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Abstract

We analyse the correlation function of the quantum curvature in complex
quantum systems, using a random matrix model to provide an exemplar of a
universal correlation function. We show that the correlation function diverges
as the inverse of the distance at small separations. We also define and analyse
a correlation function of mixed states, showing that it is finite but singular at
small separations. A scaling hypothesis on a universal form for both types of
correlations is supported by Monte-Carlo simulations. We relate the corre-
lation function of the curvature to the variance of Chern integers which can
describe quantised Hall conductance.
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1 Introduction

The quantum curvature €2, of an eigenstate of a quantum system (with index n) is an
object which characterises the sensitivity of the eigenfunction to variation of parameters of
the Hamiltonian. It plays an important role in the the dynamics of quantum systems |1-4].
In this paper we characterise fluctuations of the quantum curvature in generic complex
quantum systems (which have many energy levels and no constants of motion or Anderson
localisation effects). We analyse correlations of the quantum curvature in parameter space
using random matrix models [5,/6], which are applicable to generic complex quantum
systems upon application of a scaling transformation. We relate the correlation function
to statistics of the Chern numbers, which arise in the analysis of quantised conductance
phenomena.

The quantum curvature is defined for a system with a Hamiltonian H, which depends
upon at least two parameters (with the position in parameter space being denoted by
X = (X7, X2)). It may be defined for a non-degenerate level by writing

0, dX; AdXy = —itr |P,dP, AdP,| | (1)

where P, = |¢y,)(¢n] is the projection onto the eigenstate |¢,,) of H with index n. Several
dynamical applications of €2, have been discovered. Mead and Truhlar [1] showed that
when X is varied slowly, there is a component of the Born-Oppenheimer reaction force
which is proportional to the product of €2, and to the rate of change of parameters,
X. Related applications arise in solid-state physics [2,/3]. Berry [4] emphasised that
the integral of €2, over an arbitrary surface is proportional to a ‘geometric phase’ which
appears in adiabatic approximations to the wavefunction, and this is our motivation for
referring to €2, as a ‘quantum curvature’. Note, however, that €2, is identically zero if the
Hamiltonian can be represented by a real-valued matrix.

In the applications considered in [1,3/4], the parameter X is varied slowly as a function
of time. This can result in transitions between energy levels, so that the system will
evolve to a mixed state. In particular, near-degeneracies of levels will allow Landau-
Zener transitions between states |7], which results in a diffusive spread of the probability
of a given level being occupied [8]. For this reason we shall also consider a ‘smoothed’
curvature, Q. (E), involving a weighted average of {),, over an energy interval of length
centred at F:

Qa(va) = ZQn(X)ws(E - En(X))

X (2)

\2me

A Gaussian smoothing is preferred here because this is the kernel for diffusive spread over
energy levels. We assume pe > 1, so that many levels are included in the average, but
that ¢ is small compared to other energy scales in the system. Another motivation for
considering (). is that we shall see that the dependence of its statistics upon ¢ allows
inference about correlation of the {2, between different values of the level index, n.

It is known that quantum systems with many energy levels may exhibit universal
behaviour if there are no constants of motion other than the Hamiltonian, and no Anderson

w:(E) = exp(—E?/2¢?) .
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localisation effects . These universal properties are most conveniently computed using
random matrix ensembles [5/649]. We shall discuss the use random matrix models in section
There we review how random matrix approaches have been extended to systems where
the Hamiltonian depends smoothly on a parameter [10-15], and introduce (section a
hypothesis on the universal form of the correlation functions of the quantum curvature.
In order to compute this universal correlation function, we consider a random matrix
model in which the Hamiltonian depends smoothly upon two parameters. It suffices to
consider a model (introduced in section in which (©2) = 0, and for which the statistics
are homogeneous and isotropic in parameter space. For this model we investigate two
correlation functions

C(AE, X) =(Qu(Ey + AE, X)0.(Ep, 0))
where X = |X] (angle brackets denote expectation values throughout).

Thouless et al. [2] showed that 2, arises in an evaluation of the Hall conductance via
the Kubo formula, and that the the Hall conductance of a filled band is quantised by

arguing that
1

No=5- /B X 0,(X) (4)

takes integer values (where, in this case, the parameter X is a Bloch wavevector and
where the integral runs over the Brillouin zone). This topological invariant, known as the
Chern index [16]. The integral of €, /27 over any closed two-dimensional manifold is also
an integer-valued topological invariant. Later Thouless extended these results to show
quantised conductance in ‘sliding’ periodic potentials 3], using adiabatic approximations,
akin to those in [1], rather than the Kubo formula. We shall use our results on the
correlation function C(X) to compute the variance Var(V,,) of the Chern integers in our
model. We also argue that the correlation function of the Chern integers in complex
quantum systems is well-approximated by:

(NoNow) = (N} (No) = SVAR(ND) 26— Gt — 1] (5)

(we have (N,,) = 0 for our random matrix model). The Chern integers can change by +1
when energy bands become degenerate [17], and equation is consistent with the effects
of these degeneracies being uncorrelated between different levels.

While the general question of spectral statistics of systems depending on parameters
has been quite extensively studied, relatively little attention has been devoted specifically
to the statistical properties of the quantum curvature. In an early paper, Berry and
Robbins |18| studied semiclassical approximations for the curvature in systems with a
chaotic classical limit using Gutzwiller’s periodic orbit theory [19]. The expression for
the quantum curvature obtained in [18] is not rigorously defined, and while it has been
successfully applied to families of unitarily equivalent Hamiltonian [20], the semiclassical
curvature statistics of generic families is still unknown. While not dealing directly with
the curvature, Walker and Wilkinson [21] studied the related questions of the statistics of
degeneracies, where the curvature diverges, and Chern numbers in random matrix fields,
arguing that they are universal, and developing a scaling theory for them. Berry and
Shukla [2224] studied the single-point probability density function p(£2) of the curvature,
and showed that the distribution has a power law decay p(Q) ~ || =%/2 for || large. The
tails of the curvature distribution are dominated by near-degeneracy events, and the decay
exponent, determined by the codimension of the degeneracies, is small enough that the
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variance of the single-level curvature (Q?) is infinite, while the expectation value (€2) = 0
converges due to symmetry.

