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Abstract

We present calculations of the time-evolution of the driven-dissipative XYZ
model using the infinite Projected Entangled Pair Operator (iPEPO) method,
introduced by [A. Kshetrimayum, H. Weimer and R. Orús, Nat. Commun. 8,
1291 (2017)]. We explore the conditions under which this approach reaches
a steady state. In particular, we study the conditions where apparently con-
verged calculations may become unstable with increasing bond dimension of
the tensor-network ansatz. We discuss how more reliable results could be
obtained.
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Introduction

Tensor network approaches have provided a route to efficient numerical simulations across
a wide range of physical problems [1–4]. In one dimension, matrix product states (MPS)
were originally introduced in the context of one-dimensional quantum ground states [5,6].
They have subsequently been extended to finite temperatures [7,8], and to open quantum
systems and density-matrix evolution [9, 10]. Such methods have been very fruitful in
exploring the nonequilibrium steady states (NESS) of driven-dissipative one-dimensional
systems, using matrix product operators (MPO) [11–21]. These methods can also be
extended beyond one dimension, either by mapping a finite two-dimensional lattice onto
a one-dimensional chain [22]—see Ref. [21] for a driven-dissipative implementation—or
via the projected entangled pair state (PEPS) algorithm [23–26]. The PEPS approach
represents the two-dimensional lattice directly as a tensor network [3, 4], and allows a
direct simulation of an infinite (translationally invariant) lattice (iPEPS).

In a significant development, Kshetrimayum et al. [27] presented results adapting the
iPEPS algorithm to simulate open quantum systems on infinite 2D lattices. By using an
infinite projected entangled pair operator (iPEPO) algorithm, they calculated the NESS
of the dissipative XYZ and transverse field Ising models — i.e. finding the steady state of a
many-body Lindblad master equation. The ability to routinely apply such methods to two-
dimensional open quantum systems is potentially very powerful. While one-dimensional
systems have shown a rich variety of collective behaviour, symmetry-breaking phase tran-
sitions generally do not occur in open one-dimensional systems, while they can in two
dimensions. Several alternative approaches to approximately simulate two-dimensional
open systems have been proposed, including cluster mean field theory [18], corner space
renormalization [28,29], and neural network states [30–34]. However, so far, these methods
have generally been restricted to small systems (or small clusters), making it challenging
to extract critical behavior. As such, the ability to routinely use iPEPO could be ex-
tremely powerful to numerically explore phase transitions and critical behavior in driven
dissipative systems.

Here, we explore in detail the stability of the iPEPO algorithm, introduced by Kshetri-
mayum et al [27]. We find that while at short times the algorithm shows reasonable time
evolution, the behaviour at long times varies. In particular, we find that the algorithm
only reaches a steady state in some parameter regimes, and close to dissipative critical
points [35] it can fail to reach a steady state. The regimes where we fail to find a steady
state correspond closely to the regimes where Ref. [27] found a larger value of their pa-
rameter ∆, which measures how close the state they find is to a steady state. Moreover,
we find that for some parameters, increasing bond dimension of the iPEPO representation
does not systematically improve the accuracy of the results. On the contrary, it can in
some cases destabilize a fixed point obtained at a lower bond dimension. We also suggest
some possible alternatives to the simple-update iPEPO algorithm, which could help to
alleviate the problem.

Our paper is organised as follows. In Sec. 2 we apply the iPEPO algorithm to cal-
culate NESS of the dissipative XYZ model in 2D, and analyse whether a steady state
can be found. Section. 3 concludes with some comments on alternative tensor network
approaches for computing NESS in 2D. We also provide an extended appendix, Sec. A,
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which summarises our implementation of the iPEPO algorithm; this implementation can
be found at [36]. Since the core of the iPEPO and iPEPS algorithms is similar, we also
present results benchmarking our implementation against the prototypical applications
of iPEPS: the ground states of the transverse field Ising model and the hardcore Bose-
Hubbard model.

Application to the dissipative XYZ model

In this section, using the iPEPO implementation described and benchmarked in Ap-
pendix A, we discuss finding the NESS of the dissipative spin-1/2 XYZ model on an
infinite square lattice. The specific density-matrix equation of motion that we consider is:

∂tρ = −i [HXY Z , ρ] +
κ
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where σx,y,zj are Pauli matrices at lattice site j, σ± = 1
2 (σx ± iσy), and Jx,y,z are spin-spin

coupling constants.
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Figure 1: The magnetization order parameter Mx of the dissipative XYZ model as a
function of coupling strength Jy, for Jx = 0.5, Jz = 1 and D = 4. Energies given in units of
κ = 1. The red highlighted areas indicate parameter regimes where the iPEPO algorithm
fails to reach a steady state. (a) Results computed using timesteps δt = 10−1, 10−2 run
until a steady state is found. (In the red regions, the run is stopped after N = 1000 steps
with δt = 10−1 followed by N = 2000 steps with δt = 10−2.) (b) Results calculated using
a large timestep δt = 10−1 and stopping after N = 1000 steps.

