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Abstract1

An extensive group-theoretical treatment of linear relativistic field equations2

on Minkowski spacetime of arbitrary dimension D > 3 is presented. An exhaus-3

tive treatment is performed of the two most important classes of unitary irre-4

ducible representations of the Poincaré group, corresponding to massive and5

massless fundamental particles. Covariant field equations are given for each6

unitary irreducible representation of the Poincaré group with non-negative7

mass-squared.8
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1 Group-theoretical preliminaries47

Elementary knowledge of the theory of Lie groups and their representations is assumed (see48

e.g. the textbooks [1,2] or the lecture notes [3]). The basic definitions of the Lorentz and49

Poincaré groups together with some general facts on the theory of unitary representations50

are reviewed in order to fix the notation and settle down the prerequisites.51

1.1 Universal covering of the Lorentz group52

The group of linear homogeneous transformations x′µ = Λµνxν (µ, ν = 0, 1, . . . , D − 1)
preserving the Minkowski metric ηµν of “mostly plus” signature (−,+, . . . ,+) ,

ΛT ηΛ = η ,

where ΛT denotes the matrix transpose of Λ , is called the Lorentz group O(D − 1, 1).53

A massless particle propagates on the light-cone x2 = 0 . Without loss of generality,
one may consider that its momentum points along the (D − 1)th spatial direction. Then
it turns out to be convenient to make use of the light-cone coordinates

x± =
1√
2

(xD−1 ± x0 ) and xm (m = 1, . . . , D − 2) ,

where the Minkowski metric reads η++ = 0 = η−− , η+− = 1 = η−+ and ηmn = δmn54

(m,n = 1, . . . , D − 2).55

On physical grounds, one will mainly be interested in the matrices Λ’s with determinant56

+1 and such that Λ0
0 > 0 . It can be shown that such matrices Λ’s also form a group57

that one calls the proper orthochronous Lorentz group denoted by SO(D − 1, 1)↑ . It is58

connected to the identity, but not simply connected, that is to say, there exist loops in59

the group manifold SO(D − 1, 1)↑ which are not continuously contractible to a point. In60

order to study the representations (reps) of SO(D − 1, 1)↑ , one may first determine its61
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universal covering group, i.e. the Lie group which is simply connected and whose Lie62

algebra is isomorphic to so(D − 1, 1) , the Lie algebra of SO(D − 1, 1)↑ . For D > 4 , the63

universal covering group, denoted Spin(D − 1, 1) , is the double cover of SO(D − 1, 1)↑ .64

The spin groups Spin(D−1, 1) have no intrinsically projective representations. Therefore,65

a single (or double) valued “representation” of SO(D − 1, 1)↑ is meant to be a genuine66

representation of Spin(D − 1, 1) .67

Warning: The double cover of SO(2, 1)↑ is the group SU(1, 1), in close analogy to the68

fact that the double cover of SO(3) is SU(2) . The group SU(2) is also the universal69

covering group of SO(3) , but beware that the universal cover of SO(2, 1)↑ is actually R3 ,70

covering SO(2, 1)↑ infinitely many times. Thus one may not speak of the spin group for71

the case of the proper orthochronous Lorentz group in spacetime dimension three. The72

analogue is that the universal cover of SO(2) ∼= U(1) is R , that covers U(1) infinitely73

many times, so that one may not speak of the spin group for the degenerate case of the74

rotation group in two spatial dimensions.75

1.2 The Poincaré group and algebra76

The transformations
x′µ = Λµνx

µ + aµ

where a is a spacetime translation vector, form the group of all inhomogeneous Lorentz
transformations. If one denotes a general transformation by (Λ, a) , the multiplication law
in the Poincaré group is given by

(Λ2, a2) · (Λ1, a1) = (Λ2Λ1, a2 + Λ2a1) ,

so that the inhomogeneous Lorentz group is the semi-direct product denoted by

IO(D − 1, 1) = RD oO(D − 1, 1) .

The subgroup ISO(D − 1, 1)↑ of inhomogeneous proper orthochronous Lorentz transfor-77

mations is called the Poincaré group. The Lie algebra iso(D− 1, 1) of the Poincaré group78

is presented by the generators {Pµ , Mνρ } and by the commutation relations79

i [Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ησµMρν + ησνMρµ (1)

i [Pµ,Mρσ] = ηµρPσ − ηµσPρ , (2)

i [Pµ, Pρ] = 0 . (3)

Two subalgebras must be distinguished: the Lie algebra so(D− 1, 1) of the Lorentz group80

presented by the generators {Mνρ } and by the commutation relations (1), and the Lie81

algebra RD of the Abelian translation group presented by the generators {Pµ } and by the82

commutation relations (3). The latter algebra RD is an ideal of the Poincaré algebra, as83

can be seen from (2). Altogether, this implies that the Lie algebra of the Poincaré group84

is the semi-direct sum iso(D − 1, 1) = RD B so(D − 1, 1) .85

The Casimir elements of a Lie algebra g are homogeneous polynomials in the generators86

of g providing a distinguished basis of the center Z
(
U(g)

)
of the universal enveloping87

algebra U(g) (see e.g. the part V of the lecture notes [3]). The quadratic Casimir operator88

of the Lorentz algebra so(D − 1, 1) is the square of the generators Mµν :89

C2

(
so(D − 1, 1)

)
=

1

2
MµνMµν . (4)
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The quadratic Casimir operator of the Poincaré algebra iso(D − 1, 1) is the square of the90

momentum91

C2

(
iso(D − 1, 1)

)
= −PµPµ , (5)

while the quartic Casimir operator is92

C4

(
iso(D − 1, 1)

)
= −1

2
P 2MµνM

µν +MµρP
ρMµσPσ , (6)

which, for D = 4, is the square of the Pauli-Lubanski vector Wµ,

Wµ :=
1

2
εµνρσMνρPσ .

1.3 ABC of unitary representations93

The mathematical property that all non-trivial unitary reps of a non-compact simple Lie94

group must be infinite-dimensional has some physical significance, as will be reviewed95

later.96

Finite-dimensional unitary reps of non-compact simple Lie groups: Let U : G→97

U(n) be a unitary representation of a Lie group G acting on a (real or complex) Hilbert98

space H of finite dimension n ∈ N. Then U is completely reducible. Moreover, if U is99

irreducible and if G is a connected simple non-compact Lie group, then U is the trivial100

representation.101

Proof: For the property that U is completely reducible, we refer e.g. to the proof of102

the proposition 5.15 in [1]. The image U(G) for any unitary representation U defines a103

subgroup of U(n) . Moreover, the kernel of U is a normal subgroup of the simple group104

G. Therefore, either the representation is trivial and kerU = G , or it is faithfull and105

kerU = {e} . In the latter case, U is invertible and its image is isomorphic to its domain,106

U(G) ∼= G. Actually, the image U(G) is a non-compact subgroup of U(n) because if107

U(G) was compact, then U−1
(
U(G)

)
= G would be compact since U−1 is a continuous108

map. But the group U(n) is compact, thus it cannot contain a non-compact subgroup.109

Therefore the representation cannot be faithful, so that it is trivial. (A different proof of110

the second part of the theorem may be found in the section 8.1.B of [2].)111

Another mathematical result which is of physical significance is the following theorem112

on unitary irreducible representations (UIRs) of compact Lie groups.113

Unitary reps of compact Lie groups: Let U be a UIR of a compact Lie group G,114

acting on a (real or complex) Hilbert space H. Then H is finite-dimensional. Moreover,115

every unitary representation of G is a direct sum of UIRs (the sum may be infinite).116

Proof: The proofs are somewhat lengthy and technical so we refer to the section 7.1 of [2]117

for complete details.118

Examples of (not so) simple groups:119

• On the one hand, all (pseudo)-orthogonal groups SO(p, q) are either Abelian (p+q = 2),120

non-simple (p+q = 4) or simple (p+q = 3 and p+q > 4 ). Moreover, the orthogonal groups121

(p q = 0) are compact, while the pseudo-orthogonal groups (p q 6= 0) are non-compact.122

• On the other hand, the inhomogeneous Lorentz group IO(D − 1, 1) is non-compact123

(both RD and O(D− 1, 1) are non-compact) but it is not semi-simple (because its normal124

subgroup RD is Abelian).125
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2 Elementary particles as unitary irreducible representa-126

tions of the isometry group127

Except for the final remarks, this section is based almost ad verbatim on the introduction128

of the illuminating work of Bargmann and Wigner [4], modulo some changes of notation129

and terminology in order to follow the modern conventions.130

The wave functions | ψ 〉 describing the possible states of a quantum-mechanical system131

form a linear vector space H which, in general, is infinite-dimensional and on which a132

positive-definite inner product 〈 φ | ψ 〉 is defined for any two wave functions | φ 〉 and133

| ψ 〉 (i.e. they form a Hilbert space). The inner product usually involves an integration134

over the whole configuration or momentum space and, for particles of non-vanishing spin,135

a summation over the spin indices.136

If the wave functions in question refer to a free particle and satisfy relativistic wave137

equations, there exists a correspondence between the wave functions describing the same138

state in different Lorentz frames. The transformations considered here form the group of139

all inhomogeneous Lorentz transformations (including translations of the origin in space140

and time). Let | ψ 〉 and | ψ 〉′ be the wave functions of the same state in two Lorentz141

frames L and L′, respectively. Then | ψ 〉′ = U(Λ, a) | ψ 〉, where U(Λ, a) is a linear142

unitary operator which depends on the transformation (Λ, a) leading from L to L′ . By a143

proper normalization, U is determined by Λ up to a factor ±1 . Moreover, the operators U144

form a single- or double-valued representation of the inhomogeneous Lorentz group, i.e.,145

for a succession of two transformations (Λ1, a1) and (Λ2, a2), we have146

U(Λ2, a2)U(Λ1, a1) = ±U(Λ2Λ1, a2 + Λ2a1) . (7)

Since all Lorentz frames are equivalent for the description of our system, it follows147

that, together with | ψ 〉 , U(Λ, a) | ψ 〉 is also a possible state viewed from the original148

Lorentz frame L . Thus, the vector space H contains, with every | ψ 〉 , all transforms149

U(Λ, a) | ψ 〉 , where (Λ, a) is any inhomogenous Lorentz transformation.150

The operators U may also replace the wave equation of the system. In our discussion,151

we use the wave functions in the “Heisenberg” representation, so that a given | ψ 〉 repre-152

sents the system for all times, and may be chosen as the “Schrödinger” wave function at153

time t = 0 in a given Lorentz frame L. To find | ψ 〉t0 , the Schrödinger function at time154

t0 , one must therefore transform to a frame L′ for which t′ = t− t0 , while all other coordi-155

nates remain unchanged. Then | ψ 〉t0 = U(Λ, a) | ψ 〉 , where (Λ, a) is the transformation156

leading from L to L′ .157

A classification of all unitary representations of the inhomogeneous Lorentz group,158

i.e. of all solution of (7), amounts, therefore, to a classification of all possible relativistic159

wave equations. Two reps U and Ũ = V UV −1 , where V is a fixed unitary operator, are160

equivalent. If the system is described by wave functions | ψ 〉 , the description by161

˜| ψ 〉 = V | ψ 〉 (8)

is isomorphic with respect to linear superposition, with respect to forming the inner prod-
uct of two wave functions, and also with respect to the transition from one Lorentz frame
to another. In fact, if | ψ 〉′ = U(Λ, a) | ψ 〉 , then

˜| ψ 〉′ = V | ψ 〉′ = V U(Λ, a)V −1 ˜| ψ 〉 = Ũ(Λ, a)˜| ψ 〉 .
Thus, one obtains classes of equivalent wave equations. Finally, it is sufficient to determine162

the irreducible representations (irreps) since any other may be built from them.163
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Two descriptions which are equivalent according to (8) may be quite different in ap-164

pearance. The best known example is the description of the electromagnetic field by the165

field strength and the vector potential, respectively. It cannot be claimed either that166

equivalence in the sense of (8) implies equivalence in every physical aspect. It should be167

emphasized that any selection of one among the equivalent systems involves an explicit or168

implicit assumption as to possible interactions, etc. Our analysis is necessarily restricted169

to free particles and does not lead to any assertion about possible interactions.170

The present discussion is not based on any hypothesis about the structure of the wave171

equations provided that they be covariant. In particular, it is not necessary to assume172

differential equations in configuration space. But it is a result of the group-theoretical173

analysis that every irreducible field equation is equivalent, in the sense of (8), to a system174

of differential equations for fields on Minkowski spacetime.175

Remarks:176

• An important theorem proved by Wigner is that any symmetry transformation that177

is continuously related to the identity must be represented by a linear unitary operator178

(see e.g. the appendix A of [5]). Strictly speaking, physical states are represented by179

rays in a Hilbert space. Therefore the unitary representations of the symmetry group180

are actually understood to be projective representations. In spacetime dimensions D >181

4 , this subtlety1 reduces to the standard distinction between single and double valued182

representations of the Poincaré group, as was taken for granted in the text.183

• Notice that the previous discussion remains entirely valid if the Minkowski spacetime184

RD−1,1 is replaced everywhere by any other maximally symmetric spacetime (i.e. de Sitter185

spacetime dSD, or anti de Sitter spacetime AdSD) under the condition that the inhomo-186

geneous Lorentz group IO(D − 1, 1) be also replaced everywhere by the corresponding187

group of isometries (respectively, O(D, 1) or, O(D − 1, 2) ).188

• In first-quantization, particles are described by fields on the spacetime and isometries189

are represented by unitary operators. A particle is said to be “elementary” if the rep-190

resentation is irreducible, and “composite” if the representation is made of a product of191

irreps.192

• A modern point of view on Quantum Field Theory [5] is that a quantum field (not to193

be confused with the state vector discussed above) is an operator defined at each point194

of space and time, that acts in a Fock space of states, the field being represented by195

a superposition, for different values of the momentum, of one-particule annihilation and196

creation operators for particle and the associated antiparticle. The approach of [5] is197

to build up the quantum field by imposing Lorentz invariance at every stage. To quote198

Weinberg, the field equation satisfied by the quantum field arises almost incidentally, as a199

byproduct of his construction.200

• A unitary representation of the isometry group describes the one-particle Hilbert space201

of states. The group-theoretical argument of Bargmann and Wigner [4] applies to the one-202

particule states of a free particle.2 The classification of the UIRs of the Poincaré group203

indeed yields the Klein-Gordon equation for a massive particle, or the D’Alembert equation204

in the case of a massless particle [4]. This comes automatically from the group-theoretical205

analysis and is not an assumption.206

Summary: On the one hand, the rules of quantum mechanics imply that quantum sym-207

metries correspond to unitary representations of the symmetry group carried by the Hilbert208

space of physical states. Furthermore, if time translations constitute a one-parameter sub-209

group of the symmetry group, then the Schrödinger equation for the time evolution of a210

1The case D = 3 is even more subtle and is treated in Appendix B.
2See e.g. Eq. (2.5.1) of [5] where the one-particle state vectors are denoted by Ψp,σ .
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state vector essentially is a unitary representation of this subgroup. On the other hand,211

the principle of relativity dictates that the isometries of spacetime be symmetries of the212

physical system. All together, this implies that linear relativistic field equations may be213

identified with unitary reps of the isometry group.214

3 Classification of the unitary representations215

3.1 Induced representations216

The method of induced reps was introduced by Wigner in his seminal paper [6] on the217

unitary representations of the inhomogeneous Lorentz group IO(3, 1) in four spacetime218

dimensions, which admits a straightforward generalization to any spacetime dimension D,219

as reviewed now. The content of this subsection finds its origin in the section 2.5 of the220

comprehensive textbook [5].221

From (3) one sees that all the translation generators commute with each other, so it is
natural to express physical states | ψ 〉 in terms of eigenvectors of the translation generators
Pµ . Introducing a label σ to denote all other degrees of freedom, one thus considers
states Ψq,σ with PµΨq,σ = qµΨq,σ . From the infinitesimal translation U = 1l − iPµεµ
and repeated applications of it, one finds that finite translations are represented on H by
U( 1l, a) = exp(−i Pµaµ) , so one has

U( 1l, a) Ψq,σ = e−i q·a Ψq,σ .