As a consequence of the broad distribution of €2,,, the single level correlation functions
Crom(X), m = n,n £ 1, which are finite for X # 0, diverge as X — 0. The smoothed
curvature correlation function C.(AE, X) is finite for all X, but fluctuations due to near de-
generacies make it singular at short separations with a discontinuous derivative at X = 0.
We calculate the contribution of near-degeneracy fluctuations to the two-point correlation
functions, which together with the one-point correlation function of the smoothed curva-
ture completely determines the short-separation behaviour of both the single-level and the
smoothed curvature correlation functions. This is the first main theoretical result of this
paper; the other main result is the scaling forms of the two types of curvature correlation
function that are conjectured to be universal. Both the short-distance and the scaling of
the correlations are compared with comprehensive Monte-Carlo simulations, that support
the theoretical prediction in the large-matrix-size limit.

In section 2l we describe and motivate the random matrix models that we use. Section
B] discusses our theoretical and numerical results on the correlation functions of the single-
level curvature €2,,. The analogous discussion for the correlation function of the smoothed
curvature ). is the subject of section [dl We consider the implications for Chern numbers
in section [p| estimating their variance and presenting an argument in support of equation
. Finally, section |§| discusses our conclusions and prospects for further studies.

2 Random matrix model

There is ample evidence for universality of the properties of complex quantum systems
(loosely defined as systems with many energy levels, which do not have Anderson localisa-
tion effects or constants of motion which are independent of the Hamiltonian) [5,9]. The
universal properties are manifest in spectral properties which involve small energy scales,
or equivalently in dynamical behaviour on long timescales. Hermitean random matrix
models of complex quantum systems, and have the attractive feature that they may be
used to compute the universal properties analytically [6].

Consider a Hamiltonian depending upon two parameters, X, and Xy (write X =
(X1, X2)). The quantum curvature €2, is a fundamental characterisation of the sensitivity
to parameters of the projection P, onto the level with index n. Following [4], we can
use perturbation theory to express {2, in terms of matrix elements of derivatives of the
Hamiltonian, and energy levels. This leads to the expression

Qn — Im Z a1I—Inm82flmn - aQFInmal]{mn

m#n (En o Em)2
(6)
— Z a1}In7718217[mn - 8217[7171181Elvmn
m#n (En B Em)Q .

Here E, are eigenvalues of the Hamiltonian H (X1, Xo) with eigenvectors |¢,) and 0; Hppm,
are matrix elements of derivatives of the Hamiltonian in its eigenbasis:

O

Equation (@ will be the basis for our calculations of the statistics of the curvatures, €,,.
In order to evaluate @ we require information about statistics of both energy levels and
matrix elements.
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2.1 Distribution of energy levels

The statistics of the energy levels F,, for complex quantum systems have been very ex-
tensively studied [5,6,9]. It is hypothesised that short-ranged statistical properties of the
spectrum, such as the probability distribution of the spacing of adjacent levels, are uni-
versal once the energy levels are transformed to levels with unit mean spacing. If N(E)
is a smooth function representing the mean integrated density of states, the transformed
levels are e, = N(FE,). In many cases the complex system is close to a classical limit,
and the integrated density of states can be derived from the Weyl rule [19]. There are
three universality classes of bulk level statistics, which are exemplified by three Gaussian
random matrix ensembles. Individual matrices of our model have the Gaussian unitary
ensemble (GUE) statistics, because the curvature is odd under time reversal, and therefore
zero in the other Gaussian ensembles (orthogonal and symplectic) that obey time-reversal
symmetry. Equation @ shows that (2, diverges if F,, approaches degeneracy with either
the level above or below. For this reason the probability distribution function of the sep-
aration of two levels will play a central role in our analysis. If p(E) = dN/dFE is the mean
density of states, then the PDF of the normalised separation S = (E,+1 — Ey)p is well
approximated by the Wigner surmise: for the GUE this takes the form

PS) = %52 exp(—482 /) (8)

The exact form of the distribution is complicated but when the matrix size is large it tends
to a universal limit, which for S <« 1 has the asymptotic approximation

P(S) ~ 7;252 : (9)

2.2 Distribution of matrix elements

In order to compute the statistics of the €, we also need information about the statistics
of the matrix elements of derivatives of the Hamiltonian with respect to its parameters. In
complex quantum systems, theoretical arguments and numerical experiments |10] support
the use of a model where the off-diagonal matrix elements @ are statistically independent
of each other, independent of the energy levels, and approximately Gaussian distributed,
with mean value equal to zero. To complete the characterisation of the distribution of
these elements, we must specify their variance. The variance is a function of the energies
of the two states, and we define

1
p(E+ AE/2)p(E — AE/2)

X Z Z aiHnmamenws(E —(En + Em)/2)w€(AE — (En — En)) (10)

or;(E,AE) =

(where the energy window function w, is used instead of a Dirac delta function, so that a?j
has a smooth dependence upon its arguments). If the complex quantum system has a good
classical limit, the covariance afj (E,AFE) can be calculated using the method described
in [25]. Because @ implies that small energy separations dominate the sum, it is the
value of U?j (E,AFE) with AE — 0 that determines the statistics of the curvatures (2,.
We can always make a locally linear transformation of the coordinates (Xi, X3) so that
the covariance o is a multiple of the identity, with diagonal elements denoted by 2.
For convenience, the universal form for the correlation functions that we consider in this

ij
work will be computed in such an isotropic coordinate system. However, for the purposes
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of understanding the dimensions of expressions it is convenient to distinguish between
derivatives with respect to X; and X,. For this reason we shall express the statistics of
(),, in terms of two variances

0f = (|0iHn+1,/%) - (11)
where the angular brackets indicate an average over m: in terms of equation ([10]), we
identify 0? = 0% (E,0).

