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Abstract

Liquids displaying strong virial-potential energy correlations conform to an approximate den-
sity scaling of their structural and dynamical observables. This scaling property does not
extend to the entire phase diagram, in general. The validity of the scaling can be quantified
by a correlation coefficient. In this work a simple scheme to predict the correlation coefficient
and the density-scaling exponent is presented. Although this scheme is exact only in the dilute
gas regime or in high dimension d, a comparison with results from molecular dynamics simu-
lations in d = 1 to 4 shows that it reproduces well the behavior of generalized Lennard-Jones
systems in a large portion of the fluid phase.
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1 Introduction

The past 20 years have developed an increasing interest in the so-called density-scaling ap-
proach. Starting from the experiments of Tölle, Dreyfus and Alba-Simionesco [1–3], it has
been found that many liquids at different state points (ρ, T ) in their phase diagram exhibit
a constant relaxation time along lines with fixed ratio ργ/T . T and ρ are the temperature
and density, respectively, and γ is the so-called density-scaling exponent. This behavior has
been often interpreted as the result of the repulsive part of the interaction potential giving
the dominant contribution of the dynamics, allowing for mapping to an inverse-power-law
(IPL) pair potential: vIPL(r) = ε(σ/r)λ [4–10]. Knowledge of the density-scaling exponent at
a given state point allows one to transfer information about the dynamics of the system to
other state points, thus drastically reducing the amount of experiments needed to measure
properties of a system in its phase diagram. It allows as well predictions of the dynamics
in regimes that are difficult to probe experimentally. For an IPL system the density-scaling
exponent is related to the IPL exponent λ through the relation γ = λ/d, where d is the spatial
dimension. The exponent is therefore constant throughout the entire phase diagram. As such,
the IPL potential is paradigmatic as density scaling holds exactly. Then one may use this
scaling approach for other systems. This has been successful in many situations [11–13] but
is undermined by several weak points:

1. The very idea of mapping a real material’s interaction to an IPL pair potential is not
satisfying, as real materials display gas-liquid and gas-crystal coexistence not present in
the phase diagram of the IPL system;

2. There are several evidences [13–16] that density scaling does not work for all systems.
For real systems it cannot apply in the entire phase diagram and the density scaling
exponent is state-point dependent [17–19];

3. It has been argued by Bøhling et al. [20] that the standard assumption that the repulsive
and attractive parts of the potential play separate roles is difficult to justify.

A formulation of density scaling that eliminates the above-mentioned problems and con-
tradictions is provided by the isomorph theory [11,21]. In this framework, the density-scaling
exponent γ is generally state-point dependent. The invariance of static and dynamic prop-
erties along the lines of constant excess entropy (the so-called isomorphs), which defines the
density-scaling exponent, is related to a scale invariance of the potential-energy hypersur-
face [22]. According to isomorph theory γ can be obtained from equilibrium simulations at
the state point in question [11]; for a real material it can also be determined by measuring
several quantities at the same state point [17,23].

The density-scaling exponent is not the only relevant state-point dependent quantity in the
isomorph theory: it is paired with the virial potential-energy correlation coefficientR ∈ [−1, 1],
the value of which indicates whether or not density scaling is satisfied in the proximity of the
state point in question. It can be shown that perfect invariance of structure and dynamics
along isomorphs is ensured if the correlation coefficient is equal to unity, R = 1 [11]. This
identity holds only for Euler homogeneous potentials [11], as IPL for instance, while for a
real system R = 1 never applies. Therefore, a threshold value of 0.9 has been proposed:
whenever R > 0.9, density scaling is expected to work well. Both quantities are defined
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through equilibrium correlations of canonical-ensemble constant-volume fluctuations:

R =
〈∆W∆U〉√

〈(∆W )2〉 〈(∆U)2〉
, γ =

〈∆W∆U〉
〈(∆U)2〉

(1)

in which U denotes the potential energy, W is the virial 1 (i.e. , the excess part of PV with
respect to the ideal gas, where P is the pressure and V the volume), and ∆ is the instantaneous
deviation of a given quantity from its thermodynamic equilibrium value.

The quantities γ and R are well defined in the entire phase diagram, not only where
density scaling works. While γ can be determined in experiments [6,10,17,19,23], this is not
the case for R. It would therefore be useful to be able to relate the condition of R crossing
some threshold value to properties of the state-point dependence of γ, or even to be able to
compute in a simple manner the state-point dependence of R. A first step in this direction was
taken by Friisberg et al. [25], who showed that for generalized LJ potentials with exponents
(2n, n) – defined below, in Eq. (3) – the above-mentioned value R = 0.9 roughly coincides with
the state points with highest density-scaling exponent γ. A convenient way of showing this is
to plot γ(ρ, T ) versus R(ρ, T ). It was also shown that, in this system, γ is a unique function
of R: γ(ρ, T ) = F (R(ρ, T )), to a good approximation. Although a physical interpretation
for such a relation is not yet available, it allows one to better understand density scaling
throughout the phase diagram. We emphasize that such a plot is related to the system not
being a simple IPL system, as in the IPL case all state points map onto the single point
(R, γ) = (1, λ/d). While this diagram is a priori potential dependent (see [26, Fig. 3] for the
EXP potential), in the case of the LJ potential different thermodynamic phases are mapped
into different regions of the diagram.

In the present work, generalized Lennard-Jones systems are studied theoretically and
numerically, extending the results of Ref. [25]. The density-scaling quantities mentioned
above are derived from excess thermodynamic observables, which are naturally expressed in
the language of the virial expansion [24]. We devise a simple low-density approximation for the
density-scaling exponent and the virial-potential energy correlation coefficient, and compare
it to computer simulations, with very good agreement. Then, as this approximation becomes
also exact in the limit of infinite dimension, we connect these results to the recent finding
that isomorph invariance is exactly achieved for a large class of potentials as d→∞, beyond
the Euler-homogeneous ones like IPLs, in the liquid and glass phases [27]. The generalized
Lennard-Jones potentials, albeit very important in practice, do not belong to this class; but
computer simulations in Ref. [28] provided evidence that density-scaling becomes more robust
when increasing the number of dimensions, including for state points close to the liquid-gas
coexistence. We thus clarify and extend the results of Refs. [27,28]. We observe a convergence
to the large-d limit, starting already from dimension d = 2.

The structure of the paper is the following. In the next section we introduce the system
studied and summarize past observations relevant to the present article. In the third section
we present the analytic approximation which is compared in the fourth section to molecular
dynamics simulations in two, three, and four dimensions, over a wide range of temperatures
and densities. A concluding discussion ends the paper.

