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Abstract1

We solve the quantum-mechanical antiferromagnetic Heisenberg model with2

spins positioned on vertices of the truncated icosahedron using the density-3

matrix renormalization group (DMRG). This describes magnetic properties of4

the undoped C60 fullerene at half filling in the limit of strong on-site interaction5

U . We calculate the ground state and correlation functions for all possible dis-6

tances, the lowest singlet and triplet excited states, as well as thermodynamic7

properties, namely the specific heat and spin susceptibility.8

We find that unlike smaller C20 or C32 that are solvable by exact diagonal-9

ization, the lowest excited state is a triplet rather than a singlet, indicating a10

reduced frustration due to the presence of many hexagon faces and the separa-11

tion of the pentagonal faces, similar to what is found for the truncated tetra-12

hedron. This implies that frustration may be tuneable within the fullerenes13

by changing their size.14

The spin-spin correlations are much stronger along the hexagon bonds and15

exponentially decrease with distance, so that the molecule is large enough16

not to be correlated across its whole extent. The specific heat shows a high-17

temperature peak and a low-temperature shoulder reminiscent of the kagomé18

lattice, while the spin susceptibility shows a single broad peak and is very close19

to the one of C20.20
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1 Introduction38

The C60 buckminsterfullerene molecule, where 60 carbon atoms sit on the vertices of a39

truncated icosahedron, is a prominent molecule with a wealth of chemical and nanotech-40

nological applications [1–3], and is also of interest in terms of correlated-electron physics.41

A lattice of C60 molecules becomes superconducting when doped with alkali metals [4–7],42

with a critical temperature of around 40K. This is unusually high for a typical phononic43

mechanism, so that an electronic mechanism that results from an on-site Hubbard in-44

teraction U is under discussion as well [8, 9]. At half filling (no doping), a strong U45

is well-known to cause electron localization via the Mott mechanism and the resulting46

low-energy properties are described by the antiferromagnetic spin-1/2 Heisenberg model47

H = J
∑
〈ij〉

Si · Sj , (1)

where Si is the spin operator at site i, J = 4t2/U > 0 is the exchange integral and t is the48

hopping integral between nearest-neighbour sites i and j.49

However, the prototypical Mott systems are transition metal oxides with strong Coulomb50

repulsion in a narrow d-band, while in carbon atoms, we are dealing with a valence p-band.51

As a consequence, while the nearest-neighbour hopping parameters are estimated around52

2− 3 eV, the Hubbard repulsion U is estimated to be around 9 eV [10–12], which would53

place the system into the intermediate-coupling range. Still, since solving the full Hub-54

bard model for 60 orbitals on a 2D-like geometry is a hard problem, we may attempt55

to understand the Heisenberg approximation first. Other authors have argued that there56

should only be a quantitative difference [12], since the system is finite. The Hartree-Fock57

solution shows a phase transition to magnetic order at Uc/t ≈ 2.6 [13]. This seems to58

indicate that local moments may be already well-formed for a fairly small U . As soon as59

they are formed, mean field is biased towards an ordered solution, but we expect the exact60

ground state of this finite system to always be a singlet.61

Apart from trying to approximate the Hubbard model, a spin model on a fullerene-62

type geometry is interesting on its own, being connected to the problem of frustrated spin63

systems. These arise on non-bipartite geometries like the triangular, kagomé or pyrochlore64

lattice, with building blocks of three-site clusters that cannot accommodate antiferromag-65

netic bonds in a commensurate fashion. This tends to induce spin-liquid states that are66

disordered and non-trivial [14–21]. In fullerenes, we instead find 12 pentagon clusters that67

are also frustrated due to the odd amount of sites. This has no strict correspondence in68

the 2D plane, since a tiling by regular pentagons is not possible. However, a Cairo tiling is69

possible by irregular pentagons, resulting in two bonds J and J ′ [22]. While non-bipartite,70
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this lattice can be divided into two inequivalent sublattices, tends to show ferrimagnetic71

order, and is thus quite different from our case [22].72

A frustrated spin system is still quite challenging for a theoretical description. For73

example, the infamous sign problem [23] inhibits an efficient simulation with the Quantum74

Monte Carlo technique. However, tensor-network approaches do not suffer from it. C6075

is in particular well-suited to a solution using the density-matrix renormalization group76

(DMRG) [24] due to its finite and very manageable amount of sites.77

The truncated icosahedron is part of the icosahedral group Ih. To its members belong78

two of the Platonic solids, the icosahedron with 12 sites and the dodecahedron with 2079

sites (which is also the smallest fullerene C20) [25]. The former has only triangular pla-80

quettes, the latter only pentagonal ones, and both are small enough to be solved by full81

diagonalization if spatial symmetries are exploited to reduce the Hilbert space size [26]. Ih82

also has 5 members within the Archimedean solids, of which the icosidodecahedron with83