We begin by computing the time evolution of the dissipative XYZ model for the same
parameters considered by Ref. [27]. Figure 1(a) shows magnetization averaged over the
two sites i = A,B of iPEPO unit cell, Mx = 1

2(| 〈σxi=A〉 | + | 〈σxi=B〉 |), as a function of
coupling strength Jy using iPEPO bond dimension D = 4. We find that iPEPO algorithm
only reaches a steady state for some values of Jy, while in the red highlighted areas no
steady state is found—the results continue to change with time. Where a steady state is
found, our results closely match Ref. [27]. The red regions in our figure—where no steady
state is reached—correspond to points where the Kshetrimayum et al [27] report a large
error in their steady state result. As observed in [27], these regions occur near the critical
points, where one can expect correlation lengths to diverge. Figure 1(b) shows that if we
use a large timestep, δt = 10−1, and deliberately stop the simulation early — i.e. after
N = 1000 steps — one can reproduce results similar to those presented by Kshetrimayum
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et al [27] in the red region. However, because the simulation was stopped artificially early,
the results in Fig 1(b) do not correspond to an actual steady state, and also inevitably
contain significant Trotter errors due to the large timestep size. As we discuss further
below, the failure to reach a steady state that we observe occurs specifically in the SU
time evolution. That is, it is completely unaffected by the corner transfer matrix (CTM)
contractions needed to compute observables. As a result, none of the results in the rest of
this paper depend on the CTM contraction or environment bond dimension.

We have encountered similar issues of failing to reach a steady state in other parameter
regimes of the dissipative XYZ model, as well as for other systems such as the dissipative
transverse field Ising model in 2D. This raises important question about the practicality
of the iPEPO algorithm as a tool to find the NESS of open quantum systems. In the
following, to keep our discussion concise, we will restrict our attention to the dissipative
XYZ model. Our goal below will be to understand when the iPEPO algorithm does and
does not reach a steady state, focusing entirely on the SU time evolution, by studying the
relative change of singular values. To measure this, we define

εΛ =
|Λn − Λn−1|max

δt |Λn|max
, (3)

in terms of the set of singular values Λn at timestep n. As such, εΛ is a measure of
the largest change of singular value, rescaled for ease of comparison between different
timesteps.

Effects of simulation protocol
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Figure 2: The evolution of εΛ (from Λ[U ] as defined in Eq. (3)) at Jy = 1.2 (where no
steady state is found) and Jy = 1.5 (where a steady state is found), using timesteps (a)
δt = 10−1, (b) δt = 10−2, (c) δt = 10−3. Energies given in units of κ = 1.

In Figs. 2(a-c) we plot εΛ against simulation step, for timestep sizes δt = 10−1, 10−2, 10−3

respectively. We show both Jy = 1.2, in the parameter regime where iPEPO fails to reach
a steady state (blue line), and Jy = 1.5, where a steady state is found (green line). At
Jy = 1.5, we observe clearly that εΛ quickly decreases, indicating that we approach a
steady state. However, at Jy = 1.2 we see εΛ undergoes noisy oscillations throughout the
time evolution, for all timestep sizes, never approaching zero.

We next explore if using different initial conditions affects whether a steady state is
found. Figures 3(a-c) show that the evolution of εΛ at Jy = 1.2 remains noisy for various
initial conditions: a random number state (brown line), a state with all spins pointing
‘down’ (red line), a state with all spins pointing ‘up’ (orange line), and a state where each
spin has components 〈σx〉 = 1, 〈σy〉 = 1, 〈σz〉 = −1 (green line). Other initial conditions
that we have tested (not shown here) produced a similar behaviour as in Fig. 3.

