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Abstract

This is a review of selected topics from recent work on symmetry charges in asymptotically flat spacetime

done by the author in collaboration with U. Kol and R. Javadinezhad. First we reinterpret the reality con-

straint on the boundary graviton as the gauge fixing of a new local symmetry, called dual supertranslations.

This symmetry extends the BMS group and bears many similarities to the dual (magnetic) gauge symmetry

of electrodynamics. We use this new gauge symmetry to propose a new description of the TAUB-NUT space

that does not contain closed time-like curves. Next we summarize progress towards the definition of Lorentz

and super-Lorentz charges that commute with supertranslations and with the soft graviton mode.



1 Introduction

The BMS group of symmetries of asymptotically flat spacetime dates from the 1960’s [1] but its extension

to include dual supertranslations was discovered only much later [2], while the action of supertranslations on

phase space [3] or their interpretation as gauge symmetries [4] were studied only in the last two year. With

the benefit of a healthy dose of hindsight it is surprising that it took so long to discover all that, since gauged

supertranslations arise naturally from studying the same constraints on asymptotic dynamics that define the

BMS group, as we will see now.

The expansion in inverse powers of the radial coordinate r of an asymptotically flat metric is

ds2 = −du2 − 2du dr + r2

(
hAB +

CAB
r

)
dΘAdΘB +DACAB du dΘB +

2mB

r
du2 +DBCABdudΘA

+
1

16r2
CABC

ABdudr +
1

r

(
4

3
(NA + u∂AmB)− 1

8
∂A
(
CBDC

BD
))

dudΘA

+
1

4
hABCCDC

CDdΘAdΘB + . . . , (1)

where CAB is symmetric and traceless while the dots in (1) denote subdominant terms in 1/r. The Poisson

brackets derived from the Einstein action [5] show that an appropriate choice of dynamical variables is given by

the Bondi news NAB = ∂uCAB and the boundary graviton C∞AB . The Poisson brackets of the Bondi news are

{NAB(u,Θ), NCD(u′,Θ′)} = 16πGδCDAB ∂uδ(u− u′)δ2(Θ−Θ′), (2)

where δCDAB ≡ δCAδDB +δDA δ
C
B −hABhCD. The Poisson brackets of the boundary graviton depend on its definition.

The supertranslation charge is [6–8]

Q[f ] = Qh[f ] +Qs[f ],

Qh[f ] =
1

4π

∫
I+
du d2Θ

√
h f(Θ)Tuu, Qs[f ] = − 1

16πG

∫
I+
du d2Θ

√
h f(Θ)DADBNAB ,

Tuu =
1

8G
NABN

AB + lim
r→∞

r2TMuu, TM = matter stress-energy tensor. (3)

If both components of CAB were independent and all Poisson brackets were continuous in the limit u→ −∞ the

supertranslation charge would not generate coordinate transformations on the shears CAB : {Q,CAB} 6= LfCAB
(Lf = Lie derivative along the vector f). To solve this problem ref. [9] proposed to restrict the boundary graviton

to be pure gauge

C∞AB = (DADB +DBDA − hABD2)C. (4)

In complex coordinates, z, z̄, the two independent components of the shear are Czz and Cz̄z̄ = (Czz) so that

equation (4) becomes

C∞zz = DzDzC, C∞z̄z̄ = Dz̄Dz̄C, ImC = 0. (5)

The most general boundary graviton is parametrized by a complex scalar C. It is natural to think of the

condition ImC = 0 as a gauge fixing of the symmetry

C(Θ)→ C(Θ) + if(Θ), f(Θ) ∈ R. (6)

The generator of this symmetry is the dual supertranslation charge [2–4]

M(f) =
i

16πG

∫
d2zf(z, z̄)(Dz̄D

zCzz −DzD
z̄Cz̄z̄)

∣∣∣∣
u=−∞

. (7)
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So the dual supertranslation charge (7) arises naturally from relaxing the boundary condition ImC = 0. It is

always possible to introduce a gauge symmetry by adding gauge degrees of freedom that can be removed by a

gauge transformation, so the charge M(f) certainly exists. But if it is a gauge charge then it is either zero or

constant on any irreducible representation of the algebra of observables. The question that we will address next

is if anything is gained by introducing a gauge symmetry and removing it by the gauge fixing ImC = 0.