Using (2), one sees that the effect of operating on Ψp,σ with a quantum homogeneous222

transformation U(Λ, 0) ≡ U(Λ) is to produce an eigenvector of the translation generators223

with eigenvalue Λp :224

PµU(Λ)Ψp,σ = U(Λ)[U−1(Λ)PµU(Λ)]Ψp,σ = U(Λ)((Λ−1)ρ
µP ρ)Ψp,σ

= Λµρ p
ρ U(Λ)Ψp,σ ,

since (Λ−1)ρ
µ = Λµρ . Hence U(Λ)Ψp,σ must be a linear combination of the states ΨΛp,σ :225

226

U(Λ)Ψp,σ =
∑
σ′

Cσ′σ(Λ, p)ΨΛp,σ′ . (9)

In general, it is possible by using suitable linear combinations of the Ψp,σ to choose the227

σ labels in such a way that the matrix Cσ′σ(Λ, p) is block-diagonal; in other words, so228

that the Ψp,σ with σ within any one block by themselves furnish a representation of the229

Poincaré group. It is natural to identify the states of a specific particle type with the230

components of a representation of the Poincaré group which is irreducible, in the sense231

that it cannot be further decomposed in this way. It is clear from (9) that all states Ψp,σ232

in an irrep of the Poincaré group have momenta pµ belonging to the orbit of a single fixed233

momentum, say qµ.234

One has to work out the structure of the coefficients Cσ′σ(Λ, p) in irreducible represen-
tations of the Poincaré group. In order to do that, note that the only functions of pµ that
are left invariant by all transformations Λµν ∈ SO(D − 1, 1)↑ are, of course, p2 = ηµνp

µpν

and, for p2 6 0 , also the sign of p0 . Hence, for each value of p2 , and (for p2 6 0) each
sign of p0 , one can choose a standard four-momentum, say qµ , and express any pµ of this
class as

pµ = Lµν(p)qν ,

7
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where Lµν is some standard proper orthochronous Lorentz transformation that depends on235

pµ , and also implicitly on our choice of qµ . One can define the states Ψp,σ of momentum236

pµ by237

Ψp,σ ≡ N(p)U
(
L(p)

)
Ψq,σ , (10)

where N(p) is a numerical normalization factor. Operating on (10) with an arbitrary238

homogeneous Lorentz transformation U(Λ) , one now finds239

U(Λ)Ψp,σ = N(p)U
(

ΛL(p)
)

Ψq,σ

= N(p)U
(
L(Λp)

)
U
(
L−1(Λp)ΛL(p)

)
Ψq,σ . (11)

The point of this last step is that the Lorentz transformation L−1(Λp)ΛL(p) takes q to240

L(p)q = p , then to Λp , and finally back to q , so it belongs to the subgroup of the Lorentz241

group consisting of Lorentz transformations Wµ
ν that leave qµ invariant : Wµ

νqν = qµ .242

This stability subgroup is called the little group corresponding to q . For any W, W̄ in the243

little group, one has244

U(W )Ψq,σ =
∑
σ′

Dq
σ′σ(W )Ψq,σ′ (12)

and
Dq
σ′σ(W̄W ) =

∑
σ′′

Dq
σ′σ′′(W̄ )Dq

σ′′σ(W ) ,

that is to say, the coefficients Dq(W ) furnish a representation of the little group. In
particular, for W (Λ, p) ≡ L−1(Λp)ΛL(p) , the equation (11) becomes

U(Λ)Ψp,σ = N(p)
∑
σ′

Dσ′σ(W (Λ, p))U
(
L(Λp)

)
Ψq,σ′

or, recalling the definition (10),245

U(Λ)Ψp,σ =
N(p)

N(Λp)

∑
σ′

Dσ′σ

(
W (Λ, p)

)
ΨΛp,σ′ . (13)

Apart from the question of normalization, the problem of determining the coefficients Cσ′σ246

in the transformation rule (9) has been reduced to the problem of determining the coeffi-247

cients Dσ′σ. In other words, the problem of determining all possible irreps of the Poincaré248

group has been reduced to the problem of finding all possible irreps of the little group,249

depending on the class of momentum to which qµ belongs. This approach, of deriving250

representations of a semi-direct product like the inhomogeneous Lorentz group from the251

representations of the stability subgroup, is called the method of induced representations.252

The wave function Ψp,σ depends on the momentum, therefore its Fourier transform253

Ψx,σ depends on the spacetime coordinate, so that the wave function is called a (complex)254

field on Minkowski spacetime RD−1,1 and the quantities Ψx,σ at fixed x and for varying σ255

are referred to as its physical components at x .256

3.2 Orbits and stability subgroups257

The orbit of a given non-vanishing vector qµ of Minkowski spacetime RD−1,1 under Lorentz258

transformations is, by definition, the hypersurface of constant momentum square p2 . Ge-259

ometrically speaking, it is a quadric of curvature radius m > 0. More precisely, the260

hypersurface261

8
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• p2 = −m2 is a two-sheeted hyperboloid, each sheet of which is called a mass-shell.262

The corresponding UIR is said to be massive.263

• p2 = 0 is a cone, each half of which is called a light-cone. The corresponding UIR is264

said to be massless (m = 0).265

• p2 = +m2 is a one-sheeted hyperboloid. The corresponding UIR is said to be266

tachyonic.267

Orthochronous Lorentz transformations preserve the sign of the time component of vectors268

of non-positive momentum-squared, thus the orbit of a time-like (light-like) vector is the269

mass-shell (respectively, light-cone) to which the corresponding vector belongs.270

Remarks:271

• Notice that the Hilbert space carrying the irrep is indeed an eigenspace of the quadratic272

Casimir operator (5), the eigenvalue of which is C2 = ±m2 (the eigenvalue is real because273

the representation is unitary), as it should according to Schur’s lemma. Moreover, the274

quadratic Casimir classifies the UIRs but does not entirely characterize them.275

• As quoted in Section 2, it is not necessary to assume differential equations in position276

space, because the group-theoretical analysis directly leads to a wave function which is277

a function of the momenta on the orbit, the Fourier transform of which is a function278

in position space obeying the Klein–Gordon equation �Ψx,σ = ±m2 Ψx,σ . By a slight279

abuse of terminology, states or fields that satisfy their relativistic equations of motion are280

called “on-(mass-)shell” in physics literature, while those for which those equations have281

not been imposed) are called “off-shell”.282

By going to a rest-frame, it is easy to show that the stabilizer of a time-like vector283

qµ = (m,
−→
0 ) 6= 0 is the rotation subgroup SO(D − 1) ⊂ SO(D − 1, 1)↑. For a space-284

like vector, one may choose a frame such that the non-vanishing momentum is along the285

(D − 1)th spatial axis: qµ = (0, 0, . . . , 0,m) 6= 0. Thus its stabilizer is the subgroup286

SO(D − 2, 1)↑ ⊂ SO(D − 1, 1)↑. In the case of a light-like vector, the little group “is not287

quite so obvious” to determine, as was stressed by Wigner himself [7]. It clearly contains288

the rotation group SO(D − 2) in the space-like hyperplane RD−2 transverse to the light-289

ray along the momentum. Now, we will provide an algebraic proof that the stabilizer of290

a light-like vector is the Euclidean group ISO(D − 2) . According to Wigner, reviewing291

his D = 4 analysis, “no simple argument is known (...) to show directly that the group292

of Lorentz transformations which leave a null vector invariant is isomorphic to the two-293

dimensional Euclidean group, desirable as it would be to have such an argument. Clearly,294

there is no plane in the four-space of momenta in which these transformations could be295

interpreted directly as displacements (...) because all transformations considered here are296

homogeneous” [7]. Even though there is no simple geometric way to understand this fact,297

the algebraic proof reviewed here is rather straightforward.298

Proof: By going in a light-cone frame (see Section 1.1), it is possible to express the com-299

ponents of a momentum pµ obeying p2 = 0 as pµ = (p−, 0, 0, . . . , 0) . In words, one can set300

the component p+ to zero, as well as all the transverse components pm (m = 1, . . . , D−2).301

The condition that the component p− be unaffected by a Lorentz transformation trans-302

lates as 0
!

= i[p−,Mνρ] = η−ν pρ − η−ρ pν due to (2). Obviously, the transformation303

generated by M+− does modify p−, hence it cannot be part of the little group for p .304

The other Lorentz generators preserve p− , but they should also satisfy the equations305

[pm,Mµν ] = 0 = [p+,Mµν ] . It is readily seen that i[pm,Mn−] = δmnp− 6= 0 (for m = n),306

therefore Mn− does not belong to the little group of pµ either. We are left with the gen-307

erators {Mmn,M+n} which preserve the (vanishing) value of p+ . It turns out to be more308
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convenient for later purpose to work with the generators πn := p−M+n = pµMµn instead.309

This redefinition does not modify the algebra since p− commutes with all the generators310

of the little group. From the Poincaré algebra (1)–(3) one finds, in the light-cone frame,311

i [Mmn,Mpq] = δnpMmq − δmpMnq − δqmMpn + δqnMpm , (14)

i [πm,Mnp] = δmnπp − δmpπn , (15)

i [πm, πn] = 0 . (16)

As can be seen, the generators {Mmn, πm} span the Lie algebra of the inhomogeneous312

orthogonal group ISO(D − 2) .313

For later purpose, notice that the quadratic Casimir operator of the Euclidean algebra314

iso(D−2) presented by the generators {Mmn, πm} and the relations (14)-(16) is the square315

of the “translation” generators316

C2

(
iso(D − 2)

)
= πmπm . (17)

To end up this discussion, one should consider the case of a vanishing momentum.317

Of course, the orbit of a vanishing vector under linear transformations is itself while its318

stabilizer is the whole linear subgroup. Therefore, the subgroup of SO(D − 1, 1)↑ leaving319

invariant the zero-momentum vector pµ = 0 is the whole group itself. This ends up the320

determination of the orbit and stabilizer of any possible vector ∈ RD−1,1 .321

Remark: The zero-momentum (qµ = 0) representations are essentially UIRs of the little322

group SO(D−1, 1)↑ because the translation group acts trivially. The proper orthochronous323

Lorentz group may be identified with the isometry group of the de Sitter spacetime dSD−1.324

In other words, the wave function of the zero-momentum representation may be interpreted325

as a wave function on a lower-dimensional de Sitter spacetime, and conversely. Even326

though their physical meaning may differ, both UIRs may be mathematically identified.327

3.3 Classification328

To summarize the previous subsection, the UIRs of the Poincaré group ISO(D − 1, 1)↑329

have been divided into four classes according to the four possible orbits of the momentum,330

summarized in the following table (where m2 > 0 ):331

Gender Orbit Stability subgroup UIR

p2 = −m2 Mass-shell SO(D − 1) Massive

p2 = 0 Light-cone ISO(D − 2) Massless

p2 = +m2 Hyperboloid SO(D − 2, 1)↑ Tachyonic

pµ = 0 Origin SO(D − 1, 1)↑ Zero-momentum

332

The problem of classifying the UIRs of the Poincaré group ISO(D−1, 1)↑ has been reduced333

to the classication of the UIRs of the stability subgroup of the momentum, which are either334

a unimodular orthogonal group, an Euclidean group or a proper orthochronous Lorentz335

group.336

Actually, the method of induced representation may also be applied to the classification337

of the UIRs of the Euclidean group ISO(D − 2), the little group of a massless particle.338

The important thing to understand is that the light-like momentum pµ is fixed and that339

what should be examined is the action of the little group on the physical components340

characterized by σ . From (16) one sees that the D−2 “translation” generators πi commute341

with each other, so it is natural to express physical states Ψp,σ in terms of eigenvectors ξm342

of these generators πm. Introducing a label ς to denote all remaining physical components,343
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one thus considers states Ψp, ξ, ς with πmΨp, ξ, ς = ξmΨp, ξ, ς . The discussion presented in344

Subsection 3.1 may be repeated almost identically, up to the replacement of the momentum345

p by the eigenvector ξ, the label σ by ς, the Poincaré group ISO(D − 1, 1)↑ by the346

Euclidean group ISO(D− 2) and the proper orthochronous Lorentz group SO(D− 1, 1)↑347

by the unimodular orthogonal group SO(D− 2) . The conclusion is therefore similar: the348

problem of determining all possible irreps of the massless little group ISO(D − 2) has349

been reduced to the problem of finding all possible irreps of the stability subgroup of the350

(D − 2)-vector ξ , called the short little group in the literature [8].351

The massless representations induced by a non-trivial representation of the little group352

may therefore be divided into distinct categories, depending on the class of momentum353

to which ξm belongs. The situation is simpler here because there exist only two possible354

classes of orbits for a vector in the Euclidean space RD−2: either the origin ξm = 0 , or a355

(D−3)-sphere of radius µ > 0 . In the first case, the action of the elusive “translation” op-356

erators πm is trivial and, effectively, the little group is identified with the short little group357

SO(D−2). These representations are most often referred to as helicity representations by358

analogy with the D = 4 case. In the second case, the corresponding representations are359

most often referred to as continuous spin representations [8], even though Wigner also used360

the name infinite spin [7]. The former name originates from the fact that the transverse361

vector ξm has a continuous range of values. Nevertheless, the latter name is more adequate362

in some respect, as will be argued later on. Roughly speaking the point is that, on the363

orbit ξ2 = µ2, the components spanned by the internal vector ξm take values on the sphere364

SD−3 ⊂ RD−2 of radius µ = |ξ| . The “radius” µ of this internal sphere has actually the365

dimension of a mass parameter (the reason is that the sphere SD−3 is somehow in internal366

“momentum” space). Indeed, for massless representations, the parameter µ classifying the367

various irreps should be understood as the analogue of the mass for massive irreps, while368

the angular coordinates on the sphere SD−3 are the genuine “spin” degrees of freedom,369

the Fourier conjugates of which are discrete variables as is more usual for spin degrees of370

freedom. This point of view motivates the name “infinite spin.”3
371

To summarize, the UIRs of the Euclidean group ISO(D − 2) are divided into two372

classes according to the two possible orbits of the (D − 2)-vector ξm, summarized in the373

following table:374

Gender Orbit Stability subgroup Massless UIR

ξ2 = µ2 Sphere SO(D − 3) Infinite spin

ξm = 0 Origin SO(D − 2) Helicity

375

As a consequence of the method of induced representations, the physical components376

of a first-quantized elementary particle span a UIR of the little group. The number of377

local degrees of freedom (or of physical components) of the field theory is thus given by378

the dimension of the Hilbert space carrying the UIR of the little group. In the light of379

the standard results of representation theory (reviewed in Subsection 1.3) and using the380

method of induced representation, the UIRs of the Poincaré group may alternatively be381

divided into two distinct classes: the finite-component ones (the massive and the helicity382

reps) for which the (short) little group is compact, and the infinite-component ones (the383

infinite-spin, the tachyonic and the zero-momentum reps) for which the little group is384

non-compact.385

Remarks:386

3Actually, in Subsection 5.3 an explicit derivation of the continuous spin representation from a proper
“infinite spin” limit of a massive representation is reviewed. All the former comments find their natural
interpretation in this point of view.
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• More precisely, the lower-dimensional cases D = 2, 3 are degenerate in the following387

sense (when pµ 6= 0). In D = 2 , all little groups are trivial, thus all physical fields are388

scalars. In D = 3 , all little groups are Abelian (massive: SO(2), massless: R, tachyonic:389

SO(1, 1)↑ ∼= R) hence all their UIRs have (complex) dimension one: generically, fields390

have one physical degrees of freedom. Notice that the helicity reps may be assigned a391

“conformal spin” if they are extended to irreps of the group SO(D, 2) ⊃ SO(D − 1, 1)↑ .392

Notice also that the “spin” of a massive representation is not discretized in D = 3 but393

can be an arbitrary real number4 [10] because the universal cover of SO(2, 1)↑ covers it394

infinitely often.395

• For massive and helicity representations, the number of local physical degrees of freedom396

may be determined from the well known formulas for the dimension of any UIR of the397

orthogonal groups (reviewed in Subsection 4.3 for the tensorial irreps).398

• This group-theoretical analysis does not probe topological theories (such as Chern-399

Simons theory) because such theories correspond to identically vanishing representations400

of the little group since they have no local physical degrees of freedom.401

The following corollary provides a group-theoretical explanation of the fact that com-402

bining the principle of relativity with the rules of quantum mechanics necessarily leads to403

field theory.404

Corollary: Every non-trivial unitary irreducible representation of the isometry group of405

any maximally-symmetric spacetime is infinite-dimensional.406

Proof: The Hilbert space carrying a non-trivial unitary representation of the Poincaré407

group is infinite-dimensional because (i) in the generic case, qµ 6= 0, the orbit is either408

a hyperboloid (p2 6= 0) or a cone (p2 = 0) and the space of wave functions on the orbit409

is infinite-dimensional, (ii) the zero-momentum representations of the Poincaré group are410

unitary representations of the de Sitter isometry group. Thus, the proof is ended by411

noticing that all non-trivial unitary representations of the isometry group of (anti) de412

Sitter spacetimes (A)dSD also are infinite-dimensional, because their isometry groups are413

pseudo-orthogonal Lie groups.414

4 Tensorial representations and Young diagrams415

Most of the material reviewed here may be found in textbooks such as [11]. Nevertheless,416

large parts of this section are either copied or adapted from the reference [12] because417

altogether it provides an excellent summary, both for its pedagogical and comprehensive418

values. The material collected in the present section goes slightly beyond what is strictly419

necessary for these lectures, but the reader may find it useful in specific applications.420

4.1 Symmetric group421

An (unlabeled) Young diagram, consisting of n boxes arranged in r (left justified) rows,422

represents a partition of the integer n into r parts:423

n =
r∑

a=1

λa (λ1 > λ2 > . . . > λr) .