Another possible way to choose initial conditions for the problematic parameter regime
is an adiabatic parameter sweep. We first calculate the NESS for a value of Jy where

4



SciPost Physics Submission

0 250 500 750 1000step
10 6
10 4
10 2
100

IC-1
IC-2

IC-3
IC-4

0 250 500 750 1000
step

10 6

10 4

10 2

100 (a)

0 500 1000 1500 2000
step

10 3

10 2

10 1

100

101

(b)
0 1200 2400 3600 4800

step
10 3
10 2
10 1
100
101
102

(c)

Figure 3: The evolution of εΛ at Jy = 1.2 using different initial conditions (IC): a random
number state (“IC-1”, brown line), an empty state with all spins pointing ‘down’ (“IC-
2”, red line), a full state with all spins pointing ‘up’ (“IC-3”, orange line), and a state
where each spin has components 〈σx〉 = 1, 〈σy〉 = 1, 〈σz〉 = −1 (“IC-4”, green line), for
timesteps (a) δt = 10−1, (b) δt = 10−2, (c) δt = 10−3. All other parameters are the same
as in Fig. 1. Energies given in units of κ = 1.
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Figure 4: The evolution of εΛ at selected values of Jy during the adiabatic parameter
sweep from Jy = 1.4 (where a steady state exists) to Jy = 1.2 in steps of ∆Jy = 0.01 and
using timesteps (a) δt = 10−2, (b) δt = 10−3. All other parameters are the same as in
Fig. 1. Energies given in units of κ = 1.
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iPEPO does reach a steady state, then change Jy in small steps, using the steady state
at each value of Jy as the initial state for the next value. This strategy can bypass highly
entangled intermediate states where a very high D may be needed. In our case, we start at
Jy = 1.4, and gradually reduce Jy in steps of ∆Jy = 0.01 to Jy = 1.2. Figures 4(a,b) show
the evolution of εΛ at selected values of Jy during the parameter sweep, with timesteps
δt = 10−2, 10−3 respectively. We observe that for Jy ≥ 1.33, εΛ shows a decreasing
trend, indicating that iPEPO finds a steady state, while for Jy ≤ 1.32 we again find noisy
oscillations. Smaller timesteps δt and smaller sweeping steps ∆Jy (not shown) lead to the
same conclusion.
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Figure 5: The evolution of εΛ at Jy = 1.2 for selected values of κ during the adiabatic
parameter sweep from a strong dissipation regime with κ = 8 to a weak dissipation regime
with κ = 1 in steps of ∆κ = 0.1 and using timesteps (a) δt = 10−2, (b) δt = 10−3. All
other parameters are the same as in Fig. 1. Energies given in units of κ = 1.

A similar strategy is to start from a strong dissipation regime (i.e. large κ) where we
know the steady state is approximately factorizable, and then perform an adiabatic sweep
to lower κ. Figures 5(a,b) show the time evolution of εΛ at Jy = 1.2 for selected values
of κ, in a sweep starting from κ = 8 reducing κ in steps of ∆κ = 0.1, with timesteps
δt = 10−2, 10−3 respectively. Similarly to the Jy sweep, we find a steady state exists for
κ ≥ 5.2, but beyond this we again find noisy oscillations. To summarise this section, for
those points where a steady state is not found, this result appears to be robust to a variety
of initial states and simulation protocols.

Effects of bond dimension

Figure 6 presents the effect of changing iPEPO bond dimensions D. Panels (a-c) show the
time evolution of εΛ at Jy = 1.2 for timesteps δt = 10−1, 10−2, 10−3 respectively. Each
panel shows simulations performed using different bond dimensions 3 ≤ D ≤ 6; no steady
state is found for any of these values of D. Panels (d-f) show the same quantities but for
Jy = 1.5, where a steady state is known to occur at D = 4. In this case, notably, while
iPEPO reaches a steady state for D = 3, 4, no steady state is found for D = 5, 6. To
explore this further, Panels (g-i) show the behavior at Jy = 1.2 for larger bond dimensions
10 ≤ D ≤ 15. We observe that for D = 12 a steady state is found for timesteps δt =
10−2, 10−3. However, increasing the bond dimension further to D = 14, 15 leads again to
noisy oscillations. These results suggest that while larger bond dimension may eventually
yield a meaningful steady state, spurious steady states can arise at small bond dimension
which then change as the bond dimension increases further. In addition, we note that
while we can run the SU time evolution for D = 15, the CTM calculations for this bond
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Figure 6: Evolution of εΛ with bond dimension at Jy = 1.2 (a-c,g-i) and Jy = 1.5 (d-f).
Left column (panels a,d,g) are for timestep δt = 10−1, middle (b,e,h) δt = 10−2, and right
(c,f,i) δt = 10−3. Panels (a-f) show D = 3, 4, 5, 6, while panels (g-i) showD = 10, 12, 14, 15.
All other parameters are the same as in Fig. 1. Energies given in units of κ = 1.
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dimensions would require over 128 GB of RAM, making it challenging to find observables
without a support of high performance distributed-memory calculations and quantum
symmetries. As noted above, the results shown in Fig. 6 do not depend on any CTM
contraction, so this issue does not arise within the calculations we present.

