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Abstract

We study the properties of spin-less non-interacting fermions trapped in a
confining potential but in the presence of one or more impurities which are
modelled by delta function potentials. We use a method based on the single
particle Green’s function. For a single impurity placed in the bulk, we compute
the density of the Fermi gas near the impurity. Our results, in addition to
recovering the Friedel oscillations at large distance from the impurity, allow
the exact computation of the density at short distances. We also show how the
density of the Fermi gas is modified when the impurity is placed near the edge
of the trap in the region where the unperturbed system is described by the Airy
gas. Our method also allows us to compute the effective potential felt by the
impurity both in the bulk and at the edge. In the bulk this effective potential
is shown to be a universal function only of the local Fermi wave vector, or
equivalently of the local fermion density. When the impurity is placed near
the edge of the Fermi gas, the effective potential can be expressed in terms
of Airy functions. For an attractive impurity placed far outside the support
of the fermion density, we show that an interesting transition occurs where
a single fermion is pulled out of the Fermi sea and forms a bound state with
the impurity. This is a quantum analogue of the well-known Baik-Ben Arous-
Péché (BBP) transition, known in the theory of spiked random matrices. The
density at the location of the impurity plays the role of an order parameter.
We also consider the case of two impurities in the bulk and compute exactly
the effective force between them mediated by the background Fermi gas.
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1 Introduction

Noninteracting fermions in a confining trap is a topic of much current interest, especially
in the context of cold atoms. In the presence of a trap, the density of the Fermi gas
in the ground state is confined in a finite region of space. Indeed, the density vanishes
outside a finite interval in one-dimension. Inside this interval, usually referred to as the
“bulk”, the fermion density can be estimated, for a large number of fermions N , using
a semi-classical approximation, or equivalently the so-called local density approximation
(LDA) [1–3]. Near the edge where the density vanishes, the quantum fluctuations play
a dominant role and the local properties of the fermions are very different from that of
the bulk [4–7]. This edge region is called the “Airy gas” because the Airy functions play
an important role in describing the quantum correlations. It is well known that the LDA
is a very good approximation when the confining potential is smooth. However, if this
potential has singularities, such as a step or delta-function, this method fails. In a recent
paper [8], we have examined the effect of a step potential, using exact methods based on
the determinantal properties of the Fermi gas.

Here, we consider instead the case when the smooth confining potential is modulated
by introducing one or more delta functions. This situation naturally arises when one
introduces one or more immobile impurities in the Fermi gas, where the impurities are
modelled by delta-function potentials (attractive or repulsive). In the absence of the
trap, i.e., for a free Fermi gas, the effects of such impurities have been well studied in the
literature. For example, when a single impurity is introduced in the Fermi gas, the density
of the Fermi gas is modulated near the impurity. At distances far from the impurity, the
density exhibits decaying oscillations, famously known as “Friedel oscillations” [9–11]. How
this density gets modulated close to the impurity has been studied in [12] in one dimension
for delta function potentials. In addition, the effective Casimir interaction between two
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impurities (mediated by the background Fermi gas) has also been studied [13,14], however,
again, the results obtained are only valid at large distances. Note that similar questions
have also been studied for bosonic systems, with and without interactions (see e.g. [15,16]).

In this paper we employ a method based on the single particle Green’s function that
allows us to obtain exact results for the trapped Fermi gas. We first consider the case
when a single impurity is added to the trapped Fermi gas in three different locations: (i)
in the bulk, (ii) near the edge and (iii) outside the edge. In the bulk (case (i)), where the
trapped Fermi gas behaves locally as a free Fermi gas, we obtain the explicit form of the
density near the impurity at all scales, not necessarily large. At large distances, we recover
Friedel oscillations, our short distance results agree with those of [12] when the impurity
is repulsive but we show that a correction is needed for attractive impurities . However
in cases (ii) and (iii), the presence of the trap considerably modifies the bulk results and
we obtain new results for the density close to the impurity. In addition, in all the three
cases, we compute the effective potential felt by the impurity due to the background
Fermi gas. In case (iii), for an attractive impurity, we show that an interesting transition
occurs where a single fermion is pulled out of the Fermi sea and forms a bound state with
the impurity. This is a quantum analogue of the classical Baik-Ben Arous-Péché (BBP)
transition [17, 18], known in the theory of spiked random matrices, where an eigenvalue
detaches from the bounded support of the eigenvalues, due to a rank-one perturbation.
This rank-one perturbation is the analogue of the delta-function potential induced by the
impurity in the Fermi gas and the eigenvalue is the analogue of the fermion position. We
then go beyond the case of a single impurity and study the effects of adding two impurities.
In this case we compute the effective Casimir-like interaction between the two impurities
mediated via the trapped Fermi gas. For two impurities, we restrict our analysis to case (i)
where both the impurities are placed in the bulk. In this case, we obtain exact results for
this effective interaction at arbitrary separation between the impurities. At large distances,
our results are in agreement with the one found in Refs. [13, 14] obtained by a different
method.