30 sites (triangular and pentagonal faces) has been the subject of particularly intense84

study [27–31], since this is the geometry of the magnetic atoms in the Keplerate molecules85

{Mo72V30}, {Mo72Cr30} and {Mo72Fe30}, with S = 1/2, 3/2 and 5/2 respectively [32–34].86

It is solvable by exact diagonalization for S = 1/2 [27]. Small fullerenes up to C32 can87

also be solved by exact diagonalization [35,36], but have different symmetries. Finally, the88

truncated tetrahedron is a 12-vertex Archimedean solid, which is not a member of Ih, but89

has a geometry that is similar to C60 [13,37,38], consisting out of four triangles separated90

by hexagons. For this reason, it is often also counted as a fullerene C12. All these smaller91

molecules offer a very useful comparison and benchmark.92

Each fullerene Cn contains n/2 − 10 hexagons and 12 pentagons [39], so that for93

n ≥ 44 the number of hexagon faces starts to dominate. For n→∞, we can expect that94

the fullerene properties approach those of a hexagonal lattice. But without undertaking95

the full calculation, it is impossible to say where exactly the crossover happens or what96

properties might be retained in the large-n limit. In fact, the small fullerenes up to C3297

do not behave monotonously [35]: For example, the ground state energy for C26 and C2898

is larger than for C20 and the first excited state for C28 is a triplet instead of a singlet.99

In this paper, we present the solution of the Heisenberg model on the C60 geometry.100

Previous works treated the problem classically [12] or approximately [23], while our calcu-101

lation is very precise for the ground state. Jiang and Kivelson solved the t− J model on102

C60 [8], which should coincide with our result at half filling. However, they discussed very103

different questions; and we further present results for the lowest excited states as well as104

thermodynamics.105

Due to two dissimilar types of nearest-neighbour bonds, the corresponding hopping106

integrals may be slightly different, t1 ≈ 1.2 t2, leading to different exchange couplings107

J1 6= J2 [12, 40]. For simplicity, we ignore this fact and use a homogeneous J = J1 = J2108

for all bonds. The correlations along the bonds turn out to be nonetheless very different109

as a consequence of the geometry, as will be seen below. We take J = 1 as the energy110

scale, giving all energies in units of J and all temperatures in units of J/kB, where kB is111

the Boltzmann constant.112

2 Ground state and correlation functions113

2.1 Technical notes114

Our code incorporates the spin-SU(2) symmetry of the model following Ref. [41], which115

reduces both the bond dimension of the matrix-product state (MPS) representation of the116
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wavefunction and the matrix-product operator (MPO) representation of the Hamiltonian.117

The latter can be further reduced using the lossless compression algorithm of Ref. [42]. It118

gives only a small benefit of 8% reduction for H itself, with the resulting maximal MPO119

bond dimension of χ (H) = 35× 32 (from 38× 35). The benefit for H2 is larger, yielding120

χ
(
H2
)

= 564×468 (reduced from 1444×1225, hence by 55%). With these optimizations,121

the ground state can be found quite efficiently and we can take the variance per site122

∆E2/L =
(〈
H2
〉
− E2

)
/L (2)

as a global error measure that is immune to local minima.123

Since DMRG requires a linear chain of sites, we must map the C60 vertices onto a chain,124

which creates long-range spin-spin interactions across it. The important factors to consider125

are: 1. the maximal hopping range (the bandwidth of the corresponding graph), 2. the126

average hopping range, 3. the fact that DMRG is particularly good for nearest-neighbour127

bonds on the chain, so that a representation where the sites i and i + 1 are connected128

should be beneficial (this will also be practical for finite-temperature calculations further129

below). Our mapping is an infalling spiral on the Schlegel diagram, such that the first130

and last site have maximal distance, and is shown in Fig. 4. We have also tried out131

the mapping of Jiang and Kivelson [8] and a graph compression using the Cuthill-McKee132

algorithm [43]; and find similar MPO compression and ground state convergence results.133

A random permutation of the sites, on the other hand, leads to a representation with a134

large MPO bond dimension which the compression algorithm is unable to decrease, and135

the convergence becomes much worse. For a benchmark with a system solvable by exact136

diagonalization we compare a similar spiral mapping for the icosidodecahedron with the137

mapping used by Exler and Schnack [29, 44] and find that both approaches come within138

99.97% of the exact S = 1/2 ground-state energy [22] at a bond dimension of χSU(2) = 500.139

Thus we conclude that as long as the numbering of the sites is reasonable and more or140

less minimizes the hopping distances, the dependence on the numbering itself is small141

and an inaccuracy that results from a suboptimal numbering can simply be compensated142

by moderately increasing the bond dimension. This is in line with the conclusions of143