1For a system of N particles at positions {r1, . . . , rN} in equilibrium, one has PV = kBNT + 〈W 〉 [24],
where

W = −1

d

N∑
i=1

ri · ∇riU (2)
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2 Previous results on generalized Lennard-Jones potentials

Following Friisberg et al. [25], the class of generalized Lennard-Jones pair potentials is studied
in this work. It is defined as follows:

vm′,n′ (r) =
ε

m′ − n′

[
n′
(σ
r

)m′
−m′

(σ
r

)n′]
(3)

and denoted by LJ(m′, n′). These are also known as Mie potentials [29], providing a gener-
alization of the standard 12-6 LJ potential that is widely used in the liquid-state literature.
The LJ(m′, n′) potential is displayed in Fig. 1 for several choices of the integers (m′, n′).

The main reasons for the normalization factors of the two IPLs are:

1. The minimum of the LJ(m′, n′) potential is located at r = σ where the potential’s value
is −ε, independently of (m′, n′). This facilitates comparison between different potentials
in the class and gives a simple low-density picture of particles with a constant effective
diameter σ with repulsive and attractive forces that becomes steeper and shorter ranged
as exponents are increased, see Fig. 1.

2. One recovers the standard three-dimensional 12-6 LJ with a simple rescaling of (ε, σ) in
the potential LJ(12, 6).

3. As discussed below, for large d the exponents (m′, n′) must be scaled linearly with d. The
normalizations are such that this scaling impacts the IPL exponents while the factors
independent of r/σ are invariant. This allows for a well-defined comparison between
different dimensions.

In this work the exponents m′ and n′ are changed independently, generalizing the treatment of
Ref. [25]. We shall consider only integer , but the conclusions do not depend on this limitation.

For convenience we define the ratio

X =
m′

n′
(X > 1) . (4)
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Figure 1: Different generalized LJ(m′, n′) pair potentials. (a) m′ = 2n′ for several choices
of the value of n′ = 4, 9, 12, 18, 100. Upon increasing n′ the potential becomes sharper and
sharper, approaching a sort of sticky-sphere limit (similar in spirit to the discontinuous version
of Baxter [30]). (b) m′ = Xn′ for X = 2, 3, 4, 5, 50 and fixed n′ = 6. For large X the attractive
tails of the potential tend to a limiting shape, while the repulsive part approaches a hard wall
at r/σ = 1.
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The values X 6 1 are excluded because they do not define a physical liquid pair potential.
Note that at low density for fixed temperature (or high temperature for fixed density) the
repulsive IPL term dominates, implying R → 1, γ → m′/d. Although in general the corre-
lation coefficient is below unity, it was shown in Refs. [11, 14, 31] that the standard 12-6 LJ
potential is strongly correlating (i.e. , obey R > 0.9) in the region above the freezing line in
the (ρ, T ) phase diagram. Furthermore, in Ref. [25] the LJ(2n′, n′) potential was studied at
many state points in dimensions two to four, displaying either gas, liquid/fluid, crystal phases
or coexistence between these. Away from strongly-correlating regions, it was found that the
simple relation

γ ' 3n′R/d (5)

holds to a good approximation when varying dimensions d or exponent n′. As pointed out
in Sec. 1, such a relation is most welcome in order to assess quickly isomorph invariance,
controlled by the R value, from an experimentally measured γ. An analytically manageable
formula forR and γ would be useful for better understanding why and how these two quantities
correlate.

The simple dimensional dependence, Eq. (5), similar to the prediction of an IPL system
with exponent 3n′ [31], is intriguing. It was shown in Ref. [27] that in the dense liquid
regime, a sizeable class of potentials are effectively IPLs in large dimension and as such display
isomorph invariance. They are therefore of little use for understanding the variations of (R, γ)
observed in real systems. This is, however, not the case for the LJ(m′, n′) potentials [27],
which retain their ‘non-IPL’ behavior even in high dimensions. For this limit to be well-
defined, one needs to scale the exponents with the dimension and thus consider LJ(md, nd) pair
potentials2 [27,35–37]. In this case, one expects the large-dimensional limit to exhibit scaling
properties closer to the finite-dimensional systems than the potentials studied in Ref. [27],
while still being considerably simpler.

Molecular dynamics simulations in Ref. [28] showed that the standard 12-6 LJ fluid above
(in density or temperature) the liquid-vapor critical point manifests increasingly better iso-
morph invariance as d goes from 2 to 4, i.e. , has here an increasing R. This observation
tends to broaden the conclusions of Ref. [27], which hold in the liquid and glassy regimes,
to the fluid region close to the liquid-vapor critical point, which cannot be described by the
arguments developed in Ref. [27]. Indeed they rely on a truncation of the virial expansion
to the second virial coefficient, valid for dense liquid regimes in high d [38–40], whereas the
third virial coefficient cannot be neglected close to the liquid-vapor critical point [24]. It
turns out that, in the infinite-dimensional limit, the liquid-vapor critical point regime and the
dense (possibly supercooled) liquid regimes occur at density ranges exponentially separated
in d [41], displaying different behaviors. We point out that in these simulations (Ref. [28]),
the exponents were not scaled with d, which is mandatory to compare with high-d theory. We
take this into account in the present work, which investigates the effect of dimensionality in
light of a systematic comparison to the mean-field prediction for LJ(md, nd) interactions.

2The exponents must be scaled with d for the thermodynamic limit to be well defined [32, 33]. At large
r the potential must vanish faster than r−d, so n > 1 for the interaction to be short ranged. This scaling
of the exponents with dimensions also preserves the slope of the freezing line, at least in the high-density
limit [11,28,34].

5



SciPost Physics Submission

3 Analytic expressions derived from the virial expansion

In order to get an analytic handle3 on the quantities γ and R, we study here their lowest
order in the virial expansion of liquid-state theory [24]. The reason is threefold: First, the
quantities of interest are excess thermodynamic observables, for which this framework has
been designed. One expects that this expansion is well suited to the study of gases and
dilute liquids as the density is small, while it could perform poorly for dense liquids in low
dimensions where other perturbation strategies or re-summations work better [24]. Second,
it is also the right choice for the mean-field limit of large dimension [37–40, 44], allowing us
to observe the impact of d. Third, the observed density dependence of the (R, γ) diagram is
found to be very mild and one may thus hope that the virial approximation provides a good
starting point for future more accurate approaches.

3.1 The lowest order in the virial expansion in any dimension

In this section we give the first-order virial expansion of certain thermodynamic fluctuation
averages. The number density ρ = N/V is regarded as a small parameter. The lowest order
of any observable is then its ideal-gas value; we are interested in the first non-trivial small-
density correction. The equilibrium fluctuations computed below are the ones entering in
the definition of the virial-potential energy correlation coefficient R and the density-scaling
exponent γ, i.e. , the fluctuations 〈∆U∆W 〉,

〈
(∆U)2

〉
and

〈
(∆W )2

〉
(Eq. (1)). We shall

here just give the main steps as a detailed derivation is found in [27, Appendix A]. Using the
definition of canonical equilibrium averages, the first two fluctuations are rewritten as follows,

〈∆W∆U〉 = 〈WU〉 − 〈W 〉 〈U〉 = −∂ 〈W 〉
∂β〈

(∆U)2
〉

=− ∂ 〈U〉
∂β

= −∂
2(βF )

∂β2

(6)

where β = 1/T is the inverse temperature (we set the Boltzmann constant to unity, thus
measuring temperature in energy units) and F the Helmholtz free energy.

