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Abstract1

We solve the quantum-mechanical antiferromagnetic Heisenberg model with2

spins positioned on vertices of the truncated icosahedron using the density-3

matrix renormalization group (DMRG). This describes magnetic properties of4

the undoped C60 fullerene at half filling in the limit of strong on-site interaction5

U . We calculate the ground state and correlation functions for all possible dis-6

tances, the lowest singlet and triplet excited states, as well as thermodynamic7

properties, namely the specific heat and spin susceptibility.8

We find that unlike the exactly solvable C20 to C32, the lowest excited9

state is a triplet rather than a singlet, indicating a reduced frustration due10

to the presence of many hexagon faces and the separation of the pentagon11

faces. This implies that frustration may be tuneable within the fullerenes by12

changing their size.13

The spin-spin correlations are much stronger along the hexagon bonds and14

rapidly decrease with distance, so that the molecule is large enough not to be15

correlated across its whole extent. The specific heat shows a high-temperature16

peak and a low-temperature shoulder reminiscent of the Kagomé lattice, while17

the spin susceptibility shows a single broad peak and is very close to the one18

of C20.19
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1 Introduction37

The C60 buckminsterfullerene molecule, where the 60 carbon atoms sit on the vertices of38

a truncated icosahedron, is a prominent molecule with a wealth of chemical and nanotech-39

nological applications [1–3], and also of interest in terms of correlated-electron physics.40

A lattice of C60 molecules becomes superconducting when doped with alkali metals [4–7],41

with a critical temperature of around 40K. This is unusually high for a typical phononic42

mechanism, so that an electronic mechanism that results from an onsite Hubbard interac-43

tion U is under discussion as well [8,9]. At half filling (no doping), a strong U is well-known44

to cause electron localization via the Mott mechanism and the resulting low-energy prop-45

erties are described by the antiferromagnetic spin-1/2 Heisenberg model46

H = J
∑
〈ij〉

Si · Sj , (1)

where Si is the spin operator at site i, J > 0 is the exchange integral of the order of47

t2/U , and t is the hopping integral between nearest-neighbour sites i and j. However,48

the prototypical Mott systems are transition metal oxides with strong Coulomb repulsion49

in a narrow d-band, while in carbon atoms, we are dealing with a valence p-band. As a50

consequence, while the nearest-neighbour hopping parameters are estimated around 2− 351

eV, the Hubbard repulsion U is estimated to be around 9 eV [10–12], which would place the52

system into the intermediate-coupling range. Still, since solving the full Hubbard model53

for 60 orbitals on a 2D-like geometry is a hard problem, we may attempt to understand54

the Heisenberg approximation first. Other authors have argued that there should only be55

a quantitative difference [12].56

Moreover, the C60 geometry has an interesting connection to the problem of frustrated57

spin systems. These arise on geometries like the triangular [13, 14], Kagomé [15–21] or58

pyrochlore lattice [22], with building blocks of three-site clusters that cannot accommodate59

antiferromagnetic bonds in a commensurate fashion. The result are spin-liquid states that60

are disordered and non-trivial. In fullerenes, we instead find 12 pentagon clusters that61

are also frustrated due to the odd amount of sites, but have no correspondence in the 2D62

plane, since a tiling by regular pentagons is not possible.63

A frustrated spin system is still quite challenging for a theoretical description. For64

example, the infamous sign problem [23] inhibits an efficient simulation with the Monte65

Carlo technique. However, tensor-network approaches do not suffer from such a problem.66

C60 is in particular well-suited to a solution using the density-matrix renormalization67

group (DMRG) [24] due to its finite and very manageable amount of sites.68

The truncated icosahedron is part of the icosahedral group Ih, whose other members69

are the icosahedron with 12 sites and the dodecahedron with 20 sites (which is also the70
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smallest fullerene C20) [25]. The former has only triangular plaquettes, the latter only71

pentagonal ones, and both are small enough to be solved exactly by full diagonalization72

if spatial symmetries are exploited to reduce the Hilbert space size [26]. Small fullerenes73

up to C32 can also be solved exactly [27, 28], but are part of different symmetry groups.74