2.3 Projection into a two-level subspace

In the case where two levels become nearly degenerate, we can approximate €2, by a
projection onto a two-level subspace: in section [3| this approach will be used to determine
the behaviour of C'(X) analytically in the limit X — 0. Write

R X OH
HX)=Ho+ Y X (12)
=12 0Xi
and the matrix elements are
i=1,2

(where the states |¢,) are eigenstates at X = 0). Assume that the levels n, n + 1 are
nearly degenerate at X = 0, with the separation E,.; — E, being much smaller than
other gaps in the spectrum. In this case the curvature close to X = 0 is determined by
the projection of the Hamiltonian into the two-level subspace spanned by |¢,,) and |¢p,11).
The projection of the Hamiltonian into this subspace is represented by a 2 x 2 matrix,
which can be written in the form

3
H(X1,X2) =) hi(X,Y)7 (14)
1=0

where the &; are Pauli matrices ,

(1) (1) - (38) o

with 79 equal to the 2 x 2 identity matrix. Because adding multiples of the identity does not
change the eigenvectors (and therefore leaves the curvature invariant), we assume without
loss of generality that hg = 0. Close to the origin the projected Hamiltonian is then

3
H = ey + Z Z WiiTi X (16)

i=1j=1,2
Here g P oh
e= LTy = _ (17)
2 0X; X1=X2=0
The W;; are related to the matrix elements of the derivatives as follows:
0;H — 0;H,
lej = Re[aan_H,n] s WQJ‘ = Im[aan_H,n] , W3,j — Zindlntl SR (18)

2

In a complex system, the matrix elements 0;H,,, appear random. For a system with a
complex Hermitean Hamiltonian, we expect that Re 0;Hy 41, Im 0;Hy41,, are indepen-
dent Gaussian variables, with mean equal to zero and variance af /2. The diagonal matrix
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elements need not have a mean value equal to zero (as evidenced, for example, by semi-
classical calculations on chaotic quantum systems, presented in [14,26]). However, using
arguments about unitary invariance of the ensemble of Hamiltonians, it is argued that the
variance of the diagonal elements is Var[0; Hy,11.n+1] = Var[0;H, ] = o2 [10,26]. Because
these elements are independent, W3 ; = [0;Hp—1n+1 — 0;Hy n]/2 has variance a? /2. We
conclude that the W; ; are Gaussian random variables with mean value zero and variance

g

w2y =% (19

2.4 Universality hypothesis for curvature correlation

The universality hypothesis is most extensively supported for energy level statistics [5,9],
but there is also strong evidence that it holds for parametric dependence of energy levels
[10-15], and by extension it should also hold for dynamical properties [8].

In the case of a system which depends upon a single parameter X, it is argued [10] that
the eigenfunctions depend very sensitively upon parameters, so that correlation functions
decay on a characteristic length scale AX upon which the eigenfunction lose their identity.
Furthermore, perturbation theory indicates that (¢,|0H /80X |¢ns1)AX ~ AE, where AE
is the typical separation of energy levels. Because the typical size of the matrix element
is <¢n|8ﬁ /OX |¢ni1) ~ o, and the typical spacing of levels is AE ~ p~1, we expect that
correlation functions will be functions of the dimensionless variable poc AX, and this is in
accord with numerical investigations [104|12].

In order to define the quantum curvature, however, we must consider a Hamiltonian
which depends upon more than one parameter. Let us assume that our system has two
parameters, Y = (Y7,Y3) say, and that the matrix elements of derivatives with respect to
the Y; variables have a covariance Z?j (defined by analogy with equation ) We can
apply a smooth transformation of the parameter space to produce a set of transformed
coordinates X = (X7, X»), so that small displacements in parameter space close to Y are
described by a unimodular 2 x 2 matrix M:

60X =M §Y , det(M)=1. (20)

We shall calculate the correlation functions in these transformed coordinates, X = (X1, X3).
We choose the transformation matrix M so that the covariance matrix 62 (with elements
,?]) is a multiple of the identity matrix, with diagonal elements equal to ¢). If these
diagonal elements are denoted by o2, then M satisfies

g

2 — WI62NT = 2NINT |, ot — det(S2) . (21)

Now consider the form of the correlation function in the isotropic coordinates, Cpp(X),
which must be a function of o1, o9 and p. Dimensional considerations imply that C,, is
proportional to o303p*. In terms of the transformed variables, in which the covariances
are diagonal (aizj = 028;;), the correlation function takes the form

O(X) = o"p' f(poX) (22)

where f(-) is a universal function. We shall determine f(x) numerically, and compute its
asymptotic behaviour as x — 0 analytically. In the original variables, where the coordinate
dependence is not isotropic, we have

C(Y) = det(S2) f (pldet(S2) /4|31y ) (23)

7
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The arguments leading to are immediately applicable to off-diagonal correlation func-
tions Cj, n+s with fixed s, so that

Crns(X) = U4P4fs(PUX) ) (24)

with a set of universal scaling functions fs(x).
The smoothed curvature correlation function depends on the energy separation AFE in
addition to the parameter separation X. In section [5| we show that C is proportional to

0203p3 /3 and argue that its scaling form is
732 4 53

C(AE,X) — 7 53

9(poX,AE/e) (25)

in the isotropic coordinates (the dimensionless coefficient is chosen so that g(0,0) = 1)
and calculate explicitly the small-z asymptotics of g(z,y) for any y. Furthermore we shall
determine g(x,y) numerically for all x and y, and confirm that it is indeed universal.

2.5 Random matrix fields on the two sphere

We performed our numerical studies on a field of M x M random matrices taking values
on the two-sphere. At each point, the statistics of the matrix field are representative of
the Gaussian unitary ensemble (GUE), as defined in [6]. By choosing the distribution that
is homogeneous and isotropic, the model is fully specified by (H) = 0 and the two-point
matrix element correlation function

(Hyi(X) 5 (X)) = e(0)3iad (26)

where 0 is the angle subtended by the points X and X’ on the sphere; ¢ is a smooth
function of # with ¢(0) = 1 and ¢/(0) = 0, making the random matrix field realisations
smooth functions on the sphere with variance equal to unity.

The simulation results shown below were all obtained for a Gaussian correlation func-
tion ¢(f) = exp(—62/262), where 6 is a parameter of the model. For this model, the
covariance coefficients o;; of the matrix element variances form a diagonal matrix, so that
the coefficients in equation are 01 = o9 = 1 /0~ The single point distribution im-
plied by is standard GUE, so that when M is large the mean density of states is
well-approximated by Wigner’s ‘semicircle law’ [6],

AM — FE
p(E)=—7—, |E|<2M, (27)

and zero otherwise.