Ummethum, Schnack and Läuchli [29]. Finally, we note that by checking the energy144

variance (Eq. 2) and the distribution of spin-spin correlations at a given distance (see145

Sec. 2.3), we have good independent error measures.146

Interestingly, we find that the number of required subspaces per site in the DMRG147

simulation is similar to the Heisenberg chain (around seven), but each subspace requires148

large matrices (with 3500 ∼ 4000 rows/columns, see Tab. 1). This makes the simulation149

very memory-intensive, requiring several hundred GB of RAM for good precision.150

2.2 Energy151

The ground state lies in the singlet sector with Stot =
∑

i 〈Si〉 = 0 (see Tab. 1). The152

energy per spin is found to be E0/L = −0.51886. This is lower than the previous result153

of E0/L = −0.50798 obtained by a spin-wave calculation on top of the classical ground154

state [23].155

Looking at the change in ground-state energy with molecule size, we may compare156

with the truncated tetrahedron C12 (E0/L = −0.475076), C20 (E0/L = −0.486109) and157

C32 (E0/L = −0.4980 [35]), and recognize that the value indeed slowly approaches the one158

for the hexagonal lattice E0/L ≈ −0.55 [45]. On the other hand, it is quite close to the159

much smaller icosahedron (E0/L = −0.515657) which has the same icosahedral symmetry,160

but only contains triangular plaquettes. Finally, the icosidodecahedron has the highest161

energy E0/L = −0.441141 [22], probably due to the strong frustration.162
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E E/L gap Stot χSU(2) χsub,SU(2) χeff ∆E2/L GS overlap

-31.131(7) -0.51886(1) - 0 10000 3966 43146 8 · 10−5 -
-30.775(6) -0.51292(7) 0.356(0) 1 10000 3770 44302 1.9 · 10−4 0
-30.440(9) -0.50734(9) 0.690(8) 0 10000 3582 46846 1.6 · 10−4 ∼ 10−8

-30.3(2) -0.505(3) 0.8(2) 2 5000 1855 24546 1.4 · 10−3 0

Table 1: Properties of the ground state and the lowest eigenstates: total energy E, energy
density E/L, the gap to the ground state, the total spin Stot, the full bond dimension
χSU(2) with spin-SU(2) symmetry, the maximal bond dimension of the largest subspace
χsub,SU(2), the effective bond dimension χeff that would be required when not exploiting
the symmetry, the energy variance per site (Eq. 2), and the overlap with the ground state.

2.3 Correlation functions163

The truncated icosahedron is an Archimedean solid, so that all of its sites (vertices) are164

equivalent; but since two hexagons and one pentagon come together at a vertex, there165

are two different nearest-neighbour bonds: one that is shared between the two hexagons166

and two that run between a pentagon and a hexagon (with the total count of 30 and167

60, respectively, see Fig. 3 and Fig. 4). We shall call them “hexagon bonds” (H-bonds)168

and “pentagon bonds” (P-bonds). The wavefunction must respect this geometry, but169

as the mapping to a chain introduces a bias, this only happens for a sufficiently large170

bond dimension. Thus, we can average over the respective bonds and take the resulting171

distribution width as a measure of error, with a δ-distribution expected in the limit of172

χ → ∞. Figure 1 shows the result for distances up to d = 4, from which we see that for173

the given bond dimension, the distributions have already become sufficiently sharp.174

Similarly, we have up to five distinct types of bonds for the remaining distances d =175

2− 9. In the numerics, they can be distinguished as distinct peaks in the distribution of176

the correlations 〈S · Sd〉 (Figs. 1 and 2). Up to d = 4 we classify them by a sequence of H-177

and P-bonds. For example, at d = 2 we have two PP-bonds by going along the P-bonds178

twice, ending up in the same-face pentagon of a given vertex; and four HP-bonds, by going179

along H and P (in any order), ending up in the same-face hexagon (see Fig. 3).180

A striking pattern is that the path that can be labelled by alternating H- and P-bonds181

has the strongest correlations at each d. Such a path is possible up to d = 7; and up182

to d = 3, it ends in the same-face hexagon. Hence, it seems that since the hexagons183

are not frustrated, putting a lot of correlation into these bonds can lower the energy184

more effectively. In fact, the sequence of intrahexagon values is closely matched by the185

infinite Heisenberg chain [46] or the L = 6 Heisenberg ring. On the other hand, the bonds186

involving pentagons are closely matched by the values of the dodecahedron. Figure 5187

shows a comparison. As a consequence of this, the ground-state energy can actually be188

naively approximated by taking E0 ≈ 30 〈S · Sd=1〉 [chain]+60 〈S · Sd=1〉 [dodecahedron] ≈189

−32.739, coming within 95% of the precise DMRG value.190

Finally, we also note that for d = 5, 6, 7 the correlations acquire mixed signs and for191

d = 8, 9 the staggered antiferromagnetic order is flipped, i.e. we have 〈S · Sd=8〉 < 0 and192