That is, λa is the number of boxes in the ath row. Successive row lengths are non-424

increasing from top to bottom. A simpler notation for the partition is the list of its parts:425

4This peculiarity is related to the existence of anyons in three spacetime dimensions, cf. Appendix B.
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λ = {λ1, λ2, . . . , λr} . For instance,426

{3, 3, 1} = .

Examples: There are five partitions of 4:427

{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1} . (18)

Partitions play a key role in the study of the symmetric group Sn . This is the group428

of all permutations of n objects. It has n! elements and its inequivalent irreducible rep-429

resentations may be labeled by the partitions of n . [In the following, Greek letters λ, µ430

and ν will be used to specify not only partitions and Young diagrams but also irreducible431

representations of the symmetric group and other groups.]432

The connection between the symmetric group and tensors was initially developed by433

H. Weyl. This connection can be approached in (at least) two equivalent ways.434

A. Let Tµ1... µn be a ‘generic’ n-index tensor, without any special symmetry property.435

[For the moment, ‘tensor’ just means a function of n indices, not necessarily with436

any geometrical realization. It must be meaningful, however, to add — and form437

linear combinations of — tensors of the same rank.] A Young tableau, or labeled438

Young diagram, is an assignment of the numbers 1, 2, . . . , n to the n boxes of a439

Young diagram λ . The tableau is standard if the numbers are increasing both440

along rows from left to right and down columns from top to bottom. The entries441

1, . . . , n in the tableau indicate the n successive indices of Tµ1...µn . The tableau442

defines a certain symmetrization operation on these indices: symmetrize on the set443

of indices indicated by the entries in each row, then antisymmetrize the result on444

the set of indices indicated by the entries in each column. The resulting object445

is a tensor, T̃ , with certain index symmetries. Now let each permutation of Sn446

act (separately) upon T̃ . The n! results are not linearly independent; they span447

a vector space V Sn
λ which supports an irreducible representation of Sn . Different448

tableaux corresponding to the same diagram λ yield equivalent (by not identical)449

representations.450

Example: The partition {2, 2} of 4 has two standard tableaux:451

1 2
3 4 and

1 3
2 4 . (19)

Let us construct the symmetrized tensor T̃abcd := Rab|cd corresponding to the second452

of these:453

a c
b d . (20)

First symmetrize over the first and third indices (a and c), and over the second and
fourth (b and d):

1

4
(Tabcd + Tcbad + Tadcb + Tcdab) .

Now antisymmetrize the result over the first and second indices (a and b), and over454
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the third and fourth (c and d);5 dropping the combinatorial factor 1
16 , we get455

Rab|cd = Tabcd + Tcbad + Tadcb + Tcdab − Tbacd − Tcabd − Tbdca − Tcdba
− Tabdc − Tdbac − Tacdb − Tdcab + Tbadc + Tdabc + Tbcda + Tdcba .

It is easy to check that R possesses the symmetries of the Riemann tensor. There456

are two independent orders of its indices (e.g. Rab|cd and Rac|bd), and applying any457

permutation to the indices produces some linear combination of those two basic458

objects. On the other hand, performing on T the operations prescribed by the first459

tableau in (19) produces a different expression Pac|bd , which, however, generates a460

two-dimensional representation of S4 with the same abstract index structure as that461

generated by R . A non-standard tableau would also yield such a representation, but462

the tensors within it would be linear combinations of those already found. One finds463

Pac|bd = Tabcd + Tbacd + Tabdc + Tbadc − Tcbad − Tbcad − Tcbda − Tbcda
− Tadcb − Tdacb − Tadbc − Tdabc + Tcdab + Tdcab + Tcdba + Tdcba .

As the reader may check, no linear combinations of P can reproduce R . The464

objects Pab|cd, Pac|bd, Rab|cd and Rac|bd are linearly independent. Although R and465

P are characterized by the same Young diagram, they are associated with different466

standard Young tableaux and therefore span two different (although equivalent)467

irreducible representations of Sn . Two representations may indeed be equivalent468

without being identical. This happens in particular for the irreducible decomposition469

of the regular representation of Sn where every irreducible representation appears470

with a multiplicity equal to its dimension. When the dimension of an Sn irreducible471

representation is d > 1 , then d copies of that irreducible representation appear in472

the decomposition of the regular representation of Sn and all these d representations473

are equivalent, although not identical.474

Example: Define a symmetrized Riemann tensor (the Jacobi tensor) by Jad;bc :=475

1
2 (Rab|cd + Rac|bd) . It obeys Jab;cd = Jba;cd = Jab;dc . Then it is easy to show that476

Rab|cd = 2
3 (Jad;bc−Jbd;ac) . Thus the tensor J has no fewer independent components477

and contains no less information than the tensor R, despite the extra symmetrization;478

R is recovered from J by an antisymmetrization. The tensors R and J are really479

the same tensor expressed with respect to different bases.480

B. The regular representation of Sn is the n!-dimensional representation obtained by481

letting Sn act by left multiplication on the formal linear combinations of elements482

of Sn . [That is, one labels the basis vectors of Rn! by elements of Sn, defines that483

action of each permutation on the basis vectors in the natural way, and extends484

this definition to the whole space by linearity.] Equivalently, the vector space of485

the regular representation is the space of real-valued functions defined on Sn . [In486

general the regular representation is defined with complex scalars, but for Sn it is487

sufficient to work with real coefficients.]488

Regular representation: The regular representation contains every irreducible489

representation with a multiplicity equal to its dimension. Each Young diagram λ490

corresponds to an irreducible representation of Sn . Its dimension and multiplicity491

are equal to the number of standard tableaux of diagram λ .492

5Here we adopt the convention that the second round of permutations interchanges indices with the
same names, rather than indices in the same positions in the various terms. The opposite convention is
tantamount to antisymmetrizing first, which leads to a different, but mathematically isomorphic, develop-
ment of the representation theory. The issue here is analogous to the distinction between space-fixed and
body-fixed axes in the study of the rotation group (active or passive transformations).
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The symmetrization procedure described under A. can be transcribed to the more493

abstract context B. to construct a projection operator onto the subspace of Rn! supporting494

each representation. [The numerical coefficient needed to normalize the tableau operation495

as a projection — an operator whose square is itself — is not usually the same as that496

accumulated from the individual symmetrization operations. For example, to make Rabcd497

into a projection of Tabcd, one needs to divide by 12, not 16.]498

Example: In (18), the partition {4} corresponds to the totally symmetric four-index ten-
sors, a one-dimensional space V S4

{4} . Similarly, {1, 1, 1, 1} yields the totally antisymmetric
tensors. A generic rank-four tensor, Tabcd, can be decomposed into the sum of its sym-
metric and antisymmetric parts, plus a remainder. The theory we are expounding here
tells how to decompose the remainder further. The partition {2, 2} yields two independent
two-dimensional subrepresentations of the regular representation; in more concrete terms,
there are two independent pieces of Tabcd ( 1

12 Rab|cd and 1
12 Pac|bd) constructed as described

in connection with (19). One of these (Rab|cd) has exactly the symmetries of the Riemann
tensor; the other (Pac|bd, coming from the first tableau of (19)) has the same abstract
symmetry as the Riemann tensor, but with the indices ordered differently. Finally, each
of the remaining partitions in (18), i.e., {3, 1} and {2, 1, 1} , can be made into a standard
tableau in three different ways. Therefore, each of these two representations has three
separate pieces of T corresponding to it, and each piece is three-dimensional (has three
independent index orders after its symmetries are taken into account). Thus the total
number of independent tensors which can be formed from the irreducible parts of Tabcd by
index permutations is

12 + 12 + 22 + 32 + 32 = 24 = 4!

which is simply the total number of permutations of the indices of T itself, as it must be.499

To state a formula for the dimension of an irreducible representation V Sn
λ of Sn , we500

need the concept of the hook length of a given box in a Young diagram λ . The hook501

length of a box in a Young diagram is the number of squares directly below or directly to502

the right of the box, including the box once:503

↓
−→−|

.
•

504

Example: In the following diagram, each box is labeled by its hook length:505

6 4 3 1
4 2 1
1

.
506

One then has the following hook length formula for the dimension of the representation507

V Sn
λ of Sn corresponding to the Young diagram λ :508

dimV Sn
λ =

n!∏
( hook lengths)

. (21)

Remark: Note carefully that the “dimension” we have been discussing up to now is the509

number of independent index orders of a tensor, not the number of independent compo-510

nents when the tensor is realized geometrically with respect to a particular underlying511

vector space or manifold. The latter number depends on the dimension (say D) of that512

underlying space, while the former is independent of D (so long as D is sufficiently large,513

as we tacitly assume in generic discussions). For example, the number of components of514
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an antisymmetric two-index tensor is D(D−1)
2 , but the number of its index orders is always515

1, except in dimension D = 1 where no non-zero antisymmetric tensors exist at all.516

4.2 General linear group517

We now turn to the representation theory of the general linear and orthogonal groups,518

where the (spacetime) dimension D plays a key role. The theory of partitions and of the519

representations of the permutation groups is the foundation on which this topic is built.520

Let {va} represent a generic element of RD∗ (or of the cotangent space at a point of a521

D-dimensional manifold). The action of non-singular linear operators on this space gives522

a D-dimensional irreducible representation V ∼= RD∗ of the general linear group GL(D) ;523

indeed, this representation defines the group itself. The rank-two tensors, {Tab}, carry a524

larger representation of GL(D) (V ⊗V , of dimension D2), where the group elements act on525

the two indices simultaneously. The latter representation is reducible: it decomposes into526

the subspace of symmetric and antisymmetric rank-two tensors V ⊗V ∼= (V �V )⊕(V ∧V ),527

of respective dimensions D(D+1)
2 and D(D−1)

2 . Similarly, the tensor representation of rank528

n, V ⊗n, decomposes into irreducible representations of GL(D) which are associated with529

the irreducible representations of Sn acting on the indices, which in turn are labeled by530

the partitions of n , hence by Young diagrams. Young diagrams with more than D rows531

do not contribute [if λ is a partition of n into more than D parts, then the associated532

index symmetrization of a D-dimensional rank-n tensor yields an expression that vanishes533

identically; in particular, there are no non-zero totally antisymmetric rank-n tensors if534

n > D ].535

More precisely, let λ be a Young tableau. The Schur module V
GL(D)
λ is the vector space536

of all rank-n tensors T̃ in V ⊗n such that:537

(i) the tensor T̃ is completely antisymmetric in the entries of each column of538

λ ,539

(ii) complete antisymmetrization of T̃ in the entries of a column of λ and540

another entry of λ that is on the right-hand side of the column vanishes.541

This construction is equivalent to the construction A.542

Example: Associated with the Young tableau (20), the tensor Rab|cd introduced in the543

subsection 4.1 obeys to the conditions (i) and (ii): Rab|cd = −Rba|cd = −Rab|dc and544

Rab|cd +Rbc|ad +Rca|bd = 0 .545

As explained in the footnote 5, if one interchanges everywhere in the previous con-546

structions the words “symmetric” and “antisymmetric,” then the (reducible) representa-547

tion spaces characterized by the same Young diagram [but not by the same Young tableau]548

are isomorphic and the conditions (i)-(ii) must be replaced with:549

(a) the tensor is completely (or totally) symmetric in the entries of each column550

of λ,551

(b) complete symmetrization of the tensor in the entries of a row of λ and552

another entry of λ that sits in a lower row vanishes.553

Example: Taking the standard Young tableau (20) and constructing, following the “man-554

ifestly symmetric convention”, the irreducible tensor associated with it, one obtains a ten-555

sor R with the same abstract index symmetries as J [i.e. obeying the constraints (a)556

and (b)] but which is however linearly independent from J , thence linearly independent557
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from R alone. The tensor R can be expressed as a linear combination of both R and P .558

Similarly, taking the first standard Young tableau in (19) and following the manifestly559

symmetric convention, one obtains a tensor P obeying (a) and (b). This tensor is linearly560

independent from P alone as it is a linear combination of both P and R . Summarizing,561

associated with the Young diagram {2, 2} we have the (reducible) representation space562

spanned by either {R,P} in the manifestly antisymmetric convention or by {R,P} in the563

manifestly symmetric convention.564

Remarks:565

• An important point to note is that, by the previous construction featuring irreducible ten-566

sors with definite symmetry properties, one generates essentially all the finite-dimensional567

irreducible representations of GL(D,R) . To be more precise, GL(D,R) tensors can be568

of type (p, q) , i.e., having p contravariant indices and q covariant ones. The exhaustive569

list of finite-dimensional irreducible representations of GL(D,R) is provided by (p, q)-type570

tensors characterised by a pair of Young tableaux of rank p and q , respectively, and such571

that the contraction of any covariant index with a contravariant one gives zero identically.572

See e.g. Chapter 13 of [9] for more details.573

• In order to make contact with an alternative road to the representation theory of GL(D),574

one says that the irreducible representation Γλ1 ... λD−1 of sl(D,C) ≡ AD−1 with highest575

weight Λ = λ1Λ(1) + λ2Λ(2) + . . . + λD−1Λ(D−1) [see e.g. the Part II of the lecture notes576

[3] for definitions and notations] is obtained by applying the Schur functor Sλ [i.e. the577

construction presented above] to the standard representation V , where the Young diagram578

is579

λ = {λ1 + . . .+ λD−1 , λ2 + . . .+ λD−1 , . . . , λD−1 , 0} .