3 Correlation function of the curvature

3.1 Small-separation asymptotics

Consider the form of the correlation function C'(X) in the limit as X — 0. In this limit
the correlation function diverges, due to near-degeneracies, and we can calculate its form
using the projection into a two-dimensional sub-space, as considered in subsection

The quantum curvature 2-form, denoted by €, is described by a single coefficient Q,,
when expressed in terms of the coordinates (X1, X5):

Q=0,dX; AdX, . (28)
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We can also write Q using the coefficients h; (defined in equation 1} as coordinates, in
which case it is expressed in terms of components €2y,

QO = > Qe dhy Ady
jjékk

= Oyadhi Adhy + Qi3dhy A dhg + Qo3 dhg Adhg . (29)

The quantum curvature for a two-level system H = Z?Zl h;&; was computed by Berry [4]:
the coefficients are 5
D i1 Eigkhi

Q= 37 (30)
2 (S, 2]
that is h L h
Qo= =2 Qug= 2 Qg = - 31
S e 17 e T T e 3
where ||h]| = \/h? + h3 + h3.
To express the curvature in terms of the (X1, X2) coordinates, note that
dhi = Y Wi;dX; (32)
j=1,2
so that
Q = ng(Wdel + ngng) A (ngXm + WQQdXQ)
+ ng(WHXm + WleXQ) A (ngXm + WdeXQ)
+ QQg(WQlXm + WQQdXQ) A\ (ngXm + WdeXQ) . (33)
That is
Qp = Q1203 + Q1302 + 9230, (34)
where

©1 = Wy Wao — WooWsy , Og = W11 Wag — WiaWsy , O3 = Wi Way — WiaWay . (35)

We have assumed that h; = he = 0 at (X1, X2) = (0,0). The curvature in the (X1, X2)
space at (X,0) is then
W31 X)03 — W91 XOy + W1 XO
0 (X) = (e + W3 X)O3 21:X02 + Wiy 3/12 . (36)
2 [(e+ W31.X)?2 + W3 X2 + W} X?]

We now wish to compute the correlation function Cpp,(X) = (2,(0)Q,(X)) where the
expectation value averages over the distributions of the W;; and the e. We shall average
over the Wj; o, then over the W; 1, and finally over e. We find the following results for
averages over Wja:

o3 o3 o3
<@1®3>Wi2 = *?2W11W31 5 <92@3>Wi2 = ?QW21W31 > <®§>W12 = %[ng + W121] .
(37)
At this stage it is convenient to change the W;; variables to polar coordinates (R, 0, ¢)

W31 = Rcos, Wy = Rsinflcos¢p, Wip = Rsinfsing (38)
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so that, noting that the W;; are independent Gaussian distributed variables with zero
mean and variance JJQ» /2, the probability element for these variables is

1
dP = W exp[—(Wfl + W221 + Wg)zl)/U%]dW11dW21dW31
1
1
= R exp(-R*/0f)sin0dRdIdg . (39)
3207

Now consider the average of £, (X)Q,(0), evaluated using ([36). First we average over Wjs
using equation :

o5 Wil(e + War X) — Wi X]
8¢2 [€2 + 2¢RX cos + R2X?2]3/2
o5 Whl(e + WarX) — W X]
8€? [€2 + 2¢RX cos§ + R2X?2]3/2

o3 R?sin? 0e

(2. (0)20(X))wi, =

+

= . 40
82 [e2 4 2¢RX cos ) + R2X2]3/2 (40)
Now introduce a dimensionless parameter
X
ao B (41)
€
and compute the average of equation over the W;;:
1 0.2 00
Qn(0)20 (X)W, ~ —=—25 | dRR'exp(—R?*/o})F(\ 42
O X ), ~ =2 [ AR (- R FO) (42)
where 34
g sin
F(\) = de : 43
*) /0 [14 2\ cos 6 + A2]3/2 (43)
Introducing another dimensionless variable
€
= 44
n=ox (44)
we have
002X, = =G (45
A N Chl
where ~
G(p) = / dA M exp(—p®A2)F(N) . (46)
0

Finally, we average over €, and multiply by a factor of two because the near-degeneracy
can be with either a level above or one below. Hence the contribution to the correlation
function from nearly degenerate levels is

47312 ploios
3 X

(0 ()2 (0)) ~ /0 TG (47)

This is the dominant contribution to the curvature correlation as X — 0. Evaluating the
integrals, we find

T sin3 0 1 0<A<1
F(\) = do = 48
) /0 [1 42X cos 6 + A2]3/2 { % A>1 (48)

10
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then integration over p then \ gives

2 2
47312 pPoy 05

This is consistent with the expected universal scaling form, equation , with
fla) ~ 4732 3 (50)

as ¢ — 0.

The arguments leading to extend easily to describe the short-range correlations of
the curvature of adjacent levels. For small separations both C},,, and Cy,—_1 ,, are dominated
by events of near degeneracy of E,_1 and F,, but since 2,1 and (,, are anticorrelated
during these events, C),_1 , must have the opposite sign, and since C,,,, receives an inde-
pendent equal contribution from near degeneracies of E,, and E,, 1 while C},_1 , does not,
the latter should be also be smaller by a factor of two in absolute value. It follows that

2132 PPy o3
3 X

Croin(X) ~— (51)

and therefore f; () ~ —2m%/2/3z in the limit as  — 0 (where fy(x) was defined in equation

(24))-

3.2 Universality of correlations at arbitrary separations

We investigated the correlation function C(X) numerically for our M x M GUE ran-
dom matrix field defined on a unit 2-sphere, as described in subsection [2.5] For this
purpose we sampled the joint probability distribution of two matrices H (Xy), H (X2)
subtending angle 6 on the sphere, as well as their X derivatives. Since different matrix
elements of H (X) are independent (except for those related by hermiticity), it is suffi-
cient to sample independent realisations of the six-variable joint Gaussian distribution
for H(Xl)jk, H(Xg)jk 8aH(X1)jk, 85H(X2)jk (a, 8 =1,2), foreach 1 < 5 <k < M to
sample a single realisation of Q(X;) and ©(Xz2). The six-by-six covariance matrix of the
matrix elements and their derivatives is straightforwardly determined from the matrix-
element correlation function ¢(#) and its derivatives.

This process was repeated for a number ng of equally spaced angular separations
between zero (exclusive) and 6,,. The respective values of ng and 6,,, were 120 and 0.187
for M = 30, 120 and 0.157 for M = 50, 100 and 0.17 for M = 100, and 80 and 0.087 for
M = 150. The curvature correlation functions reported here were calculated by averaging
the product of the curvatures of matrices randomly sampled in this manner. We used 10°
realisations of 30 x 30 matrices, 5 x 10° realisations of 50 x 50, 10° of 100 x 100, and 5 x 10*
realisations of 150 x 150 matrices.