The average virial is related to the pressure by the virial equation of state [24]. The
expansion of the latter and of the free energy follows from a standard computation [24,39,40],
with v(r) being the radial pair potential:

βF

N
= ln ρ− 1− ρ

2

∫
dr
(
e−βv(r) − 1

)
+O(ρ2)

βP

ρ
= 1 + β

〈W 〉
N

= 1− ρ

2

∫
dr
(
e−βv(r) − 1

)
+O(ρ2)

(7)

Combining Eqs. (6) and (7) we get expressions for 〈∆W∆U〉 and
〈
(∆U)2

〉
. The derivation

of
〈
(∆W )2

〉
from the lowest-order virial expansion of the two-point distribution function is

3We note that an analytical treatment via a transfer matrix method is possible in d = 1 if one truncates
the interaction range suitably (see e.g. Refs. [42, 43]).
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slightly more involved [27, Appendix A]. The final result for all three fluctuations is

〈
(∆U)2

〉
=
Nρ

2

∫
dr (v(r))2e−βv(r) +O(ρ2)〈

(∆W )2
〉

=
Nρ

2d2

∫
dr
(
rv′(r)

)2
e−βv(r) +O(ρ2)

〈∆W∆U〉 =
ρN

2β2

∫
dr
(
e−βv(r) − 1

)
+
ρN

2β

∫
dr v(r)e−βv(r) +O(ρ2)

=
ρN

2dβ

∫
dr
[
rv′(r) + dv(r)

]
e−βv(r) +O(ρ2)

(8)

where we performed an integration by part in the last line of Eq. (8). We now get the
following from the definition Eq. (1):

R =− 1

β

∫
dr [rv′(r) + dv(r)]e−βv(r)√∫

dr (rv′(r))2 e−βv(r)
√∫

dr v(r)2e−βv(r)
+O(ρ)

γ =− 1

βd

∫
dr [rv′(r) + dv(r)]e−βv(r)∫

dr v(r)2e−βv(r)
+O(ρ)

(9)

These first-order virial expressions apply for any isotropic pair-potential liquid.

A check of the validity of Eq. (9) can be obtained by considering the IPL potential
vIPL(r) = ε(σ/r)λ for which we already know the result. Since rv′IPL(r) = −λvIPL(r), IPL
systems have perfect virial-potential energy correlations (R = 1). Using spherical coordinates
and standard properties of the Euler Gamma function one arrives at

RIPL =
λ− d
βλ

∫∞
0 dr rd−1vIPL(r)e−βvIPL(r)∫∞
0 dr rd−1vIPL(r)2e−βvIPL(r)

=
x:=βε(σ/r)λ

(
1− d

λ

) ∫∞
0 dxx−d/λe−x∫∞
0 dxx1−d/λe−x

=

(
1− d

λ

)
Γ
(
1− d

λ

)
Γ
(
2− d

λ

) = 1

γIPL =
λ− d
βd

∫∞
0 dr rd−1vIPL(r)e−βvIPL(r)∫∞
0 dr rd−1vIPL(r)2e−βvIPL(r)

=
λ

d
RIPL =

λ

d

(10)

which is the general result for IPL systems in d dimensions [11], as mentioned in the intro-
duction. It must be recovered from Eq. (10) because this general results holds in particular
at low densities where the virial approximation becomes exact.

In the case of the LJ(md, nd) potential in d dimensions, i.e. , Eq. (3) with m′ = md and
n′ = nd, the quantities R and γ can be simplified further from Eq. (9). The result is obtained
using similar considerations to the IPL case, e.g.,

∫
dr vmd,nd(r)

2e−βvmd,nd(r) =

(
ε

m− n

)2

Ωd

∫ ∞
0

dr rd−1
[
n
(σ
r

)md
−m

(σ
r

)nd]2
× e−

βε
m−n

[
n(σr )

md−m(σr )
nd

]

=
y:=(σ/r)nd

n

(
ε

m− n

)2

Vd(σ)

∫ ∞
0

dy y1−
1
n (yX−1 −X)2e−

βε
X−1

(yX−Xy)

(11)
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in which X = m/n, Vd(r) is the volume of an hypersphere of radius r in d-dimensional space,
and Ωd is the solid angle given by

Vd(r) =
Ωd

d
rd , Ωd =

2πd/2

Γ(d/2)
(12)

Note that the condition n > 1 discussed in footnote 2 implies that the y1−1/n divergence
at small y (long distances) is integrable (as well as y−1/n), whereas our restriction X > 1
implies integrability at large y (short distances). Similar considerations for the other integrals
involved lead to the following expressions for R and γ

R =
X − 1

βεXn

∫∞
0 dy y−

1
n

[
(Xn− 1)yX−1 −X(n− 1)

]
e−

βε
X−1

(yX−Xy)√∫∞
0 dy y1−

1
n (yX−1 −X)2e−

βε
X−1

(yX−Xy) ∫∞
0 dz z1−

1
n (zX−1 − 1)2e−

βε
X−1

(zX−Xz)

γ =
X − 1

βε

∫∞
0 dy y−

1
n

[
(Xn− 1)yX−1 −X(n− 1)

]
e−

βε
X−1

(yX−Xy)∫∞
0 dy y1−

1
n (yX−1 −X)2e−

βε
X−1

(yX−Xy)

(13)

in which y = z = (σ/r)nd. These equations establish the lowest order in the small-density
expansion. We note that:

• R and γ are to lowest order independent of the density (keeping in mind that its validity
is guaranteed only for low enough density). Only the temperature and the details of
the potential enter as parameters. This is a direct consequence of the fact that they are
expressed as ratios of extensive quantities. Indeed, any extensive observable O scales in
the thermodynamic limit as 〈O〉 ∝ N ∝ ρ and thus 〈O〉 = O(ρ) in the virial expansion.

• R and γ are also independent of the space dimensionality. This is due to the fact that
the potential is built with IPLs whose exponents are proportional to d. The numerical
computation of these quantities in any dimension is therefore straightforward.

• The explicit n dependence of R and γ/n is rather mild, unlike the X dependence.
This observation relies on the two limits: (i) for low enough temperature, the main
contributions to the integrals in Eq. (13) come from the vicinity of the saddle point y = 1
(ii) for large enough temperature, one approaches the repulsive-IPL result (R, γ/n) =
(1, X). Fig. 2 gives an additional numerical verification.