Both cases offer a very useful comparison and benchmark.75

Each fullerene Cn contains n/2 − 10 hexagons and 12 pentagons [29], so that for76

n ≥ 44 the number of hexagon faces starts to dominate. For n→∞, we can expect that77

the fullerene properties approach those of a hexagonal lattice. But without undertaking78

the full calculation, it is impossible to say where exactly the crossover happens or what79

properties might be retained in the large-n limit. In fact, the small fullerenes up to C3280

do not behave monotonously [27]: For example, the ground state energy for C26 and C2881

is larger than for C20 and the first excited state for C28 is a triplet instead of a singlet.82

In this paper, we present the solution of the Heisenberg model on the C60 geometry.83

Previous works treated the problem classically [12] or approximatively [23], while our84

calculation is very precise for the ground state. Jiang and Kivelson solved the t−J model85

on C60 [8], which should coincide with our result at half filling. However, they discussed86

very different questions; and we further present results for the lowest excited states as well87

as thermodynamics.88

Due to two dissimilar types of nearest-neighbour bonds, the corresponding hopping89

integrals may be slightly different, t1 ≈ 1.2 t2, leading to different exchange couplings90

J1 6= J2 [12, 30]. For simplicity, we ignore this fact and use a homogeneous J = J1 = J291

for all bonds. The correlations along the bonds turn out to be nonetheless very different92

as a consequence of geometry, as will be seen below. We take J = 1 as the energy scale,93

giving all energies in units of J and all temperatures in units of J/kB, where kB is the94

Boltzmann constant.95

2 Ground state and correlation functions96

2.1 Technical notes97

Since DMRG requires a linear chain of sites, we map the C60 vertices onto a chain by98

tracing a Hamilton path through its planar Schlegel graph [8], which creates long-range99

spin-spin interactions across the chain. Our code incorporates the spin-SU(2) symmetry100

of the model following Ref. [31], which reduces both the bond dimension of the matrix-101

product state (MPS) representation of the wavefunction; and the matrix-product operator102

(MPO) representation of the Hamiltonian. The latter can be further reduced using the103

lossless compression algorithm of Ref. [32]. It gives only a small benefit of 8% reduction for104

H itself, with the resulting maximal MPO bond dimension of χ (H) = 35× 32 (from 38×105

35). The benefit for H2 is larger, yielding χ
(
H2
)

= 564× 468 (reduced from 1444× 1225,106

hence by 55%). With these optimizations, the ground state can be found quite efficiently107

and we can take the variance per site108

∆E/L =
(〈
H2
〉
− E2

)
/L (2)

as a global error measure that is immune to local minima.109

Interestingly, we find that the number of required subspaces per site in the DMRG110

simulation is similar to the Heisenberg chain (around 7), but each subspace requires large111

matrices (with 3500 ∼ 4000 rows/columns, see Tab. 1). This makes the simulation very112

memory-intensive, requiring several hundreds GB of RAM for good precision.113
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E E/L gap Stot χSU(2) χsub,SU(2) χeff ∆E/L GS overlap

-31.131(7) -0.51886(1) - 0 10000 3966 43146 8 · 10−5 -
-30.775(6) -0.51292(7) 0.356(0) 1 10000 3770 44302 1.9 · 10−4 0
-30.440(9) -0.50734(9) 0.690(8) 0 10000 3582 46846 1.6 · 10−4 ∼ 10−8

Table 1: Properties of the ground state and the lowest eigenstates: total energy E, energy
density E/L, the gap to the ground state, the total spin Stot, the maximal bond dimension
of the largest subspace χsub,SU(2) with spin-SU(2) symmetry (the full bond dimension was
set to χSU(2) = 10000), the effective bond dimension χeff when not exploiting the symmetry,
the variance per site (Eq. 2) and the overlap with the ground state.

2.2 Energy114

The ground state lies in the singlet sector with Stot =
∑

i 〈Si〉 = 0 (see Tab. 1). The115

energy per spin is found to be E0/L = −0.51886. This is lower than the previous result116

of E0/L = −0.50798 obtained by a spin-wave calculation on top of the classical ground117

state [23].118

Looking at the change in ground-state energy with molecule size, we may compare119

with C20 (E0/L = −0.486109) and C32 (E0/L = −0.4980 [27]), and recognize that the120

value indeed slowly approaches the one for the hexagonal lattice E0/L ≈ −0.55 [33]. On121

the other hand, it is quite close to the much smaller icosahedron (E0/L = −0.515657)122

which has the same icosahedral symmetry, but only contains triangular plaquettes.123