Figures [I] and [2] show the numerical results in the form of a data collapse for the scaled
diagonal and nearest neighbour correlation functions f and f; (defined as in equations
and ) as a function of the scaled separation x. Different colours correspond to different
choices of M, 0, and energy level range. In figure [1] we vary the energy interval of the
spectrum, and in figure |2l we show data for two different values of the correlation length 9~,
combining data for different values of the matrix dimension M in each plot. The quality of
the data collapse is a strong indication that the functions f(z) and fi(x) are universal, and
the short distance asymptotics, equations and , are confirmed by the matching
of the dashed horizontal lines at 473/2/3 and —27%/2/3 with small 2 calculations of z f(z)
and x f1(x) (respectively). The solid curves are quadratic-exponential fits

of () = (47%/%)3) exp|—(az + baz?®)] , zfi(z) ~ (—21°/%/3) exp|—(arz + bi2?)] , (52)

11
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xfs(X)

8-

6 "-'x‘.%. :M=50 M =150
LT : iM=30 . iM=100

_4__'

Figure 1:  Plot of zfs(z), obtained by the scaling transformation of the shifted
single-level correlation function Cy, ,,4+5(0), s = 0, 1, calculated numerically by Monte-Carlo
simulations for the Gaussian random matrix field model with Gaussian matrix element
correlation functions and correlation length 6 = 1 for several matrix sizes M and energy
level groups. Each data set shows the average of z fs(z) over a range of four (M = 30) to
twenty (M = 150) consecutive energy levels as a function of z. Positive (negative) values
correspond to s = 0 (s = 1), respectively, and s = 1 data points are shown in lighter
hue. The colours next to each value of M represent, from bottom to top, the following
energy-level intervals: 16 <n < 17,19 <n <20, 22 <n < 23, 25 < n < 26, for M = 30;
26 <n <28,30<n<32 34 <n<36,38 < n <40 for M =50; 51 < n <55
58 <n <£62,65 <n <69 72<n< 76, for M =100; and 76 < n < 84, 89 < n < 96,
101 <n <108, 113 < n <120, for M = 150. Each energy-level interval is averaged with
the corresponding levels below the midpoint of the spectrum.

with a = 3.56, b = 2.03, a1 = 3.43, by = 3.55; we use the fits to estimate the value of
integrals which will play a role in section

I—/ dz z f(z) =~ 1.69 , Il——2/ dz = fi(z) ~ 1.58 . (53)
0 0

4 Smoothed curvature correlation functions

We present analytical results on the correlation function of the smoothed curvature,
C(AE, X), in the cases where X = 0 (subsection[d.1]) and X nonzero but small (subsection
, before presenting our numerical results on this correlation function in subsection
We defined Q.(F,X) as a local, smoothly weighted average of the €, in an interval of
width € centred on F, by equation , its correlation function C(AE, X) by . We ex-
pect the dependence of C on the energy base point Fy is weak, and only through the mean
density of states in the universal part of the smoothed curvature correlation function.
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Figure 2: Points show scaled diagonal and nearest neighbour single-level correlation
functions, as described in figure [1} except that data are averaged only over the central
range of energy levels (as detailed in figure , but for different matrix element correlation
lengths, confirming universality. The colours next to each value of M represent, from
bottom to top, # = 1/2, 1 (M = 100) and 6 = 1,2 (M = 150). The dashed lines and solid
curves have the same meaning as in figure

4.1 One-point correlations

Unlike the single-level curvature correlations, the correlations of the smoothed curvature
do not diverge as X — 0, but degeneracies do play a significant role by causing the
X-dependence of the correlation function to have a discontinuous derivative. First we
consider the correlation function at X = 0, before looking at its behaviour for small X in
section

In this subsection we calculate C(AFE,0), starting from equation @ Using equations
and @, and noting that (2, is real, we have

C(AE,O)—<ZZwa (Eo+AE—En)we(Eo—Ew) Y Y (En — B m&m Em/)2>

n n/ m#n m’;én’
(54)

where
Knmkzl = [alHanZHmn - a2I_Inmal}1mn] [alHkla2Hlk - aQHklalHlk]* . (55)

Now consider how to compute (54]) in random matrix theory. Note that H 81H and 02H
are independent GUE matrices. Because H is statistically independent from 0; H and
GUE is invariant under unitary transformations, the matrlx elements 0;H,,, in the eigen-
basis of H have standard GUE statistics with variances 07 = (|8; Hpm|?). Furthermore,
averaging over 0; H,,, is independent of the average over H which is implemented as an
average of the eigenvalues, F,,. The expectation value of K,,;; for the GUE model is

<Knmkl> = 20’%05 [5nk6ml - 6nl(5mk] (56)
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so that

C(AE,0) = 20§a§< > Zws(Eo + AE — Ey)w.(Ey — E,)
nn’ 5mm - 5nm/5mn’
x%m; B, — B, (En/_Em’)2>

- za%a§< > we(Eo+ AE — En) Y [we(Eo — En) — we(Eo — Em)]m> . (57)

m#n

The largest terms in the m sum are those with m close to n. For such m we can approxi-
mate the difference of the window functions by its Taylor series

we(Bo— Br)—w.(Eop— Ey) = w;(EO—En)(En—Em)—%w;’(EO—En)(En—Em)QJr- .. (58)

since pairs of terms with m = n £+ m cancel, the sum is dominated by terms of O({(E,, —
En)"2)m, where (), stands for averaging over the distribution of E,, with E, fixed.
This expectation value is finite because level repulsion implies that the probability that
|Ep — Ey| < € is ~ ¢ for € small. The fast decay of ((E,, — E,)"2)., as |m — n| increases
makes the terms with m close to n dominant, so that the higher order terms in (58))
negligible, so that

C(AE,0) = 01022<w5 Ey+ AE — E,,) ”(E—En)Sn> (59)

where we define )
5, = <> | (60)
"\ R,
Since .S, is dominated by the smallest separations of energy levels, we expect that .S, ~
Ap*(E,) where A is a dimensionless constant. The value of A can be deduced from a

‘virial relation’ derived by Dyson (see discussion in [6]), who showed that the eigenvalues
of a M x M GUE matrix satisfy

M
DD A(Ba—En)%) =M(M-1). (61)
n=1m#n

Combining this with Wigner’s semicircle law for the mean density of states we find