Conclusion

From the results of the last section, we may conclude that the SU iPEPO algorithm at
low bond dimensions is not always stable, reaching a steady state only in some parameter
regimes, typically away from dissipative critical points. In other regimes, the algorithm
failed to reach a steady state for all bond dimensions D that we could access. Moreover,
in some cases, even when a steady state is found for a given value of D, this may change
as the bond dimension is increased, switching instead to noisy time-dependent dynamics.
While we believe that there exists a value of D allowing for a faithful representation of the
steady-state density matrix (when spatial correlations decay exponentially), this study is
unable to conclude what typical value of the bond dimension is needed for a prototypical
driven-dissipative lattice model. Overall, the results shown here suggest that a significant
caution is required when extending the SU iPEPS algorithm in 2D to Liouvillian evolution.
Below we discuss a number of alternative approaches which may be employed instead.

One alternative approach is to adapt the Full Update (FU) iPEPS algorithm [3,24,26,
37] to the Lindblad time evolution of mixed states. For closed systems, the FU scheme [3,
24,38] achieves an optimal truncation by using a variational update scheme that computes
the full environment at every step. Since the Liouvillian evolution involves non-Hermitian
operators, an issue here is to find a reliable non-Hermitian algorithm that could substitute
the alternating least-squares scheme used in the two-site variational minimization in the
standard FU algorithm. There are, however, recent works on time evolution in closed
systems [39–42] for which FU presents problems with stability, meaning SU can be more
accurate. However, very recent work by McKeever and Szymanska [43] has shown that a
variation on full update—full environment truncation—can indeed improve the stability
of iPEPO.

A closely related idea is to consider a global variational search algorithm that targets
the null eigenstate |ρ〉 of either Liouvillian L or a Hermitian positive semidefinite object
L†L; such approaches were successfully used in one dimension [15, 16], and extension of
these methods to iPEPO has been discussed in Ref. [44]. Solving the variational prob-
lem with L†L is particularly appealing since it allows reusing the standard and robust
Hermitian optimization algorithms. However, even when L =

∑
l Ll,l+1 contains only

nearest-neighbour terms, the product L†L =
∑

l,r L
†
l,l+1Ll+r,l+r+1 will introduce highly

nonlocal terms. While this is manageable in 1D [15], for 2D the nonlocal couplings may
easily lead to unfeasibly large bond dimensions. This may perhaps be adressed by trun-
cating the range of these nonlocal terms as has been discussed in 1D [45]. In addition,
variational optimization iPEPO approaches would require computationally expensive ten-
sor contractions involving both the iPEPS representing |ρ〉 and the iPEPO representing
either L or L†L.

A more promising approach, also discussed in Ref. [44] may be to extend novel vari-
ational iPEPS techniques for ground state calculations in 2D introduced in Refs. [46, 47],
optimizing iPEPS tensors using tangent space methods or by solving a local generalized
eigenvalue problem. Notably, both approaches avoid the need to construct a full PEPO
for the Hamiltonian. Adapting these algorithms to either L or L†L could dramatically
reduce the computational costs that limit the practical use of variational iPEPS methods.
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The global variational optimization could also offer a potentially much more robust way of
finding the NESS of L than one could hope to achieve with the standard iPEPS algorithm
relying on two-body updates.
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Implementation of iPEPO algorithm

As noted above, iPEPO is a simple extension of the iPEPS algorithm to nonequilibrium
steady states of Lindblad superoperators. As with other extensions of tensor network
methods [10] the main idea is to frame the density matrix evolution through superoperators
applied to vectorized many body density matrices, which we denote |ρ〉]. In this appendix
we first briefly summarize the iPEPS algorithm and then discuss its extension to open
quantum systems. While these algorithms are standard and have been described in full by
Orús in [3], we summarise them here to provide a self-contained description of the method
that we apply to the open quantum systems.