2 Taming Taub-NUT

An analogy with the Abelian Higgs model may help here. The degrees of freedom are a complex scalar φ and an

Abelian gauge field Aµ. The scalar potential U(φ) = λ(|φ|2 − v2)2 has minima at |φ| = v that break the gauge

symmetry. Whenever φ 6= 0 a good gauge fixing is given by the condition Imφ = 0 but not all regular solutions

of the classical equations of motion obey φ 6= 0. A famous example is the Abrikosov-Nielsen-Olesen (ANO)

string [10]. It describes a string extending along an infinite straight line. It is regular everywhere when the

fields have the following behavior at large and small radius (in cylindrical coordinates 0 ≤ r < +∞, ϑ ∼ ϑ+ 2π,

−∞ < z < +∞)

lim
r→+∞

Aθ = n, lim
r→+∞

φ = veinϑ, lim
r→0

Aθ = 0, lim
r→0

φ = 0. (8)

When we transform the ANO string to the gauge Imφ = 0 we create an unphysical singularity at r = 0, so in

this case Imφ = 0 is not a globally well-defined gauge. This analogy helps us to get a new prospective on the

Taub-NUT solution of Einstein’s equations.

The Taub-NUT metric is

ds2 = −f(r) (dt+ 2l cos θdϕ)
2

+
dr2

f(r)
+
(
r2 + l2

) (
dθ2 + sin2 θdϕ2

)
, (9)

where f(r) = (r2 − 2mr − l2)/(r2 + l2). Here m is the mass aspect and l is called the NUT parameter. The

Taub-NUT metric has two horizons located at r± = m±
√
m2 + `2. The Taub region is at r− < r < r+ while

the NUT region are the domains r > r+ and r < r−.

The Taub-NUT metric contains a string-like singularity along the axes θ = 0 and θ = π. It is possible to

remove the singularity in the “North” hemisphere 0 ≤ ϑ ≤ π/2 using the change of coordinates t → t − 2`ϕ,

which casts the metric into the form

ds2
N = −f(r)

(
dtN − 4l sin2 θ

2
dϕ

)2

+
dr2

f(r)
+
(
r2 + l2

) (
dθ2 + sin2 θdϕ2

)
. (10)

We can similarly remove the singularity in the South hemisphere π/2 ≤ ϑ ≤ π with the change of coordinates

t→ t+ 2`ϕ, resulting in the metric

ds2
S = −f(r)

(
dtS + 4l cos2 θ

2
dϕ

)2

+
dr2

f(r)
+
(
r2 + l2

) (
dθ2 + sin2 θdϕ2

)
. (11)

A globally regular solution is obtained by identifying the two metrics along the equator ϕ = π/2 up to a

diffeomorphism (which is a gauge transformation)

tN = tS + 4lϕ. (12)

Since ϕ is compact with a period of 2π then both tN and tS have to be compact with a period 8πl so the

solution contains closed timelike curves (CTSs).
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Promoting the symmetry (6) to a gauge symmetry we obtain an alternative construction of an everywhere-

regular solution (asymptotically) free of the CTCs curves due to eq. (12): instead of identifying the metric up

to a spacetime diffeomorphism we identify it up to a dual supertranslation symmetry CN = CS + if . For the

metrics in (10,11) we find [4]

CN = 8il log cos
θ

2
, CN = 8il log cos

θ

2
, f = −8l log tan

θ

2
. (13)

A few remarks are necessary here.

• The gauge symmetry we proposed is a conjecture. For Taub-NUT all components of the expansion of the

dual supertranslation charge in spherical harmonics are zero, except l = 0, 1. This is good, but not good

enough, because all components of a gauge charge must act trivially on observables. Yet at face value

there exist observables in general relativity that transform nontrivially under (6) –an obvious example is

the metric itself. In [4] we showed that the dual supertranslation charge (7) acts trivially on the S-matrix

and that the equations of motion of point particles in the limit r → +∞ are invariant under (6).