2> 2

Sp ~ 7[p(En)] (62)
Hence, in the limit where pe > 1
27'['2 2 23 & "
C(AE,0) ~ — 5 0103p dEw.(E + AE)w(E)
> 63
/2 p3olal 1 1 (AE\? o AE? (63)
= — —=|— Xp |——— | -
6 &3 2\ ¢ P72
Note that this is consistent with the universal scaling form, equation , with
1 (AE\? AE?
9(0,y) [ 2< . > exp[ 452} (64)
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Figure 3: Plot of the numerically calculated (dots) scaled one-point smoothed-curvature
correlation function g(0,y), obtained by from C(0, AE), as a function of y = AE/e,
compared with the exact large-M asymptotic (64) (solid curve). Dots of different colours
correspond to different matrix sizes M, and several energy window widths €, all centered
at £y = 0. The colours next to each value of M represent, from bottom top, data
for e/ = 0.33,0.42,0.5,0.67 (M = 30), 0.31,0.38,0.5,0.63 (M = 50), 0.25,0.3,0.4,0.5
(M = 100), and 0.23,0.38,0.54,0.69 (M = 150).

4.2 Two-point correlations at small separations

We can also consider the parameter dependence of the correlation function of the smoothed
curvature, namely C(AF, X)), following a similar approach to that leading to equation .
The value of Q.(F) diverges at degeneracies, but (Q2) is finite. The change in the
correlation function close to X = 0 is determined by nearly-degenerate levels. If E, is
close to E,41, the change in 2. due to varying the parameters by a small displacement

(X,0) is
AQ(X) = wl(E - E,) (AE(X)Q,(X) — AE(0)2,(0)) (65)

where AE(X) = Epy1(X) — E,p(X), and where Q,(X) is given by equation (36), which
we write in the form

(6 + W31X)@3 — W1 X0y + W11 X6,

0, (X) = 4 : 66
(X) AEX)] (66)
where O; were defined in equation ([33)), and

AE(X) =2[(e+ W31 X)? + W2 X2 + W2 X?V/2 . (67)

We shall consider the quantity Q.(E + AFE,0)[Q:(E, X) — Q(E,0)] = Q.AQ.. This is

% (6 + W31X)@3 — W91 X0y + W11 X064 B %
€ (e + W3 X)2+ W2 X2+ W2 X2 €
(68)

QAQ. = v (E+AE—-E,)w' (E—-E,)
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Figure 4: Same as figure [3] but with correlation functions calculated numerically for
energy windows centered at Ey/v M = 0,1/2,1,3/2 and fixed width e = 7 /4.

Taking the expectation value of Q.AQ.(X), using the same approach and notations as
before in section [3] we find

(AQA(X)Q)w,, = wi(E + AE — E,)w.(E — E,)

1% RZsin20 B R2sin20
2 |e2+2RXecosf + R2X?2 €2
2

\f0162

& 1
.3
0 -1
></0 St [1+2Acos@+)\2 ]

8m3/2p3 o303 X
3

X / dp p° / d\ Mexp(=A2p?)F(N) (69)
0 0

(AQ(X)Qe)w,, = wi(E 4+ AE — Ep)wl(E — Ep)—=25— / dR R*exp(—R?/0?)

(AQL(X)0.) = wl(E + AE — E,ul(E - B,)

where we have taken expectation values with respect to the W;q, then W;; then e (using
the same polar coordinates for the W;, the same definitions of A and p as section , and

T 1
A= [ df sin®6 —
F /0 S [1 + 2\ cos 6 + N2 (70)
This yields
8mi/24
(AQ(X)ke) = —5—[we(E - E )2 plolos X (71)
where - - )
A _/ dp ,ﬁ/ dX M exp(—A2p2)F(\) = —% . (72)
0 0

Finally, we multiply by two, to account for near degeneracies with the level below as well
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as the level above, and sum over energy levels. Noting that

e 9] 2 2
Zw:‘(E+ AE — En)wl(E — En) ~ 5 P / dE E? exp(—2E7> exp [_M]

meb J_ g2 2e2
p 1 1 (AE\? AE?
S R P (et -
4/ &3 [ 2 < £ AP | T2 (73)
We then have
w3 o252 1 /AE\? AFE?
C(AE,O)—C(AE,X)Nﬁp 82,’ 2 po1 X 1—5 (6) exp [_462} (74)

This is consistent with C(AFE, X) having the universal scaling form where the scaling
function g(z,y) satisfies

2 3/2
sten) 2, (1= ) w520 (1 - Tolal + o<x2>> . (75)

If the €, were statistically independent, we would expect to find C ~ e~'. The fact
that C ~ €73 is indicative of cancellation effects due to correlations between the Q,, as
described by equation (51)).

4.3 Correlations at arbitrary separations and two-variable universality

We used the data from the Monte-Carlo simulations described in subsection [3.2]to evaluate
the smoothed curvature correlation function C(AE,X) for the parametric GUE model
defined in subsection We examined the scaling of the correlation function as we
varied several paramters: the matrix dimension M, the width ¢ of the energy interval, the
position in the spectrum of the states included in the averaging (which affects the density
of states, p), and the correlation length 6 of the random matrix model.

The scaled numerically calculated single-point correlation function ¢(0,y) (where y =
AFE/e) is shown in figures |3|and |4 overlaid with the large-M exact asympototics . The
numerical results indeed approach the universal correlations when M increases, but the
convergence is slow, with a few percent deviation even for M = 150. In figure [3] we vary
the width of energy interval, £, confining the average to states close to the centre of the
spectrum. In figure 4] we vary the position of the averaging interval within the spectrum
(keeping € = 1/4 fixed).