In terms of the Young diagram for λ , the Dynkin labels λa (1 6 a 6 D − 1) are the580

differences of lengths of rows: λa = λa − λa+1 .581

Example: If D = 6, then582

︸ ︷︷ ︸
λ1︸︷︷︸

λ2︸ ︷︷ ︸
λ4λ5

583

is the Young diagram corresponding to the irrep Γ3,2,0,3,1 of A5 ≡ sl(6,C) .584

The dimension of the representation V
GL(D)
λ of GL(D) corresponding to the Young585

diagram λ is:586

dimV
GL(D)
λ =

∏ D − row + column

hook length
, (22)

where the product is over the n boxes while “row” and “column” respectively give the587

place of the corresponding box. As was underlined before, the formula (22) is distinct588

from the hook length formula (21).589

Examples:590

• In the following diagram591

5 6 7 8
4 5 6
3

,
592
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each box is labeled by its value in the numerator of (22) for D = 5. Observe that, for the593

corresponding diagram λ , dimV
GL(5)
λ = 1050 6= 70 = dimV S8

λ .594

• The space of (anti)symmetric tensors of V of rank n are denoted by �n(V ) (respectively,595

∧n(V )). It carries an irreducible representation of GL(D) labeled by a Young diagram596

made of one row (respectively, column) of length n . The dimensions597

dim�n(V ) =
( D + n− 1

n

)
, dim∧n(V ) =

( D
n

)
, (23)

are easily computed from the formula (22) and reproduce the standard results obtained598

from combinatorial arguments.599

If T1 and T2 are tensors of ranks n1 and n2 , respectively, then their tensor product is600

a tensor of rank n1 +n2 . Each factor Tj transforms under index permutation according to601

some representation of Snj , and under linear transformation by the corresponding repre-602

sentation of GL(D) . It follows immediately that the tensor product T1⊗T2 transforms as603

some representation of Sn1 ×Sn2 . This induces a representation of the full permutation604

group Sn1+n2 which is associated with a corresponding representation of GL(D) . It is605

possible to reduce these last two representations into a sum of irreducible ones. We may606

assume that the factor representations are irreducible, since the original tensors Tj could607

have been broken into irreducible parts at the outset.608

Littlewood–Richardson rule: The decomposition of an “outer product” µ · ν of irre-609

ducible representations µ and ν of Sn1 and Sn2 , respectively, into irreducible representa-610

tions of Sn1+n2 can be determined by means of the following algorithm involving Young611

diagrams. The product is commutative, so it does not matter which factor is regarded as612

the “right-hand” one. [In practice, on should choose the simpler Young diagram for that613

role.]614

(I) Label each box in the top row of the right-hand diagram, ν, by “a”, each box in the615

second row by “b”, etc.616

(II) Add the labeled boxes of ν to the left-hand diagram µ, one at a time, first the as,617

then the bs, ..., subject to these constraints:618

(A) No two boxes in the same column are labeled with the same letter;619

(B) At all stages the result is a legitimate Young diagram;620

(C) At each stage, if the letters are read right-to-left along the rows, from top to621

bottom, one never encounters more bs than as, more cs than bs, etc.622

(III) Each of the distinct diagrams constructed in this way specifies an irreducible sub-623

representation λ, appearing in the decomposition of the outer product. The same624

labeled Young diagram may arise in more than one way; the multiplicity of that625

representation must be counted accordingly.626

Remarks:627

• This rule enables products of distinct tensors to be decomposed. When the factors628

are the same tensor, the list is further restricted by the requirement of symmetry under629

interchange of the factors. This is the problem of plethysm, whose solution requires more630

complicated techniques than the Littlewood–Richardson rule.631

• Representations with too many parts (columns of length greater than D) must be deleted632

from the list of subrepresentations of the GL(D). [If irreducible representations of the633

special linear group SL(D) are considered instead, every column of length D must be634

removed from the corresponding Young diagram.]635
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4.3 Orthogonal group636

It remains to consider index contractions. Up to now we considered only covariant ten-637

sors, because in the intended application there is a metric tensor which serves to relate638

contravariant and covariant tensors. Contractions are mediated by this metric. Implicitly,639

therefore, one is restricting the symmetry group of the problem from the general linear640

group to the subgroup that leaves the metric tensor invariant, the orthogonal group O(D) .641

[If the metric has indefinite signature, the true symmetry group is a non-compact ana-642

logue of the orthogonal group, such as the Lorentz group. This does not affect the relevant643

aspects of the finite-dimensional representation theory.] Each irreducible GL(D) represen-644

tation V
GL(D)
λ decomposes into irreducible O(D) representations V

O(D)
ν , labeled by Young645

diagrams ν obtained by removing an even number of boxes from λ . The branching rule646

for this process involves a sort of inverse of the Littlewood–Richardson rule:647

Restriction from GL(D) to O(D): The irreps of GL(D) may be reduced to direct sums648

of irreps of O(D) by extracting all possible trace terms formed by contraction with products649

of the metric tensor and its inverse.650

The reduction is given by the branching rule for GL(D) ↓ O(D):651

V
GL(D)
λ = V

O(D)
λ/∆ ≡ V O(D)

λ ⊕ V O(D)
λ/{2} ⊕ V

O(D)
λ/{4} ⊕ V

O(D)
λ/{2,2} ⊕ . . . (24)

where ∆ is the formal infinite sum [13]

∆ = 1 + + + + . . .

corresponding to the sum of all possible plethysms of the metric tensor, and where λ/µ652

means the sum of the Young diagrams ν such that ν · µ contains λ according to the653

Littlewood–Richardson rule (with the corresponding multiplicity).654

Examples:655

• The GL(D) irreducible representation labeled by the Young diagram {2, 2} decomposes656

with respect to O(D) according to the direct sum {2, 2}/∆ = {2, 2}+{2, 0}+{0, 0} which657

corresponds to the decomposition of the Riemann tensor into the Weyl tensor, the traceless658

part of the Ricci tensor and the scalar curvature, respectively.659

• The GL(D) irreducible representation labeled by the Young diagram {n} decomposes660

with respect to O(D) according to the direct sum {n}/∆ = {n}+{n−2}+{n−4}+ . . . ,661

corresponding to the decomposition of a completely symmetric tensor or rank n into its662

traceless part, the traceless part of its trace, etc. This provides an alternative proof of the663

obvious fact that the number of independent components of a traceless symmetric tensor664

of rank n is equal to the number of independent components of a symmetric tensor of rank665

n minus the number of independent components of a symmetric tensor of rank n− 2 (its666

trace): dimV
O(D−2)
{n} = dimV

GL(D)
{n} − dimV

GL(D)
{n−2} . Using the formula (23) allows to show667

that668

dimV
O(D)
{n} =

(D + 2n− 2)(D + n− 3)!

n!(D − 2)!
. (25)

The very useful formula (25) contains as a particular case the well-known fact that all the669

traceless symmetric tensorial representations of O(2) are two-dimensional (indeed, any670

UIR of an Abelian group is of complex dimension one). Moreover, the traceless symmetric671

tensorial representations of rank n of the rotation group O(3) are the well-known integer672

spin representations of dimension equal to 2n+ 1 .673

The following theorem is very important (see e.g. the first reference of [11]):674
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Vanishing irreps for (pseudo-)orthogonal groups: Whenever the sum of the lengths675

of the first two columns of a Young diagram λ is greater than D = p+q , then the irreducible676

representation of O(p, q) labeled by λ is identically zero.677

Young diagrams such that the sum of the lengths of the first two columns does not678

exceed D are said to be allowed.679

Finite-dimensional irreps of (pseudo-)orthogonal groups: Each non-zero finite-680

dimensional irreducible representation of O(p, q) is isomorphic to a completely traceless681

tensorial representation, the symmetry properties of which are labeled by an allowed Young682

diagram λ .683

The dimension of the tensorial irrep is determined by the following rule due to King [14]:684

(α) The numbers D − 1, D − 3, D − 5, . . . , D − 2r + 1 are placed in the end boxes685

of the 1st, 2nd, 3rd, . . ., rth rows of the diagram λ . A labeled Young diagram of686

n numbers is then constructed by inserting in the remaining boxes of the diagram,687

numbers which increase by one in passing from one box to its left-hand neighbor.688

(β) This labeled Young diagram is extended to the limit of the triangular Young diagram689

τ of r rows. This produces a Young diagram λ̃ the ath row of which has length equal690

the maximum between the two integers τa = r − a+ 1 and λa.691

(γ) The series of numbers in any row of the Young diagram λ̃ is then extended by692

inserting in the remaining boxes of the diagram, numbers which decrease by one693

in passing from one box to its right-hand neighbor. The resulting numbers will be694

called the “King length.”695

(δ) The row lengths λ1, λ2, . . ., λr are then added to all of the numbers of the Young696

diagram λ̃ which lie on lines of unit slope passing through the first box of the 1st,697

2nd, . . ., rth rows, respectively, of the Young diagram λ .698

The dimension is equal to the product of the integers in the resulting labeled Young699

diagram λ̃ divided by the product of700

- the hook length of each box of λ, and of701

- the King length of each box of λ̃ outside λ .702

Examples:703

• In the following diagram, allowed for D = 5,704

7 6 5 4
4 3 2
0

,
705

each box is labeled by its King length, while in the diagram706

11 9 6 4
7 4 2
1

,
707

each box is labeled by the number obtained at the very end of King’s rule. Observe that,708

for the corresponding diagram λ , it was not necessary to perform the steps (β)-(γ) and709

that, dimV
O(5)
λ = 231 < 1050 = dimV

GL(5)
λ .710

• In the following Young diagram λ = {2, 2, 1} , allowed for D = 5,711
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5 4
3 2
0

,
712

each box is labeled by the number obtained after step (α) . The step (β) is now necessary713

and gives the Young diagram λ̃ = {3, 2, 1} . At the end of steps (γ) and (δ), respectively,714

the result is715

(γ)−→
5 4 3
3 2
0

(δ)−→
7 6 4
5 3
1

,
716

so that dimV
O(5)
λ = 7·6·5·4·3

(4·3·2)·(3) = 35 < 75 = dimV
GL(5)
λ .717

• The space of traceless symmetric tensors of V of rank n carries an irreducible represen-718

tation of O(D) labeled by a Young diagram made of one row of length n for which the719

dimension (25) is easily reproduced from the King rule, since the rules (β)-(γ) may be720

omitted721

• Computing the number of components of the Weyl tensor and of a symmetric, traceless,722

rank-two tensor in D = 4 dimensions, enables one to give the decomposition {2, 2}/∆ =723

{2, 2} + {2, 0} + {0, 0} of the Riemann tensor into the Weyl tensor, the traceless part724

of the Ricci tensor and the scalar curvature, respectively, in terms of the corresponding725

dimensions. This gives the well-known result 20 = 10 + 9 + 1 .726

Unitary irreps of orthogonal groups: Each non-zero inequivalent UIR of O(D) cor-727

responds to an allowed Young diagram λ , and conversely.728

Proof: The orthogonal group is compact, thence any UIR is finite-dimensional (see Subsec-729

tion 1.3). Furthermore, any finite-dimensional irrep of the orthogonal group is labeled by730

an allowed Young diagram. Moreover, an important result is that any finite-dimensional731

representation may be endowed with a sesquilinear form which makes it unitary.732

The quadratic Casimir operator of the orthogonal algebra so(D) presented by its gen-733

erators and its commutation relations734

i [Mµν ,Mρσ] = δνρMµσ − δµρMνσ − δσµMρν + δσνMρµ (26)

is the sum of square of the generators (similarly to the definition (4) for so(D− 1, 1) since735

these two complex algebras are isomorphic). Its eigenvalue on a finite-dimensional irrep736

labeled by an allowed Young diagram λ = {λ1, λ2, . . . , λr} is given in the subsection 9.4.C737

of [2]:738 [
C2

(
so(D)

)
−

r∑
a=1

λa(λa +D − 2a)
]
V
O(D)
λ = 0 . (27)

Examples:739

• The UIRs of the Abelian group O(2) ∼= U(1) are labeled by one integer only, which is740

the eigenvalue of the single generator on the irrep, say h ∈ Z . The only allowed Young741

diagrams are made of a single row of length equal to the non-negative integer s = |h| . The742

traceless symmetric tensorial representations of O(2) are two-dimensional, the sum of the743

two irreps labeled by h = ±s . The formula (27) with D = 2 , r = 1 and λ1 = s gives the744

obvious eigenvalue s2 , since the quadratic Casimir operator of the rotation group O(2) is745

equal to the square of the single generator.746

• The quadratic Casimir operator of the rotation group O(3) is the square of the angular747

momentum. The irrep of O(3) with spin s ∈ N is labeled by the allowed Young diagram748

made of a single row of length equal to the integer s . The formula (27) with D = 3 , r = 1749

and λ1 = s gives the celebrated eigenvalue s(s+ 1) .750
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• The irrep of O(D) carried by the space of traceless symmetric tensors of rank n is labeled751

by the allowed Young diagram {n} made of a single row of length equal to an integer n .752

The formula (27) with r = 1 and λ1 = n gives the eigenvalue n(n+D−2) for the quadratic753

Casimir operator.754

The following branching rule is extremely useful in the process of dimensional reduc-755

tion.756

Restriction from GL(D) to GL(D − 1): The restriction to the subgroup GL(D − 1) ⊂
GL(D) of a finite-dimensional irrep of GL(D) determined by the Young diagram λ con-
tains each irrep of GL(D − 1) labeled by Young diagrams µ such that

λ1 > µ1 > λ2 > µ2 > . . . > µr−1 > λr > µr > 0 ,

with multiplicity one. The same theorem holds for the restriction O(D) ↓ O(D− 1) where757

λ is an allowed Young diagram.758

These rules are discussed in the section 8.8.A of [2]. They may be summarized in the759

following branching rule for GL(D) ↓ GL(D − 1),760

V
GL(D)
λ = V

GL(D−1)
λ/Σ ≡ V GL(D−1)

λ ⊕ V GL(D−1)
λ/{1} ⊕ V GL(D−1)

λ/{2} ⊕ V GL(D−1)
λ/{3} ⊕ . . . (28)

where Σ is the formal infinite sum of all Young diagrams made of a single row.761

Example: The branching rule applied to symmetric irrep labeled by a Young diagram
{n} made of one row of length n gives as a result:

{n}/Σ = {n }+ {n− 1}+ {n− 2}+ . . .+ {1}+ {0} .

This implies the obvious fact that a completely symmetric tensor of rank n whose indices762

run over D values may be decomposed as a sum of completely symmetric tensors of rank763

n, n − 1, . . . , 1, 0 whose indices run over D − 1 values. A non-trivial instance of the764

branching rule for O(D) ↓ O(D− 1) is that the same result is true for traceless symmetric765

tensors as well.766

4.4 Auxiliary variables767

Let λ be a Young diagram with s columns and r rows.768

The Schur module V
GL(D)
λ in the “manifestly antisymmetric convention” can be built769

via a convenient construction in terms of polynomials in s × D graded variables satisfy-770

ing appropriate conditions. More precisely, the vector space V
GL(D)
λ is isomorphic to a771

subspace of the associative algebra772

A = (⊗s ∧ RD∗)⊗ C∞(RD) = ⊗sC∞(RD)Ω(RD) (29)

of s tensor products of antisymmetric forms. The elements of A are called multiforms [15].773

TheD generators of the Ith factor RD∗ in (⊗s∧RD∗) are written dIx
µ (µ = 0, 1, . . . , D ).774

By definition, the multiform algebra A is presented by the graded commutation relations775

dIx
µ dJx

ν = (−)δIJ dJx
ν dIx

µ , (30)

where the wedge products are not written explicitly. The condition (i) of Subsection 4.2776

is automatically verified for any element Φ ∈ A due to the fact that the variables are777

anticommuting in a fixed column (I = J). The GL(D)-irreducibility condition (ii) of778

Subsection 4.2 is implemented by the conditions779 (
dIx ·

∂L

∂(dJx)
− δIJ `I

)
Φ = 0 , (I 6 J) (31)

22



SciPost Physics Lecture Notes Submission

where the dot stands for the contraction of the indices, `I for the length of the Ith column780

in the Young diagram λ and ∂L stands for “left” derivative. By the Weyl construction,781

an element Φ ∈ A satisfying (31) belongs to the Schur module V
GL(D)
λ . Following the782

discussion of Subsection 4.3, if λ denotes an allowed Young diagram, such an element783

Φ ∈ V GL(D)
λ is irreducible under the (pseudo)-orthogonal group O(p, q) (p + q = D) if it784

is traceless, that is785 ( ∂L

∂(dIx)
· ∂L

∂(dJx)

)
Φ = 0 , (∀ I, J) (32)

where the dot stands now for the contraction of indices via the use of the metric preserved786

by O(p, q). An element Φ ∈ A such that (31)-(32) are fulfilled belongs to the Schur module787

V
O(p,q)
λ labeled by the Young diagram λ .788

The Schur module V
GL(D)
λ admits another convenient realization in terms of polyno-789

mials in r×D commuting variables. In other words, the vector space V
GL(D)
λ is isomorphic790

to a subspace of the polynomial algebra in the variables uµa (a = 1, 2, . . . , r) where the791

index a corresponds to each row. The condition (a) of Subsection 4.2 is automatically792

verified for any such polynomial due to the fact that the variables are commuting in a793

fixed row. The GL(D)-irreducibility condition (b) of Subsection 4.2 is implemented by794

the conditions795 (
ua ·

∂

∂ub
− δ

ab
λa

)
Φ = 0 , (a 6 b) (33)

where the dot still stands for the contraction of the indices. The degree of homogeneity of796

the polynomial Φ in the variables uµa (for fixed a) is λa . The corresponding coefficients are797

tensors irreducible under the general linear group. By the Weyl construction, a polynomial798

Φ(ua) satisfying (33) belongs to the Schur module V
GL(D)
λ . Again, such an element799

Φ ∈ V GL(D)
λ is irreducible under the (pseudo)-orthogonal group O(p, q) (p + q = D) iff it800

is traceless, that is801 ( ∂

∂ua
· ∂

∂ub

)
Φ = 0 , (∀ a, b) (34)

where the dot stands for the contraction of indices via the use of the metric preserved by802

O(p, q). A polynomial Φ(ua) such that (33)-(34) are fulfilled belongs to the Schur module803

V
O(p,q)
λ labeled by an allowed Young diagram λ .804

Example: Consider an irreducible representation of the orthogonal group O(D) labeled805

by the Young diagram {n} made of a single row of length equal to an integer n . The806

polynomial Φ(u) ∈ V O(D)
{n} obeys to the irreducibility conditions807 (
u · ∂

∂u
− n

)
Φ = 0 ,

( ∂

∂u
· ∂
∂u

)
Φ = 0 . (35)

They mean that the polynomial is homogeneous (of degree equal to n) and harmonic, so
that its components correspond to a symmetric traceless tensor of rank n :

Φ(u) =
1

n!
Φµ1...µn u

µ1 . . . uµn , δµ1µ2Φµ1µ2µ3...µn = 0 .