These facts imply that a comparison to simulation data in any dimension is easily achieved.
This is yet another reason to scale LJ(md,nd) with dimension d in this way, in addition
to ensuring a well-defined thermodynamic limit. Besides, we expect any thermodynamic
observable constructed as a ratio between extensive quantities involving only the pair potential
vmd,nd(r) to exhibit the properties mentioned in the above first two points.

As the dependence upon n is quite mild, one can simplify the analytical expressions by

8
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considering the large n limit at fixed X. The three different integrals become∫ ∞
0

dy y−
1
n
[
(m− 1)yX−1 −X(n− 1)

]
e−

βε
X−1

(yX−Xy) ∼ m
∫ ∞
0

dy
[
yX−1 − 1

]
e−

βε
X−1

(yX−Xy)

=− m

βε

X − 1

X

∫ ∞
0

dy
d

dy
e−

βε
X−1

(yX−Xy) =
m

βε

X − 1

X

IU (X,βε) ≡
∫ ∞
0

dy y(yX−1 −X)2e−
βε
X−1

(yX−Xy)

IW (X,βε) ≡
∫ ∞
0

dy y(yX−1 − 1)2e−
βε
X−1

(yX−Xy)

(14)

The corresponding values of R and γ are

R ∼
n→∞

1

(βε)2
(X − 1)2

X

1√
IU (X,βε)IW (X,βε)

γ

m+ n
∼

n→∞

1

(βε)2
X − 1

X + 1

1

IU (X,βε)

(15)

Both quantities are of order 1 with respect to n, which is why we divided γ by a quantity
proportional to n; we chose m+ n for better comparison with Ref. [25] as the linear relation
found there reads γ = (m+ n)R.

Finally, in the case of the LJ(2nd, nd) potential (X = 2), the integrals become Gaussian
and one arrives at the simple expressions

R(X = 2) ∼
n→∞

2√
GU (βε)GW (βε)

,
γ(X = 2)

n
∼

n→∞

4

GU (βε)

GU (x) ≡ 2(1 + x) + ex(2x− 1)
√
πx
[
1 + erf(

√
x)
]

GW (x) ≡ 2 + ex
√
πx
[
1 + erf(

√
x)
] (16)

R is a strictly increasing function of temperature, implying that γ(T ) can be parameterized
instead by R and the function γ(R) is well defined. Its curve for X = 2 and any n from
Eq. (13) can as well be drawn by a parametric temperature plot. It has a non-trivial shape
that is well described by the above n→∞ expression, as documented by Fig. 2. In Sec. 4 we
confirm this by comparing the analytical results to simulation data.

3.2 The high-dimensional limit

The considerations of the last section are independent of the dimension d, but hold only
in the dilute regime of the liquid phase. The virial truncation is, however, exact in the
whole (possibly supercooled) liquid phase for mean-field situations, such as when the spatial
dimension goes to infinity [37–40,44], or in the infinite-range Mari-Kurchan model considering
random shifts of the particles in any dimension [45]. We thus expect smaller deviations from
the exact d → ∞ reference situation as the dimension increases, but one does not know a
priori how large the dimension must be to ensure satisfactory convergence to the mean-field
prediction. This is the focus of a following section, Sec. 4.2.

We now discuss what can be expected from Eq. (13), focusing on the limit d → ∞. Let
us first consider the liquid phase. For large d the physics of the LJ(md, nd) potential (3) is

9
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Figure 2: Results from the analytic expressions Eq. (13) derived in the first-order virial
approximation (hereafter labelled d → ∞, see 3.2) in any dimension d. (a)(b)(c) examine
LJ(2nd, nd) potentials with varying n = 2 → ∞. The temperature dependence of R and γ
is plotted in (a) and (b); the parametric plot γ

m+n(R) is displayed in (c). The variation of
n weakly impacts these curves, well approximated by the simple n → ∞ functions Eq. (16)
(dashed light cyan curve in (c), coinciding with n = 100). Conversely, the X dependence is
stronger as shown in panel (d) for LJ(Xnd, nd) potentials with fixed n = 2 and X = 2→∞.
This is commented further and confronted to simulations in Sec. 4.1 and Fig. 4. The limiting
case of X →∞ leads to a parabolic dependence for γ, as shown in App. A.

as follows [27]. Both thermodynamics and dynamics are dominated by a fluctuating region of
order 1/d around a length scale r∗ defined by requiring βvmd,nd(r

∗) to be of order unity with
respect to d. The length scale r∗ plays the role of an effective particle diameter. At tempera-
tures exponentially large in d, r∗ < σ and the attractive IPL term is exponentially suppressed.
The system is then dominated by the repulsive IPL term and has exact isomorphs: R = 1,
γ = m (compare Eq. (10)). Conversely, for exponentially small temperatures, the system
will be dominated by the attractive IPL term, which has a non-stable thermodynamic limit.
The non-trivial regime, closer to the finite-dimensional system, is that of O(1) temperature
in which r∗ = σ. In this case both terms in the potential compete and the potential has the
following behavior

• for r < σ, the interaction is effectively hard core: βvmd,nd(r)→∞

• in the 1/d region around σ, i.e. , when r = σ(1+ r̃/d) with r̃ a reduced distance of order
unity, the potential is a sum of two competing repulsive and attractive exponentials

βvmd,nd(r) ∼
βε

m− n

(
ne−mr̃ −me−nr̃

)
(17)
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• for r > σ, there is effectively no interaction and βvmd,nd(r) is exponentially vanishing.

As in finite dimensions, both the attractive and the repulsive terms contribute in this regime.
Consequently, no exact isomorphs are found, i.e., no rescaling of the density and the temper-
ature can make the free energy and dynamics invariant [27]. One has R < 1 except in the
infinite-temperature limit where R → 1, which is the case in which only the repulsive IPL
term dominates. The precise values and evolution of R are provided in the next section.

From Eq. (16) it is clear that at low temperatures (R, γ)→ (0, 0), and R increases mono-
tonically to 1 at high temperatures. Yet, as shown in the next section, there exist negative
values of R and γ, or large values of γ at small R, as outcome of simulations in d 6 4 due to
state points in a liquid-vapor or solid-vapor phase coexistence. Such values are absent from
Eq. (9). Indeed, even in large dimensions the validity of the latter equations is restricted to the
uniform liquid phase, and Eq. (9) do not necessarily extend to the crystal or liquid-vapor co-
existence regimes4. The reason is that in deriving the above equations we implicitly assumed
that the thermodynamic density profile is uniform. On the one hand, while crystalline phases
and the liquid-crystal transition have been studied for d = 4, 5, 6 in Refs. [46, 47], precise
descriptions of large-d crystalline phases are not yet possible as the equilibrium crystalline
configurations for large d are not known. This is due to the daunting geometry of spher-
ical packings in high d [48] and because numerically nucleating the crystal phase through
compression of the liquid has proven extremely difficult when the dimension is larger than
three [47, 49]. On the other hand, following a Landau approach for large d, the liquid-vapor
coexistence regime may be studied by including one additional order in density in the virial
expansion [24]. But then the density window considered is exponentially separated from the
one of the liquid/fluid phase [39, 40], which makes comparison to the finite-d system harder.
Indeed, the regime close to the critical point has been studied by Mon and Percus [41] for a
square-well potential, where one can analytically extract a critical-point density whose expo-
nential dependence is given through the effective packing fraction5 ϕc ≈ (4/

√
3)−d � 2−d,

much lower than the (dense) liquid phase scaling ϕ = O(d/2d) [37, 44]. The critical-point
temperature is moreover not of order unity, as Tc = O(1/d). We expect the same dimensional
scaling of the critical density to hold for a LJ(md, nd) potential.