The slow convergence as M increases is also observed in figures [] [6] and [7, where
the numerically calculated g(z,y) is plotted as a function of z = opX for a few values of
y = AE/e. All of these figures show data for a wide range of different values of M: in
figure [5| we vary e (keeping close to the centre of the band), in figure |§| we vary the energy
interval (keeping ¢ fixed), and in figure |7 we compare results for different values of 6. The
slow convergence as M increases obscures the scaling collapse of the discontinuity of slope
of g(z,y) at x = 0. In order to illustrate the validity of , the slowly converging part is
removed from the correlation function in figures 8 [0, and [I0] These show the subtracted
correlation function g(z,y) — ¢g(0,y), with slopes at x = 0 that agree well with the small-x
singularity of , and exhibiting a very good data collapse confirming the universality
of the scaling function g.
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Figure 5: Plot of the numerically calculated scaled smoothed-curvature correlation func-
tion g(x,y), obtained by from C(X,AFE), as a function of x = po X, for a few fixed
values of y = AF/e. Horizontal dashed lines show the exact large-M asymptotic (64))
of g(0,y) for the corresponding y, and also serve to label the data sets. Curves of dif-
ferent colours correspond to different matrix sizes M, and energy window widths ¢, all
centered at Ey = 0 with fixed correlation length 6 = 1. The gaps at x = 0 between the
data curves and the dashed lines decrease for larger M, as seen in figure Collapse of
the data curves confirms two-variable scaling and universality. The colours next to each
value of M represent, from bottom to top, data for /7 = 0.33,0.42,0.5,0.67, (M = 30),
0.25,0.38,0.5,0.63 (M = 50), 0.3,0.4,0.5,0.6 (M = 100), and 0.38,0.54,0.69,0.85 (M =
150) except that ¢/m = 0.31,0.38,0.46,0.54 for y = 1.6, M = 150, and that for y = 3.2,
e/m =0.17,0.25, (M = 30), 0.13,0.19,0.25,0.31 (M = 50), 0.15,0.2,0.25,0.3 (M = 100),
and 0.15,0.23,0.31 (M = 150).

5 Statistics of Chern numbers

Finally, we show how our results on the correlation function of the quantum curvature can
be used to make deductions about statistical fluctuations of Chern numbers. The Chern
number can be expressed as an integral of the quantum curvature: see equation (|4))

First, let us estimate the variance of N,. In our random matrix model it is clear
that (N,) = 0. We consider the case where the parameter space is isotropic, so that the
correlation function C'(X) is independent of the direction of X. In this case, we write
01 = 09 = 0. Taking the second moment of , and using the fact that when M > 1
the support of the correlation function is small compared to the extent of the parameter
space, we have

(N2) ~ %AU%QI , I= /OOO dx = f(x) (76)

where A is the area of the closed surface of the parameter space, and f(x) is the function
defined in equation . Numerical evaluation of the integral in (76)) (quoted in equation
(53])) gives Z ~ 1.69. This result is compatible with the results of , (based upon data
obtained with less powerful computers) which suggest that Z ~ 1.5.

We can also use our results to support the hypothesis about correlations of Chern
numbers contained in equation . We define (by analogy with equation ) a smoothed
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Figure 6: Numerical data and horizontal lines as in [5] except that data are shown for
energy windows based at Fy/ VM =0,1 /2,1 and one width for each M and y; the energy
window width is equal to the second in the list of € values shown in figure [5| for the
corresponding M and y.

Chern number )
Ne(E) =Y Nyw.(E — Ey) (77)

where E, is an average of E,(X) over the Brillouin zone. We can express the variance of

the smoothed Chern number in two ways. First, express this in terms of the correlation
function of Q. (F, X):

(N2 = (271r)2/dX/dX’ (Q.(E,X)Q.(E, X))

A

dX X
oz [ 4X C0.[X) (78)
where A is the area of the Brillouin zone, and in the final step we assume that the cor-

relation is homogeneous, isotropic and short-ranged. The scaling form for the correlation
function C, equation , indicates that

Tk Apo?

N2y ~
(N 12 &3

£

(79)
where & is an integral of the scaling function:
oo
K :/ dz z g(x,0) . (80)
0
Alternatively, we can compute the variance of the smoothed Chern number directly, if we

assume that the correlation function of Chern numbers is given by . (This hypothesis
is equivalent to assuming that the Chern number increments associated with gaps are
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Figure 7:  Numerical data and horizontal lines as in |5, except that data are shown
for energy single energy window based at Eg = 0, but for different correlation lengths
6 =1/2,1 (M = 100) and § = 1,2 (M = 150). The energy window widths are equal,
respectively for each M and y, to the second in the list of £ values shown in figure

uncorrelated). Using we infer that

(N2) =" we(E - En)w.(E — Epn)(NoNpy)

n

~ Var(N,) > we(E — Ep) [wg(E —E,) — %wE(E —Ep_1) — %wE(E — Ept1)

(81)
Expanding the term in square brackets about E — F,,, we have:
1
(N2) ~ (N?) Z w.(E — Ey) [Qw;(E — E,)(Eni1 + Eno1 —2E)
n
1
- Swl(E — Ey)[(En, — En)2 + (BEn-1 — En)Q] . (82)

4

The terms E, 41 + E,—1 — 2E,, fluctuate in sign so that the sum containing w.(F — E,,)
as a factor vanishes. The remaining term gives

(NI (AE?)p
8/me3

where (AE?) is the mean-squared nearest neighbour spacing. On the basis of the univer-
sality hypothesis discussed in section [2| we expect (AE?) = v/p?, where 7 is a universal
dimensionless constant. Using the ‘Wigner surmise’ distribution for AFE, equation ,
yields v = (S?) = 37/8 and hence, using , we obtain

3T  Apo?
NZ) = . 84
which is consistent with equation (79). The fact that (N2) is proportional to £~ is,

therefore, an indication that the fluctuations of Chern numbers on successive levels are
anticorrelated, as described by equation .

(83)

€

2 2 [e%¢]
2y ~ - ERBED, [™ g wmput(e) =
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Figure 8: Plot of the same data as in figure showing differences between scaled
smoothed curvature correlation function g(x,y) at different points, and the correlation
function ¢(0,y) at the same point, as a function of = for several fixed values of y. Straight
dashed lines show the small-z asymptotic of g(z,y) for the corresponding y, and also
serve to label the data sets. Compared to figure [5| the curves exhibits significantly better
data collapse, and good agreement with the slopes of the dashed lines.

6 Conclusion

We have analysed the universal fluctuations of the adiabatic curvature €2, for complex
quantum systems, as exemplified by a parametric GUE model. We find that the corre-
lation function C(X) of , has a X! divergence as X — 0, which is a consequence of
near-degeneracies (equations , ) We also investigated the correlation function nu-
merically, and found that it is consistent with the scaling hypothesis of parametric random
matrix theory (equation (22)), as illustrated by figures

Because of Landau-Zener transitions these near-degeneracies spread the density matrix
over a range of eigenstates, implying that we should also consider a smoothed curvature,
Q.. We find that the correlation function C of Q. scales as e~ (equation (63))), and has
a discontinuous first derivative at X = 0, described by equations and . The
numerical evaluation of the smoothed correlation function is illustrated in figures

We used these results to analyse the variance of the Chern integers. Their variance is
given by , which is consistent with the surmise made in [21], and we present evidence
that their correlation function is described by .
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Funding information OG thanks the German-Israeli Foundation for financial support
under grant number GIF 1-1499-303.7/2019.