Of course the integral of the square of such a polynomial over RD is, in general, infinite.808

But the restriction of an harmonic polynomial on the unit sphere −→u 2 = 1 is square809

integrable on SD−1. This restriction is called a spherical harmonic of degree n . Therefore810

the space of spherical harmonics of degree n provides an equivalent realization of the Schur811

module V
O(D)
{n} . For D = 3 , the space V

O(3)
{n} is spanned by the usual spherical harmonics812

Y m
n (θ, φ) on the two-sphere with |m| 6 n .813
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Remarks:814

• The infinitesimal generators of the pseudo-orthogonal group O(p, q) are represented by
the operators

Mµν = i
r∑

a=1

uρa

(
gρµ

∂

∂uνa
− gρν

∂

∂uµa

)
.

Reordering the factors and making use of (33)-(34) allows to reproduce the formula (27)815

for the eigenvalues of the quadratic Casimir operator.816

• Instead of polynomial functions in the commuting variables, one may equivalently con-817

sider distributions obeying to the same conditions. The space of solutions would carry818

an equivalent irrep, as follows from the highest-weight construction of the representation.819

However, it does not make sense any more of talking about the “coefficients” of the homo-820

geneous distribution so that the link with the equivalent tensorial representation is more821

intricate.822

The example of the spherical harmonics suggests that it might be convenient to realize823

any unitary module of the orthogonal group O(D) as a space of functions on the unit hy-824

persphere SD−1 satisfying some linear differential equations. Better, the symmetry under825

the orthogonal group would be made manifest by working with homogeneous harmonic826

functions on the ambient space RD , evaluated on any hypersphere SD−1 ⊂ RD .827

Spherical harmonics: To any UIR of the isometry group O(D) of a hypersphere SD−1,828

one may associate manifestly covariant differential equations for functions on SD−1 em-829

bedded in RD whose space of solutions carry the corresponding UIR.830

Proof: Any UIR of the isometry group O(D) corresponds to a Schur module V
O(D)
λ which831

may be realized as the space of polynomials Φ(−→u a) such that (33)-(34) are obeyed. Let832

us introduce the notation: −→x := −→u 1 and
−→
t a−1 := −→u a for a = 2, . . . , r . One interprets833

the polynomial Φ(−→x ,−→t a) (where the index a runs from 1 to r−1) as a tensor field on the834

Euclidean space RD parametrized by the Cartesian coordinates −→x , with some auxiliary835

variables
−→
t a implementing the tensor components. The conditions (33)-(34) for a and b836

strictly greater than 1 imply that837 (
ta ·

∂

∂tb
− δ

ab
λa

)
Φ = 0 , (a 6 b)

( ∂

∂ta
· ∂
∂tb

)
Φ = 0 , (36)

where λ = {λ2, . . . , λr} is the Young diagram obtained from λ by removing its first row.
Thus the components of the “tensor field” Φ(−→x ,−→t a) carry an irreducible representation
of O(D) labeled by λ. The conditions (33) for a = b = 1 imply that(

x · ∂
∂x
− λ1

)
Φ = 0 ,

so the polynomial Φ(−→x ,−→t a) is homogeneous of degree λ1 in the radial coordinate |−→x | .838

The condition (34) for a = b = 1 is interpreted as the Laplace equation839 ( ∂

∂x
· ∂
∂x

)
Φ = 0 (37)

on the ambient space RD, it imples that the tensor field Φ is harmonic in ambient space.840

The condition (33) for b > a = 1 states that the radial components vanish,841 (
x · ∂

∂ta

)
Φ = 0 , (38)
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so the tensor components are longitudinal to the hyperspheres SD−1 . Therefore the evalu-842

ation of the non-vanishing components of Φ(−→x ,−→t a) on the unit hypersphere |−→x | = 1 is an843

intrinsic tensor field living on the hypersphere SD−1 and whose tensor components carry844

an irrep of the stability subgroup O(D−1) labeled by λ . These tensor fields generalize the845

spherical harmonics to the generic case r > 1 . Finally, the condition (34) for b > a = 1846

states that the tensor field is divergenceless in ambient space,847 ( ∂

∂x
· ∂
∂ta

)
Φ = 0 . (39)

The differential equations (37) and (39) are written in ambient space but they may be848

reformulated in intrinsic terms on the hypersphere, at the price of losing the manifest849

covariance under the full isometry group O(D) .850

4.5 Euclidean group851

The method of induced representations was introduced in Subsection 3.1 for the Poincaré852

group ISO(D − 1, 1)↑ and applied to the Euclidean group ISO(D − 2) in Subsection853

3.3. Focusing on the faithful (i.e. with a non-trivial action of the translation generators)854

irreps of the inhomogeneous orthogonal group, all of them are induced from an UIR of the855

stability subgroup. Using the results of the previous section 4.3, one may summarize the856

final result into the following classification.857

Unitary irreps of the inhomogeneous orthogonal groups: Each inequivalent UIR858

of the group IO(D) with a non-trivial action of its Abelian normal subgroup is associated859

with a positive real number µ and an allowed Young diagram of the subgroup O(D − 1) ,860

and conversely.861

The orbits of the linear action of the orthogonal group O(D) on the Euclidean space862

RD are the hyperspheres SD−1 of radius R . The isometry group of any such hypersphere863

SD−1 is precisely O(D) . Considering a region of fixed size on these hyperspheres, in864

the limit R → ∞ the sphere becomes a hyperplane RD−1 . Therefore the homogeneous865

and inhomogeneous orthogonal groups are related by some infinite radius limit: O(D)→866

IO(D − 1). Such a process is frequently referred to as an Inönü-Wigner contraction in the867

physics literature [16]. This is better seen at the level of the Lie algebra. Specializing the868

Dth directions, the commutation relations (26) take the form869

i [Mmn,Mpq] = δnpMmq − δmpMnq − δqmMpn + δqnMpm , (40)

i [MmD,Mpq] = δmnMpD − δmpMnD , (41)

i [MmD,MpD] = Mpm . (42)

where the latin letters take D − 1 values. Defining MmD = RPm and taking the limit870

R→∞ (with Pm fixed) in the relations (40)-(42) lead to871

i [Mmn,Mpq] = δnpMmq − δmpMnq − δqmMpn + δqnMpm , (43)

i [Pm,Mpq] = δmnPp − δmpPn , (44)

i [Pm, Pp] = 0 . (45)

As can be seen, the generators {Mmn, Pm} span the Lie algebra of the inhomogeneous872

orthogonal group IO(D − 1) . The former argument proves the contraction so(D) →873

iso(D − 1) .874

The limit of a sequence of irreps of the homogeneous orthogonal group O(D), in which875

one performs an Inönü-Wigner contraction, is automatically a representation of the inho-876

mogeneous orthogonal group IO(D− 1) (if the limit is not singular). An interesting issue877
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is the inverse problem: which irreps of IO(D − 1) may be obtained as the limit of such a878

sequence of irreps of O(D) ? The problem is non-trivial because, generically, the limit of879

a sequence of irreps is a reducible representation.880

Contraction of UIRs of the homogeneous orthogonal groups: Each inequivalent881

UIR of the group IO(D− 1) with a non-trivial action of its Abelian normal subgroup may882

be obtained as the contraction of a sequence of UIRs of the group O(D).883

More precisely, the Inönü-Wigner contraction R→∞ of a sequence of UIRs of O(D) ,884

labeled by allowed Young diagrams ν = {s, λ1, . . . , λr} such that the limit of the quotient885

s/R is a fixed positive real number µ, is the UIR of IO(D − 1) labeled by the parameter886

µ and the Young diagram λ = {λ1, . . . , λr} .887

Proof: The use of the spherical harmonics construction discussed at the end of Subsection888

4.4 is very convenient here. The main idea is to solve the homogeneity condition in a889

neighborhood of xD 6= 0 as follows:890

Φ(xm, xD, ta) = zs φ

(
xm

z
, ta

)
, (46)

where −→x = (xm, xD) and φ(ym, ta) := Φ(ym, sµ , ta) . In other words, one may perform a

convenient change of coordinates from the homogenous coordinates (xm, xD) to the set
(ym, z) where

ym =
xm

z

are the inhomogenous coordinates (on the projective space PRD−1 minus the point at
infinity z = 0 ) and

z =
µxD

s

is a scale variable. The magic is that the equations for the generalized spherical harmonics891

have a well-behaved limit xD → ∞ in terms of φ(ym, ta) when xD/s is fixed to be equal892

to the ratio z/µ , where z and µ are finite [17]. To see that, one should use the relations893

∂

∂xm
=

1

z

∂

∂ym
,

∂

∂xD
=

µ

s

(
∂

∂z
− 1

z
ym

∂

∂ym

)
. (47)

Moreover, the equations in this limit may be identified with equations for the proper UIR894

of the inhomogeneous orthogonal group IO(D−1) realized homogeneously in terms of the895

inhomogenous coordinates.896

Example: The simplest instance is when λ = {0} because one considers the sequence of
harmonic functions Φ(xm, xD) of homogeneity degree s . The Laplace operator acting on
Φ(xm, xD) reads in terms of φ(ym) as follows

∆RDΦ = zs−2

[
∂

∂y
· ∂
∂y

+
µ2

s2

(
s(s− 1)− (2s− 1)

(
y · ∂

∂y

)
+

(
y · ∂

∂y

)2
)]

φ ,

due to the homogeneity condition (46) and the relations (47). The Laplace equation
∆RDΦ = 0 is thus equivalent to the equation[

∂

∂y
· ∂
∂y

+
µ2

s2

(
s(s− 1)− (2s− 1)

(
y · ∂

∂y

)
+

(
y · ∂

∂y

)2
)]

φ = 0 ,

26



SciPost Physics Lecture Notes Submission

whose limit for s → ∞ is the Helmholtz equation [ ∆RD−1 + µ2 ]φ = 0 , where ∆RD−1 =897

∂
∂y ·

∂
∂y . The space of solutions of the Helmholtz equation carries an UIR of IO(D − 1)898

induced from a trivial representation of the stability subgroup O(D − 2) .899

5 Relativistic field equations900

The Bargmann -Wigner programme amounts to associating, with any given UIR of the901

Poincaré group, a manifestly covariant differential equation whose (positive-energy) so-902

lutions transform according to the corresponding UIR. Physically, it might be natural903

to restrict this programme to the two most important classes of UIRs: the massive and904

massless representations. Mathematically, this restriction is convenient because the group-905

theoretical analysis is simpler since any of these UIRs is induced from an UIR of a uni-906

modular orthogonal group SO(n) (with D − 3 6 n 6 D − 1), as can be checked easily on907

the tables of Subsection 3.3.908

In 1948, this restricted programme was completed by Bargmann and Wigner in four909

dimensions when, for each such UIR of ISO(3, 1)↑ , a relativistic field equation was written910

whose positive-energy solutions transform according to the corresponding UIR [4]. But911

this case (D = 4) will not be reviewed here in details because it may cast shadow on the912

generic case. Indeed, it is rather peculiar in many respects:913

• The quadratic and quartic Casimir operators essentially classify the UIRs, but this is914

no more true in higher dimensions where more Casimir operators are necessary and915

the classification quickly becomes technically cumbersome in this way. Moreover,916

one should stress that the eigenvalues of the Casimir operators do not character-917

ize uniquely an irreducible representation (for instance, the quadratic and quartic918

Casimir operators vanish for all helicity representations).919

• The (complex) Lorentz algebra so(3, 1) is isomorphic to the direct sum of two (com-920

plex) rotation algebras so(3) ∼= sp(2) . These isomorphisms allow the use of the921

convenient “dotted-undotted” formalism for the finite-dimensional (non-unitary) ir-922

reps of the spin group Spin(3, 1).923

• The symmetric tensor-spinor fields are sufficient to cover all inequivalent cases.924

• The helicity short little group SO(2) is Abelian, therefore its irreps are one-dimensional,925

for fixed helicity. Notice that the helicity is discretized because the representa-926

tion of the “little group” SO(2) is a restriction of the representation of the group927

Spin(3) ∼= SU(2) which has no intrinsically projective representations.928

• The infinite-spin short little group SO(1) is trivial, thus there are only two inequiv-929

alent infinite-spin representations (single- or double-valued) [6].930

• etc.931

Moreover, there exists an extensive literature on the subject of UIRs of ISO(3, 1)↑ and932

we refer to the numerous pedagogical reviews available for more details on the four-933

dimensional case (see e.g. the inspiring presentations of [5] and [19]).934

It is standard to require time reversal and parity symmetry of the field theory. More935

precisely, the field equations we will consider are covariant under the two previous transfor-936

mations. As a consequence of the time reversal symmetry, the representation is irreducible937

under the group ISO(D − 1, 1) but reducible under the Poincaré group ISO(D − 1, 1)↑ :938
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the Hilbert space of solutions contain both positive and negative energy solutions. Fur-939

thermore, the parity symmetry implies that the representation is irreducible under the940

inhomogeneous Lorentz group IO(D − 1, 1) but reducible under the group ISO(D − 1, 1)941

(for instance, both chiralities are present in the massless case for D even). To conclude, the942

Bargmann -Wigner programme is actually understood as associating, with any given UIR943

of the inhomogeneous Lorentz group, a manifestly covariant differential equation whose944

solutions transform according to the corresponding UIR.945

5.1 General procedure946

The lesson on induced representations that we learned from Wigner implies the following947

strategy:948

1. Pick a unitary representation of the (short) little group.949

2. Introduce a wave function on RD−1,1 taking values in some (possibly non-unitary)950

representation of the Lorentz group O(D−1, 1) the restriction of which to the (short)951

little group contains the representation of step 1.952

3. Write a system of linear covariant equations, differential in position space xµ thus953

algebraic in momentum space pν , for the wave function of step 2. These equations954

may not be independent.955

4. Fix the momentum and check in convenient coordinates that the field equations of956

step 3 put to zero all “unphysical” components of the wave function. More precisely,957

verify that its non-vanishing components carry the unitary representation of step 1.958

Proof: The fact that the set of linear differential equations is taken to be manifestly959

covariant ensures that the Hilbert space of their solutions carries a (infinite-dimensional)960

representation of IO(D−1, 1) . The fourth step determines the representation of the little961

group by which it is induced.962

In the physics literature, the fourth step is referred to as “looking at the physical963

degrees of freedom.” If the (possibly reducible) representation is proven to be unitary,964

then this property is summarized in a “no-ghost theorem.”965

The Klein-Gordon equation (p2 ± m2)Ψ = 0 is always, either present in the system of966

covariant equations or a consequence thereof. Consequently, the Klein-Gordon equation967

will be assumed implicitly from now on in the step 3. Therefore, the step 4 will be968

immediately performed in a proper Lorentz frame. (We refer the reader to the Subsection969

3.2 for more details.)970

The two completions [20] and [21] of the Bargmann -Wigner programme for finite-971

component representations in Minkowski spacetime of dimension D > 3 are reviewed,972

respectively, in the appendix A and in the subsections 5.2-5.3 for single-valued UIRs of973

the Poincaré group.6974

The tachyonic case7 is more briefly discussed in Subsection 5.4. The zero-momentum975

representations are not considered here since they essentially are the unitary irreducible976

representations of the de Sitter spacetime dSD−1 . The latter have been reviewed in [23].977

The Bargmann -Wigner programme for fractional-spin fields in three spacetime di-978

mensions has been completed in [25]. More generally, the exhaustive completion of the979

6Spinorial irreps may be adressed analogously by supplementing the system of differential equations
with Dirac-like equations and gamma-trace constraints (see e.g. [17, 22] for more details).