2.3 Correlation functions124

The truncated icosahedron is an Archimedean solid, so that all of its sites (vertices) are125

equivalent; but since two hexagons and one pentagon come together at a vertex, there126

are two different nearest-neighbour bonds: one that is shared between the two hexagons127

and two that run between a pentagon and a hexagon (with the total count of 30 and128

60, respectively, see Fig. 3 and Fig. 4). We shall call them “hexagon bonds” (H-bonds)129

and “pentagon bonds” (P-bonds). The wavefunction must respect this geometry, but130

as the mapping to a chain introduces a bias, this only happens for a sufficiently large131

bond dimension. Thus, we can average over the respective bonds and take the resulting132

distribution width as a measure of error, with a δ-distribution expected in the limit of133

χ → ∞. Figure 1 shows the result for distances up to d = 4, from which we see that134

for the given bond dimension, the distributions have already become sufficiently δ-like.135

We obtain 〈S · Sd=1,H〉 = −0.4679 for the H-bonds and 〈S · Sd=1,P 〉 = −0.2849 for the136

P-bonds.137

For the next-nearest neighbours (distance d = 2), there are also two types of bonds138

(see Fig. 3): two PP-bonds by going along the P-bonds twice, ending up in the same-face139

pentagon of a given vertex; and four HP-bonds, by going along H and P (in any order),140

ending up in the same-face hexagon. We find +0.0581 for the former, and stronger +0.1546141

for the latter.142

For the third-nearest neighbours (distance d = 3), it turns out that there are three143

types of bonds: The first one connects two sites in the same hexagon (two HPH bonds),144

and two connect different-face sites (four PPH/HPP bonds and two PHP bonds). For the145

correlation within the hexagon, we find the largest value −0.1543, for the PHP correlation146

we find −0.0619 and for the PPH/HPP correlation −0.0496. As the last two lie closely147

together, they require a very precise ground state to be resolved (see Fig. 1).148

We attribute the strong intrahexagon correlation to the hexagons not being frustrated,149
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d = 4 PHPH/HPHP, 0.05621±0.0001

Figure 1: Histogram of the spin-spin correlation function 〈S · Sd〉 in the ground state for
distances d = 1 to 4 and the various types of C60 bonds. For the meaning of the labels,
see Fig. 4 and the explanation in the text. The standard deviation of the distribution is
taken as the error measure in the legend. The binsize is 0.003.

so that putting a lot of correlation into these bonds can lower the energy more effectively.150

In fact, the sequence of intrahexagon values is closely matched by the infinite Heisenberg151

chain [34] or the L = 6 Heisenberg ring. On the other hand, the bonds involving pentagons152

are closely matched by the values of the dodecahedron. Fig. 5 shows a comparison. As153

a consequence of this, the ground-state energy can actually be naively approximated by154

taking E0 ≈ 30 〈S · Sd=1〉 [chain] + 60 〈S · Sd=1〉 [dodecahedron] ≈ −32.739, coming within155

95% of the precise DMRG value.156

For d = 4, the distance is larger than the most distant site in the same-face hexagon.157

We still find that the largest correlation +0.0562 is found for sites which can be connected158

via alternating H- and P-bonds (see Fig. 1).159

From d = 5 onwards, the bond labelling becomes too tedious and we give it up.160

However, due to sharp distributions we are still able to distinguish the different bonds161

(see Fig. 2) and find that the trend continues, namely the strongest correlation is found162

for an alternating H-P path: 〈S · Sd=5〉 = −0.0543, 〈S · Sd=6〉 = 0.0242 and 〈S · Sd=7〉 =163

−0.0244. For d = 8 and d = 9, such a path is not possible anymore. Finally, we also164

note that for d = 5, 6, 7 the correlations acquire mixed signs and for d = 8, 9 the staggered165

antiferromagnetic order is flipped, i.e. we have 〈S · Sd=8〉 < 0 and 〈S · Sd=9〉 > 0.166

Looking at the decay of the correlations with distance, we find ξ ∼ 1.7 when an expo-167

nential fit
∣∣ 〈S · Sd〉 ∣∣ ∼ exp (−d/ξ) is applied to the maximal absolute values (previously,168

ξ = 3 ∼ 4 was proposed [23] based on a strong-coupling Quantum Monte Carlo study of169

the single-band Hubbard model). The icosahedron and dodecahedron have larger excita-170

tion gaps, but the maximally possible distance is d = 3 and d = 5, respectively, so that171

they are correlated over practically their whole extent (see Fig. 5). For C60, the smallest172

gap is actually about as large as for the dodecahedron, but the maximal distance is d = 9173

and the drop-off across the whole molecule is larger. In this sense, the C60 spin state is174

disordered and very different from the ordered Néel phase of the hexagonal lattice [35].175