4 Molecular Dynamics simulations in dimension one to four

In this section the expressions derived from the virial expansion are compared with Molecular
Dynamics simulation data for different LJ potentials in 2d, 3d, and 4d. These results include
the standard 12-6 LJ potential in three dimension. The variation with the main parameters –
the density, the potential exponents, and the dimension – will be analyzed. We find qualitative
(if not quantitative) agreement with the analytic expressions of R and γ, (Eq. (13)), in a large
density regime.

Two different Molecular Dynamics codes were put to work. The 3d simulations employed
the GPU-based Roskilde University Molecular Dynamics (RUMD) code [50], while the 1d, 2d
and 4d simulations used an ad hoc CPU-based code (more details can be found in Ref. [51]).

4We shall not consider glassy configurations in this article, although computations in metastable glasses are
in fact possible, at least in the large-d limit [37].

5The effective packing fraction means here the ratio of the volume occupied by the particles, defined effec-
tively by spheres of radius r∗ = σ, over the volume of the system.
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All simulations were performed in the NV T ensemble in which temperature was controlled
using the standard Nosé-Hoover thermostat [52]. The time step ∆t is kept constant in reduced
units (∆t̃) when exploring the phase diagram, i.e. , it gets rescaled at each state point via
the only potential-independent time unit of the system: ∆t = ρ−1/d(M/T )1/2∆t̃, in which
M is the particle mass (set to unity). In particular, this scaling ensures that the ballistic
regime of the mean-squared displacement collapses onto a single master curve for all state
points when distances are measured in units of ρ−1/d. The reduced time step values, ∆t̃, are
given in Tab. 1 together with the system size N and the number of simulation steps for each
dimension. The potentials studied in this work were cut-off at distance rcut = 2.5σ. The
choice of the parameters in Tab. 1 is mainly dictated by running time limitations. Our ad
hoc code is less optimized than RUMD and simulations cannot be run as extensively. We
checked that the duration of the most time-consuming 4d simulations did not hinder accurate
calculation of the thermodynamic quantities. In 4d the system size is chosen as the smallest
that permits a reliable study of the highest-density state points (ρ = 1.5) in a reasonable
time. This is detailed in App. B. In 3d simulations, two different system sizes are listed to
ensure the absence of system-size dependence. Similarly, in 1d the results are reported for
N = 40000 particles, but other simulations were run for smaller system size (N = 500).

The units of length and energy, respectively σ and ε, are set to 1. At each state point (ρ, T )
we compute the correlation coefficient R and the scaling exponent γ from their definitions
Eq. (1). Density lies within the interval ρ ∈ [0, 1.5] and temperature T ∈ [0.5, 5], which is
enough to retrieve all relevant values of R and γ. For a few isochores in 2d some simulations
at higher temperature were carried out as detailed in Fig. 3’s caption. In 3d, data for the
standard LJ system are also reported. A complete list of the state points studied in this work
can be found at the data repository of the Glass and Time group (see Acknowledgements).

d N ∆t̃ (10−3) Nsteps (106)
1 40000 0.25− 0.5 20
2 1600 1 10
3 1000− 4096 1 500
4 2401 4 5

Table 1: Simulation parameters: The system sizeN , the reduced time step ∆t̃, and the number
of time steps simulated at each state point for all four dimensions considered numerically in
this work. For the LJ(300, 6) potential, a smaller reduced time step ∆t̃ = 10−4 was used
because of the potential steepness at small distances.

Some of the state points exhibit phase coexistence; these are associated with low values of
R [12]. The density-scaling exponent γ is not uniquely defined when different phases coexist.
We find large γ and small R in the crystal-vapor coexistence, whereas in the liquid-vapor
coexistence both R and γ are small (close to zero or negative). As mentioned in Sec. 3.2,
state points in the coexistence region cannot be interpreted with the analytical equations
obtained in this work because these equations were derived based on the implicit assumption
of a single, isotropic phase. We therefore left out these state points in the following analysis
except in Fig. 3 (c), where they are retained as an example.
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Figure 3: (R, γ) diagrams for the LJ(4d, 2d) potential for d = 1, 2, 3, 4. The density range is
given in the inset while the temperature varies from T = 0.5 → 5 in 0.5 steps (except when
otherwise stated). The virial approximation curve Eq. (13) for n = X = 2 is represented by
the full violet curve. (a) d = 1, the potential is v4,2(r). (b) d = 2, the potential is v8,4(r).
Here the temperature steps are 0.25 starting from T = 0.25. For ρ = 0.25 and ρ = 0.50, the
highest temperature simulated is T = 12.00 and T = 7.00, respectively. This ensures visibility
of the peak in γ(R) in panels (e) and (f). (c) d = 3, the potential is v12,6(r). Data for both the
standard 12-6 LJ (labelled ”std”) and the generalized LJ(12,6) are presented. The unit length
for these two potentials is different, resulting in different definitions for the density. The lowest
temperature on each isochore is either along the liquid-gas or liquid-solid coexistence curves
for the standard LJ; for the generalized LJ(12,6) densities and temperatures are the same as in
(a) with the addition of T = 0.25, 0.75. The standard LJ phase diagram is therefore explored
more comprehensively: the highest temperature on each isochore is roughly 200 times the
lowest, well above T = 5. Thus we recover the IPL limit (R, γ) → (1, 4). The similarity
between panels (a),(b), and (d) demonstrates that covering such a wide region of the phase
diagram is not necessary to get an almost complete γ(R) curve. (d) d = 4, the potential is
v16,8(r). (e) and (f) correspond, respectively, to panels (b) and (c) where for each isochore
the density-scaling exponent γ is scaled by its peak value γpeak. The value of γpeak is different
on each isochore.
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4.1 Influence of density and potential exponents on the γ(R) relationship

