12 5

)
No 13

( 1
17
, 21

17
) 13

17
1
13

(
5 −12

−12 −5

)
No 13

This table lists relevant, bosonic operators and their end points under RG. For simplic-

ity, we restrict to primitive ρ, so that there are no discrete symmetries and the infra-red

central charge gIR is determined solely by RIR and the existence of a boundary Majo-

rana fermion.

Note that the dimensions of the relevant operators take the form

L0 =
m2 + n2

p2 + q2
p, q,m, n ∈ Z

where, for us, p = 4 and q = 1. Turning on an operator with this dimension takes us

to a new state with primitive charges m,n in (2.10). This same property holds for all
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boundary states with N = 2 fermions. We do not know of such a simple pattern for

N ≥ 4.

C The Boundary Majorana Mode

In this appendix, we explain how a boundary Majorana mode interacts with the bulk

fermions. Very similar calculations can be found in [3, 18] and related analysis in

[45, 46].

A Fermion on a Half Line

We start with a single Majorana fermion ξ on a half-line, interacting with a quantum

mechanical Majorana fermion χ sitting on the boundary. It is simplest if we unfold

the system, leaving us with a single right-moving Majorana-Weyl fermion on a line,

interacting with a Majorana impurity at the origin. The Hamiltonian is

H =
i

2
χ∂tχ+

∫
dx

[
i

2
ξ∂+ξ + i

√
2mδ(x)ξ(x)χ

]
The coupling between bulk and boundary is simply a quadratic term, set by a mass

scale m. As we will see, only modes with momentum k � m are significantly affected

by the impurity.

To proceed, it is useful to temporarily smooth out the delta-function coupling. We

replace the Hamiltonian with

H =
i

2
χ∂tχ+

∫
dx

[
i

2
ξ∂+ξ + i

√
2mf(x)ξχ

]
where f(x) is some function localised around the origin, with support in x ∈ [−ε,+ε],
and with

∫
dx f(x) = 1. The equations of motion are:

∂tχ =
√

2m

∫
dx fξ

∂+ξ = −
√

2mfχ

Modes with energy k have time dependence e−ikt. (All fermions are subject to a reality

condition, but the equations of motion are linear so we can work with complex objects

and take the real part at the end.) The equations of motion become

−ikχ =
√

2m

∫
dx fξ

−ikξ + ∂xξ = −
√

2mfχ
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We are interested in modes with k � 1/ε, which ensures that they don’t probe the

microscopic details of the function f(x). Near the origin, |x| ≤ ε, the second equation

can then be replaced by ∂xξ = −
√

2mfχ. We integrate the second equation in the

asymptotic regions, and join them up to find

ξ(x) =


eikx x < −ε

1−
√

2mF (x)χ otherwise

(1−
√

2mχ)eikx x > ε

(C.1)

where F (x) is a step function that goes smoothly from 0 to 1, with F ′(x) = f(x).

Substituting this into the equation for χ gives us a consistency condition,

−ikχ =
√

2m
(

1−
√
m/2χ

)
which has the solution

χ = −
√

2m

ik −m

Inserting this back into (C.1) gives the required expression for a chiral Weyl fermion

passing through a Majorana impurity. Taking the limit ε → 0, we find that ψ jumps

by a phase as it passes through the origin

ξ(x) = eikx

{
1 x < 0

ik+m
ik−m x > 0

High energy modes, with k � m, are unaffected by the impurity. Low energy modes,

with k � m, suffer a sign flip.

The Spectrum on a Circle

To further understand the role played by the Majorana impurity, let us now consider a

right-moving Majorana-Weyl fermion on a spatial circle, which we take to have length

L.

We will impose periodic boundary conditions on this fermion, which means that it has

a single Majorana zero mode. Such a system is anomalous and to rectify the situation

we must add an odd number of extra Majorana modes. We do this by including 2n− 1

Majorana impurities, at locations xi with couplings mi. Periodicity of ξ then imposes

a quantisation condition on the momentum k which is

2n−1∏
i=1

2 tan−1
(mi

k

)
= kL mod 2π
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When mi � 1/L, the impurities pair up with the bulk zero mode to form n independent

complex zero modes. This results in a ground state degeneracy of 2n. Further modes

are then quantised as ∼ 2π/L.

Now consider increasing the interaction of a single impurity, say m1 � 1/L. All bulk

modes with k < m1, including the bulk zero mode, undergo a sign flip, which means

that their energy increases by π/L, corresponding to a spectral flow of +1/2. There

are n− 1 remaining complex zero modes, and 2n−1 degenerate ground states.

