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We show how the axial (chiral) anomaly induces a spin torque on the magnetization in magnetic
Weyl semimetals. The anomaly produces an imbalance in left- and right-handed chirality carriers
when non-orthogonal electric and magnetic fields are applied. Such imbalance generates a spin
density which exerts a torque on the magnetization, the strength of which can be controlled by the
intensity of the applied electric field. We show how this results in an electric control of the chirality
of domain walls, as well as in an improvement of the domain wall dynamics, by delaying the onset of
the Walker breakdown. The measurement of the electric field mediated changes in the domain wall
chirality would constitute a direct proof of the axial anomaly. Additionally, we show how quantum
fluctuations of electronic Fermi arc states bound to the domain wall naturally induce an effective
magnetic anisotropy, allowing for high domain wall velocities even if the intrinsic anisotropy of the
magnetic Weyl semimetal is small.

I. INTRODUCTION

Manipulating magnetization with electrons is at the
heart of spintronics, as this allows for the development
of magnetic technologies for information storage, compu-
tation, and sensing [1, 2]. Since the development of the
physics of multiferroics, there is a large interest in the
electric manipulation of magnetic structures. Different
routes include the use of magnetoelectric coupling [3] or
spin-polarized currents [4–6]. More recently, new possi-
bilities have appeared with the advent of metallic topo-
logical states of matter, which started with studies on
electric control of magnetization by the surface states of
topological insulators [7–15], and continued with works
on spin-to-charge conversion [16] and spin torques [17, 18]
in magnetic Weyl semimetals. Both systems share a
strong spin-momentum locking. As of today, there is
an increasing number of experimental studies on mag-
netic Weyl semimetals [19–22], some of which have re-
ported the presence of domain wall structures [23, 24].
Simple movement of such domain walls can in principle
activate exotic Weyl semimetal physics [25], such as the
axial anomaly [26–28].

In spin rotation invariant systems, the Zeeman cou-
pling between the magnetization and electron spins is
equivalent to an SU(2) gauge field. When interband
transitions between majority and minority spin carriers
are suppressed, this local SU(2) symmetry can be fur-
ther projected into a U(1) sector. This projection leads
to the appearance of effective electromagnetic fields that
give rise to unconventional electric responses, like the
topological Hall effect [29] or electric currents induced
by the motion of magnetic textures [30].

Quite generically, the Weyl semimetallic phase appears
in systems with large spin-orbit coupling, and the afore-
mentioned spin rotation invariance is absent. For those

Weyl semimetals that are also magnetic, there are no spin
majority and minority states, so any adiabatic projection
of the Zeeman coupling over one spin species is not possi-
ble. It happens, however, that the magnetization m [31]
couples to the spin density operator for the Weyl states,
as described by the Hamiltonian

H = Ψ† (νF τz ⊗ σ · ∂ + ∆1⊗ σ ·m) Ψ, (1)

where τ and σ are Pauli matrices acting in chirality-, and
spin- space respectively, 1 is the identity, νF is the Fermi
velocity and ∆ is an effective coupling. Therefore the
magnetization acts as an effective U(1) axial vector field
A5 = ∆m [32], coupling with opposite sign to the two
chiralities. In view of this identification, the last term
in Eq. (1) can be written as 1

eνF
J5 · A5, and the spin

density operator S = Ψ†σΨ = 1
eνF
J5 plays the role of

an axial current density. It is important to note that the
curl of the magnetization now plays the role of an axial
magnetic field: B5 = ∆

eνF
∇×m.

The above identifications are central to the manipu-
lation of the spin dynamics of magnetic Weyl states by
electromagnetic fields in a couple of ways: a) through
axial current responses under the effect of electromag-
netic or axial fields (see, e.g., Fig. [2] of Ref. 33), and b)
through charge accumulation at magnetic domain walls
due to the presence of Fermi arc states [34]. This last case
directly implies that one can manipulate domain walls by
applying electric fields, which is particularly relevant in
the context of the general interest in electric control ma-
nipulation of magnetic structures in multiferroics.

The effect of electrons on the magnetization dynamics
can be described by the presence of a spin torque act-
ing on the magnetization [35, 36], whose dynamics are
described by the Landau-Lifshitz-Gilbert equation:

dm

dt
= γB ×m+ αm× dm

dt
+ Te, (2)
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where γ is the electron gyromagnetic ratio, and α is the
Gilbert damping constant. In the case of Weyl fermions,
the spin torque is

Te =
∆

ρs
m× S =

∆

eνF ρs
m× J5, (3)

where ρs is the number of local magnetic elements per
unit volume [17]. In Ref. [17] it is theoretically described
how an axial current J5 can be induced in a magnetic
Weyl semimetal by an external electric field E through
a mechanism similar to the conventional Hall effect, me-
diated by the electronic states around the Fermi surface,
but induced by an axial magnetic field B5:

J5 = σHB5 ×E. (4)

The Hall coefficient σH now is a function of the effective
cyclotron frequency ωc ∼ |B5| ∼ |∇×m|.

In this work, we propose a new mechanism for the gen-
eration of an electric-field-induced spin torque in Weyl
semimetals. This mechanism is based on the combination
of the axial anomaly and the axial separation effect [37–
39]. The axial anomaly represents the generation of axial
charge through the application of non-orthogonal electric
and magnetic fields [26–28]