• A method to make dual supertranslations act trivially on the dynamical variables of general relativity is

to define the boundary graviton as

C∞zz =
A

2
lim

u→−∞

[
Czz(u) +D2

zD
−2
z̄ PCz̄z̄(u)

]
+
A

2
lim

u→+∞

[
Czz(u) +D2

zD
−2
z̄ PCz̄z̄(u)

]
. (14)

Here P = 1−Q, with Q the projection on the kernel of D2
z̄ while the proportionality constant A is fixed

to A = 1 by requiring continuity of the Poisson brackets {Czz(u), Cz̄z̄} in the limit u→ ±∞.

• It is an important open problem to define the dual supertranslation gauge symmetry everywhere in

spacetime instead of giving a definition valid only asymptotically, as we have done here. Needless to say,

this step is necessary to prove that CTCs and singularities are truly absent from Taub-NUT.

3 New Lorentz charges and open questions

The Lorentz charges do not commute with supertranslations. The l = 0, 1 harmonics of Q[f ] in eq. (3)

are standard translations, so they are not expected to commute with the generators of the Lorentz alge-

bra anyway. Supertranslations commute among themselves so they commute with spacetime translations.

Therefore, after quantization vacuum states are degenerate and are L2 function Ψ with argument {Clm|l >
1,−l ≤ m ≤ l}. The l > 2 harmonics shift the boundary graviton because of the commutation relation

δClm =
∑
L>1,−L≤M≤L fLM{QLM , Clm} = flm so a supertranslation generically transforms a vacuum, say an

eigenstate of Clm, into a different vacuum state. Because Lorentz transformations do not commute with super-

translations we find that therefore the definition of Lorentz charges, including angular momentum ~J is ambigu-

ous. This can be seen clearly by considering a vacuum with zero angular momentum, Ψ0. By definition ~JΨ0 = 0

but since [ ~J,Qlm] 6= 0 for l > 1, we also have other vacuum states Ψ = (1 +
∑
lm flmQlm)Ψ0. Each one of them

is of course as good a vacuum as Ψ0 but on them, generically, ~J(1+
∑
lm flmQlm)Ψ0 =

∑
lm flm[ ~J,Qlm]Ψ0 6= 0.

So, even the apparently innocuous question: “what is the angular momentum of the vacuum?” seems to have

no answer. Another route to discover that the angular momentum is not unambiguously defined in general

relativity can be found in [12].
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The next obvious question is whether a “better” definition of Lorentz charges exists. By better we mean

a definition that commutes with the l > 1 harmonics of supertranslations. In this section we will show that

for angular momentum such a definition exists and we will give an explicit construction of such a charge. It

should be possible to extend the construction to boost, but this is work in progress with R. Javadinezhad and

U. Kol [13]. We can do the construction quantum mechanically without particular complications, so from now

on we will use commutators instead of Poisson brackets.

The existence of an automorphism of the algebra of observables that acts as Lorentz transformations on the

radiative variables NAB and leaves supertranslations and boundary gravitons invariant was proven in [14]. The

argument given in [14] starts by imposing the desired action of Lorentz translations, parametrized by the vector

ξ. It is summarized by the following equations

[Q̃ξ, Nzz] = iLξNzz,

[Q̃ξ, Nz̄z̄] = iLξNz̄z̄,

[Q̃ξ, C] = 0,

[Q̃ξ, Q[f ]] = 0. (15)

The “improved Lorentz” defined in (15) commutes with supertranslations by construction. To verify that

definition (15) is consistent we must check that the Jacobi identity is satisfied. It is easy to see that the only

nontrivial equation to check is

[Q[f ], [Q̃ξ, C]] + [C, [Q[f ], Q̃ξ]] + [Q̃ξ, [C,Q[f ]]] = 0. (16)

Since Q[f ] and C commute to a c-number, eq. (16) is in fact satisfied.