In Fig. 3 we study the (R, γ) diagram of the LJ(4d, 2d) (n = X = 2) for d = 1 – 4. This
corresponds to the standard LJ potential for d = 3 with rescaled units of length (thus density)
and temperature (see Sec. 2). Apart from a rescaling of the density value, the curves γ(R)
are thus the same for both the standard LJ potential and v12,6(r) in d = 3 when exploring the
many different state points studied in this work. As discussed in Ref. [25], these curves are
similar for all isochores and dimensions. R increases as a function of T in the liquid phase at
a fixed density [14], thus temperature increases from left to right along any given isochore. As
will become clear from Fig. 4 below, the shape for this particular potential is representative of
a wide range of values of n and X. At low densities the data are very close to the prediction of
Eq. (13) for n = 2 and X = 2, as expected. As the density is increased, the data stay close to
the analytic prediction, although the values of the density-scaling exponent become slightly
higher and the state points are more confined to the region around R = 1. This is because we
do not take into account liquid-vapour coexistence state points, present at low temperature.
We are then left with higher temperatures, corresponding to high values of R. Note that the
attractive term cannot be ignored (γ being different from 4). Also, for d = 1, 2, 3 ordered
phases are found at high densities for which the correlation coefficient R is almost unity. As in
the case of phase coexistence, our treatment is not applicable to ordered phases and therefore
those state point are not shown.

The quantitative discrepancy at high densities can be reduced through a simple rescaling
procedure, using the maximum density-scaling exponent γpeak at each density. This is done
in Fig. 3(e)(f) where the gamma exponents for d = 2 (panel (b)) and d = 3 (panel (c)) have
been rescaled by γpeak. These two dimensions are displayed as they are the most relevant
and because only in these cases, it is possible to clearly identify a maximum value in the
(R, γ) curve for some isochores. This rescaling accounts almost quantitatively for the density
corrections not taken into account by the first-order virial expansion.

The dependence of the previous diagrams on the n and X at fixed dimension d = 3 is
explored in Fig. 4. In Fig. 4(a) the potential LJ(2nd, nd) is studied by varying n from 4/3 to
6, showing little influence of the value of n on the relation between γ/n and R, as expected
from Eq. (13). In Figs. 4(b)(c)(d) the influence of the ratio X on the LJ(Xnd, nd) potential
with n = 2 is studied. For moderate values of X, little variation is seen; one must reach values
of X ≈ 50 to observe a qualitative shape change. At very high X ≈ 103, the curve converges
to the parabolic expression γ = mR2 as argued in App. A: the non-parabolic part of the curve
gets shifted to the R = 1 region as X increases and gradually disappears for X & 50. There
seems to be no distinction in the (R, γ/n) diagram between the large-X LJ(2Xd, 2d) and a
continuous ‘sticky-sphere’ potential LJ(Xnd, nd) with n and X → ∞, i.e. , for large X the
tail’s shape does not matter much in the liquid regime (see also Fig. 1).

4.2 Dimensional dependence of the γ(R) relationship

We next examine how fast the curves obtained above at finite dimension converge towards
the analytical prediction of Eqs. (9) – (16). In order to investigate the deviations from the
infinite-dimensional (R, γ) diagram, we quantify the deviation by subtracting the d → ∞
curve from the finite-d one, γd(R)− γ∞(R), in which γd(R) is isochore dependent and γ∞(R)
is obtained from Eq. (13) with n = X = 2. When increasing d, we must compare different
isochores in different dimensions, and we shall now detail strategies employed to make this
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comparison in a physically meaningful way.
We first plot in Fig. 5 the deviations for d = 1 to 4 at fixed density. This choice is natural

as the interval of values of the virial-potential energy correlation coefficient plotted in this
way is roughly the same for all the dimensions considered. For all densities the deviations
decrease as d increases from 1 to 4 (except for the lowest density, Fig. 5(a), where deviations
are too low that a trend may be observed and where no big deviations are expected since
the virial approximation is exact in the low-density limit). This comparison is somehow not
satisfactory because fixing the density means comparing different physical situations. The
volume occupied by a particle, ∼ Vd(σ/2), where the interaction range of the potential σ is
interpreted as a particle diameter, decreases monotonically with d and therefore the system
gets more diluted as d increases. A plausible interpretation of the reduced deviations with
increasing d in Fig. 5 is that the system in d + 1 dimensions appears as less dense than its
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Figure 4: (R, γ) diagrams for several LJ potentials in fixed dimension d = 3. For each
system the state points studied are from the six isochores defined by ρ = 0.25 – 1.50 with
0.25 increment, and the temperature range is T = 0.25 – 1.0 by steps of 0.25 and T = 1.0 –
5.0 by steps of 0.5. For LJ(300, 6) only four isochores were simulated (ρ = 0.25, 0.5, 0.75, 1.0).
State points with negative R, corresponding to liquid-vapor coexistence, and state points
corresponding to ordered states are not shown for the reasons discussed in Sec. 4.1. (a)
LJ(2nd, nd) with n ∈ {4/3, 3, 4, 6}. The solid line is the n → ∞ virial prediction Eq. (15).
These data were first presented in Ref. [25]. (b) (c) (d) LJ(Xnd, nd) (d = 3, n = 2) for several
ratios X. (b) For X = 2, 3, 4, 5, 50, R versus the rescaled γ/(m + n) vary little. For X > 50
the shape changes qualitatively. The infinite-temperature R = 1 endpoint varies slightly with
X, as γ/(m + n) = X/(X + 1), panels (c),(d). In App. A we show that when X becomes
large, the natural scaling variable is γ/m. This is seen both in MD simulations (c) and from
Eqs. (13) (d).
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counterpart in dimension d. As a result it could be that the virial truncation performs better
not because the mean-field d → ∞ approximation improves, but primarily as an indirect
‘low-density’ effect. To compensate for this, the density must increase when comparing the d
to d+ 1 data, as has been observed for the liquid-crystal transition [28,46] or the liquid-glass
transition [47, 49]. Note that in the large-dimensional limit, the dense liquid region emerges
for densities scaling exponentially in d [36, 37,39,40,44].
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Figure 5: Relative deviations from the d → ∞ value of the (R, γ) curves of the LJ(4d, 2d)
systems for dimensions d = 1 to 4. In each plot we have subtracted the d→∞ curve obtained
in Eq. (13), γ∞(R), from the simulation data γd(R), rescaled by m (= 4). The horizontal
dashed line at the origin of the vertical axis corresponds to the exact d → ∞ curve. Each
plot from (a) to (e) is given for a fixed isochore with density varying from ρ = 0.25 to 1.25 in
steps of 0.25. The higher the density, the closer are state points from the R = 1 boundary.
Simulation data before subtraction are displayed in Fig. 3. The value of γ estimated from
Eq. (13) is a lower bound to the actual value found from simulations, at least away from the
low-density limit where Eq.(13) becomes exact.
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There is no a priori simple way to compute densities of related physical regimes in different
dimensions. In order to get reasonable values, we attempted two different strategies, focusing
on fairly dense liquid regimes, since their large-dimensional limit is well understood [27, 37,
40, 44]. The first strategy computes ratios between the dynamical glass transition densities
ρHS
d (d) for hard spheres. This is the only potential for which such a transition has been

determined in dimensions ranging from 2 to 12 [49, 53]; temperature does not influence this
scaling. The second strategy amounts to estimating as a function of the dimension the density
at which the first-order virial expansion breaks down, providing meaningful density ratios for
the regime we are after. This characteristic density, denoted by ρZ(d, T ), is calculated by
comparing the first- and second-order virial coefficients, yielding ρZ(d, T ) ∼ |B2(T )/B3(T )|
in which B2,3(T ) are the second and third virial coefficients, respectively [24]. The density
ratios between different dimensions are fairly independent of temperature far from liquid-gas
coexistence (App. C). The dimension-dependent density ratios provided by both methods are
listed in Tab. 2.