7The discussion presented in the section 5.4 was not published before, it directly derives from private
conversations between X.B. and J. Mourad.
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Bargmann -Wigner programme (for all representations) in Minkowski spacetime of dimen-980

sion D = 3 is briefly summarised in Appendix B.981

5.2 Massive representations982

The Bargmann -Wigner programme is easy to complete for massive UIRs because the983

massive stability subgroup is the orthogonal group O(D − 1) ⊂ O(D − 1, 1) . By going984

to a rest-frame, the time-like momentum vector takes the form pµ = (m,
−→
0 ) 6= 0 . The985

physical components of the field are thus carrying a tensorial irrep of the group O(D −986

1) of orthogonal transformations in the spatial hyperplane RD−1 orthogonal to pµ . In987

other words, the linear field equations should remove all components including time-like988

directions. These unphysical components are responsible for the fact that the Fock space989

is not endowed with a positive-definite norm.990

Step 1. From the sections 1.3 and 4, one knows that any unitary representation of991

the orthogonal group O(D − 1) is a sum of UIRs which are finite-dimensional and thus,992

equivalent to a tensorial representation. Let us consider the UIR of O(D − 1) labeled by993

the allowed Young diagram λ = {λ1, λ2, . . . , λr} (i.e. the sum of the lengths of its first994

two columns does not exceed D − 1).995

Step 2. The simplest way to perform the Bargmann -Wigner programme in the996

massive case is to choose a covariant wave function whose components carry the (finite-997

dimensional and non-unitary) tensorial irrep of the Lorentz group O(D − 1, 1) labeled by998

the Young diagram λ . As explained in the subsection 4.4, a convenient way of realiz-999

ing this is in terms of a wave function Φ(p, ua) polynomial in the auxiliary commuting1000

variables uµa satisfying the irreducibility conditions (33)-(34).1001

Step 3. The massive Klein-Gordon equation1002

(p2 +m2)Φ = 0 (48)

has to be supplemented with the transversality conditions1003 (
p · ∂

∂ua

)
Φ = 0 , (49)

of the wave function.1004

Step 4. Looking at a fixed-momentum mode in its corresponding rest-frame pµ =1005

(m,
−→
0 ) leads to the fact that the components of the wave function along the timelike1006

momentum are set to zero by (49): Φ = Φ(p,−→u a) . In words, Φ does not depend on the1007

time components u0
a , ∀ a . In this case, the conditions (33)-(34) read as irreducibility1008

conditions under the orthogonal group O(D − 1) .1009

Example: Massive symmetric representations with “spin” equal to s correspond to Young1010

diagrams λ = {s} made of one row of length equal to the integer s . In four spacetime1011

dimensions, this representation is precisely what is usually called a “massive spin-s field.”8
1012

The covariant wave function Φ(p, u) obeys to the irreducibility conditions (33)-(34) of the1013

components1014 (
u · ∂

∂u
− s

)
Φ = 0 ,

( ∂

∂u
· ∂
∂u

)
Φ = 0 . (50)

The wave function Φ is homogeneous of degree s and harmonic in the auxiliary variable u .
If the wave function Φ(p, u) is polynomial in the auxiliary variable u , then its components

8To our knowledge, the Bargmann -Wigner programme for the massive integer-spin representations in
four-dimensional Minkowski spacetime was adressed along the lines reviewed here for the first time by
Fierz in [26].
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correspond to a symmetric tensor of rank s

Φ(p, u) =
1

s!
Φµ1...µs(p)u

µ1 . . . uµs ,

which is traceless1015

ηµ1µ2Φµ1µ2µ3...µs(p) = 0 . (51)

The covariant field equations are the massive Klein-Gordon equation together with the1016

transversality condition1017 (
p · ∂

∂u

)
Φ = 0 , (52)

which reads in components as1018

pµ1Φµ1µ2...µs(p) = 0 . (53)

The non-vanishing components of a solution of (53) must be along the spatial directions,1019

i.e. only Φi1...is(p) may be 6= 0 . This symmetric tensor field is traceless with respect to1020

the spatial metric: δi1i2Φi1i2i3...is(p) = 0 , thus the physical components carry a symmetric1021

irrep of the orthogonal groupO(D−1) , the dimension of which can be computed by making1022

use of the formula (25). The polynomial wave function Φ(p, u) evaluated on the internal1023

unit hypersphere uiui = 1 corresponds to a decomposition of the physical components in1024

terms of the spherical harmonics on the internal hypersphere SD−2 , which is an equivalent,1025

though rather unusual, way of representing the physical components (usually, the use of1026

spherical harmonics is reserved to the “orbital” part of the wave function).1027

The quartic Casimir operator of the Poincaré algebra is easily evaluated in components1028

in the rest frame1029

−1
2 P 2MµνM

µν + MµρP
ρMµσPσ

=
1

2
m2(MijM

ij + 2Mi0M
i0) − m2Mi0M

i0 = m2 1

2
MijM

ij ,

giving as a final result for a massive representation associated with a Young diagram λ1030

C4

(
iso(D − 1, 1)

)
= C2

(
iso(D − 1, 1)

)
C2

(
so(D − 1)

)
,

= m2
r∑

a=1

λa(λa +D − 2a− 1) , (54)

where the eigenvalues of the quadratic Casimir operator of the rotation algebra are given1031

by the formula (27).1032

Example: In any dimension D , the eigenvalue of the quartic Casimir operator for a1033

massive symmetric representation of rank s is equal to m2 s(s+D− 3). In four spacetime1034

dimensions, the square of the Pauli-Lubanski vector acting on a massive field of spin-s is1035

indeed equal to m2 s(s+ 1).1036

Each massive representation in D > 4 dimensions may actually be obtained as the1037

first Kaluza–Klein mode in a dimensional reduction from D + 1 down to D dimensions.1038

There is no loss of generality because the massive little group SO(D−1) in D dimension is1039

identified with the (D+ 1)-dimensional helicity (short) little group. Such a Kaluza–Klein1040

mechanism leads to a Stückelberg formulation of the massive field.1041

The massless limit m → 0 of a massive irrep with λ fixed is, in general, reducible
because the irrep of the massive little group SO(D−1) is restricted to the helicity (short)
little group SO(D−2) ⊂ SO(D−1). This argument combined with the known branching
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rule for O(D − 1) ↓ O(D − 2) (reviewed in Subsection 4.3) allows to prove that the
massless limit of a massive irrep of the homogeneous Lorentz group labeled by a fixed
Young diagram λ contains each helicity irrep labeled by Young diagrams µ such that

λ1 > µ1 > λ2 > µ2 > . . . > µr−1 > λr > µr > 0 ,

with multiplicity one. The zero modes of a dimensional reduction from D + 1 down to D1042

dimensions are determined by the same rule.1043

Example: The zero modes of the dimensional reduction of a massive symmetric repre-1044

sentations with “spin” equal to s are all helicity symmetric representations with integer1045

“spins” not greater than the integer s, each with multiplicity one. For the dimensional1046

reduction of a gravitational theory (i.e. a spin-two particle), one recovers the usual result1047

that the massless spectrum is made of one “graviton” (spin-2), one “photon” (spin-1) and1048

one “dilaton” (spin-0).1049

5.3 Massless representations1050

The quartic Casimir operator of the Poincaré algebra is evaluated easily in components in1051

the light-cone coordinates (see Subsection 3.2 for notations),1052

−1

2
P 2MµνM

µν + MµρP
ρMµσPσ = 0 + Mm+P

+Mm−P− = πmπ
m ,

giving as a final result for a massless representation1053

C4

(
iso(D − 1, 1)

)
= C2

(
iso(D − 2)

)
= µ2 (55)

where the quadratic Casimir operator of the massless little group is written in (17).1054

5.3.1 Helicity representations1055

Helicity representations correspond to the case µ = 0 , so that πm = 0 and in practice the1056

representation is induced from a representation of the orthogonal group O(D − 2) .1057

Step 1. Again, any unitary representation of the orthogonal group O(D − 2) is a1058

sum of finite-dimensional UIRs. Let us consider the UIR of the helicity short little group1059

O(D − 2) labeled by the allowed Young diagram λ = {λ1, λ2, . . . , λr} (that is, the sum of1060

the lengths of its first two columns does not exceed D − 2):1061

λ =

λr
λr−1

. . . ...

λ3

λ2

λ1

. (56)

The step 2 is more subtle to perform than for massive representations because the1062

field equations must set to zero all components along the light-cone of the covariant wave1063

function, because they are unphysical. In other words, the covariant wave equations should1064

remove two directions, and not only one like in the massive case. This fact implies that1065

the transversality is not a sufficient condition any more, it must be supplemented either1066

by other equations or by gauge symmetries asserting that one may quotient the solution1067

space by pure gauge fields. In these lecture notes, one focuses on two gauge-invariant1068

formulations which may be respectively referred to as “Bargmann -Wigner formulation”1069

in terms of the field strength and “gauge-fixed formulation” in terms of the potential.1070
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Bargmann -Wigner equations1071

The so-called “Bargmann -Wigner equations” were actually first written by Dirac [27]1072

in four-dimensional Minkowski spacetime in spinorial form. Their name originates from1073

their decisive use in the completion of the Bargmann -Wigner programme [4]. The gener-1074

alization of the Bargmann -Wigner equations to any dimension was presented in [21] for1075

tensorial irreps (reviewed here) and in [22] for spinorial irreps. The latter programme had1076

previously been completed in [24] with different equations.1077

Step 2. Let λ = {λ1, λ1, λ2, . . . , λr} be the Young diagram depicted as1078

λ =

λr
λr−1

. . . ...

λ3

λ2

λ1

λ1

. (57)

It is obtained from the Young diagram λ represented in (56) by adding a row of equal1079

length on top of the first row of λ . The Young diagram λ has at least two rows of equal1080

lengths and the sum of the lengths of its first two columns does not exceed D . The1081

covariant wave function is chosen to take values in the Schur module V
O(D−1,1)

λ
realized1082

in the manifestly antisymmetric convention. Following Subsection 4.4, the wave function1083

K(p, dIx) is taken to be a polynomial in the graded variables dIx
µ ( I = 1, 2, . . . , λ1 )1084

obeying the commutation relations (30). Moreover, the irreducibility conditions of the1085

components under the Lorentz group O(D − 1, 1) are1086 (
dIx

µ ∂L

∂(dJx
µ)
− δIJ `I

)
K = 0 , (I 6 J) (58)

where `I stands for the length of the Ith column in the Young diagram λ , and1087 (
ηµν

∂L

∂(dIx
µ)

∂L

∂(dJx
ν)

)
K = 0 . (59)

Step 3. The covariant field equations may be summarized in the assertion that the1088

wave function is a “harmonic” multiform in the sense that, ∀ I, it is “closed”1089 (
pµ dIx

µ
)
K = 0 , (60)

and “coclosed” (i.e. transverse)1090 (
pµ

∂L

∂(dIx
µ)

)
K = 0 . (61)

The operators p·dIx act as “exterior differentials” (or “curls”), they are nilpotent and obey1091

graded commutation relations. As one can easily see, the field equations (60) and (61),1092

considered together, imply the massless Klein-Gordon equation. Actually, the equations1093

(60) may even be imposed off-shell, whereas the equations (61) only hold on-shell [21].1094

Step 4. In the light-cone frame (see Section 1.1), the components of the momentum1095

may be taken to be pµ = (p−, 0, 0, . . . , 0) with p− 6= 0 . On the one hand, the transversality1096

condition (61) implies that the wave function does not depend on the variables dIx
+ . On1097

the other hand, the closure condition (60) reads (p−dIx
−)K = 0 , the general solution of1098

which is K = (
∏
I p−dIx

−)φ , where φ depends neither on dIx
− nor on dIx

+ (due to the1099
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transversality condition). In other words, the directions along the light-cone have been1100

removed, since φ = φ(p, dIx
m) (m = 1, 2, . . . , D − 2). Focusing on this field, one may1101

show that the irreducibility conditions (58) become, in terms of the function φ,1102 (
dIx

m ∂L

∂(dJx
m)
− δIJ `I

)
φ = 0 , (I 6 J) (62)

where `I = `I − 1, and the trace conditions (59) implies1103 (
δmn

∂L

∂(dIx
m)

∂L

∂(dJx
n)

)
φ = 0 . (63)

Since `I is the length of the Ith column of the Young diagram λ , the system of equations1104

(62)-(63) states that the components of the function φ carry a tensorial irrep of the or-1105

thogonal group O(D− 2) . Therefore, the same is true for the physical components of the1106

wave function K .1107

This may be reformulated covariantly by saying that the closure (60) of the wave1108

function implies that1109

K =
( λ1∏
I=1

pµdIx
µ
)
φ . (64)

In components, this means that the tensor K is equal to λ1 curls of the tensor φ . This1110

motivates the name “field strength” for the wave function K(p, dIx) , the components of1111

which are irreducible under the Lorentz group (when evaluated on zero -mass shell) and1112

labeled by λ , and the name “potential” or “gauge field” for the wave function φ(p, dIx) ,1113

the components of which may be taken to be irreducible under the general linear group,1114

with symmetries labeled by the Young diagram λ .1115

Examples:1116

• The helicity vectorial representation corresponds to a Young diagram λ = {1} made of
a single box. In four spacetime dimensions, this representation is precisely what is usually
called a “vector gauge field”. The Young diagram λ = {1, 1} is a single column made of
two boxes. The wave function in momentum space is given by

K =
1

2
Kµν(p) dxµdxν

which carries an irrep of GL(D,R): the antisymmetric rank-two representation. As one
can see, the wave function actually is a differential two-form, the components of which
transforming as an antisymmetric tensor of rank two. The field equations (60) and (61),
respectively, read in components

pµKνρ + pνKρµ + pρKµν = 0 (Bianchi identities)

and
pµKµν = 0 (transversality conditions) .

The differential two-form K is indeed harmonic (closed and coclosed). In physical terms,1117

one says that the field strength Kµν obeys to the Maxwell equations. As usual, the Bianchi1118

identities imply that the field strength derives from a potential: Kµν = pµφν − pνφµ . In1119

the light-cone coordinates, the transversality implies that the components K+ν vanish,1120

thus the only non-vanishing components are K−n = p−φn . Therefore the only physical1121

components correspond to a (D−2)-vector in the hyperplane transverse to the light-cone.1122

• Helicity symmetric representations with “helicity” (or “spin”) equal to s correspond
to Young diagrams λ = {s} made of one row of length equal to the integer s . In four
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spacetime dimensions, this representation is precisely what is usually called a “massless
spin-s field”. The Young diagram λ = {s, s} is a rectangle made of two row of length
equal to the integer s . The wave function is thus a polynomial in the auxiliary variables

K =
1

2s
Kµ1ν1 |... |µsνs d1x

µ1d1x
ν1 . . . dsx

µsdsx
νs

satisfying the irreducibility equations (58)-(59) with `I = 2 , ∀ I ∈ {1, . . . , s} . The tensor1123

K is, by construction, antisymmetric in each of the s sets of two indices1124

Kµ1ν1 |... |µsνs = −Kν1µ1 |... |µsνs = . . . = −Kµ1ν1 |... | νsµs . (65)

Moreover, the complete antisymmetrization over any set of three indices gives zero and1125

all its traces are zero on-shell, so that the on-shell tensor K indeed belongs to the space1126

irreducible under the Lorentz group O(D − 1, 1) characterized by a two-row rectangular1127

Young diagram of length s . In four-dimensional Minkowski spacetime, the irrep of the1128

Lorentz group O(3, 1) carried by the on-shell tensor K is usually denoted as (s, 0)⊕ (0, s) .1129

More precisely, the symmetry properties of the tensor Kµ1ν1 |... |µsνs are labeled by the1130

Young tableau1131

µ1 µ2 . . . µs

ν1 ν2 . . . νs
.

The equation (64) means that the components of the tensor Kµ1ν1 |... |µsνs are essentially1132

the projection of pµ1 . . . pµsφν1...νs on the tensor field irreducible under GL(D,R) with1133

symmetries labeled by the above Young tableau. The physical components φn1...ns of the1134

symmetric tensor gauge potential φν1...νs are along the D − 2 directions transverse to the1135

light-cone. The number of physical degrees of freedom of a helicity symmetric field of rank1136

s can be computed by making use of the formula (25).1137

• The helicity symmetric representation with “spin” equal to 2 corresponds to the gravi-1138

ton. The field strength has the symmetry properties of the Riemann tensor. Its on-shell1139

tracelessness indicates that it corresponds to the (linearized) Weyl tensor. The equations1140

(60) are the Bianchi identities for the linearized Riemann tensor in flat spacetime, whereas1141

the equations (61) hold as a consequence of the sourceless Einstein equations linearized1142

around flat spacetime.1143

Remark:1144

One can find some early indications for the existence of the tensor Kµ1ν1 |... |µsνs in the1145

paper [28] where Weinberg constructs free quantum field operators that have a nonzero1146

expectation value between the vacuum and one-particule states for massless particles of1147

helicity ±s in four spacetime dimensions. In Weinberg’s approach, one cannot find the1148

classical (or “first-quantized”) field strength tensor Kµ1ν1 |... |µsνs that we have built above,1149

but instead a quantum operator (in so-called “second-quantization”) that we denote here1150

K̂±µ1ν1 |... |µsνs and that transforms like a tensor under Lorentz transformations. This1151

operator is built out of the product [pµ1eν1± (~p ) − pν1eµ1± (~p )] . . . [pµseνs± (~p ) − pνseµs± (~p )]1152

featuring the two polarisation “vectors” eµ±(~p ) . On the one hand, solving the Bianchi1153

identities for the field strength Kµ1ν1 |... |µsνs allows to write the latter as an expression1154

involving s derivatives of a completely symmetric gauge potential φµ1...µs . This potential1155

satisfies [21] the second-order Fronsdal field equations [29] and is the building block for1156

the construction of an interacting quantum field theory with long-range interactions. On1157

the other hand, the canonical quantization of the free field theory with field strength1158

tensor K gives rise to Weinberg’s quantum field operator K̂± . The same remarks apply to1159
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the relation between the generalised field strength (64) and its second-quantized version1160

in [30].1161

Gauge-fixed equations1162

The following equations are somewhat unusual, but they proved to be crucial in the1163

completion of the Bargmann -Wigner programme for the infinite spin representations [17].1164

Step 2. Let λ̂ = {λ1 − 1, λ2 − 1, . . . , λr − 1} be the Young diagram depicted as1165

λ̂ =

λr − 1
λr−1 − 1

. . . ...