∂tn5 =
e2

2~2π2
E ·B, (5)

where the axial number density, n5 = nR−nL, is the dif-
ference in the number of left- and right-handed fermions.
The axial separation effect is the mechanism by which
an axial current is induced by an axial magnetic field
〈J5〉 ∼ µ5B5 = µ5∇ ×m, where µ5 = (µR − µL)/2 is
the axial chemical potential representing the difference
of chemical potentials for the two chiralities. This is the
axial counterpart of the chiral magnetic effect [40], and is
derived in section III. Putting both mechanisms together,
the axial anomaly generates a stationary axial chemical
potential µ5 ∼ τE ·B after introducing chirality flipping
scattering events represented by τ [40]. Then, the axial
separation effect gives 〈J5〉 ∼ τ(E ·B)∇×m. The spin
torque generated by the axial current can then be writ-
ten as Te ∼ τ(E ·B)m×∇×m ∼ −τ(E ·B)(m ·∇)m.
This results in an electric control of the torque on the
magnetization through the axial anomaly. We show how
one can electrically manipulate the chirality (the man-
ner in which the magnetization changes between two do-
mains [41]) of domain walls through this mechanism.
Achieving controllable ways for chirality manipulation
could be important for the development of spin wave
based logic gates [42–44]. We also show how such an
electrically modulated spin torque can improve the do-
main wall dynamics by delaying the onset of the Walker
breakdown [45]. Remarkably, our results imply that mea-
suring the chirality change of the domain wall would con-
stitute a direct proof of the axial anomaly. Besides the
electric-field-induced spin-torque, we also find that Fermi
arc states bound to the domain wall naturally induce a

FIG. 1. Examples of domain wall configurations with the
domain wall plane in the yz-plane. Here (a) is a Néel wall
with internal angle φ = π, and (b) is a Bloch wall with internal
angle φ = π/2.

hard-axis magnetic anisotropy. The hard-axis anisotropy
is vital for domain wall motion without suffering an ex-
tremely early Walker breakdown. Hence, we find that
high domain wall velocities are possible even if the intrin-
sic hard-axis anisotropy of the magnetic Weyl semimetal
is small.

II. BACKGROUND

For the purpose of making this work self-contained and
to define notation, we first provide a short summary of
the known physics of magnetic domain walls driven by
external fields, as well as that of the axial anomaly and
its connection to Weyl semimetals.

A. Field driven domain wall dynamics and the
collective coordinate description

We consider a continuous domain wall in a ferromag-
net, separating two domains for which the magnetization
points in the ±z directions, and with domain wall plane
in the yz-plane, see Fig. 1. It is convenient to describe
the domain wall in terms of two coordinates, namely the
center of the domain wall X, and the mean angle φ be-
tween the magnetization and the xz-plane, averaged over
the domain wall width [46]. In terms of these coordinates
the domain wall can be described by the unit magneti-
zation:

m =

[
cosφ

cosh
(
x−X
λ

) , sinφ

cosh
(
x−X
λ

) , tanh

(
x−X
λ

)]
, (6)

where λ is the width of the domain wall. This expres-
sion makes clear that the value of φ describes the way the
magnetization changes between the two domains. There-
fore φ is often referred to as the internal angle of the do-
main wall. The case where φ = 0, π is titled a Néel wall
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[Fig. 1(a)] while a configuration with φ = ±π/2 is called
a Bloch wall [Fig. 1(b)].

In the presence of an external magnetic field, the do-
main wall will generally move as it will be energetically
favorable for the spins to align in a certain way with
the magnetic field. For the configuration above, an ex-
ternal field along the z-axis induces domain-wall move-
ment along the x-axis. While at small fields the do-
main wall moves rigidly, a sufficiently large magnetic
field can further induce a rotation of the internal an-
gle [47]. This movement of the domain wall can still be
described by the two coordinates, by promoting X and
φ to the dynamic collective coordinates X(t) and φ(t),
which are zero modes of fluctuations around the classical
solutions [46]. The description in terms of X(t) and φ(t)
is valid for a rigid domain wall, which has translational
invariance in the x direction and rotational invariance
around the z-axis.

The details of the domain wall dynamics can be
expressed in the language of Lagrangian mechanics,
through the ferromagnetic Lagrangian [47],

LFM =
~
a3

∫
d3x φ̇ (cos θ − 1)−HH −HZ , (7)

where the first term is the Berry phase term [48] with θ =
2 arctan exp[−(x − X(t))/λ] and a is a lattice constant.
The second term is the Heisenberg Hamiltonian in the
continuous limit [48]

HH =
1

2a3

∫
d3x

(
Ja2|∇m|2 −Km2

z +K⊥m
2
y

)
, (8)

where J is a positive exchange constant. HH describes a
magnet with an easy-axis in the z direction, with easy-
axis anisotropy K, and a hard-axis in the y direction,
with hard-axis anisotropy K⊥. The domain wall width
is λ =

√
Ja2/K, and the hard-axis anisotropy is directly

connected to the velocity of the domain wall, where we
for simplicity choose the hard-axis anisotropy in the y
direction as this is the relevant [49] direction when we
introduce the domain wall in a Weyl semimetal in Sec. III.
The external magnetic field B is included as a Zeeman
coupling,

HZ = ~/a3

∫
d3xm · γB, (9)

where γ is the electron gyromagnetic ratio. We are keep-
ing the lattice spacing explicit in the Lagrangian, Eq. (7),
rather than including it in the coupling constants, as we
wish to write our expressions in terms of the unit mag-
netization which is proportional to the Weyl node sepa-
ration, as we will see. A description in terms of X(t) and
φ(t) is valid despite the presence of anisotropy, as long
as K⊥ � K [47]. In terms of the domain wall solution,

the Lagrangian is

LFM = −2~A
a3

[
φ̇X + ν⊥ sin2 φ

+
πλγ

2
(Bx cosφ+By sinφ)− γBzX

]
,

(10)
where A is the cross section area of the domain, and
ν⊥ = λK⊥/(2~).