ρd=2/ρd=1 ρd=3/ρd=2 ρd=4/ρd=3

HS dynamical transition 1.019 1.071 1.192

Virial corrections 1.13 1.23 1.30

Table 2: Density ratios used in Fig. 6 to compare different dimensions from d = 1 to 4.
The first method (first line) gives ratios between the dynamical transition densities for hard
spheres ρHS

d (d) extracted from Refs. [49, 53]. One-dimensional hard spheres do not exhibit
such a slowing down, so for d = 1 we considered the dense regime to occur at the maximal
packing fraction (unity). The second method (second line) is based on the calculation of
ρZ(d, T ) (App. C).
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Figure 6: Deviations from the d → ∞ value of the (R, γ) curve of the LJ(4d, 2d) potential
for dimensions d = 1 to 4, using dimension-scaled densities. (a) Densities scaled by the hard-
sphere dynamical transition density ρHS

d (d) (first line of Tab. 2); ρd=1 = 0.577, ρd=2 = 0.587,
ρd=3 = 0.629, and ρd=4 = 0.750. (b) Densities scaled by ρZ(d, T ) obtained by equating the
second and third virial expansion terms (second line of Tab. 2). Specifically, ρd=1 = 0.415,
ρd=2 = 0.469, ρd=3 = 0.577 and ρd=4 = 0.750.
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Both scaling-method outcomes are plotted in Fig. 6. We fixed the density in 4d to be
ρd=4 = 0.75, an intermediate value. This value of density is not so low that meaningful
measurable differences with respect to the d→∞ analytic (R, γ) curve are detected, and not
so high to span a large interval of the computed virial-potential energy coefficient (Fig. 5).
In the hard-sphere dynamical transition scaling, we observe a convergence to the d → ∞
analytic prediction going from d = 2 to d = 4. The one-dimensional values are, however,
somewhat closer to the large-d result than the two- and three-dimensional ones. The virial
scaling, which gives much lower densities for each dimension d 6 3, still yields qualitatively
similar results, albeit with almost no difference between the d = 2 and 3 cases. We conclude
that, similarly to the non-scaled plots of Fig. 5, already for low dimensionality, a convergence
towards the large-dimensional (R, γ) diagram is observed.

5 Conclusion

We have introduced a set of simplified equations to compute the virial-potential energy cor-
relation coefficient R and the density-scaling exponent γ, valid in any dimension and for any
pair potential in the isotropic liquid phase. These equations are obtained from a low-density
virial expansion. As such they are exact in two limits: the low-density limit (in a given
dimension) and the infinite-dimensional limit (for any density), in the isotropic liquid.

We have specialized these results to the case of LJ(m′, n′) systems. The interest of such
equations is that both R and γ can be computed straightforwardly, through numerical in-
tegrations of a few one-dimensional integrals, for any state point in the phase diagram. We
showed through molecular dynamics simulations that this approximation applies qualitatively
and almost quantitatively for the (R, γ) diagram, if the system does not phase separate – a
case in which density scaling does not apply, even approximately. It appears that density
corrections are weak for the LJ(m′, n′) potentials, irrespective of the value of the exponents
or temperature. The analytical shape γ(R) allows one then to make the following prediction,
robust in the whole fluid phase: if the measured exponent γ decreases when increasing tem-
perature along an isochore, then we are probing a strongly-correlating regime, i.e. a regime
where density scaling is satisfied to a good approximation [25].

We do not expect the monotonicity of γ to yield a direct indication of good scaling for
any potential. Yet, the simplified low-density limit expressions from Eq. (9) can be helpful for
other potentials, as they provide the relation γ(R), allowing one to assess R from the possible
measurement of γ [17,23], or the R–γ relation if the latter function is multivalued (this occurs
for instance for a potential consisting in a sum of IPL potentials with different exponents). As
an example, preliminary data shows that the function γ(R) for WCA potentials [24,54] gives
the correct qualitative behaviour while significantly differing in the functional form from the
LJ(m′, n′) one.

It was recognized in Ref. [27] that perfect density scaling is achieved for many non-trivial
potentials – i.e., potentials which are not necessarily Euler homogeneous – in the d → ∞
limit. LJ(m′, n′) potentials do not display such a perfect scaling in the high-d limit, and
are instead characterized by a (R, γ) diagram not restricted to a single point. We varied
the dimension from d = 1 to d = 4 in order to check the convergence to the high-d (R, γ)
diagram for intermediate densities where there are corrections to the low-density expressions.
Using several possible scalings of densities with dimension leads to the same conclusion of a
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monotonic shrinking of fluctuations from d = 2 to 4. We interpret this as yet another instance
of the large-dimensional being qualitatively and sometimes even quantitatively good [37] for
low dimensions.
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A Large-exponent ratio limit

Here we investigate the large-X limit (X = m/n) of Eq. (13). As argued in Sec. 3.1, the n
dependence is rather mild, so that we send first n→∞. From Eq. (15) we thus need to study
the large X limit of IU (X,βε) and IW (X,βε). Consider the latter: From the behaviour of the
integrand at large X one finds that only yX 6 1 contributes and the integral can be roughly
approximated by

IU (X,βε) ∼
X→∞

X2

∫ 1

0
dy yeβεy =

(
X

βε

)2 [
1 + (βε− 1)eβε

]
(18)

IW (X,βε) is calculated from the contribution of its saddle point ysp > 1 defined by the

competition between y2X and e−βεy
X/X , i.e. ysp =

(
2X
βε

) 1
X

. From the Laplace method [55]

at large X one gets, up to a numerical prefactor,

IW (X,βε) ∝ X

(βε)2
eβε , (19)

a scaling that is well verified numerically for all temperatures. From (15) we arrive at

R ∝ 1√
X

e−βε/2√
1 + (βε− 1)eβε

and
γ

m
=

1

X

1

1 + (βε− 1)eβε
(20)

which yields γ
m ∝ eβεR2. This holds for βε not scaled with X, smaller than any power of X,

while a scaling such that βε � 1 is still described by this saddle point. Therefore, since in
this limit βε � 1 (i.e. T → ∞) one has γ = m and R = 1 as the repulsive IPL dominates
(see Eq. (10)), we expect that the relation

γ

m
= R2 (21)

approximates well the curve and should be a lower bound to all finite X curves. Since both γ
and R go to zero for X →∞, the non-trivial part of the finite-X curves gets shifted to higher
temperatures, i.e., closer to R = 1, and washed out in the large-X limit.