Summary of the iPEPS algorithm

The basic idea behind PEPS is to parameterize the quantum state tensor Ψk1,k2,...,kN by
a two-dimensional array of interconnected rank-5 tensors (see Fig. 7). Each individual
tensor represents a single site of the quantum many-body system, with one vertical leg
corresponding to the local Hilbert space of dimension d, and four in-plane legs correspond-
ing to the bonds between different lattice sites. We denote the bond dimension of PEPS
by D, which limits the amount of entanglement that can be captured by PEPS.

For translationally invariant systems, one may use the infinite PEPS (iPEPS) ansatz [24]
working directly in the thermodynamic limit. We can construct an iPEPS by choosing a
unit cell and representing its sites with tensors. We will consider problems with a square
unit cell. Since we use a Trotterised time evolution that propagates pairs of sites, we will
need only two on-site tensors A and B to define iPEPS. We next describe the two main
ingredients of the iPEPS approach: the imaginary time propagation of iPEPS and the
calculation of the environment needed to extract observables.

9



SciPost Physics Submission

Λ[U]

Λ[D]

Λ[R]

Λ[U] Λ[D]

Λ[L]

Λ[R] Λ[L]

Λ[L]

Λ[D]

Λ[R]

Λ[U]

Γ[A]

Γ[B]

Γ[B]

Γ[A]

L

U
R

D

Figure 7: The iPEPS time evolution using Eq. (5) involves propagating four different
bonds ‘U’, ‘D’, ‘R’, and ‘L’, indicated by different colours. The SU algorithm uses Vidal
form with Γ[A,B] site tensors and Λ[U,R,D,L] diagonal bond matrices to represent iPEPS
with a two-site unit cell.

Time evolution: simple update

Time evolution can be performed by the Simple Update (SU) method, which follows essen-
tially the same main steps as the imaginary time infinite Time Evolving Block Decimation
(iTEBD) algorithm [48–51]. In two dimensions we perform Trotter decomposition by split-
ting our Hamiltonian into four terms HU , HD, HR and HL, describing respectively the
‘U’ (up), ‘D’ (down), ‘R’ (right), and ‘L’ (left) bonds of the lattice:

H = HU +HD +HR +HL (4)

The first order Trotter decomposition of the time evolution operator U(δτ) = e−Hδτ then
reads:

U(δτ) = e−δτHU e−δτHRe−δτHDe−δτHL +O(δτ2) (5)

where δτ is the imaginary timestep. Similarly to iTEBD in one dimension, in SU we
represent iPEPS using Vidal form: i.e. the iPEPS with a two-site unit cell is fully specified
by two Γ[A,B] site tensors and four Λ[U,R,D,L] diagonal matrices that store the singular
values of iPEPS bonds, as seen in Fig. 7. We denote the local Hilbert space dimension by
d, and the bond dimension by D. The SU then consists of the following steps:

1. Absorb Λ[R,D,L] tensors on the external bonds into Γ[A,B] to obtain Q[A,B].

2. Decompose each of Q[A,B] into subtensors vA,B and XA, YB using an exact SVD or
QR/LQ decompositions. The original rank-5 tensors Γ[A,B] had the dimensionality
of dD4 giving rise to a large computational cost O(d3D9) of the update procedure.
However, an update performed using the new rank-3 subtensors has a substantially
reduced cost of O(d6D3) since the dimensions of vA,B are considerably smaller and
equal to d× dD ×D and d×D × dD respectively.

3. Contract the two-body propagator e−δτHU with vA,B and Λ[U ] to form θ tensor.

4. Decompose θ tensor into ṽA,B and Λ̃[U ] tensors using SVD. To prevent the bond
dimension of our tensors from growing indefinitely, we must truncate ṽA,B and Λ̃[U ]

by retaining D largest singular values and discarding the rest.

5. Recover the updated rank-5 tensors Q̃[A,B] by contracting the rank-3 subtensors ṽA,B
with XA, YB respectively.
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6. To restore Λ[R,D,L] on the external bonds, we divide each of Q[A,B] by Λ[R], ΛD, and
Λ[L]. This procedure brings iPEPS back to its original Vidal form, with updated
tensors Γ̃[A,B] and Λ̃[U ] for each ‘U’ bond on the lattice.

All other steps are the same as in the one dimensional iTEBD algorithm. To find the
ground state we propagate iPEPS for N imaginary timesteps δτ until a steady state is
achieved with respect to the spectrum of singular values in Λ[U,R,D,L].