〈S · Sd=9〉 > 0.193

Overall, the pattern is very similar to the truncated tetrahedron, where the maximal194

distance is d = 3, the stronger correlations are also found for the same-face hexagon bonds;195

and a mixed sign is acquired for d = 3 (see Fig. 5).196

Looking at the decay of the correlations with distance, we find ξ ∼ 1.4 when an197

exponential fit
∣∣ 〈S · Sd〉 ∣∣ ∼ exp (−d/ξ) is applied to the maximal absolute values and ξ ∼198

1.2 if it is applied to bond-averaged values (see inset of Fig. 5) Previously, ξ = 3 ∼ 4 was199
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140

160
d = 1 H, -0.46792±9.7e-05
d = 1 P, -0.2849±0.000177
d = 2 PP, 0.0581±6.5e-05
d = 2 HP/PH, 0.15461±8.2e-05
d = 3 PHP, -0.06194±8e-05
d = 3 HPH, -0.15425±0.000113
d = 3 PPH/HPP, -0.04955±0.000104
d = 4 PPHP/PHPP, 0.00124±5.2e-05
d = 4 HPPH, 0.03744±8.5e-05
d = 4 PHPH/HPHP, 0.05621±0.0001

Figure 1: Histogram of the spin-spin correlation function 〈S · Sd〉 in the ground state for
distances d = 1 to 4 and the various types of C60 bonds. For the meaning of the labels,
see Fig. 3 and the explanation in the text. The standard deviation of the distribution is
taken as the error measure in the legend. The binsize is 0.003.

proposed [23] based on a strong-coupling Quantum Monte Carlo study of the single-band200

Hubbard model. The truncated tetrahedron and the dodecahedron have larger excitation201

gaps, but the maximally possible distance is d = 3 and d = 5, respectively, so that they202

are correlated over practically their whole extent (see Fig. 5). The icosidodecahedron has203

a small gap, but the behaviour of the correlations is very similar to the dodecahedron. An204

exponential fit does not give good results for these small molecules. For C60, the smallest205

gap is actually about as large as for the dodecahedron, but the maximal distance is d = 9206

and the drop-off across the whole molecule is larger. In this sense, the C60 spin state is207

disordered.208

The fullerenes Cn have a kind of thermodynamic limit n→∞, where we expect that209

the magnetic properties should approach the properties of the hexagonal lattice with Néel210

order [47], which should be detectable by large spin-spin correlations in a finite system.211

Clearly, we are still far away from that limit: The pentagons disrupt the bipartiteness and212

lead to a disordered state instead.213

214

3 Lowest triplet and singlet excitations215

By fixing Stot = 1, we can compute the lowest excited state in the triplet sector and look216

at its properties as well. We limit ourselves to the expectation value of the local spin217

〈Si〉 and the nearest-neighbour correlation functions. The values of 〈Si〉 are shown in218

Fig. 6. We observe that a good part of the angular momentum (about 60%) localizes on a219

20-site ring along a “meridian” of the molecule. As this breaks the spatial symmetry, we220

conclude that the lowest Stot = 1 state is degenerate beyond the three components of the221

spin projection, i.e. has a multiplicity > 1 of its irreducible point group representation.222
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d = 5 , -0.0543±0.000113
d = 5 , -0.0265±0.000137
d = 5 , -0.00167±4.9e-05
d = 5 , 0.01051±9e-05
d = 6 , -0.02312±0.000132
d = 6 , -0.01064±8.9e-05
d = 6 , 0.02424±0.000128

d = 7 , -0.02437±0.000178
d = 7 , 0.00976±8.5e-05
d = 7 , 0.02361±0.000169
d = 8 , -0.02673±0.000199
d = 8 , -0.02343±0.000177
d = 9 , 0.02645±0.000198

Figure 2: Histogram of the spin-spin correlation function 〈S · Sd〉 in the ground state for
distances d = 5 to 9 and the various types of C60 bonds. The standard deviation of the
distribution is taken as the error measure in the legend. The binsize is 0.0005.