References

[1] C. A. Mead and D. G. Truhlar, Detrermination of Born-Oppenheimer Nuclear Motion
Wave-functions including Complications due to Conical Intersections and Identical
Nuclei, J. Chem. Phys., 70, 2284-96, (1979), doi: 10.1063/1.437734.

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs M, Quantised Hall
conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 405-8,
(1982), doi: 10.1103/PhysRevLett.49.405.

[3] D.J. Thouless, Quantisation of Particle Transport, Phys. Rev. B, 27, 6083-87, (1983),
doi: 10.1103/PhysRevB.27.6083.

[4] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc.
Lond, A392, 45-57, (1984), doi: 10.1098 /rspa.1984.0023.

[5] C.E. Porter, editor, Fluctuations of Quantal Spectra, Statistical Theories of Spectra:
Fluctuations, Academic Press, New York, (1965), ISBN-13 : 978-0125623506.

[6] M. L. Mehta, Random Matrices, 2nd ed. Academic Press, New York, (1991), ISBN:
9781483295954.

[7] C. Zener, Non-adiabatic crossing of energy levels, Proc. Roy. Soc. Lond. A, 137,
696-703, (1932), doi: 10.1098 /rspa.1932.0165.

[8] M. Wilkinson, Statistical Aspects of Dissipation by Landau-Zener Transitions, J.
Phys. A, 21, 4021-4037, (1988), doi: 10.1088/0305-4470/21/21/011.

[9] A. Mirlin, Statistics of energy levels and eigenfunctions in disordered systems, Physics
Reports, 326, 259-382 (2000), doi: 10.1016/S0370-1573(99)00091-5.

22



SciPost Physics

0.2 04 06 08 10

Figure 10: Plot of the same data as in figure [7] subtracted as explained in figure
Straight dashed lines have the same significance as in figure [§]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

E. J. Austin and M. Wilkinson, Statistical Properties of Parameter-Dependent
Chaotic Quantum Systems, Nonlinearity, 5, 1137-50, (1992), doi: 10.1088/0951-
7715/5/5/006.

B. D. Simons and B. L. Altshuler, Universal velocity correlations in disordered
and chaotic systems, Phys. Rev. Lett., 70, 4063-4066 (1993), doi: 10.1103/Phys-
RevLett.70.4063.

A. Szafer and B. L. Altshuler, Universal correlation in the spectra of disordered
systems with an Aharonov-Bohm flux, Phys. Rev. Lett., 70, 587590, (1993), doi:
10.1103/PhysRevLett.70.587.

C. W. J. Beenakker and B. Rejaei, Random-matrix theory of parametric correlations
in the spectra of disordered metals and chaotic billiards, Physica A: Statistical Me-
chanics and its Applications, 203, 61-90, (1994), doi: 10.1016,/0378-4371(94)90032-9.

M. Wilkinson and P. N. Walker, A Brownian Motion Model for the Parameter De-
pendence of Matrix Elements, J. Phys. A: Math. Gen., 28, 6143-60, (1995), doi:
10.1088,/0305-4470/28 /21 /017.

H. Attias and Y. Alhassid, Gaussian random-matrix process and universal para-
metric correlations in complex systems, Phys. Rev. E 52, 4776-4792, (1995), doi:
10.1103/PhysRevE.52.4776.

S-S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math.,
99, 48-69, (1974), doi:10.2307/1971013. JSTOR 1971013.

B. Simon, Holonomy, the quantum adiabatic theorem, and Berry phase, Phys. Rev.
Lett., 51, 2167-70, (1983), doi: 10.1103/PhysRevLett.51.2167.

M. V. Berry and J. M. Robbins, The geometric phase for chaotic systems, Proc. Roy.
Soc. Lond. A, 436, 631-61, (1992), doi: 10.1098/rspa.1992.0039.

23



SciPost Physics

[19]

[20]

[21]

[22]

23]

[24]

[25]

M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York,
(1990), ISBN-13: 978-0387971735.

J. M. Robbins, The Geometric Phase for Chaotic Unitary Families, J. Phys. A: Math.
Gen., 27, 1179-89, (1994), doi: 10.1088/0305-4470/27/4/013.

P. N. Walker and M. Wilkinson, Universal Fluctuations of Chern Integers, Phys. Rev.
Lett., 74, 4055-8, (1995), doi: 10.1103/PhysRevLett.74.4055.

M. V. Berry and P. Shukla, Geometric phase curvature for random states, J. Phys.
A: Math. Theor., 51, 475101, (2018), doi: 10.1088/1751-8121/aaebdd.

M. V. Berry and P. Shukla, Geometry of 3D Monochromatic Light: Local Wavevec-
tors, Phases, Curl Forces, and Superoscillations, J. Opt., 21, 064002 (2019), doi:
10.1088/2040-8986 /ab14c4.

M. V. Berry and P. Shukla, Quantum metric statistics for random-matrix families, J.
Phys. A: Math. Theor., 53, 275202, (2020), doi: 10.1088/1751-8121/ab91d6

M. Wilkinson, A Semiclassical Sum Rule for Matrix Elements of Classically Chaotic
Systems, J. Phys. A: Math. Gen., 20, 2415-2423, (1987), doi: 10.1088/0305-
4470/20/9/028.

M. Wilkinson, Random matrix theory in semiclassical quantum mechanics of chaotic
quantum systems, J. Phys. A: Math. Gen., 21, 1173-90, (1988), doi: 10.1088/0305-
4470/21/5/014.

24



	Introduction
	Random matrix model
	Distribution of energy levels
	Distribution of matrix elements
	Projection into a two-level subspace
	Universality hypothesis for curvature correlation
	Random matrix fields on the two sphere

	Correlation function of the curvature
	Small-separation asymptotics
	Universality of correlations at arbitrary separations

	Smoothed curvature correlation functions
	One-point correlations
	Two-point correlations at small separations
	Correlations at arbitrary separations and two-variable universality

	Statistics of Chern numbers
	Conclusion
	References