λ3 − 1
λ2 − 1

λ1 − 1

, (66)

obtained from the Young diagram λ represented in (56) by removing the first column1166

of λ . Therefore the sum of the length of the first two columns of the Young diagram1167

λ̂ does not exceed D − 2 . The covariant wave function is chosen to take values in the1168

Schur module V
O(D−1,1)

λ̂
realized in the manifestly symmetric convention. Actually, as1169

anticipated in Subsection 4.4, it turns out to be crucial to regard the wave function Φ(p, ua)1170

as a distribution in the commuting auxiliary variables uµa , obeying to1171 [(
ua ·

∂

∂ub

)
− λ̂a δab

]
Φ = 0 , (a 6 b) . (67)(

∂

∂ua
· ∂

∂ub

)
Φ = 0 , (68)

Step 3. Proper field equations are the transversality condition (49) combined with1172

the equation1173

(p · ua) Φ = 0 . (69)

The equations (69) and (49) are the respective analogues of the closure and coclosure1174

conditions (60)-(61). A drastic difference is that the operators p · ua are not nilpotent1175

(thus there is no underlying cohomology). Actually, the equation (69) has no solution if1176

Φ is assumed to be a polynomial in all the variables.1177

Step 4. Equation (69) can be solved as1178

Φ = δ(ua · p)φ , (70)

where the distribution φ(p, ua) may actually be assumed to be a function depending poly-1179

nomially on the auxiliary variables ua for the present purpose. The Dirac delta is a1180

distribution of homogeneity degree equal to minus one, hence the irreducibility conditions1181

(67)-(68) imply that1182 [(
ua ·

∂

∂ub

)
− λa δab

]
φ = 0 (a 6 b) , (71)(

∂

∂ua
· ∂

∂ub

)
φ = 0 . (72)

The function φ is defined from (70) modulo the equivalence relation1183

φ ∼ φ+
r∑

a=1

(ua · p) εa (73)

35



SciPost Physics Lecture Notes Submission

where εa are arbitrary functions. This means that (70) is equivalent to the alternative1184

road towards the Bargmann -Wigner programme: the gauge symmetry principle with the1185

irreducible components of (ua · p) εa being pure gauge fields. As mentioned before, this1186

path will not be addressed here (see e.g. [21] and refs therein for more discussions on the1187

gauge-invariance issue). Therefore, one may say that the equation (69) is the “remnant”1188

of the gauge symmetries (73). In the light-cone coordinates, the gauge symmetries (73)1189

imply that one may choose a representative φ which does not depend on the variables u−a1190

(the gauge is “fixed”). The transversality condition (49) implies that φ is also transverse,1191

implying no dependence on u+
a (“gauge shoots twice”). Thus φ depends only on the trans-1192

verse auxiliary variables uma , so one concludes by observing that the physical components1193

of φ carry a tensorial irrep of O(D − 2) labeled by λ .1194

5.3.2 Infinite spin representations1195

Infinite spin representations correspond to the case µ 6= 0 and, in practice, the repre-1196

sentation of the massless little group IO(D − 2) is induced from a representation of the1197

orthogonal group O(D− 3) . The parameter µ is a real parameter with the dimension of a1198

mass. Wigner proposed a set of manifestly covariant equations to describe fields carrying1199

these UIR in four spacetime dimensions [31]. They have been generalized to arbitrary1200

infinite-spin representations in any dimension [17].91201

Step 1. Again, any unitary representation of the orthogonal group O(D − 3) is a1202

sum of finite-dimensional UIRs. Let us consider the UIR of the helicity short little group1203

O(D − 3) labeled by the allowed Young diagram λ = {λ1, λ2, . . . , λr} (that is, the sum of1204

the lengths of its first two columns does not exceed D − 3).1205

Step 2. In order to have manifest covariance, it is necessary to lift the eigenvalues1206

ξm of the generators πm in the massless little group to a D-vector ξµ . In practice, the1207

covariant wave function is taken to be a distribution Φ(p, ξ, ua) satisfying the conditions1208

(33)-(34). The tensorial components associated with the commuting variables ua belong to1209

the Schur module of the Lorentz group O(D− 1, 1) labeled by an allowed Young diagram1210

λ .1211

Step 3. Relativistic equations describing a first-quantized particle with infinite spin1212

are1213

(p · ξ) Φ = 0 , (74)(
p · ∂

∂ξ
− i
)

Φ = 0 , (75)

(ξ2 − µ2) Φ = 0 , (76)

together with the transversality conditions1214

(p · ua) Φ = 0 , (77)(
p · ∂

∂ua

)
Φ = 0 , (78)(

ξ · ∂

∂ua

)
Φ = 0 . (79)

This system of equations is far from being independent. For instance, compatibility con-1215

dition of the systems (74)-(75) or (77)-(78) is the massless Klein-Gordon equation.1216

9More recent developments (as well as a list of open challenges) have been reviewed in [18].
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Step 4. The equation (75) reflects the fact that the couples (p , ξ) and (p , ξ+αp) are1217

physically equivalent for arbitrary α ∈ R. Indeed, one gets1218

Φ(p , ξ + αp) = eiα Φ(p , ξ) (80)

from Equation (75). The equation (76) states that the internal vector ξ is a space-like1219

vector while the mass-shell condition states that the momentum is light-like. From the1220

equation (74), one obtains that the internal vector is transverse to the momentum. All1221

together, one finds that ξ may be taken to live on the hypersphere SD−3 of radius µ1222

embedded in the transverse hyperplane RD−2 . In brief, the “continuous spin” degrees1223

of freedom essentially correspond to D − 3 angular variables, whose Fourier conjugates1224

are discrete variables analogous to the usual spin degrees of freedom. Finally, proceeding1225

analogously to the “gauge-fixed” field equations of the helicity representations, one may1226

show [17] that the conditions (77)-(79) concretely remove three unphysical directions in1227

the components, so that the final result is a tensorial irrep of the short little group O(D−3)1228

fixing both the momentum p and the internal vector ξ .1229

From the group theoretical point of view, the UIR of the homogeneous and inho-1230

mogeneous orthogonal groups are related by an Inönü-Wigner contraction O(D − 1) →1231

IO(D − 2) (see Subsection 4.5). It follows that one can obtain the continuous spin rep-1232

resentations from the massive ones in a suitable massless limit m → 0 since their little1233

group UIRs are related by a contraction. The quartic Casimir operator of the Poincaré1234

group for the massive representation is related to its Young diagram ν labeling the UIR1235

of the little group O(D − 1) via the formula (54):1236

C4

(
iso(D − 1, 1)

)
= m2

r∑
a=1

νa(νa +D − 2a− 1) , (81)

In order to keep C4 non-vanishing, the massless limit must be such that the product of the1237

“spin” ν1 = s and the mass m remains finite. More precisely, one needs sm→ µ in order1238

to reproduce (55), so that the spin goes to infinity while the row lengths νa for a 6= 1 are1239

kept equal to λa−1 [17, 32]. The Fourier transform (in the internal space spanned by ξ)1240

of the field equations (74)-(79) may be obtained in this way from the field equations of a1241

massive representation in “gauge-fixed” form (see [17] for more details). This limit is very1242

similar to the contraction of Subsection 4.5.1243

5.4 Tachyonic representations1244

The tachyonic representations have some similarities with the massive representations.1245

The simpler one is the analogue of the Klein-Gordon equation, up to a change of sign1246

for the mass term. The other similarity is that the linear equations should remove the1247

components along the momentum. Of course, the major difference is that the momentum1248

is space-like. The quartic Casimir operator of the Poincaré algebra is also evaluated easily1249

in components, giving as a final result for a tachyonic representation,1250

C4

(
iso(D − 1, 1)

)
= C2

(
iso(D − 1, 1)

)
C2

(
so(D − 2, 1)

)
, (82)

where the eigenvalues of the quadratic Casimir operator of the rotation algebra are given1251

by the formula (27).1252

Step 1. The first step is more involved for the tachyonic case since it requires the1253

exhaustive knowledge of the UIR theory for the groups SO(D − 2, 1)↑ . Fortunately,1254

complete results are available [33, 34]. The steps 2-3 further require the completion of1255
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the Bargmann -Wigner programme for the isometry group SO(D − 2, 1)↑ of the de Sitter1256

spacetime dSD−2 . This has been done in [23].10
1257

Let us assume that this programme has been performed through an ambient space1258

formulation, analogous to the one of the spherical harmonics, as discussed in the subsection1259

4.4. More explicitly, let us consider that the physical components of the wave function1260

have been realized via a function on the hyperboloid dSD−2 of radius µ > 0 embedded1261

in RD−2,1 with some set of auxiliary commuting vectors of RD−2,1 (for the spin degrees1262

of freedom) and the corresponding O(D − 2, 1)-covariant field equations of the UIR are1263

known explicitly. The step 1 is therefore assumed to be performed.1264

Step 2. In order to have manifest Lorentz invariance, all auxiliary variables are lifted1265

to D-vectors: the coordinates of the internal de Sitter spacetime are denoted by ξµ and1266

the auxiliary variables by uµA . The wave function is taken to be Φ(p, ξ, uA) , where the1267

internal vector ξ plays a role similar to the one in the infinite-spin representations. An1268

important distinction is that in the ambient space formulation, one would evaluate the1269

wave function on the hypersurface ξ2 = µ2 instead of imposing this relation on the wave1270

function, as in (76). The O(D − 2, 1)-covariant field equations for the UIR of the little1271

group O(D− 2, 1) must be O(D− 1, 1)-covariantized accordingly. Concretely, this implies1272

that the components of the covariant wave function carry an (infinite-dimensional) irrep1273

of the Lorentz group.1274

Step 3. These covariantized field equations and the tachyonic Klein-Gordon equation1275

(p2 −m2)ψ = 0 must be supplemented by two equations: say the orthogonality condition1276

(74), similarly to the infinite spin representation, and the transversality condition (49),1277

similarly to the massive representation. The orthogonality condition (74) may be replaced1278

by another transversality equation for the vector ξ .1279

Step 4. Now, the equation (74) implies that the internal vector belongs to the hy-1280

perplane RD−2,1 orthogonal to the momentum p . Its intersection with the hypersurface1281

ξ2 = µ2 restricts ξ to the internal de Sitter space dSD−2 ⊂ RD−2,1. Moreover, the condi-1282

tion (49) sets to zero all components of the wave function along the momentum. Therefore,1283

the remaining components are physical and carry an UIR of the little group O(D − 2, 1)1284

by construction (see step 2).1285

Example: The simplest non-trivial example corresponds to a tachyonic representation1286

of the inhomogeneous Lorentz group IO(D − 1, 1) induced by a representation of the1287

little group O(D − 2, 1) corresponding to “massive scalar field” on the “internal de Sitter1288

spacetime” dSD−2 with D > 4 . This UIR belongs to the principal continuous series of1289

UIR of the group O(D − 2, 1) and it may be realized as the space of harmonic functions1290

on RD−2,1 of (complex) homogeneity degree s equal to 3−D
2 + i σ (with σ a positive real1291

parameter) evaluated on the unit one-sheeted hyperboloid dSD−2 ⊂ RD−2,1 . They can be1292

regarded as a generalization of the spherical harmonics in the Lorentzian case, where the1293

degree is a complex number. The eigenvalue of the quadratic Casimir operator (4) of the1294

little group O(D − 2, 1) on this representation is equal to1295

C2

(
so(D − 2, 1)

)
=

(
D − 3

2

)2

+ σ2 . (83)

The d’Alembertian on the unit hyperboloid evaluated on such functions is precisely equal1296

to the former eigenvalue (as is true for the Laplacian on the unit sphere evaluated on spher-1297

ical harmonics) so the corresponding fields on the internal spacetime dSD−2 are indeed1298

“massive”. Inserting the above result in (82), one sees that the quartic Casimir operator is1299

10The Bargmann -Wigner programme in AdSD , with field equations that generalise the ones presented
in Section 5.3, were obtained in [35]. Similar equations were obtained later in the dSD signature [23].
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negative for the corresponding tachyonic representation. In four-dimensional Minkowski1300

spacetime, this implies that the Pauli-Lubanski vector is time-like. The Lorentz-covariant1301

wave function is taken to be Φ(p, ξ) evaluated on ξ2 = 1 and the corresponding relativistic1302

equations for the induced tachyonic representation may be chosen as1303 (
p2 −m2

)
Φ = 0 , (84)(

p · ∂
∂ξ

)
Φ = 0 , (85)(

∂

∂ξ
· ∂
∂ξ

)
Φ = 0 , (86)(

ξ · ∂
∂ξ
− s
)

Φ = 0 , (87)

where one should remember that s = 3−D
2 + i σ . Notice the formal analogy with the1304

system of equations (48), (52)) and (50) for a massive symmetric tensor field.1305

Remark: There might be sometimes confusion in the folklore surrounding the tachyons.1306

We would like to insist on the fact that the tachyonic representations are indeed unitary (by1307

definition). Still, their physical interpretation is problematic because they are not causal1308

in the sense that one may show that the support of their propagator requires superluminal1309

propagation. Roughly speaking, the acausality is obvious because the momentum is space-1310

like, p2 = +m2 . The confusing point is that one may try to circumvent this problem in1311

the following way: solving p2−m2 = 0 by pµ = (im,
−→
0 ) enforces causality, but the price to1312

pay is the loss of unitarity. Indeed, the energy is pure imaginary, hence a naive plane-wave1313

e±i p0 x
0

is actually a non-integrable exponential e±mx
0

. These remarks are summarized1314

in the following table:1315

E = p0 |−→p | Unitarity Causality

0 m OK KO
±im 0 KO OK

1316

Nevertheless, the tachyonic representations should not be discarded too quickly on1317

such physical grounds. Actually, if tachyonic representations appear in the spectrum of1318

a theory, then it merely signals a local instability of the field theory in the sense that1319

the perturbation theory is performed around an unstable vacuum, and the tachyon might1320

roll to a stable vacuum (if any). For instance, the Higgs particle is described by nothing1321

but a tachyonic scalar field (induced by the trivial representation of the little group).1322

By analogy, one may wonder if some infinite-component tachyonic field (induced by a1323

non-trivial representation of the little group) could not play a role in some huge Brout–1324

Englert–Higgs mechanism providing mass to an infinite tower of gauge fields in various1325

massless irreps.1326
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A Siegel -Zwiebach equations1334

The Bargmann -Wigner programme for finite-component representations in Minkowski1335

spacetime of any dimension D > 3 was completed for massless helicity representations by1336

Siegel and Zwiebach in [24] and generalised to massive representations in Siegel’s lecture1337

notes [20]. Only the massless representations will be reviewed here since the case of massive1338

representations follows by dimensional reduction, as mentioned in the subsection 5.2.1339

Siegel -Zwiebach equations1340

The main idea behind these equations is the covariantisation of the condition that the1341

“translation” generators πn of the massless little group IO(D − 2) must act trivially on1342

physical states of the helicity representations (cf. Subsections 3.2-3.3). Let us rewind the1343

procedure initiated in Subsection 5.3.1:1344

Steps 1 and 2. These first steps are identical to the case of Bargmann -Wigner1345

equations, i.e. the wave function is a field strength K(p, dIx) taking values in an irrep of1346

the Lorentz group O(D − 1, 1) labeled by the Young diagram λ.1347

Step 3. The generators of the Lorentz algebra so(D− 1, 1) can be decomposed as the1348

sum Mµν = Lµν + Sµν of the “orbital” part (transforming the positions or momenta) and1349

the “spin” part (transforming the irrep labeled by the Young diagram λ),1350

Lµν = −i
(
pµ

∂

∂pν
− pν

∂

∂pµ

)
, Sµν = −i

(
dIxµ

∂

∂(dxν
I
)
− dIxν

∂

∂(dxµI )

)
. (88)

The Siegel -Zwiebach equations for s 6= 0 take the simple form1351

( pµSµν − i s pν )K = 0 . (89)

They imply the massless Klein-Gordon equation p2K = 0 (since s 6= 0). In fact, one can1352

check that the quadratic and quartic Casimir operators both vanish as a consequence of1353

(89).11 Notice that a similar “spin-enslaving” relation, leading to (89), was recently given1354

in [36].1355

Step 4. In the light-cone frame (see Section 1.1) where the components of the mo-1356

mentum are pµ = (p−, 0, 0, . . . , 0) with p− 6= 0 , the system (89) of equations splits as1357

1358

πnK = 0 , (S+− − i s)K = 0 , (90)

where πn := p−S+n = pµSµn (with n = 1, 2, . . . , D − 2) are generators corresponding the1359

“translation” subgroup RD−2 ⊂ IO(D−2) of the massless little group.12 On the one hand,1360

the fact that these generators πn act trivially ensures that the massless representation is1361

a helicity representation, i.e. only the generators Smn of the rotations in the transverse1362

plane act non-trivially. Moreover, the condition πnK = 0 implies that the field strength1363

K in the light-cone frame has a maximal (respectively, minimal) number of factors dIx
−

1364

(respectively, dIx
+).13 Therefore, the physical components of the field strength read1365

K = (
∏
I p−dIx

−)φ , where φ depends neither on dIx
− nor on dIx

+. On the other hand,1366

the eigenvalue S+− = is of the Lorentz generator1367

S+− = −i
(
dIx

+ ∂

∂(dIx
+)
− dIx

− ∂

∂(dIx
−)

)
(91)

11In order to check that the quartic Casmir operator acts trivially, it useful to notice that Mµν can be
replaced everywhere by Sµν inside the definition (6). In D = 4, this property is obvious in terms of the
Pauli-Lubanski vector.