Only Bz affects the translational motion of the domain
wall as it couples to X(t), so for simplicity we set the
other components of the magnetic field to zero and let
B = Bẑ. The equations of motion of (10) are given
by the Landau-Lifshitz-Gilbert equations in terms of the
collective coordinates

φ̇+
α

λ
Ẋ = γB, (11)

Ẋ − αλφ̇ = ν⊥ sin 2φ, (12)

where the Gilbert damping parameter α, which we take
to be constant, enters via damping induced by a dissi-
pation function W = −~Aλα/2[(Ẋ/λ)2 + φ̇2] [50]. The
Landau-Lifshitz-Gilbert equations reduce to

φ̇ = a1 − a2 sin(2φ), (13)

where the constants a1 = γB/(1 + α2) and a2 =
αν⊥/[(α

2 + 1)λ]. The solution of Eq. (13) depends on
the magnitude of the magnetic field. For an initial con-
dition φ(0) = 0 and for B smaller than a a critical value

Bc =
αK⊥
2~γ

, (14)

for which |a1| = a2, φ is a constant in the long time limit:

φ =
1

2
arcsin

(
B

Bc

)
. (15)

In this limit the time averaged domain wall velocity is
constant and proportional to the magnetic field, Ẋ =
λγB/α. In the opposite limit where B > Bc, the solution
for φ in Eq. (13) is oscillating and is no longer a constant:

φ =
arctan

[
a1 tan

(√
a2

1 − a2
2t
)]

√
a2

1 − a2
2 + a2 tan

(√
a2

1 − a2
2t
) , (16)

and the time averaged domain wall velocity

〈Ẋ〉 =
λγ

α
B

1− 1

1 + α2

√
1−

(
Bc

B

)2
 , (17)

begins at first to decrease once the magnetic field be-
comes larger than Bc, to then again grow linearly with
the magnetic field as B � Bc. The transition between
the two solutions is called Walker breakdown [45] and
coincides with the maximum velocity of the domain wall
for the regime of constant φ solutions.
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B. The axial anomaly in Weyl semimetals

Weyl semimetals are three dimensional semimetals
which at low energies are described by quasi-particles
which are chiral fermions [51]. These are massless
fermions with a given (right or left) handedness. Their
dispersion is conical and crosses through a node called a
Weyl point, with Weyl points always coming in pairs of
opposite chirality [51–53]. The Weyl points in a Weyl
semimetal are separated in either energy or momen-
tum, which, depending on the system and the number
of Weyl points, breaks either inversion symmetry, time-
reversal symmetry or both. We consider only a time-
reversal-breaking Weyl semimetal consisting of two Weyl
nodes separated in momentum space. This is a magnetic
Weyl semimetal where the momentum space separation
is given by a magnetization vector, as described by the
Hamiltonian in Eq. (1).

Due to the presence of chiral fermions, Weyl semimet-
als exhibit the axial anomaly: the non-conservation of
axial charge Eq. (5)

∂tn5 =
e2

2~2π2
E ·B − n5

τ
, (18)

where the axial number density n5 = nR − nL is the dif-
ference in the number of right and left handed fermions.
The last term models scattering between the two Weyl
cones in a relaxation-time approximation with inter-node
scattering time τ . Parallel magnetic and electric fields
result in a depletion of left-handed fermions which are
transmuted into right-handed fermions, or vice versa de-
pending on the mutual sign of the electric and magnetic
fields. The transfer of fermions of one chirality into the
other, generates a difference of chemical potential be-
tween the two Weyl cones; this difference is called the
axial chemical potential, µ5 = (µR − µL)/2. The axial
chemical potential is conveniently expressed in terms of
the axial number density, which in turn is obtained from
the anomaly equation (18), which for constant electro-
magnetic fields results in a steady state solution of the
axial density:

n5 =
e2τ

2~2π2
E ·B. (19)

In the limit of a small magnetic field, ~eB � µ2
5/ν

2
F and

a small axial chemical potential, µ5 � µ, kBT , where
µ = (µL +µR)/2 is the average chemical potential, T the
temperature and kB the Boltzmann constant, the axial
chemical potential [40]

µ5 =
3~ν3

F e
2τ

2(π2k2
BT

2 + 3µ2)
E ·B (20)

is linear in n5.

III. MODEL AND EFFECTIVE LAGRANGIAN

We now turn to the main objective of this work,
combining domain wall physics with Weyl fermions and
anomalies. For this end we consider a Weyl semimetal
which hosts a domain wall in the magnetization as de-
scribed by Eq. (6), and are ultimately interested in the
dynamics of this domain wall under the influence of ex-
ternal magnetic and electric fields. This requires a col-
lective coordinate description of the domain wall that
further includes the coupling of the magnetization with
the Weyl fermions. In this section we present and discuss
the effective Lagrangian for the magnetization under the
influence of external electromagnetic fields, in collective
coordinates, obtained by integrating out the fermionic
degrees of freedom; for clarity many details of the deriva-
tion are relegated to appendices.

The initial description of the system is given by a La-
grangian with two contributions, one for the ferromagnet
and the other one for the Weyl fermions and their cou-
pling to magnetization,

Ltot = LFM + LWeyl. (21)

The ferromagnet Lagrangian is

LFM = −2~A
a3

[
φ̇X +

πλγ

2
(Bx cosφ+By sinφ)− γBzX

]
,

(22)
where we at this point do not include any intrinsic hard-
axis anistropy but, as we will see, it will be induced by
the coupling to the Weyl fermions. The Weyl Lagrangian

LWeyl =

∫
d3x

(
Ψ̄iγ0∂0Ψ−H

)
, (23)

H = Ψ̄
(
−iνF γi∂i + eγµAµ + eνF bµγ

µγ5
)

Ψ, (24)