Something a little different happens when we increase a second impurity coupling,

say m2 � 1/L. Once again, there is a spectral flow of +1/2. But instead of an impurity

zero mode being lifted, it now mixes with a new bulk zero mode. Once again there are

2n−1 degenerate ground states. Clearly this pattern now repeats as further impurity

couplings are increased.

Absorbing Majorara Fermions into the Boundary State

The ideas described above help build intuition for how Majorana boundary modes can

be incorporated in a boundary state. To illustrate this, consider a single Dirac fermion

ψ on an interval of length L. We impose vector boundary conditions at one end

ψL = ψR at x = 0 (C.2)

and axial boundary conditions at the other,

ψL = ψ†R at x = L (C.3)

As explained in detail in [35], these two boundary conditions are mutually inconsistent

in the sense that they result in a single Majorana zero mode in the bulk. Indeed, if we

write

ψ = ξ1 + iξ2

Then ξ1 has a zero mode, while ξ2 does not.

We now invoke the doubling trick, and view both fermions as chiral, living on a

circle of length 2L. The boundary conditions mean that ξ1 is periodic, while ξ2 is

anti-periodic. To make the theory consistent, we add a single Majorana impurity, χ,

at x = 0. Now we have two options:

• We could couple χ to ξ1. As we’ve seen above, the resulting spectral flow renders

ξ1 anti-periodic. The net effect is that the right-most boundary condition (C.2)
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is shifted from axial, to vector, but with a theta angle θ = π, so that ψL = −ψR
at x = L. In this case, the ground state is non-degenerate. This shift of the theta

angle due to a boundary fermion was also found in [3].

• If, instead, we couple χ to ξ2, then the spectral flow renders ξ2 periodic, with

vanishing theta angle, so that ψL = ψR at x = L. Now both ξ1 and ξ2 admit a

Majorana zero mode, and there are two ground states.

D A D-Brane Perspective

The chiral boundary conditions have an analog in boundary states for D-branes. Details

of such states can be found, for example, in [49] or the textbook [50].

The geometric viewpoint is usually said to arise after bosonization. This relates the

N Dirac fermions to N periodic scalars, φi with the currents mapped as

∂+φi = ψ†iψi , ∂−φi = ψ̄†i ψ̄i

where ∂± = 1
2
(∂t ± ∂x). This bosonization map is more subtle than usually advertised.

(See, for example, [8, 12] for recent discussions.) Here we avoid these subtleties and

instead simply present the D-brane picture as a system in which similar phenomena

arise. The chiral boundary conditions require that there is no net flow of the left- and

right-moving currents Jα and J̄α, defined in (2.4), into the boundary. In the bosonic

picture, these become simple, linear boundary conditions on the periodic scalars

(Qαi + Q̄αi)∂xφi = (Qαi − Q̄αi)∂tφi (D.1)

The trivial boundary condition R = 1 gives Neumann boundary conditions ∂xφi = 0 in

each direction, corresponding to a D-brane that wraps the full torus TN . Meanwhile,

the other trivial boundary condition R = −1 gives a D0-brane, with φi = constant.

Clearly by taking R = diag(+1, . . . ,−1, . . . ) we have any Dp-brane for p = 0, . . . , N .

A general boundary state can be interpreted as a D-brane with flux, whose boundary

conditions are written as

gµν∂xφ
ν = Bµν∂tφ

ν

with g the metric and B the NS-NS 2-form.
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The D-brane interpretation is particularly straightforward when N = 2 and we can

consider the charge matrices (2.10) labelled by co-prime integers p and q. The boundary

conditions (D.1) are then

pφ′1 = qφ̇2 and pφ′2 = −qφ̇1

This is simpler to interpret if we perform a T-duality on φ2, introducing ∂µφ̃2 = εµν∂
νφ2.

The boundary conditions then become

pφ′1 = qφ̃′2 and qφ̇1 = −p ˙̃φ2

This describes a D-string wrapping (p, q) times around the two cycles of the torus T2.

Aspects of the boundary states for such a D-string, including the boundary central

charge, were previously discussed in [51].

As described in Appendix B, the relevant boundary operators have dimension L0 =

(m2 + n2)/(p2 + q2) for pairs of integers m,n. The associated RG flow describes the

decay of a D-brane wrapping (p, q) times around the torus to one wrapping (m,n)

times.
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