The SU algorithm is both simple and very efficient, with computational cost O(D3d6)
of the time evolution. However, SU is suboptimal since it employs local truncations
without taking into account the full environment of a unit cell. For MPS, this issue can be
resolved relatively easily by transforming the tensor network into a canonical form, which
orthonormalizes other bonds surrounding the bond being truncated. This solution is not
possible in 2D, since there is no known canonical form for PEPS. To achieve an optimal
truncation, one must use a variational update scheme that computes the full environment
at every step. This procedure, known as the Full Update (FU) [3,24], is considerably more
expensive and bears the computational cost of O(Nχ3D6+Nχ2D8) where N is the number
of steps of the imaginary time evolution. In practice, SU has been applied extensively to
various models and yields sufficiently accurate results for systems with large gaps and
sufficiently short correlation lengths [52]. Due to its simplicity and efficiency, it allows
shorter computation times and significantly higher bond dimensions than FU, and thus
remains popular. However, the suboptimal truncation becomes an issue near quantum
critical points when correlation lengths become long, and in these cases FU should be
used instead.

Contraction: corner transfer matrix

For the iPEPS representation to be of practical use, we must be able to extract expectation
values from it. Unlike MPS where we could evaluate overlaps exactly at a polynomial cost,
the exact contraction of two PEPS is an exponentially hard problem that scales as O(eL)
with PEPS size L [3]. Fortunately, there exist various computational algorithms that
can perform this contraction approximately with high precision. For infinite systems,
these methods typically proceed by computing the approximate environment of an iPEPS
unit cell. This effective environment consists of a small set of tensors that represent the
infinite tensor network surrounding the unit cell. Possibly the most successful technique for
computing iPEPS environments is the corner transfer matrix (CTM) method [25, 53, 54],
which will be the method we use. In this section we will explain the details of the CTM
algorithm.

Since observables for quantum states involve the overlap of two copies of the state, the
starting point for CTM is the contraction of two iPEPS, which produces an infinite 2D
network made of reduced tensors a. Each reduced tensor a results from the contraction
of
[
MA

]†
and MA iPEPS tensors by their physical indices, except at the sites where any

operator is applied, leading to a different reduced tensor aO. Supposing the bond indices
of MA had dimension D, the reduced tensors a now have bonds of dimension D2.

For simplicity of exposition, we will start by considering a one-site unit cell. However,
methods based on Trotter decomposition into even and odd bonds modify the translational
invariance from one-site to two-site. Therefore, in practice we always use the two-site
version of the CTM algorithm. Let us now subdivide this network into a 1 × 1 unit
cell made of a tensors, and its environment that contains the remaining infinite tensor
network in which the unit cell in embedded (see Fig. 8). The key idea is to represent the
environment by a set of four corner matrices {C1,2,3,4}, and four transfer tensors {T1,2,3,4}
– these tensors are connected by new virtual bond indices of size χ. Similarly to the
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bond dimension of MPS and PEPS, the environmental bond dimension χ is the parameter
that controls the accuracy of the CTM approximation of environment. The goal of CTM
algorithm is to obtain the environmental tensors by performing a series of coarse graining
moves:
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Figure 8: (a) The main steps (3-5) of the left move of the CTM algorithm for a one-
site unit cell containing tensor a. (b) The renormalization step (5) is done by inserting
isometries ZZ+ = I into the left edge of CTM network. (c) The insertion step of the
left move of the CTM algorithm for a two-site unit cell containing tensors a, b. (d) The
renormalization step for a two-site unit cell is done by inserting two types of isometries,
ZZ+ = I and WW+ = I.

1. Initialize the CTM tensors, e.g. using a random-number initialization, or a mean
field environment with χ = 1.

2. Perform four coarse graining moves in the left, right, up, and down directions. The
left move involves the following steps, illustrated graphically in Fig. 8(a):

3. Insertion: insert an extra column into the CTM network that contains the unit cell
tensor a, and the transfer tensors T1,3.

4. Absorption: absorb the new column into the left side of the CTM environment by
contracting their respective tensors. This increases the environmental bond dimen-
sion by χ→ D2χ: to prevent the bonds from growing indefinitely we must implement
an appropriate truncation scheme.
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5. Renormalization: truncate the environmental tensors by inserting appropriate isome-
tries ZZ+ = I that reduce the bond dimensions D2χ → χ by projecting onto a
relevant subspace, as shown in Fig. 8(b).

6. Repeat steps (2-5) to let the CTM environment grow in all four directions until it
converges. Convergence is typically achieved when the eigenspectrum of each corner
matrix {C1,2,3,4} reaches the fixed point.