is the low energy description of the Weyl semimetal in
units with ~ = c = 1. Here the Greek indices correspond
to the four-dimensional space-time coordinates t, x, y, z
and Latin indices to space coordinates x, y, z. Repeated
indices are summed over. The gamma-matrices, γµ, obey
the anti-commutation relations {γµ, γν} = 2ηµν , where
our chosen metric signature is ηµν = diag[1,−1,−1,−1].
The fifth gamma-matrix is defined as γ5 = iγ0γ1γ2γ3,
and it couples with opposite sign to Weyl fermions of op-
posite chirality. We work in the Weyl representation,
where γ5 = −τz ⊗ 1, and Eq. (24) matches Eq. (1).
LWeyl couples an external vector potential Aµ through
minimal coupling, where e is the elementary charge. To
simplify the notation in Eq. (24), we have re-scaled the
vector potential to include the velocity, Aµ = (At, νFAi).
The magnetization bµ = (0, b) is purely space-like and
is given by b(x, t) = ∆/(eνF )m(x, t), with ∆ an ex-
change coupling between the electrons and the mag-
netization. We consider the magnetization to consti-
tute a background magnetization in the z direction with
fluctuations on top, and expand the effective theory
of the Weyl semimetal in terms of these fluctuations.
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The background magnetization is along the z direction,
b̃i = ∆/(eνF )(0, 0, tanh[x/λ]), and is defined to be the ze-
roth order term in an expansion of bz around x = X(t).
The fluctuations in the z direction, δbz, contain all higher
order terms in the expansion of bz, and the fluctuations
in the x and y directions are δbx = mx and δby = my.
Considering these definitions, the total magnetization is
the sum containing the background and the fluctuations,
bi = b̃i+δbi. The magnetization couples to γ5 in Eq. (23)
and therefore distinguishes between the chirality of the
fermions.

The domain wall gives rise to two types of fermionic
solutions: bound states confined to the domain wall, and
extended plane-wave bulk states away from the domain
wall. The spectrum of the bound states exhibits two chi-
ral zero modes of opposite chirality, these are the Fermi
arcs [54]. Both Fermi arcs follow the same linear disper-
sion relation, E = νF ky [55].

By integrating out the fermionic degrees of freedom
separately considering the bound-state and extended-
state solutions, we obtain an effective Lagrangian for the
magnetization

Leff = Lbound + Lµ5
, (25)

which takes into account terms up to and including sec-
ond order in the magnetization fluctuations. For a de-
tailed derivation of Leff see App. A 1. The contribution
from the Fermi arc states is

Lbound = AλKeff
⊥ sin2 φ. (26)

Note that my ∝ sinφ, so Lbound is an effective hard-axis
anisotropy, where Keff

⊥ = ∆2/(LzλhνF ) is the effective
hard-axis anisotropy per volume, and Lz is the sample
thickness in the z direction. The form of the induced
anisotropy is model-dependent as it directly depends on
the Fermi arc states (see App. A 1); here it couples to my

only since in our model the Fermi arcs only disperse in
the ky direction.

The second contribution to the effective Lagrangian,

Lµ5 =
∆2

12π2ν2
F~2

µ5

∫
d3x εijkmi∂jmk, (27)

is a bulk contribution arising due to the extended states.
The correct coefficient in Eq. (27) is obtained by rec-
ognizing that Lµ5

is the Lagrangian expression for the
axial separation effect. As the magnetization couples as
an axial field A5 = ∆m, Eq. (27) can be written as
Lµ5
∝ µ5

∫
d3x εijkA5

i ∂jA
5
k, which gives an axial current

J i5 = δLµ5
/δA5

i :

J i5 =
∆2

6π2ν2
F~2

µ5ε
ijk ∂jmk =

e2

6π2~2
µ5B

i
5. (28)

Lµ5
contains three insertions of axial fields (µ5 is a com-

ponent of an axial field A5
t ), which means it has three in-

sertions of γ5 matrices. Due to (γ5)3 = γ5, the structure
of the Feynman integral for the axial separation effect is

analogous to that for the chiral magnetic effect, which
has two insertions of Aµ and only one insertion of A5

µ.
They differ however by a relative factor of 1/3 [28]; since
Lµ5

has three insertions of the same field A5
µ, it is accom-

panied by a factor of 1/3! accounting for permutations,
while the chiral magnetic effect has two insertions of the
same field Aµ, and therefore goes with a factor 1/2!.

One can understand Lµ5 in terms of a spin-torque ex-
erted on the magnetization, as explained in the introduc-
tion. More precisely, the presence of a finite axial cur-
rent J5 influences the magnetization dynamics through a
torque Te ∝m× J5, see Eq. (3). Being proportional to
µ5, Lµ5 only emerges once the axial chemical potential
is dynamically generated, which is a result of the axial
anomaly. When the expression for the axial chemical
potential, Eq. (20), is inserted,

Lµ5 =
A∆2νF e

2τ

8π~(π2k2
BT

2 + 3µ2)
(E ·B) sinφ. (29)

There exists a further contribution to the effective La-
grangian arising from the bulk,

L5
CS =

A∆3

9π2ν3
F~2

φ̇X. (30)

However, this term only renormalizes the Berry phase
term in the Heisenberg Hamiltonian in Eq. (22), but as
it is small, in terms of typical parameter values [56], in
comparison to the Berry phase term, we can neglect it;
see App. A 2.

The final expression for the effective Lagrangian for
the magnetization is the sum of the ferromagnet con-
tribution Eq. (22), the effective contribution from the
Fermi-arcs, Eq. (26), and the bulk term arising from the
axial anomaly, Eq. (29):

LM =− 2~A
a3

[
φ̇X +

πλγ

2
(Bx cosφ+By sinφ)− γBzX

]
− C1 sin2 φ+ C2(E ·B) sinφ,

(31)
where the coefficients are

C1 = AλKeff
⊥ , (32)

C2 =
A∆2νF e

2τ

8π~(π2k2
BT

2 + 3µ2)
. (33)

The Weyl physics, through the interaction between the
Weyl fermions and the magnetization, is thus responsible
for inducing a hard-axis anisotropy and an electrically
modulated spin-torque. This is one of the main results
of this work.

IV. AXIAL ANOMALY MANIPULATION OF
THE DOMAIN WALL

With the expression for the effective Lagrangian,
Eq. (31), at hand, we now proceed to show how the inter-
action between the Weyl fermions and the magnetization
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induces a means to control the equilibrium value of the
internal angle through an electric field. Specifically, we
demonstrate that due to the axial anomaly induced spin-
torque, Eq. (29), the chirality of the domain wall changes
smoothly as a function of the electric field. By a chiral
domain wall we refer to a Bloch wall where the two chi-
ralities corresponds to the internal angles φ = ±π/2 [57].
We also display how the dynamics of the domain wall
depend on the induced hard-axis anisotropy, Eq. (26),
and how the electric field, through the spin-torque due
to Eq. (29), delays the onset of a Walker break down.