176
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Figure 2: Histogram of the spin-spin correlation function 〈S · Sd〉 in the ground state for
distances d = 5 to 9 and the various types of C60 bonds. The standard deviation of the
distribution is taken as the error measure in the legend. The binsize is 0.0005.
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Figure 3: Neighbourhood of a given site (black circle) showing the various types of bonds
(cf. Fig 1).
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Figure 4: Visualization of the spin-spin correlation function 〈S · Sd〉 in the ground state
for distances d = 1, 2, 3, 4 in real space on the planar Schlegel projection of C60.
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Figure 5: Comparison of the spin-spin correlation function between different geometries:
analytical values for the infinite Heisenberg chain [34], the L = 6 Heisenberg ring, the
icosahedron and the dodecahedron [26]. The C60 alternating HP bonds are formed by
alternating jumps along H and P (cf. Fig. 3), starting with H; and link two sites within a
hexagon up to d = 3.

3 Lowest triplet and singlet excitations177

By fixing Stot = 1, we can compute the lowest excited state in the triplet sector and look178

at its properties as well. We limit ourselves to the expectation value of the local spin, 〈Si〉179

and the nearest-neighbour correlation functions. The values of 〈Si〉 are shown in Fig. 6.180

We observe that a good part of the angular momentum (about 60%) localizes on a 20-site181

ring along a “meridian” of the molecule. As this breaks the spatial symmetry, we conclude182

that the Stot = 1 is degenerate beyond the three components of the spin projection and183

the symmetry should be restored when averaging over the whole degenerate subspace.184

Judging by the low-energy states of other members of the icosahedral group, this points185

to a T2g,a transformation [26]. The specific position of the 20-site ring must be due to our186

mapping choice to a chain. In a realistic setting, we expect that the spatial symmetry187

would in any case be at least slightly broken by the Jahn-Teller effect. In fact, for doped188

C60, one observes the same preference for a localization of the excess electron along a189

20-site ring [36], whereas in our case the same happens to a doped spin (excess angular190

momentum).191

Looking at the nearest-neighbour spin correlations on the left side of Fig. 6, we see192

that the H-bonds are weakened (−0.468 to −0.414), while the P-bonds are strengthened193

(−0.2798 to −0.3286) along the 20-site ring as compared to the rest of the system.194

A striking property of Heisenberg spins on the icosahedron and dodecahedron geom-195

etry [26], as well as for smaller fullerene geometries [27], is that the first excited state196

is not a triplet, but rather a singlet, a signature of frustration connected to spin-liquid197

behaviour [15, 37–39]. We therefore calculate the first excited state in the singlet sector198

(Stot = 0) as the lowest state of the Hamiltonian H̃ = H +Ep
∣∣E0

〉〈
E0

∣∣ with a sufficiently199

large energy penalty Ep > 0 that must be larger than the neutral gap. The result is shown200
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Figure 6: Left: Visualization of the nearest-neighbour spin-spin correlations 〈S · Sd=1〉 in
the lowest triplet state, Stot = 1. Right: Visualization of the local spin 〈Si〉 in the same
state.

in Tab. 1. The neutral gap ∆S=0 = E1 (Stot = 0) − E0 (Stot=0) = 0.691 (cf. icosahedron:201

0.533, dodecahedron: 0.316) turns out to be significantly larger than the singlet-triplet202

gap ∆S=1 = E0 (Stot = 1) − E0 (Stot=0) = 0.356 (cf. icosahedron: 0.900, dodecahedron:203

0.519). We attribute this behaviour to the reduced frustration of the C60 molecule due204

to the large amount of hexagonal faces. Furthermore, we note that all the pentagon faces205

are completely separated by the hexagons, so that all regions with adjacent frustrated206

pentagons are broken up in C60.207

Looking at the spin-spin correlations in the Stot = 0 excited state in Fig. 7, we note208

that the singlet excitation is also characterized by a 20-site ring with altered correlations,209

albeit differently positioned. Once again, this indicates degeneracy and comparison within210

the icosahedral group points to a Hg,s representation [26], though this is difficult to prove211

explicitly using DMRG.212

213

214

4 Thermodynamics215

4.1 Technical notes216

We incorporate finite temperatures into the DMRG code using standard techniques [40].217