A charge is an operator acting on a Hilbert space, so the construction reviewed above, which proves the

existence of an automorphism of the algebra of observables, shows that a charge may exist, but it does not

prove that it does. We will show that for rotations such a charge exists by explicitly constructing an angular

momentum operator that commutes with the supertranslations Q[f ] and the boundary graviton C. We will

leave the construction of Lorentz boost charges to [13].

We define the angular momentum as in e.g. [8]

Q(Y ) =
1

8πG

∫
I+−

d2Θ
√
hY A(Θ)NA, (17)

with DAY
A = 0. The derivative ∂uNA can be expressed in terms of the independent degrees of freedom using

the constraint following from the uA components of the Einstein equations

∂uNA = −1

4
DB

(
DBD

CCCA −DAD
CCCB

)
− u∂u∂AmB − TuA,

TuA = −1

4
∂A
(
CBDN

BD
)

+
1

4
DB

(
CBCNCA

)
− 1

2
CABDCN

BC + 8π lim
r→∞

r2TMuA. (18)

The derivative ∂umB can also expressed in terms of the independent degrees of freedom by use of the uu

component of Einstein’s equations

∂umB =
1

4
DADBNAB − Tuu,

Tuu =
1

8
NABN

AB + 4π lim
r→∞

r2TMuu, (19)
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where TMµν in (18,19) is the stress-energy tensor of matter. We will assume for simplicity that all asymptotic

degrees of freedom of our theory are massless, so that future null infinity I+ is a complete Cauchy surface, all

curvature tensors revert to the vacuum at u→ +∞ and limu→+∞NA(u) = 0. The last property together with

DAY
A = 0 allows the angular momentum to be rewritten as

Q(Y ) =
1

8πG

∫
I+
dud2Θ

√
hY A(Θ)

[
−1

4
DB

(
DBD

CCCA −DAD
CCCB

)
− TuA

]
. (20)

This is important for the next step, which leads to a definition of angular momentum satisfying the commutation

relations (16) and therefore independent of the arbitrary choice of vacuum made to arrive at eq. (20).

The first property needed to construct the charge is that NAB(u) commutes with the boundary graviton,

so [
∫ L
−L duNAB(u), C] =

∫ L
−L du[NAB(u), C] = 0 ∀L. 1. Next, we replace CAB everywhere in eq. (20) with

ČAB ≡
∫ u
−∞ du′NAB(u′). The replacement does not affect the term linear in CAB in (20) when the boundary

graviton obeys eq. (4), but it does affect the quadratic term present in TuA as per eq. (18). This redefined shear

commutes with the boundary graviton C∞ and with Qs[f ] –as NAB does too– but not with the supertranslation

Q[f ]. The redefined charge Q̌(Y ) commutes with C∞ but has the same commutation relations as Q(Y ) with

all radiative and matter variables. To get an operator that commutes with Q[f ] we “dress” radiative variables

and matter fields with the unitary operator U . It acts on the radiative variables NAB and matter fields φ in

TMµν as [15]

UNAB(u,Θ)U−1 = NAB(u− C(Θ),Θ), Uφ(u,Θ)U−1 = φ(u− C(Θ),Θ) (21)

The dressing, defined on any operator O by Ô = UOU−1 is obviously an automorphism of the operator algebra,

so all commutation relations obeyed by undressed operators are satisfied also by dressed ones. So in particular

[Q̂(Y ), N̂AB ] = iLYNAB and the commutator [Q̂(Y ), Q̂(Y ′)] satisfy the algebra of rotations. By replacing

everywhere in (20) CAB with ĈAB = UČABU
−1 we finally get a charge that acts correctly on dressed radiative

variables and matter fields but also commutes with C∞ and Q[f ]. Notice that a shift u → u − C(Θ) in the

variable of integration of (20) does not change the integral so we also have

Q̂(Y ) = Q̌(Y ). (22)

Even if it is not apparent from the definition given here, this formula agrees with the explicit invariant angular

momentum defined in ref. [16] as it will be shown in [13]. An explicit calculation detailed in ref. [13] also shows

that the value of Q̌(Y ) on the vacuum is zero, independently of the value of the soft variables. This property,

as well as an invariant definition of boosts, for which many of the simplifications used here do not work, will be

studied in the forthcoming paper [13].
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