A. Equilibrium configuration of the domain wall

The equilibrium configuration of the domain wall is de-
fined as the value of the internal angle for which the po-
tential energy of the domain wall is minimal. This angle
depends on the electric and magnetic fields, and without
loss of generality we consider magnetic fields with no z
component, as Bz only couples to X(t) in the Lagrangian
Eq. (31), and therefore does not affect the φ dependence
of the potential energy. We separately consider the mag-
netic field configurations B = Bxx̂ and B = By ŷ, to
clarify the influence of the electric field on the equilib-
rium configuration. When there are no external fields,
the equilibrium configuration of the domain wall is a Néel
wall, with degenerate potential minima for φ0 = 0, π.

For a magnetic field B = Bxx̂, and a zero electric field
the potential energy in Eq. (31) is

VBx
(φ) = C1 sin2 φ+ C3Bx cosφ, (34)

C3 =
π~λAγ
a3

, (35)

which has a minima at,

φ0 =

{
0 Bx < 0,

π Bx > 0.
(36)

The equilibrium configuration is therefore a Néel wall for
all magnetic fields, sharply changing the chirality as the
magnetic field changes sign. In an electric field E = Exx̂
parallel to the magnetic field,

VEx·Bx(φ) = C1 sin2 φ+ C3Bx cosφ− C2 (Ex ·Bx) sinφ,
(37)

for which the minima smoothly varies as a function of
the electric field. We define a critical electric field Ec =
C3/C2, which for typical parameter values [56] is Ec =
39kV/m. For a negative magnetic field and Ex > 0,
the angle φ0 decreases as the electric field increases, and
approaches a Bloch configuration φ0 = −π/2 as Ex �
Ec. When Ex < 0, φ0 instead increases towards φ0 =
π/2 with decreasing electric field. In Fig. 2 φ0 is plotted
against Ex for three different values of the magnetic field,
showing that the larger the magnitude of the magnetic
field is, the smaller the electric field required to reach a
Bloch configuration.

−300 −150 0 150 300
Ex/Ec

−π
2

0

π
2

φ
0

[r
ad

]

|Bx| = 1T

|Bx| = 0.1T

|Bx| = 0.01T

FIG. 2. The internal angle, φ0 as a function of the electric
field Ex, for three different values of Bx, and where By =
Bz = 0, and Bx < 0 for parameter values [56]. The solid line
corresponds to |Bx| = 1 T, the dashed −− line corresponds
to |Bx| = 0.1T and the dotted .. line to |Bx| = 0.01T.

For a magnetic field B = By ŷ, the potential energy

VBy (φ) = C1 sin2 φ+ C3By sinφ (38)

has a minima at

φ0 = − arcsin

(
C3By
2C1

)
, (39)

which for By ∈ [−Bc,y, Bc,y], with Bc,y = 2C1/C3, as-
sumes values in the open interval φ0 ∈ (−π/2, π/2).
When By < −Bc,y (By > Bc,y) the domain wall is a
Bloch wall with internal angle, φ0 = π/2 (φ0 = −π/2).
For E = Ey ŷ, the mimima of the potential energy

VEy·By
(φ) = C1 sin2 φ−[C2 (Ey ·By)− C3By] sinφ (40)

depends on the electric field:

φ0 = arcsin

[
C2 (Ey ·By)− C3By

2C1

]
. (41)

−9 −4 1 6 11
Ey/Ec

−π
2

0

π
2

φ
0

[r
ad

]

|By| = 1T

|By| = 0.5T

|By| = 0.25T

FIG. 3. The internal angle, φ0 as a function of the electric
field Ey/Ec, for three different values of Bx, and where By =
Bz = 0, and By < 0 for parameter values [56]. The solid line
corresponds to |By| = 1 T, the dashed line corresponds to
|By| = 0.5T and the dotted line to |By| = 0.25T.
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This minima corresponds to the Néel configuration when
the argument is zero, at the critical value Ey = Ec. As-
sume now that By < 0: For electric fields larger than
this critical value, Ey > Ec, the equilibrium configu-
ration smoothly goes towards a Bloch configuration at
φ0 = −π/2 as the magnitude of the electric field is in-
creased. If the electric field instead is smaller than the
critical value, the minimum of the internal angle moves
towards the configuration φ0 = π/2 as the electric field
is decreased. The internal angle, Eq. (41), is depicted in
Fig. 3 as a function of the electric field for three different
values of the magnetic field.

The results in this section can be summarized as fol-
lows: For electric and magnetic fields in the direction
(x̂) perpendicular to the domain wall plane, the equilib-
rium configuration changes smoothly between a Néel wall
at Ex = 0, to approach a Block wall as the magnitude
of the electric field increases (Fig. 2). For fields lying
in the domain wall plane and perpendicular to the easy
axis (pointing along ŷ) the equilibrium configuration at
Ey = 0 changes between Néel and Bloch configurations
as the magnetic field is varied. For nonzero Ey the same
result is obtained by keeping the magnetic field constant
and varying the electric field (Fig. 3). The strength of
the electric field needed to approach a Bloch configura-
tion is in both cases determined by the magnitude of the
magnetic field, the stronger the magnetic field the smaller
the electric field has to be to reach a Bloch configuration.
The interaction between the Weyl fermions and the mag-
netization thus induces a coupling of the magnetization
to the electric field which allows for the electric field to
be used to flip the chirality of a Bloch wall. Since this
interaction is due to the axial anomaly, an observation
of the chirality flip serves as an indirect measurement of
the axial anomaly itself.