B Estimating R and γ in computer simulations: influence of
simulation length and system size

In this Appendix, the statistical errors on R and γ are reported for a fixed liquid-state point
(ρ, T ) = (1.0, 2.0) with potential v16,8(r) in d = 4 for several choices of simulation length
Nsteps and system size N . We here investigate in detail d = 4 simulations as they are the
most time consuming: we aim at a fast enough simulation while maintaining a large enough
N (and Nsteps) for accurate computation of observables. We show that even short simulations
(a few million time steps) and relatively small system sizes can lead to a good estimation of
R and γ, a well-known fact for practitioners although rarely explicited. The statistical errors
on every state point studied in this work are available online (see Acknowledgements).

Fig. 7 displays the average value of R (a) and γ (b) as a function of the simulation length
for a fixed system size N = 4096. Each simulation is divided into 5 blocks and the error bars
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Figure 7: Influence of simulation length Nsteps (a)(b) and system size N (c)(d) on the esti-
mated values of R and γ. The green vertical dotted line indicates the minimum simulation
length (a)(b) or smallest system size (c)(d) of the article’s d = 4 data.

are obtained as standard deviation of the mean values obtained from each block. d = 4 data in
this article used between 50 and 120 blocks depending on the simulation length. The reduced
time step ∆t̃ = 0.004 is fixed (for all four panels). Both energy and virial instantaneous
samplings (required for computing R and γ) are saved every 200 time steps.

The figure exhibits as well the average value of R (c) and γ (d) as a function of the system
size, for the same state point and potential. The simulation length is fixed as Nsteps = 5 · 106

and each simulation is divided into 50 blocks. The smallest system size analyzed here (N =
1296) corresponds to a box of linear size L = 6.0σ. Note that all potentials studied in this
work are cutoff at rcut = 2.5σ, therefore system sizes corresponding to L < 5.0σ cannot be
considered.
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C Dimensional scaling at dense liquid densities derived from
the virial expansion

In this Appendix we elaborate on the scaling of density used in Fig. 6(b) for the LJ(4d, 2d)
potential. The virial expansion of the (liquid) equation of state is [24]:

βP = ρ+B2(T )ρ2 +B3(T )ρ3 +O(ρ4)

B2(T ) = −1

2

∫
dr f(r) with f(r) = e−βv4d,2d(r) − 1

B3(T ) = −1

3

∫
drdr′ f(r)f(r′)f(|r− r′|)

(22)

In this paper we have considered only first-order virial expansions; these apply at low den-
sity and/or high dimension. In finite dimensions one expects the first-order approximation to
break down for densities at which the next term is relevant, i.e. whenever B2(T )ρ2 ≈ B3(T )ρ3.
This defines a density ρZ(d, T ) = −B2(T )/B3(T ). At this density, the compressibility fac-
tor becomes βP/ρZ = 1 +O(ρ3Z), meaning that ρZ(T ) coincides with the low-density Zeno6

line [56, 57], which in d = 3 lies inside the supercritical region well above the liquid-vapor
critical point.

We computed numerically ρZ(T ) for d = 1 to 4 (Fig. 8(a)). Both virial coefficients are
negative at low T , and become positive above it. B2(T ) vanishes for a dimension-independent
value, the Boyle temperature TBoyle ' 3.4 (as can be readily seen from the definition in Eq. (22)
from the same manipulations as the ones in Sec. 3.1) [57,58], whereas B3(T ) vanishes close to
T = 1 depending on the dimension. This explains the observed divergence of ρZ(d, T ) in this
region. The negativity of these coefficients indicates phase separation at small enough density,
i.e. here a liquid-vapor coexistence. Indeed from Eq. (22) at small density this negativity
implies dP/dρ < 0, which signals a thermodynamic instability. As mentioned in Sec. 4 we
wish to stay away from this regime in which our analytical results are no longer justified. The
low-density equation of state Eq. (22) shows no sign of phase separation above T ' 1.7 for any
dimension d = 1 to 4. Thus focusing on these higher temperatures, corresponding to the fluid
phase above coexistence (at small enough densities), one realizes that all the density ratios
at fixed temperature ρZ(d + 1, T )/ρZ(d, T ) are approximately constant, compare Fig. 8(b).
Note that as we are interested in an order of magnitude for density ratios between different
dimensional systems for which the first virial truncation breaks down, the sign of ρZ(d, T ) does
not matter. Consequently, we can extract a temperature-independent meaningful scaling of
density by averaging the value of this ratio over the whole temperature range T ∈ [T0, 5]. We
took T0 = 1.96 > 1.7 as the choice of T0, which does not modify considerably the ratio values
while we must at the same time consider enough statistics, as displayed in Figs. 8(c)-(d).
For this value of T0, indeed, fluctuations of the computed density ratio are below 5% with
respect to the average in all dimensions. This procedure provides the numbers indicated in
the last line of Tab. 2, which are appreciably above the density ratios defined by the hard-
sphere dynamical transition densities (first line). The choice of T0 close to 1.7 maximizes the
ratio values with respect to higher temperature (see Figs. 8(b)-(c)). As higher densities are
associated with stronger deviation from the virial approximation (compare Fig. 3), this is the
most unfavorable situation in order to see smaller deviations to the large-d curve γ∞(R); yet
we find in Fig. 6 a good convergence for d = 2→ 4 using such ratio values.

6The Zeno line is the line in the (ρ, T ) phase diagram of state points at which the virial is zero.
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Figure 8: Density scaling between similar liquid regimes in different dimensions d = 1 to 4.
For low enough densities there is a liquid-gas phase coexistence below T ' 1.7 for d = 4
(for lower dimensions this temperature gets slightly lowered). (a) Evolution of the Zeno-like
density ρZ = −B2/B3 with temperature. (b) Density ratios between consecutive dimensions
ρZ(d+ 1, T )/ρZ(d, T ). (c) Dependence on the lower boundary temperature T0 of the averaged
density ratios between consecutive dimensions 〈ρZ(d+ 1, T )/ρZ(d, T )〉T . The average is over
temperature on the range T ∈ [T0, 5]. (d) Measure of the fluctuations in the temperature
average of Fig. (c) (standard deviation σT over the average value 〈〉T of the density ratios in
(b)) as a function of the lower boundary temperature T0. For T0 = 1.96 the fluctuations are
less than 5% of the average for all dimensions considered. Data below T0 < 1 for d = 3 → 4
is not shown as it fluctuates more widely (standard/mean = 5− 6).
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