The CTM algorithm for a two-site unit cell, containing two a and b tensors, follows the
same steps as the one-site algorithm outlined above. The environment is now specified by
a set of four corner matrices {C1,2,3,4}, and eight transfer tensors {T a1,2,3,4, T b1,2,3,4}. The
main difference is that in the ’Insertion’ step we now insert two new columns instead of
just one, as shown in Fig. 8(c). There are now two ’Absorption’ and ’Renormalization’
steps in the algorithm: the absorption of each column is followed by renormalization to
reduce the bond dimension D2χ → χ. The two-site algorithm also needs two types of
isometries ZZ+ = I and WW+ = I in the ’Renormalize’ step, to obtain renormalized
transfer tensors T̃ a,b4 and corner tensors C̃1,4 in Fig. 8(d).
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Figure 9: (a,b) The steps to compute W,W+ isometries for the bonds split by the ’cut-
1’. (c) To compute Z,Z+ isometries for the bonds split by the ’cut-2’, we perform a
translationally-invariant shift by inserting two extra rows of tensors in the green box, and
repeat the steps in (a).

Clearly, the crucial step of CTM algorithm is calculating the isometries. Several dif-
ferent methods exist, for instance the ones described in Refs. [25, 37, 55], which we have
implemented and tested in the process of developing our iPEPS code. The prescription we
have found to work best was the one in Ref. [37], which achieved a smoother convergence
and a more efficient representation of the environment than its predecessors. Figure 9
illustrates graphically the calculation of Z,W isometries to be used in the ’Renormalize’
step of the left move. In Fig. 9(a,b) we compute W,W+ isometries to be inserted into the
bonds split by the ’cut-1’. In the first stage in Fig. 9(a), we contract the lower and upper
parts of the network, producing the tensors QA and QB respectively. In the second stage,
also in Fig. 9(a), we decompose QA and QB using an exact SVD to obtain the RA,B and
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V †A,B tensors. In the third stage in Fig. 9(b), we form the product I = RA
[
R−1
A R−1

B

]
RB,

and decompose
[
R−1
A R−1

B

]
= UΛV † using SVD, this time truncating to the χ dominant

singular values. The RA,B matrices and the SVD matrices are then combined in the
symmetrized fashion I ≈

[
RAUΛ1/2

] [
Λ1/2V †RB

]
= WW+ to construct the isometries

W =
[
RAUΛ1/2

]
and W+ =

[
Λ1/2V †RB

]
. To obtain the Z,Z+ isometries for the bonds

split by the ’cut-2’, we perform a translationally-invariant shift by inserting two extra rows
of tensors in the green box, as shown in Fig. 9(c). Contracting the lower and upper parts of
the network then gives tensors QA,B for the cut-2. We can now compute Z,Z+ repeating
exactly the same steps as for the W,W+ before. Once all isometries Z,Z+ and W,W+

are available, one can finally use them to carry out the renormalization in Fig. 8(d).
The CTM algorithm described above has a computational complexity of O(χ3D6

+ χ2D8). Once we have found a converged CTM environment, it can be used to compute
various observables.

Extension to iPEPO

To extend the above method to an open quantum system, as noted above, one may first
represent the density matrix ρ as a Projected Entangled Pair Operator (PEPO), and then
reshape (vectorize) it into a PEPS |ρ〉] by combining both physical indices at each site.
The problem of computing NESS for an infinite 2D lattice thus becomes equivalent to the
problem of finding the ground states of Hamiltonians using the SU iPEPS algorithm, by
replacing imaginary time Hamiltonian propagation with the real time Liouvillian propaga-
tion. To distinguish between the iPEPS representing wavefunctions and vectorized density
operators, we will refer to the density matrix version as the iPEPO algorithm.

The main steps of the iPEPO algorithm are the same as in Sec. A.1, except for two
differences that we discuss next. The first difference is the propagator. The imaginary time
two-body propagators Uα(δτ) = e−δτHα with Hamiltonian Hα for a bond α ∈ {U,R,D,L}
are replaced by the real time two-body propagators Uα(δt) = e−δtLα , where Lα is the two-
body Liouvillian for a bond α ∈ {U,R,D,L} and t is the real time. The second difference is
that observables are calculated using 〈O〉 = Tr [Oρ], instead of 〈O〉 = 〈Ψ|O|Ψ〉. Similarly,
the correct normalization Tr [ρ] = 1 in contrast to 〈Ψ|Ψ〉 = 1. As such, when extracting
observables from iPEPO, the reduced tensors that are contracted to find the environment
come from tracing out local indices instead of computing inner products. We may then
apply the CTM method from Sec. A.1.2 to observables.