B. Maximum domain wall velocity

The equations of motion of the Lagrangian describing
the magnetization in Eq. (31),

φ̇+
α

λ
Ẋ = γB (42)

2A~
a3

Ẋ − C1 sin 2φ− 2A~λα
a3

φ̇ = −C2E ·B cosφ, (43)

contain two contributions due to the coupling between
the electrons and the magnetization. These contribu-
tions, as we now show, affect the occurrence of the
Walker breakdown, and in turn the maximal velocity
Ẋmax = λγBc/α of the domain wall in the φ̇ = 0 regime;
here, as in Sec. II A, |Bc| is the magnitude of the mag-

netic field at which φ̇ becomes nonzero.
For a zero electric field, Eqs. (42) and (43) reduce to

φ̇ = a1 − a2 sin(2φ), (44)

where the constants a1 = γB/(1 + α2) and a2 =
αa3Keff

⊥ /(2~[1 + α2]). The Walker breakdown occurs

1 2 3 4 5
B/Bc

0.0

0.5

1.0

1.5

2.0

2.5

E
[M

V
/m

]

φ̇ = 0

φ̇ 6= 0

FIG. 4. The electric, Ez, and magnetic, Bz/Bc, field depen-

dence of the boundary between the Walker regime, φ̇ = 0
and the regime where the internal angle rotates, φ̇ 6= 0 for
parameter values [56].

when |a1| = a2 at a critical magnetic field Bc = a2(1 +
α2)/γ, which for physical parameter values [56] is Bc =

15mT. The corresponding velocity is Ẋmax = 2617m/s,
which is remarkable: This means that the DW in the
Weyl semimetal can move at high velocities even if the in-
trinsic hard-axis anisotropy is vanishingly small (we have
taken K⊥ = 0).

For an electric field parallel to the magnetic field, the
equations of motions in Eq. (42) and Eq. (43) combine
into

φ̇ = a1 − a2 sin(2φ) + a3Ez cosφ, (45)

where a3 = αa3C2B/[2~Aλ(1+α2)]. The existence of the
electric field delays the onset of the Walker breakdown,
as displayed in Fig. 4, depicting how the boundary be-
tween the Walker regime, φ̇ = 0, and beyond, φ̇ 6= 0,
depends on the electromagnetic fields. To estimate the
field strengths at which Walker breakdown takes place we
note that F (φ) = −a2 sin(2φ)+a3Ez cosφ, being a sum of
trigonometric functions of φ, is bounded both from above
and below. If the coefficient a1 > |max[F (φ)]|, then the
right hand side can never become zero, and therefore
there is no solution in which the domain wall angle does
not rotate. Therefore, the condition a1 = |max[F (φ)]|
gives a strict bound on the when the Walker breakdown
happens. Note that this does not rigorously exclude solu-
tions with φ̇ 6= 0 at lower values of the magnetic field. In
the absence of an electric field, this condition is however
equivalent to the relation B = Bc derived above.

V. DISCUSSION

We have shown how the joint action of two effects, the
axial anomaly and the axial separation effect, induces
an electric-field-modulated spin torque in magnetic Weyl
semimetals. We have demonstrated that the presence of
this spin torque allows for the control of the chirality of
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domain walls, which can be flipped in a controllable man-
ner by a varying electric field. For electric and magnetic
fields in the x direction and for |Bx| ∼ 1T, the chirality
of the Bloch wall is flipped from π/2 to −π/2 by increas-
ing the electric field from Ex = 0 to |Ex| ∼ 2.7MV/m
for typical parameter values [56]. The same chirality flip
is obtained for electric and magnetic fields in the y di-
rection. In this case, for By ∼ −1T the electric field
needed to reach a Bloch wall with negative chirality is
Ey = 112kV/m, and to reach Bloch wall with positive
chirality is Ey = −35kV/m. These results could serve for
developing logic gate designs based on spin wave technol-
ogy [42–44], and, perhaps more striking, the experimen-
tal observation of such electric field mediated chirality
changes would constitute a direct signature of the ax-
ial anomaly. Furthermore, the electric-field-induced spin
torque can also be used to electrically delay the onset of
Walker breakdown in the domain wall dynamics. This, in
addition with an effectively induced magnetic anisotropy
by the Fermic arc states bound to the domain wall, per-
mits high domain wall velocities even if the intrinsic hard-
axis anisotropy of the Weyl semimetals is small. For typ-
ical parameter values [56], and assuming a vanishing in-
trinsic hard-axis anisotropy, the maximum time averaged
domain wall velocity in the Walker regime at zero elec-
tric field is Ẋmax = 2.6 km/s. This value can be further
increased by a factor of 3 by applying an electric field of
E = 2MV/m.
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Appendix A: Effective action for the magnetization

In this section we obtain the effective action for the
magnetization due to its coupling to the fermions. The
starting point is the Weyl semimetal action, which at low
energies is

SWeyl =

∫
d4x

(
Ψ̄iγ0∂0Ψ−H

)
, (A1)

H = Ψ̄
(
−iνF γi∂i + eγµAµ + eνF bµγ

µγ5
)

Ψ, (A2)

where for notational convenience we define ∂µ =
(∂0, νF∂i) and Aµ = (∂0, νFAi). We have partially

fixed the gauge potential through Aµ → Aµ(t, y).
We decompose the total magnetization into a sum
bi = b̃i + δbi, of the background magnetization,
b̃i = ∆/(eνF )(0, 0, tanh[x/λ]) and fluctuations δbi =
∆/(eνF )(mx,my, δmz). The domain wall generates two
types of solutions, Fermi arc states bound to the domain
wall, and extended bulk states. The fermionic states are
integrated out to obtain an effective theory for the mag-
netization, giving two separate terms for the two solu-
tions. These are then further expanded in both the fluc-
tuations δbi and the gauge fields Aµ, up to and including
quadratic order in the fluctuations of the magnetization.
We employ the chiral basis of the gamma matrices as it
decouples the chiralities:

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−1 0
0 1

)
(A3)

where 1 is the identity matrix in two dimensions, and σi

are the Pauli matrices.
We now turn to the details of this derivation separately

for the two contributions from Fermi arcs and bulk states
in the next two subsection, where we only consider the
parity odd bulk terms, as these are the most important
for our discussion. In the last subsection we comment on
the effect of the parity even terms, which result only in
renormalization of coupling constants.