P P

H

HP

PHPH

PP PP

PPH PPH

PHPPHP

HPP HPP

HPH HPH
HP

Figure 3: Neighbourhood of a given site (black circle) showing the various types of bonds
(cf. Fig. 1).

polyhedron L singlet gap triplet gap

trunc. tetrahedron (C12) 12 0.896 0.688
icosahedron 12 0.533 0.900
dodecahedron (C20) 20 0.316 0.514
icosidodecahedron 30 0.047 0.218
trunc. icosahedron (C60) 60 0.691 0.356

Table 2: Comparison of the singlet and triplet gaps for various polyhedra with L vertices.
The smaller value is underlined.
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Figure 4: Visualization of the spin-spin correlation function 〈S · Sd〉 in the ground state
for distances d = 1, 2, 3, 4 in real space on the planar Schlegel projection of C60. The plot
for d = 1 also shows the chosen enumeration of the sites.
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distance d

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

〈S
·S

d
〉

+0.0003

C12 strong

C12 weak

dodecahedron

icosidodecahedron

C60 alternating HP

C60 others

Heisenberg chain L =∞
Heisenberg ring L = 6

1 2 3 4 5 6 7 8 9

0.0

0.2

0.4 C60 maximal values

C60 bond-averaged

Figure 5: Comparison of the spin-spin correlation function between different geometries:
analytical values for the infinite Heisenberg chain [46], numerically exact values for the
L = 6 Heisenberg ring, C12 (truncated tetrahedron) and the dodecahedron [26]. The icosi-
dodecahedron values are according to our own DMRG calculation. The C60 alternating
HP bonds are formed by alternating jumps along H and P (cf. Fig. 3), starting with H;
and link two sites within a hexagon up to d = 3. Note that the icosidodecahedron has
two inequivalent bonds for d = 2, 3, 4, but the correlation along the second-type bond is
very small and is omitted. The weak bond for C12 at d = 3 is +0.0003 and thus barely
visible. The inset shows an exponential fit for the distance dependence of the C60 spin-spin
correlations, either by taking the maximal values for each d or by taking bond-averaged
values.
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The symmetry should be restored when averaging over the whole degenerate subspace.223

The icosahedral group has the irreducible representations A (1), T (3), F (4) and H224

(5) [48], where the brackets indicate the multiplicity. The members of the icosahedral225

group that are solvable by exact diagonalization behave as follows: The lowest triplets of226

the icosahedron transform as T2g, T1u and T2u; of the dodecahedron as T2g, Fu, T2u [26];227

and of the icosidodecahedron as Ag, Hu, Hg [22]. Hence, while the lowest triplet is 3-fold228

degenerate for the former two, it is nondegenerate for the latter. Our results indicate that229

the lowest triplet of C60 is again degenerate.230

Finding out its irreducible representation requires either to work within a symmetry-231

adapted basis or to construct the whole multiplet of excited states. Since the degeneracy232

is at least 3-fold, we would need at least the lowest four eigenstates in the S = 1 sector to233

a precision that is smaller than the gap to the next triplet state. Since the degeneracy of234

the excited states is of no crucial physical importance, we do not attempt this procedure235

in our work.236

We find that the symmetry-breaking 20-site ring is remarkably robust in our DMRG237

simulation and arises from different random starting states and for different site enumer-238

ations. In a realistic setting, we expect that the spatial symmetry would in any case be239

at least slightly broken by the Jahn-Teller effect, so that such a state may split from the240

degenerate subspace. In fact, for doped C60, one observes the same preference for a lo-241

calization of the excess electron along a 20-site ring [49], whereas in our case the same242

happens to a doped spin (excess angular momentum).243

A striking property of Heisenberg spins on smaller icosahedral molecules [22, 26], as244

well as for smaller fullerene geometries [35], is that the first excited state is not a triplet,245

but rather a singlet, a signature of frustration connected to spin-liquid behaviour [14,50–246

52]. The icosidodecahedron has in fact a large amount of singlet states below the first247

triplet [22]. On the other hand, for the truncated tetrahedron, the first excited state is a248

triplet for S = 1/2.249

We therefore calculate the first excited state in the singlet sector (Stot = 0) as the250

lowest state of the Hamiltonian H̃ = H + Ep
∣∣E0

〉〈
E0

∣∣ with a sufficiently large energy251

penalty Ep > 0 that must be larger than the neutral gap. The result is shown in Tab. 1.252

The neutral gap ∆S=0 = E1 (Stot = 0)− E0 (Stot=0) = 0.691 turns out to be significantly253

larger than the singlet-triplet gap ∆S=1 = E0 (Stot = 1) − E0 (Stot=0) = 0.356 (cf. the254

other polyhedra in Tab. 2). We attribute this behaviour to the reduced frustration of255

the C60 molecule due to the large amount of hexagonal faces. Furthermore, we note that256

all the pentagonal faces are completely separated by the hexagons, so that regions with257

adjacent frustrated pentagons that are present in smaller fullerenes are broken up in C60.258

Looking at the spin-spin correlations in the Stot = 0 excited state in Fig. 7, we note259

that the singlet excitation is also characterized by a 20-site ring with altered correlations,260

albeit differently positioned. Once again, this indicates degeneracy and we can compare to261

the small molecules. Starting from the ground state, the lowest singlets of the icosahedron262

and dodecahedron both transform as Au, Hg, Ag [26]; and of the icosidodecahedron as263

Ag, Au, T1u [22]. The former two show 5-fold degenerate excited singlets, while the latter264

shows a nondegenerate one; and C60 is once again more similar to the smaller molecules.265