By doubling the degrees of freedom, we go from a description using the wavefunction218

to a description using the density matrix. This density matrix is again purified into219

a state vector, but all operators act on the physical sites only, so that the additional220

“ancilla” cites are automatically traced over when taking expectation values using the221

state
∣∣β〉 = exp (−βH/2)

∣∣β = 0
〉
. The entanglement entropy between the physical sites222

and the ancillas becomes equal to the thermal entropy. Finally, we can initiate the state at223

infinite temperature β = 1/T = 0 by taking the ground state of the entangler Hamiltonian224

9
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d = 1

0.50 0.45 0.40 0.35 0.30 0.25

Figure 7: Visualization of the nearest-neighbour spin-spin correlations 〈S · Sd=1〉 in the
first excited singlet state, Stot = 0. Note the 20-site ring of altered correlations in the
lower part.

225

Hβ=0 =
∑
i

Si · Sa(i), (3)

where a (i) indicates the ancilla site attached to the physical site i.226

We then apply a propagation in β using the 2-site TDVP (time-dependent variational227

principle) algorithm [41] with the step size of dβ = 0.1. This allows to grow the bond228

dimension dynamically, until it becomes prohibitively large, at which point we switch to229

the faster 1-site algorithm (typically around β = 6 − 10). To strike a balance between230

accuracy and running time, we limit the bond dimension per subspace to χloc ∼ 200−800,231

rather than limiting the total bond dimension. This ensures that the largest matrix is232

at most χloc × χloc and the duration of the remaining propagation can be estimated. A233

benchmark of this approach for the exactly solvable C20 is given in Appendix A. Finally,234

there is a technical question of whether to incorporate the ancillas as separate sites (with235

the cost of longer-ranged hopping) or as “super-sites” [40]. We take the super-site approach236

for better accuracy.237

The relevant quantities are the partition function238

Zβ =
〈
β
∣∣β〉, (4)

the internal energy239

E (β) = 〈H〉β = Z−1
β

〈
β
∣∣H∣∣β〉, (5)

the specific heat per site (or per spin):240

c (T ) =
C (T )

L
=

1

L

∂E

∂T
=

1

L
β2
[ 〈
H2
〉
β
− 〈H〉2β

]
, (6)

and the zero-field uniform magnetic susceptibility241

χ =
1

L
lim
B→0
∇B ·M =

1

L
β
[ 〈

S2
〉
β
− 〈S〉2β

]
, (7)

where M is the magnetization at a given external field strength B and the Hamiltonian242

is changed to H → H −B · S, with the total spin S:243

M = 〈S〉B,β = Z−1
B,β

〈
β = 0

∣∣S e−β(H−B·S)
∣∣β = 0

〉
. (8)

10
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While the specific heat can be exactly calculated using the squared Hamiltonian average244 〈
H2
〉
β
, in practice this becomes quite expensive at every β-step, so that we use a numerical245

differentiation of E (β) with spline interpolation instead.246

4.2 Specific heat247

The result for c (T ) is shown in Fig. 8. All members of the icosahedral group exhibit a248

two-peak structure: The icosahedron shows a high-T shoulder and a low-T peak. The249

dodecahedron has two peaks. For C60, we find instead a high-T peak (around T ∼ 0.58)250

and low-T shoulder (around T ∼ 0.15− 0.19). The high-T peak can be attributed to the251

energy scale given by J = 1 and is a general feature of Heisenberg chains [40,42,43]. The252

low-T peak can be attributed to the second scale of the energy gap, provided that the253

states are well separated.254

We recall that for a two-level system given by the Hamiltonian H = diag (0,∆), the255

specific heat has a Schottky peak at T/∆ ≈ 0.417. In other words, a maximum appears256

when the temperature is tuned to the gap ∆. This is roughly consistent with the gap257

values given in Tab. 1. The fact that we have a shoulder rather than a clear peak implies258

that several states of close energy contribute to c (T ), i.e. a comparatively high density259

of states close to the first excited state. In fact, we can see that as the bond dimension260

in the DMRG calculation is increased, we are able to better describe the low-lying states,261

leading to a flattening of a very shallow peak to a shoulder.262

We note that the form of the specific heat for C60 is quite close in shape to what is263

found for the Heisenberg model on the Kagomé lattice [15–17]. However, the latter has264

a much smaller singlet-triplet gap of 0.13 and a very small neutral gap of ∼ 0.05 [19, 20],265

resulting in a low-energy shoulder or shallow peak, whose exact position is difficult to266

pinpoint, but seems to be below T ∼ 0.05 [17]. Since the Kagomé lattice has hexagons267

and frustrated triangles as faces, compared to the frustrated pentagons and hexagons of268