We have implemented our iPEPO code in Fortran [36], including the CTM algorithm,
the functionality required for computing local observables and two-point correlators, the
SU procedure for both NESS and ground state calculations, as well as the FU procedure
for ground state calculations (for benchmarking purposes only). In our calculations we
gradually decrease the time step δt during the simulation to reduce the effects of Trotter
error while keeping the computational cost low. To determine when the calculation has
reached a steady state we require that the spectrum of singular values contained in each
diagonal bond matrix Λ ∈

{
Λ[U,D,R,L]

}
in Fig. 7 stops changing within some accuracy

ε. More specifically, we take the largest difference between singular values in diagonal
matrices Λn and Λn−1, at timesteps n and n − 1 respectively, rescaled by the largest
singular value |Λn|max and by timestep size δt:

εΛ =
|Λn − Λn−1|max

δt |Λn|max
. (3)

For a steady state we expect εΛ to approach zero (or more precisely, a value depending
on machine precision), as the eigenvalue spectrum should cease changing. To determine
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numerically when to stop, we define a steady state as being reached when εΛ < ε for each
Λ ∈

{
Λ[U,D,R,L]

}
.

Benchmarking with ground state calculations

Due to the similarity between the iPEPS and iPEPO algorithms, we may benchmark our
implementation against the known numerical results from ground state calculations of two
models: the transverse field Ising model, and the hardcore Bose-Hubbard model.

Transverse-field Ising model Our first test problem is the transverse field Ising model
on an infinite square lattice,

H = −J
∑
〈i,j〉

σzi σ
z
j − g

∑
i

σxi . (6)

Here σx,zi are Pauli matrices at site i, J is the nearest-neighbour coupling between spins,
and g is the transverse magnetic field along the x axis. The ground state of this model
exhibits a second order phase transition between a paramagnetic phase at large g, and a
ferromagnetic phase at small g; the order parameter of this transition is the longitudinal
magnetization Mz = 〈ΨGS|σz|ΨGS〉. We show results in units where J = 1.

Figure 10(a,b) shows the longitudinal magnetization Mz and transverse magnetization
Mx as a function of transverse field g in the vicinity of phase transition, for different
values of iPEPS bond dimension D. Our implementation of iPEPS reproduces accurately
both the SU and FU results reported in Refs. [24–26]. As expected, the SU and FU
calculations match well far from the critical point where correlations are short-ranged,
and the results converge fast with increasing values of D. Near the critical point FU
becomes considerably more accurate than SU at a given bond dimension. That is, due to
the diverging correlation length, a much higher value of D is needed for SU to achieve the
same level of accuracy as FU with D = 2, 3. As seen from Fig. 10(a), the FU calculation
with D = 3 predicts the critical point around g = 3.05, in good agreement with previous
iPEPS results in Refs. [24–26] and Quantum Monte Carlo results in Ref. [56].
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Figure 10: Ground state results benchmarking our iPEPS implementation. Panels (a,b)
show (a) the longitudinal magnetization Mz and (b) transverse magnetization Mx as a
function of transverse field g (in units of J) in the vicinity of phase transition of the
transverse field Ising model. These are computed for different iPEPS bond dimensions D
using both SU and FU as indicated. Panel (c) shows number density of bosons n per lattice
site and the condensate fraction n0 for the hardcore Bose-Hubbard model as a function
of chemical potential µ (in units of J), computed for different iPEPS bond dimensions D
using SU.
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Hardcore Bose-Hubbard model Our second test case is the Bose-Hubbard model
(BHM) on an infinite square lattice,

H = −J
∑
〈i,j〉

(
a†iaj + H.c.

)
− µ

∑
i

a†iai, (7)

where the occupations are restricted to 0 or 1 bosons on each lattice site. Here, a†i , ai are
hardcore bosonic creation and annihilation operators at site i, satisfying the commutation

relation
[
a†i , aj

]
= (1−2a†iai)δij . J is the hopping rate between adjacent sites, and µ is the

onsite chemical potential. This model undergoes a second order phase transition between
the superfluid and the Mott insulator phases at the critical value of µ/J . As before, we
present results in units where J = 1. Figure 10 shows the number density of bosons
n = 〈ΨGS|a†a|ΨGS〉 and the condensate fraction n0 = | 〈ΨGS|a|ΨGS〉 |2 as a function of
chemical potential µ, for different bond dimensions D of SU iPEPS. Again, our iPEPS
calculations reproduce accurately the ground state results of Refs. [26, 57,58].
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