266

267
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d = 1

0.50 0.45 0.40 0.35 0.30 0.25 0.000 0.008 0.016 0.024 0.032

Figure 6: Left: Visualization of the nearest-neighbour spin-spin correlations 〈S · Sd=1〉
in the lowest triplet state, Stot = 1. The 20-site ring of altered correlations is highlighted
with arrows. Right: Visualization of the local spin 〈Si〉 in the same state.

d = 1

0.50 0.45 0.40 0.35 0.30 0.25

Figure 7: Visualization of the nearest-neighbour spin-spin correlations 〈S · Sd=1〉 in the
first excited singlet state, Stot = 0. The 20-site ring of altered correlations in the lower
part is highlighted with arrows.
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4 Thermodynamics268

4.1 Technical notes269

We incorporate finite temperatures into the DMRG code using standard techniques [53].270

By doubling the degrees of freedom, we go from a description using the wavefunction271

to a description using the density operator. This density operator is again purified into272

a state vector, but all operators act on the physical sites only, so that the additional273

“ancilla” sites are automatically traced over when taking expectation values using the274

state
∣∣β〉 = exp (−βH/2)

∣∣β = 0
〉
. The entanglement entropy between the physical sites275

and the ancillas becomes equal to the thermal entropy. Finally, we can initiate the state at276

infinite temperature β = 1/T = 0 by taking the ground state of the entangler Hamiltonian277

278

Hβ=0 =
∑
i

Si · Sa(i), (3)

where a (i) indicates the ancilla site attached to the physical site i.279

We then apply a propagation in β using the TDVP (time-dependent variational prin-280

ciple) algorithm [54] with a step size of dβ = 0.1. At each time step we have the choice281

of whether to apply the two-site algorithm which allows to dynamically grow the bond282

dimension from the initial product state; or the one-site algorithm which does not increase283

the bond dimension, but is much faster. Since an upper limit must be in any case set on284

the bond dimension in the calculations, it is no longer useful to use the two-site algorithm285

once it saturates. At this point we switch to the faster one-site algorithm (typically around286

β = 6− 10). There is also the technical question of whether to incorporate the ancillas as287

separate sites (at the cost of longer-ranged hopping) or as “super-sites” [53]. We take the288

super-site approach for better accuracy.289

The TDVP algorithm is known to get stuck in a product state without being able to290

build up the initial entanglement [21]. We find that this happens whenever the sites i and291

i + 1 are not connected by a nearest-neighbour bond. Since we have chosen super-sites292

and a numbering where i and i+ 1 are always connected (see Sec. 2.1), this problem does293

not appear in our computations.294

To strike a balance between accuracy and running time, we can limit the bond dimen-295

sion per subspace to χsub,SU(2) ∼ 300−600, rather than limiting the total bond dimension.296

This ensures that the largest matrix is at most χsub,SU(2) × χsub,SU(2) and the duration of297

the remaining propagation can be estimated. The downside is that the resulting χSU(2) at298

each site does not in general correspond to the χSU(2) lowest singular values and has to be299

seen as an order-of-magnitude estimate. A benchmark of this approach for the numerically300

solvable C20 is given in Appendix A. Table 3 shows the parameters that were used in the301

thermodynamic calculations.302

The relevant quantities are the partition function303

Zβ =
〈
β
∣∣β〉, (4)

the internal energy304

E (β) = 〈H〉β = Z−1
β

〈
β
∣∣H∣∣β〉, (5)

the specific heat per site (or per spin):305

c (T ) =
C (T )

L
=

1

L

∂E

∂T
=

1

L
β2
[ 〈
H2
〉
β
− 〈H〉2β

]
, (6)

and the zero-field uniform magnetic susceptibility306

χ =
1

L
lim
B→0
∇B ·M =

1

L
β
[ 〈

S2
〉
β
− 〈S〉2β

]
, (7)
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χsub,SU(2) χSU(2) χeff

300 ∼ 2000 ∼ 16000
400 ∼ 3000 ∼ 20000
600 ∼ 4700 ∼ 36700
1163 3000 ∼ 13600
1507 4000 ∼ 17500

Table 3: Parameters of the thermodynamic calculations. For an explanation of the bond
dimensions, see Tab. 1. The underlined values were fixed.

where M is the magnetization at a given external field strength B and the Hamiltonian307

is changed to H → H −B · S, with the total spin S:308

M = 〈S〉B,β = Z−1
B,β

〈
β = 0

∣∣S e−β(H−B·S)
∣∣β = 0

〉
. (8)