12See Subsection 3.2. Note that M+n = S+n and Mmn = Smn in this light-cone frame, since the
corresponding orbital parts of the generators of the little group act trivially on the momentum.

13See [20] for an elegant derivation of these facts from (90).
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implies that the Young diagram λ must have s columns. This is because the operator1368

S+− is a number operator (up to a coefficient i) for the total number of covariant indices1369

− minus the number of covariant indices + , and in every column of the field strength1370

there is no index + and one index − . The conclusion that is reached is the same as in1371

Subsection 5.3.1.1372

Equivalence with Bargmann -Wigner equations1373

In fact, the Siegel -Zwiebach equations are equivalent to the Bargmann -Wigner equa-1374

tions reviewed in Subsection 5.3.1. For instance, the closure and coclosure conditions (60)1375

and (61) imply (89). This follows from the identity1376

pµSµν = − i pµ
(
dIxµ

∂

∂(dxν
I
)
− dIxν

∂

∂(dxµI )

)
= − i

(
pµdIx

µ
) ∂

∂(dxν
I
)
− dIxν

(
pµ

∂

∂(dxµI )

)
. (92)

In the last term, one recognises between the parentheses the divergence operator acting1377

on the column I , which gives zero because of the coclosure condition (61). As for the first1378

term on the right-hand side of the above equation, one can rewrite it as1379

−i
(
pµdIx

µ
) ∂

∂(dxν
I
)

= −i ∂

∂(dxν
I
)

(
pµ dIx

µ
)
− i pµ

[
dxµ

I
,

∂

∂(dxν
I
)

]
. (93)

The first term on the right-hand side gives zero on the field strength because of the1380

closure relation (60), while the last term gives +i s pν because of the commutation relations1381 [
dxµ

I
, ∂
∂(dxν

I
)

]
= −s δµν .1382

The covariant proof that the Siegel -Zwiebach equations imply Bargmann -Wigner1383

equations is more cumbersome and will not be presented here. Anyway, this equivalence1384

is guaranteed from the light-cone frame analysis.1385

B Bargmann -Wigner programme in three dimensions1386

In this appendix we review results obtained in the literature concerning the Wigner and1387

Bargmann -Wigner programmes in Minkowski spacetime of dimension D = 2 + 1 . The1388

former programme was achieved in [10] along the lines of the seminal paper [6] by Wigner.1389

There are four classes of UIRs of the Poincaré group ISO(2, 1)↑ :1390

1) Zero-momentum representations, labeled by the eigenvalue c ∈ R of the quadratic1391

Casimir operator C2[so(2, 1)] of the Lorentz algebra ;14
1392

2) Massive representations, labeled by mass m > 0 and spin s ∈ R ;1393

3) Massless representations:1394

1. helicity representations, either single-valued (bosonic) or double-valued (fermionic);1395

2. infinite-spin representations, labeled by a dimensionful parameter µ > 0 ;1396

4) Tachyonic representations, labeled by a dimensionful parameter m > 0 and by a1397

dimensionless parameter s ∈ R (the analogue of spin).1398

In what follows, we briefly summarize exhaustive results on the completion of the Bargmann -1399

Wigner programme in D = 2 + 1 dimensions for the four classes of UIRs listed above.1400

14Strictly speaking, the principal and complementary series are labeled by two real parameters, not only
by the value of the Casimir operator.
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B.1 Zero momentum representations1401

Effectively, the zero momentum representation of the Poincaré group ISO(2, 1)↑ are UIRs1402

of the Lorentz subgroup SO(2, 1)↑ . The latter were classified in [33]. We also refer1403

the reader to [37] for a physicist-friendly classification of the irreps of the Lorentz group1404

SO(2, 1)↑ .1405

We will not repeat these well-known results here. For the purpose of the Bargmann -1406

Wigner programme, it is enough to know that the UIRs of SO(2, 1)↑ are labeled by the1407

real eigenvalue of the quadratic Casimir operator C2[so(2, 1)] of the Lorentz algebra (and1408

another real parameter for the principal and complementary series, cf. Footnote 14). Since1409

the momentum is vanishing, the states span a constant field ψ on Minkowski spacetime1410

taking values in these UIRs of the Lorentz group SO(2, 1)↑ . A relativistic equation is then1411 (
C2[so(2, 1)] − c

)
ψ = 0 , which asserts that the states ψ are eigenvectors of the Casimir1412

operator with eigenvalue c ∈ R .1413

B.2 Massive representations1414

Consider a massive representation labeled by mass m > 0 and spin s ∈ R .1415

B.2.1 (Half-)integer spins1416

For integer spin s ∈ N, the Klein-Gordon equation (48) together with the tracelessness1417

condition (51) and the transversality condition (53) for a totally symmetric tensor ϕµ1...µs1418

provide relativistic field equations whose positive-energy solutions represent the corre-1419

sponding UIR. Equivalently, for non-vanishing integer spin s ∈ N0 , they can be summa-1420

rized by the following set of equations:1421

ηµ1µ2 ϕµ1...µs = 0 , mϕµ1...µs ± εµ1νρ pνϕρµ2...µs = 0 . (94)

where we take ε012 = −1 . Notice that the transversality condition (53) directly follows1422

from the second equation in (94). Moreover, note that there is no need to explicitly1423

symmetrize the last equation in its free indices when the tracelessness and transversality1424

conditions hold true. In turn, the Klein-Gordon equation follows from repeated application1425

of the second equation in (94). The two possible signs in the last equation stand for the two1426

possible values ±s of the “helicity” of the massive particle. This system of equations can1427

be generalized to the AdS3 background and be supersymmetrized, see [38] and references1428

therein.1429

B.2.2 Fractional spins1430

In the case of the massive UIRs where the real number s is neither integer nor half-1431

integer (“fractional spin”, see e.g. [39] for a review), one should stress that although the1432

number of physical components is one (the UIRs of the massive little group SO(2) are1433

one-dimensional since this group is Abelian) nevertheless their corresponding covariant1434

description necessarily involve relativistic field equations with an infinite number of com-1435

ponents (since there are no finite-dimensional irreps of the Lorentz group SO(2, 1)↑ with1436

such values of the spin).1437

The positive-energy solutions to the system of the four equations (48), (50), (51),1438

(52) formally describe a massive UIR of mass m and spin s ∈ R (as can be checked by1439

computing the value of the quartic Casimir operator). Note that the field Φ(p, u) is not1440

polynomial in the auxilliary vector uµ when s /∈ N. Finding a suitable functional space is1441

a subtle issue that we will not attempt to address. In fact, the construction of manifestly1442

IO(2, 1)-covariant field equations proved to be a rather difficult task.1443
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Several approaches have been followed in the literature. We refer to reader to [39] and1444

the introduction of the paper [40] for reviews. In the following, we will review the results1445

obtained in [41] for the linear relativistic equations whose positive-energy solutions span1446

the massives UIRs where the spin s is neither integer nor half-integer.1447

The Cortes-Plyushchay equations proposed in [41] read15
1448

Vµψ = 0 , Vµ := s Pµ − i εµνλP νM̃λ +mM̃µ , (95)

where the three operators M̃µ := 1
2 εµνρM

νρ generate the so(2, 1) Lorentz algebra in1449

D = 2 + 1 dimensions ( i [M̃µ, M̃ν ] = εµνρM̃
ρ ), so that the quadratic Casimir (4) is equal1450

to C2[so(2, 1)] = −M̃µM̃
µ. In the above equations (95), the real number s is assumed to1451

be nonzero. Contracting the above equations with M̃µ , Pµ and εµνλPµM̃λ produces the1452

following three equations1453 (
(s− 1)W +mM̃2

)
ψ = 0 , (s P 2 +mW )ψ = 0 ,

(
P 2M̃2 +W (m−W )

)
ψ = 0 , (96)

where the scalar W := PµM̃µ is, in three spacetime dimension, the analogue of the Pauli-1454

Lubanski vector. Since by assumption both s and m are non-zero, these three equations1455

are equivalent to1456 (
m2M̃2 − s(s− 1)P 2

)
ψ = 0 , (s P 2 +mW )ψ = 0 , P 2(P 2 +m2)ψ = 0 . (97)

If one discards the trivial representation of the Poincaré group where Pµ = 0 = M̃µ , one1457

gets the following three equations:1458 (
M̃2 + s(s− 1)

)
ψ = 0 , (W − sm)ψ = 0 , (P 2 +m2)ψ = 0 , (98)

the last two being the Pauli-Lubanski condition and the Klein-Gordon equation, whereas1459

the first sets the quadratic Casimir of the Lorentz group to C2[so(2, 1)] = s(s− 1), which1460

indicates that the field ψ takes value in an irrep of the Lorentz group labeled by s . The1461

positive-energy solutions of the above field equations (98) transform in the UIR of mass1462

m and spin s. More directly, in the Lorentz frame where pµ = (m, 0, 0) , the Cortes-1463

Plyushchay equations (95) yield1464

(M̃0 − s)ψ = 0 , (M̃1 − iM̃2)ψ = 0 . (99)

If one takes L± := M̃1± iM̃2 as raising/lowering operators of the Lorentz algebra so(2, 1),1465

then these equations assert that the state of momentum pµ = (m, 0, 0) is a lowest-weight1466

state of so(2, 1). This implies that the positive-energy solutions are fields taking values in1467

a representation of the Lorentz algebra bounded from below. For s /∈ 1
2N , one concludes1468

that the field ψ takes values in an infinite-dimensional UIR of the Lorentz algebra so(2, 1)1469

belonging to the discrete series.1470

The cases with s = −j < 0, where j ∈ 1
2N is a non-vanishing (half)integer, correspond1471

to the non-unitary spin-j irreducible representations of the Lorentz algebra so(2, 1) with1472

quadratic Casimir C2[so(2, 1)] = j(j + 1) , in which case the Cortes-Plyushchay equation1473

propagates the massive fields with (half)integer spins discussed around (94).1474

Manifest covariance groups the three components of the equations as the components1475

of a vector, but let us mention that only two of the three equations (95) are enough to1476

produce the third one. These equations are integrable in the sense that the commutator1477

[Vµ, Vν ]ψ vanishes on a field ψ solution of (95). We refer to [40] for an extended discussion1478

of these equations.1479

15One can show that the operator Vµ can be obtained by the dimensional reduction of the Siegel -
Zwiebach massless operator in (89).
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B.3 Massless representations1480

The massless little group in D = 2 + 1 spacetime dimensions is ISO(1) ∼= R that is1481

abelian, hence massless UIRs are one-dimensional and labeled by a single real parameter1482

µ ∈ R . Therefore, all massless UIRs of the Poincaré group ISO(2, 1)↑ have a single1483

physical component. Nevertheless, we will stick to the distinction “helicity” vs “infinite-1484

spin” representations.1485

B.3.1 Helicity representations1486

The helicity representations correspond to the particular case µ = 0 . Two case arises
whether the representation of the Lorentz group SO(2, 1)↑ is either single or double val-
ued: the “helicity” is effectively zero or one-half, which corresponds to the fact that a
massless field in three spacetime dimensions can always be dualized to a massless scalar
or a Dirac spinor, as will be reviewed now. The manifestly covariant field equations are
similar to those for the massless helicity cases in D > 3 studied above, except that only
symmetric (spinor-)tensor gauge fields ϕµ1...µs = ϕ(µ1...µs) are allowed (the spinor index
is not written). Equivalently, only field strengths Kµ1ν1 |... |µsνs labeled by rectangular
two-row Young diagrams are allowed. Moreover, higher (gamma-)traces of those field
strengths must be set to zero. Indeed, if in three dimensions one were to set to zero the
single (gamma-)trace of the field strength K , one would obtain that the field strength
itself should vanish on-shell, resulting in the absence of propagating degrees of freedom.
More precisely, upon Hodge-dualizing the s pairs of antisymmetric indices of the spin-s
field strength one obtains a totally symmetric (spinor-)tensor

K̃µ1...µs :=
1

2s
εµ1ν1ρ1 · · · εµsνsρs Kν1ρ1 |... | νsρs ,

where the latter (spinor-)tensor is completely symmetric in its spacetime indices.1487

The closure and coclosure conditions on the field strength K are equivalent to coclosure1488

and closure condition on its dual:1489

∂µ1K̃µ1µ2...µs = 0 , ∂µK̃νρ1...ρs−1 − ∂νK̃µρ1...ρs−1 = 0 . (100)

The field strength K̃ begin closed, it is exact:1490

K̃µ1...µs = pµ1 . . . pµsφ , (101)

where φ is a (spinor) scalar.1491

The higher-trace equations on the field strength K for a propagating, massless helicity1492

representation in three dimensions, are then for bosons1493

ηµ1µ2 K̃µ1µ2µ3...µs = 0 , s > 1 , (102)

with the usual massless Klein-Gordon and Maxwell equations for s = 0 and 1, respectively,1494

and for fermions1495

γµK̃µν2...νs = 0 (103)

for the spin s+ 1
2 >

1
2 cases; the spin-1

2 case being of course given by γµ∂µφ = 0 , where1496

again, the spinor indices are not written and the three γµ matrices are three Dirac (in fact1497

Pauli) matrices in D = 2 + 1 dimensions.1498

The conclusion is that all these descriptions of bosonic (respectively, fermionic) mass-1499

less fields are dual to each others, for all (half-)integer values of the “spin” s, in accordance1500

with fact that the positive-energy solutions of the above Bargmann -Wigner equations1501
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(102) (respectively, (103), for fermions) carry a single (respectively, double) valued helic-1502

ity representations of the Poincaré group ISO(2, 1)↑. Concretely, these fields are dual a1503

scalar (or spinor) field. More explicitly, the on-shell duality relation between the gauge1504

fields ϕµ1...µs , the field strengths Kµ1ν1 |... |µsνs and the massless scalar (or spinor) field φ1505

is (101).1506

B.3.2 Infinite spin representations1507

The positive-energy solutions of the Wigner equations (74)-(76), reviewed in Subsec-1508

tion 5.3.2, transform in the massless infinite-spin representation of the Poincaré group1509

ISO(2, 1)↑ , labeled by µ > 0. The paper [42] provided an extensive discussion of massless1510

infinite-spin particles in D = 2 + 1 dimensions.1511

B.4 Tachyonic representations1512

Finally, in order to be exhaustive, we end this section by mentioning that the relativistic1513

equations (84)-(87) provide an exhaustive solution of the Bargmann -Wigner programme1514

in the tachyonic case. Indeed, the little group SO(1, 1) of a spacelike momenta in D = 2+11515

dimensions is Abelian, thus its UIRS of are labeled by a single parameter s ∈ R .1516
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