1. The effective action due to the bound states

The momentum space Hamiltonian for Aµ = δbµ = 0,
corresponding to the Weyl action in Eq. (A1) is

Ĥ0 = νF

[
(τz ⊗ σ) · k − e(1⊗ σ) · b̃

]
, (A4)

where σ and τ act on the spin and chirality space respec-
tively. This Hamiltonian is translational invariant in the
y and z directions and the wave function in these direc-
tions is a plane wave, and the remaining x-dependence of
the wave function is obtained by noting that the chiral-
ities decouple in Eq. (A4). The Fermi arc states, which
are the zero mode solutions to Eq. (A4) with dispersion
E = νF ky are [55]:

ΨL/R(x) =

∫
dkze

ikzzψL/R(x, y, kz), (A5)

where the subscript refers to the left/right handedness
(τz = ±1, with a slight abuse of notation, using the same
notation for the eigenvalues of τz as the matrix itself, the
context should make clear which is considered) of the
fermions:

ψL(x, y, kz) =
1√
2

(
−i

1

)
ΦL(x, kz)ϕ(y), (A6)

ψR(x, y, kz) =
1√
2

(
1
−i

)
ΦR(x, kz)ϕ(y). (A7)
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Here ϕ(y) = eikyy/
√
Ly, and the states are normalized

such that
∫

dy|ϕ(y)2| = 1, and [55]

ΦL/R(x, kz) =

{
Ne−τzkzx−k∆λ ln(cosh(x/λ)) |kz| < k∆

0 |kz| > k∆,

(A8)
where 2k∆ is the Weyl node separation. The constant
N is defined through the normalization of the complete
wave function Eq. (A5), giving the condition:∫

dk dx|ΦL/R(x, kz)|2 = 1. (A9)

By inserting the Fermi arc solutions (A5) into the Weyl
action (A1) we are left with the expression

S
L/R

=

∫
dtdx dy

∫
dkz ϕ

†(t, y)Φ
L/R

(x, kz)

[iDt − iDy − τz∆my]ϕ(t, y)Φ
L/R

(x, kz),

(A10)

for the action, where the operator Dµ = ∂µ + ieAµ and
the time dependence has been included in the function
ϕ(t, y). We expand the fluctuation my = sinφ/ cosh([x−
X(t)]/λ) in Eq. (A10) around the domain wall center
x−X(t) = 0 and only keep the zeroth order term in this
expansion, namely m0

y = sinφ. With m0
y independent of

x, the integration over x, kz in Eq. (A10) yields simply
one. After integrating out the fermionic dependence the
effective action, with respect to the gauge field and the
magnetization, is

Γ
(τz)
bound = −i ln det

(
iDt − iDy − τz∆m0

y

)
. (A11)

Expanded to second order in the gauge field and magne-
tization, using a gauge invariant regularization, gives the
expression [58]

Γ
(τz,2)
bound =

1

2πνF~

∫
dtdy a(τz)

µ

(
ηµν − ∂µ∂ν

∂2

+
εµα∂α∂

ν − εβν∂µ∂β
2∂2

)
a(τz)
ν ,

(A12)

where a
(τz)
µ = (eA0, eνFAy − τz∆m0

y). The full action is
the sum over both chiralities, but since the magnetization
couples with opposite sign for opposite chiralities, the
terms which mix the magnetization and Aµ cancel, and
the remaining effective action contains only two terms,
one quadratic in the magnetization and one quadratic in
the gauge field. The effective action for the magnetiza-
tion reduces to [12, 14]

Γbound = − ∆2

2πνF~

∫
dtdy m0

y(t)m0
y(t). (A13)

This takes the form of a Fermi-arc induced hard-axis
anisotropy. We therefore define the effective hard-axis
anisotropy,

Keff
⊥ =

∆2

LzλhνF
, (A14)

where Lz is the thickness of the domain wall in the z
direction. The Lagrangian corresponding to the action
in Eq. (A13) for a sample width Ly in the y direction is
then

Lbound = −LyLzλ Keff
⊥ sin2 φ. (A15)

Note that the form of the effective Lagrangian is model
dependent. The linearly dispersing (with E ∝ ky) Fermi
arcs in our model are eigenfunctions of σy within one val-
ley, causing the action in Eq. (A10) to only depend on
the magnetization through my. For a model with curved
Fermi arcs, with a dispersion depending on both ky and
kz, other terms would enter the action in Eq. (A10), lead-
ing to a different effective action for the magnetization,
and in turn a different induced hard-axis anisotropy. The
physics remains qualitatively the same.

2. Bulk effective action

We perform the calculation of the bulk effective action
in the adiabatic limit, assuming the background magne-
tization b̃z is constant, restoring its x-dependence only at
the end. We assume a vanishing axial chemical potential
µ5 = 0. The bulk term that appears when µ5 6= 0 is
discussed in depth in section III. By integrating out the
fermionic degrees of freedom and expanding to second
order in the fields Aµ and δbµ we get

Γ(2)[A, b] =
i

2
Tr

(
e /A− eνF /δbγ5

i/∂ − eνF /̃bγ5

· e /A− eνF /δbγ5

i/∂ − eνF /̃bγ5

)
,

(A16)

where the slashed notation is defined as /A = Aµγ
µ, and

the trace is over both position space and spin space. We
only consider parity odd terms of order δb2 and δAδb,
which results in one term, namely

Γ5
CS = C

∆3

ν3
F~2

∫
d4x εµνρσmµm̃ν∂ρmσ, (A17)

where m̃µ = (0, 0, 0, tanh(x/λ)), and C is a finite, but un-
determined coefficient [54, 59–61]. The coefficient is fixed
by demanding consistency with the consistent anomaly,
which in terms of the axial electromagnetic fields takes
the form