While the specific heat could be exactly calculated using the squared Hamiltonian average309 〈
H2
〉
β
, in practice this becomes quite expensive at every β-step, so we use a numerical310

differentiation of E (β) with spline interpolation instead.311

4.2 Specific heat312

The result for c (T ) is shown in Fig. 8 and is compared to smaller molecules that exhibit a313

two-peak structure: For the truncated tetrahedron they are so close to each other that they314

cannot be resolved, while being distinct for the dodecahedron. For C60, we find instead315

a high-T peak (around T ∼ 0.58) and low-T shoulder (around T ∼ 0.15 − 0.19). The316

high-T peak can be attributed to the energy scale given by J = 1 and is a general feature317

of Heisenberg chains [53,55,56]. The low-T peak can be attributed to the second scale of318

the energy gap. This can also be compared to the specific heat of the icosidodecahedron,319

which has three peaks [28,30,31]. The middle peak points to the presence of another gap320

in the region of low-energy states which is absent in the other systems.321

We recall that for a two-level system given by the Hamiltonian H = diag (0,∆), the322

specific heat has a Schottky peak at T/∆ ≈ 0.417. In other words, a maximum appears323

when the temperature is tuned to the middle of the gap ∆. This is roughly consistent324

with the gap values given in Tab. 1. The fact that we have a shoulder rather than a clear325

peak implies that several states of close energy contribute to c (T ), i.e. a comparatively326

high density of states close to the first excited state. In fact, we can see that as the bond327

dimension in the DMRG calculation is increased, we are able to better describe the low-328

lying states, leading to a flattening of a very shallow peak to a shoulder. Furthermore, we329

can say that the states in this vicinity must be singlets or triplets, since the quintet gap330

lies even higher (see Tab. 1).331

The icosidodecahedron has been called “kagomé on a sphere” [27], since both geome-332

tries have corner-sharing triangles, and several attempts have been made to relate the two333

systems to each other [30, 31]. The low-energy properties of the kagomé lattice are not334

entirely clear, however: Some results point to a gapped state with a singlet-triplet gap of335

0.13 and a very small neutral gap of ∼ 0.05 [18, 19, 57], others to a gapless phase [58–62].336

In the case of a molecule, a fair comparison should in any case be to a finite kagomé337

plaquette that has a finite-size gap.338

The low-temperature behaviour of the specific heat is consequently also very difficult to339

establish. What is well-established is the position of the main peak at T ≈ 0.67 [16,63,64]340

and a shoulder below it at T ∼ 0.1 − 0.2. At a very small T ∼ 0.01 another peak341
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Figure 8: Specific heat of C60 for different bond dimensions (Eq. 6). The grey vertical
lines indicate the triplet, singlet and quintet gaps with respect to the ground state. The
dotted vertical line indicates 0.417 times the lowest gap (triplet). For the parameters,
compare Tab. 3.

is found in a finite system which moves up to merge with the shoulder as the system342

size is increased [63], while tensor-network calculations directly in the thermodynamic343

limit show no such peak in the first place [64]. The shoulder below the main peak is344

remarkably similar to the shape that we obtain for C60. We also note that the main345

peak lies below T = 1 for both C60 and the kagomé lattice, while it is above T = 1 for346

the icosidodecahedron [28]. Since the specific heat is a function of eigenvalues only, we347

may wonder if the geometry of six triangles around a hexagon of the kagomé lattice leads348

to a similar eigenvalue distribution as for C60 (which has three pentagons around each349

hexagon) for singlet and triplet excitations that contribute around T ∼ 0.1− 0.2. On the350

other hand, the large number of singlets close to the kagomé ground state [65] is clearly351

better matched by the strongly frustrated icosidodecahedron.352

4.3 Spin susceptibilty353

Figure 9 shows the result for the susceptibility χ (T ). It can be interpreted in a similar way,354

the difference being that singlet states do not contribute anymore. Moreover, it is easy to355

show that for high temperatures, χ (T ) follows a universal Curie law χ (T ) ∼ 3/4 · T−1,356

while for T → 0 we expect χ → 0, since the ground state is a spin singlet and not357

susceptible to small fields. In between, χ (T ) should have at least one peak. We observe358

that it is positioned at a higher temperature for the truncated tetrahedron due to the359

larger singlet-triplet gap (see Tab. 2). The dodecahedron and C60, on the other hand, are360

remarkably close, though χ (T ) tends to be slightly larger for C60 and does not go to zero361

as fast for very small temperatures, which we ascribe to the smaller singlet-triplet gap.362

363

364
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Figure 9: Zero-field uniform magnetic susceptibility C60 (Eq. 7) for different bond di-
mensions. Parameters as in Fig. 8.