C60, we may have a similarity in the eigenvalue distributions. See also the comparison of269

the Kagomé lattice to a cuboctahedron [43].270

4.3 Spin susceptibilty271

Fig. 9 shows the result for the susceptibility χ (T ). It can be interpreted in a similar way,272

the difference being that singlet states do not contribute anymore. Moreover, it is easy to273

show that for high temperatures, χ (T ) follows a universal Curie law χ (T ) ∼ 3/4 · T−1,274

while for T → 0 we expect χ → 0, since the ground state is a spin singlet and not275

susceptible to small fields. In between, χ (T ) should have at least one peak. We observe276

that it is positioned at a higher temperature for the icosahedron due to the larger singlet-277

triplet gap. The dodecahedron and C60, on the other hand, are remarkably close, though278

χ (T ) is always slightly larger for C60 and does not go to zero as fast for very small279

temperatures, which we ascribe to the small singlet-triplet gap.280

281

282

5 Conclusion283

We have presented a solution of the Heisenberg model on the C60 fullerene geometry. The284

spin-spin correlations in the ground state can be determined very accurately using DMRG285
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Figure 8: Specific heat of C60 for different bond dimensions (Eq. 6). The bond dimension
per subspace was limited to χloc = 300, 400, 500, 600, 800. The grey vertical lines indicate
the triplet and singlet gaps with respect to the ground state.
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Figure 9: Zero-field uniform magnetic susceptibility C60 (Eq. 7) for different bond di-
mensions. Parameters as in Fig. 8.
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and indicate that the C60 molecule is large enough not to be fully correlated across its286

full extent. The strongest correlations are found along an alternating path of hexagon287

and pentagon bonds, a consequence of the fact that the hexagons are not frustrated.288

Furthermore, for large distances, we find a deviation from the staggered sign pattern of289

an antiferromagnet.290

Most strikingly (and unlike smaller fullerenes), the first excited state is a triplet and291

not a singlet, indicating weaker frustration. This can be attributed to the large number292

of unfrustrated hexagon faces which separate all the pentagon faces from each other,293

suggesting that frustration is tuneable in small fullerenes as a function of their size. Still,294

we find that the ground state of C60 is disordered with a very short correlation length of295

ξ ∼ 1.7 and therefore quite dissimilar from the ordered Néel state of the hexagonal lattice.296

In terms of thermodynamics, we find a two-peak structure of the specific heat, similar297

to what is found for the dodecahedron or the Kagomé lattice, but the low-temperature298

feature is very shallow for C60 (a shoulder). The spin susceptibility shows a broad peak299

very similar to the dodecahedron, but approaches zero less rapidly for T → 0.300

We have not attempted to find out the spatial symmetry transformations of the lowest301

eigenstates, but educated guesses can be made by comparing with the icosahedron and302

dodecahedron. Neither have we studied the effect of a strong external field. Another open303

question is whether the frustrated pentagons can still measurably affect any properties of304

Cn in the large-n limit. DMRG is well equipped to answer these questions and solve the305

Heisenberg model for even larger n, or for fullerene dimers [44]. Another system that is306

well-suited for DMRG is the encapsulation of magnetic rare-earth atoms by fullerenes or307

fullerene-like molecules [45,46], simulated by the Heisenberg model.308
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A Specific heat of C20318

As a benchmark of the thermal DMRG algorithm, we calculate the specific heat of the319

dodecahedron (C20) and show the results in Fig. 10. While the ground state offers no320

challenge for DMRG and converges in a matter of seconds, the β-propagation is more321

demanding and we see that a high bond dimension is required to get the precise location322

and height of the low-temperature peak. However, even smaller bond dimensions are able323

to qualitatively capture the two-peak structure. The implication for C60 is that while we324

cannot claim that the results are numerically exact, since a much higher bond dimension325

may be required to achieve such precision, we expect that the qualitative behaviour should326

be captured as well.327

328
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Polynomial Method [47] with 1000 lowest eigenstates, 1000 Chebyshev moments and 1000
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