∂µJ
µ
5 =

e3

6π2~2
E5 ·B5, (A18)

where Jµ5 is the axial vector current for the total sys-
tem, including contributions of both bound and extended
states [28, 62]. The axial current is thus derived by
varying both the effective action for the bound states,
Eq. (A15), and the Chern-Simons term, Eq. (A17), with
respect to bµ. By expanding the right hand side of
Eq. (A18) in terms of the magnetization, the coefficient
C is determined, which yields

Γ5
CS =

∆3

12π2ν3
F~2

∫
d4xεµνρσmµm̃ν∂ρmσ. (A19)
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Γ5
CS does not contribute to the equations of motion of

the domain wall as it only renormalizes the Berry phase
term in the effective action of the ferromagnet,

ΓB = −2~A
a3

∫
dt φ̇X. (A20)

By expanding Γ5
CS to first order in X(t) around X(t) = 0

gives the expression,

Γ5
CS = − A∆3

9π2ν3
F~2

∫
dt φ̇X, (A21)

which is indeed of the same form as the Berry phase
term in Eq. (A20). For system parameter values [56]
|Γ5

CS| � |ΓBF |, and the Chern Simons contribution can
be omitted.

3. Parity even terms

Besides the parity odd terms, the effective action (or
polarization function) will also contain bulk parity even
terms, but these will not change the physics in a qualita-
tive way. To illustrate this, these terms can be computed
in the adiabatic approximation as was done for the parity
odd terms, assuming the background magnetization b̃z to
be constant, and restoring the x dependence at the end.
It was shown in Ref. 63 that the correction due to a con-
stant b̃z to the even part of the polarization function is of
order b̃2z and breaks gauge invariance. Imposing gauge in-
variance by using a regularization which preserves it, for
example dimensional or Pauli-Villars regularizations, one
obtains a zero correction [63, 64], so that the even terms

of the effective action will not depend on b̃z. There are

in principle two terms, one quadratic in δbi and one cou-
pling Aµ to δbi. The latter, due to the axial nature of δbi
which couples with opposite sign to the two chiralities,
vanishes, whereas the former is equal to the photon po-
larization function for a massless Dirac fermion, which is
obtained from a standard calculation. Using dimensional
regularization and the minimal subtraction renormaliza-
tion scheme, one has [65]

Γeven =

∫
d4p

(2π)4
δbi(−p)Πij(p)δbj(p), (A22)

Πij(p) =
∆2

4π2ν3
F

Π(p2/µ2
0)(p2δij + pipj), (A23)

Π(p2/µ2
0) =

1

9π
[5− 3 log(−p2/µ2

0)], (A24)

with four momentum p = (ω, pi). The parameter µ0 is an
energy scale that appears in the process of dimensional
regularization. The appearance of this parameter reflects
the formal absence of any characteristic scale in the lin-
ear electronic spectrum. It could be fixed either experi-
mentally or related to the lattice cutoff of the underlying
band structure, by considering a full lattice model of a
Weyl semimetal [65].

In the static limit (ω → 0), Γeven just renormalizes
the exchange term of the Heisenberg Hamiltonian. The
ω dependence is, however, quadratic, compared to the
linear dependence of the Berry phase term, hence rep-
resenting a higher order term in a derivative expansion
and its effect on the physics can be neglected in a first
approximation. Generalizations of the above calculation
for finite chemical potential and/or temperature can be
obtained from, e.g., Refs. 66 and 67.
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lorentz and CPT violation in electrodynamics, Phys.
Rev. Lett. 82, 3572 (1999).

[61] A. G. Grushin, Consequences of a condensed matter real-
ization of lorentz-violating qed in weyl semi-metals, Phys.
Rev. D 86, 045001 (2012).

[62] C. Callan and J. Harvey, Anomalies and fermion zero
modes on strings and domain walls, Nucl. Phys. B 250,
427 (1985).

[63] B. Altschul, Failure of gauge invariance in the nonper-
turbative formulation of massless lorentz-violating qed,
Phys. Rev. D 69, 125009 (2004).

[64] B. Altschul, Gauge invariance and the pauli-villars regu-
lator in lorentz- and cpt-violating electrodynamics, Phys.
Rev. D 70, 101701 (2004).

[65] Y. Ferreiros and A. Cortijo, Unconventional electromag-
netic mode in neutral weyl semimetals, Phys. Rev. B 93,
195154 (2016).

[66] J. I. Kapusta, Finite-Temperature Field Theory (Cam-
bridge University Press, 1989).

[67] M. Le Bellac, Thermal field theory (Cambridge Univer-
sity Press, 2000).

https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.94.115312
https://doi.org/10.1103/PhysRevB.54.9920
https://doi.org/10.1103/PhysRevB.54.9920
https://doi.org/10.1103/PhysRevLett.54.1219
https://doi.org/10.1103/PhysRevLett.54.1219
https://doi.org/10.1103/PhysRevLett.83.2518
https://doi.org/10.1103/PhysRevLett.83.2518
https://doi.org/10.1103/PhysRevLett.82.3572
https://doi.org/10.1103/PhysRevLett.82.3572
https://doi.org/10.1103/PhysRevD.86.045001
https://doi.org/10.1103/PhysRevD.86.045001
https://doi.org/https://doi.org/10.1016/0550-3213(85)90489-4
https://doi.org/https://doi.org/10.1016/0550-3213(85)90489-4
https://doi.org/10.1103/PhysRevD.69.125009
https://doi.org/10.1103/PhysRevD.70.101701
https://doi.org/10.1103/PhysRevD.70.101701
https://doi.org/10.1103/PhysRevB.93.195154
https://doi.org/10.1103/PhysRevB.93.195154

	Electric manipulation of domain walls in magnetic Weyl semimetals via the axial anomaly
	Abstract
	Introduction
	Background
	Field driven domain wall dynamics and the collective coordinate description
	The axial anomaly in Weyl semimetals 

	Model and effective Lagrangian
	Axial anomaly manipulation of the domain wall
	Equilibrium configuration of the domain wall
	Maximum domain wall velocity

	Discussion
	Acknowledgments
	Effective action for the magnetization
	The effective action due to the bound states
	Bulk effective action 
	Parity even terms

	References