5 Conclusion365

We have presented a solution of the Heisenberg model on the C60 fullerene geometry. The366

spin-spin correlations in the ground state can be determined very accurately using DMRG367

and indicate that the C60 molecule is large enough not to be fully correlated across its368

full extent. The strongest correlations are found along an alternating path of hexagon369

and pentagon bonds, a consequence of the fact that the hexagons are not frustrated.370

Furthermore, for large distances, we find a deviation from the staggered sign pattern of371

an antiferromagnet.372

Most strikingly (and unlike smaller fullerenes), the first excited state is a triplet and373

not a singlet, indicating weaker frustration. This can be attributed to the large number374

of unfrustrated hexagon faces, suggesting that frustration is tuneable in small fullerenes375

as a function of their size. Still, we find that the ground state of C60 is disordered with a376

very short correlation length of ξ ≈ 1.2 ∼ 1.4.377

Thus, taking the point of view of the pentagons we can say that the frustration is378

significantly lowered because all the pentagonal faces are separated from each other by379

hexagons. On the other hand, taking the point of view of the hexagons we can say that a380

Néel-like state is prevented by the perturbing pentagonal faces, and one would need larger381

fullerenes to approach the honeycomb lattice limit.382

In terms of thermodynamics, we find a two-peak structure of the specific heat, similar383

to what is found for the dodecahedron or the kagomé lattice down to T ∼ 0.1 − 0.2.384

The low-temperature feature is very shallow for C60, forming a shoulder, which indicates385

relatively densely lying singlet and triplet excited states. The spin susceptibility shows a386

broad peak very similar to the dodecahedron, but approaches zero less rapidly for T → 0.387

All the properties of C60 are quite different from the icosidodecahedron, which is highly388

frustrated, with many low-energy singlet states, a non-degenerate first excited singlet and389

triplet, as well as a three-peak structure in the specific heat. On the other hand, we390

observe much similarity to the truncated tetrahedron: Most notably, the lowest excited391
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state is a triplet and the spin-spin correlations follow the same pattern of being stronger392

for the same-face hexagon and acquiring a mixed sign for large distances.393

We have not attempted to find out the spatial symmetry transformations of the lowest394

eigenstates, but can conclude that the ground state is non-degenerate, while the first395

excited singlet and triplet are degenerate, based on the breaking of spatial symmetries or its396

absence. Another open question is whether the frustrated pentagons can still measurably397

affect any properties of Cn in the large-n limit. DMRG is well equipped to answer these398

questions and solve the Heisenberg model for even larger n, or for fullerene dimers [66].399

Another system that is well-suited for DMRG is the encapsulation of magnetic rare-earth400

atoms by fullerenes or fullerene-like molecules [67–69], inasfar these can be simulated by401

the Heisenberg model.402

We also attempted to solve the full Hubbard model on the C60 geometry, but find that403

the variance per site is several orders of magnitude higher, so that one would require much404

more bond dimension at a higher numerical complexity of twice the local Hilbert space405

size, while probably still tolerating larger errors. An improvement that can bring us closer406

to the Hubbard case at half filling could in principle be achieved by including higher orders407

in 1/U . Up to O
(
U−3

)
, we have J = 4t2/U −16t4/U3 and a next-nearest-neighbour term408

J ′ = 4t4/U3 [70–72] which may again increase frustration. At O
(
U−5

)
a biquadratic term409

is induced whose inclusion would be quite difficult.410

Another intriguing question is how the properties of the undoped C60 are related to411

the results of Jiang and Kivelson [8] that show an attractive pair binding in the doped412

system. Such pair binding is also present for the truncated tetrahedron [37, 73], is weak413

for the cube [37], but absent for the dodecahedron [73]. This means that one has to study414

excitations that result from removing electrons within the t-J model, rather than flipping415

spins. One can hope to relate the attractive pair binding to a geometrical feature like the416

weak frustration (which C60 and the truncated tetrahedron have in common) and perhaps417

establish a picture that is analogous to the famous relation between resonating valence418

bond states and superconductivity [74].419
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A Specific heat of C20429

As a benchmark of the thermal DMRG algorithm, we calculate the specific heat of the430

dodecahedron and show the results in Fig. 10. While the ground state offers no challenge431

for DMRG and converges in a matter of seconds, the β-propagation is more demanding432

and we see that a high bond dimension is required to get the precise location and height433

of the low-temperature peak. However, even smaller bond dimensions are able to quali-434

tatively capture the general two-peak structure. The implication for C60 is that while we435
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Figure 10: Specific heat of the dodecahedron for different bond dimensions. The bond
dimension per subspace was limited to χsub,SU(2) = 300, 400, 500, 600, 800. The grey ver-
tical lines indicate the first 1000 eigenenergies relative to the ground state, En −E0. The
dotted vertical lines indicate the peak positions from Ref. [26]. To obtain the exact result,
we used the Kernel Polynomial Method [75] with 1000 lowest eigenstates, 1000 Chebyshev
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cannot claim that the finite-temperature results are numerically exact, since a much higher436

bond dimension may be required to achieve such precision, we expect that the qualitative437

behaviour should be captured as well.438

439
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