We restrict ourselves here to the case of immobile impurities. The case of mobile
impurities has been extensively studied for fermionic systems both theoretically [19–25]
and experimentally [26]. The set up of immobile impurities that we study in this paper is
more difficult to access experimentally, however it has been suggested that impurities could
be introduced by superimposing an optical lattice on an overall trapping potential [27].

2 Model and summary of main results

2.1 The model

We consider a gas of identical spin-less fermions of mass m in a trap generated by a
potential V (x) at zero temperature. We then add n delta-impurities of strengths gi. The
single particle Hamiltonian is then given by

H = H0 + ∆H , H0 = − ~2

2m

∂2

∂x2
+ V (x) and ∆H =

n∑
i=1

giδ(x− xi) , (1)

where H0 is the Hamiltonian associated with the trap and ∆H corresponds to the impu-
rities. The eigenfunctions and eigenvalues of H0 are denoted by ψ0

k(x) and ε0k. Similarly,
ψk(x) and εk denote the eigenfunctions and eigenvalues of H. Consider first the case with
no impurity (i.e. gi = 0 for all i = 1, · · · , n). At zero temperature, the system is in the
many-body ground-state such that all single-particle states of H0 below the Fermi level,
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denoted by µ, are occupied, each by a single fermion. The ground-state energy is given by

E0(µ) =
∑
k

θ(µ− ε0k)ε0k , (2)

where θ(x) is the Heaviside function where one usually uses the definition θ(0) = 1.
We now switch on the gi’s, i.e., we introduce the impurities in the system. The single-
particle Hamiltonian then changes from H0 to H. This will change the single-particle
eigenfunctions and eigenvalues. Consequently the ground state energy will also change.
Here we work in the grand-canonical ensemble where the Fermi level µ remains fixed,
while the number of fermions is not fixed and the system is in contact with a reservoir of
particles. Then the new ground state energy, in the presence of the impurities, is given by

E(µ) =
∑
k

θ(µ− εk)εk . (3)

Similarly one can define the number of particles N0(µ) and N(µ) below the Fermi level µ
as

N0(µ) =
∑
k

θ(µ− ε0k) , N(µ) =
∑
k

θ(µ− εk) . (4)

Since we are working in the grand-canonical setting, N0(µ) and N(µ) can be different and
the quantity which will play a crucial role is the grand-potential at zero temperature

Ω(µ) = E(µ)− µN(µ) . (5)

At zero temperature, thanks to the Wick’s theorem, all the correlation functions are
given by determinants constructed from the so-called kernel, which reads for H0 and H
respectively [5]

K0µ(x, y) =
∑
k

θ(µ− ε0k)ψ0∗
k (x)ψ0

k(y) , Kµ(x, y) =
∑
k

θ(µ− εk)ψ∗k(x)ψk(y) . (6)

Setting x = y in the Eq. (6) we find the fermion density

ρ0µ(x) = K0µ(x, x) =
∑
k

θ(µ−ε0k)|ψ0
k(x)|2 , ρµ(x) = Kµ(x, x) =

∑
k

θ(µ−εk)|ψk(x)|2 .

(7)

2.2 Outline and main results

In Section 3 A, we first recall the method of the Green’s function introduced in [8] and
present in Section 3 B the explicit expressions for the Green’s function in the absence of
impurities. This is then used as the building block to obtain an exact expression for the
Green’s function in the presence of the impurities in Section 3 C. In Section 4 we examine
the effect of impurities in the bulk of the system. In the absence of the impurities, the
density in the bulk is given by

ρ0µ(x) = K0µ(x, x) ' kF (x)

π
where kF (x) =

1

~
√

2m(µ− V (x)) . (8)

Here kF (x) is just the local Fermi wave vector. The density vanishes at the edge xe where
V (xe) = µ. The bulk of the system is thus defined such that V (x) � µ (see below in
Eq. (29) for a more precise definition). We now add a single impurity in the bulk of the
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system, say at x = 0, and investigate how the kernel and the density change near the
impurity. We reparametrize the impurity strength in terms of an inverse length scale λ
defined as

g =
λ~2

m
. (9)

We show that the change in the kernel upon adding this impurity is given by

∆Kµ(x, y) = Kµ(x, y)−K0µ(x, y) =
λ exp(λ(|x|+ |y|))

π
Im E1(λ+ ikF )(|x|+ |y|)] , (10)

where Im denotes the imaginary part and E1(z) =
∫∞
z dt e−t/t denotes the exponential

integral [28]. Here kF = kF (0) is the Fermi wave vector at the impurity position. Putting
x = y in (10) we obtain the change in the density due to the impurity (see also Figs. 4
and 5)

∆ρµ(x) = Kµ(x, x)−K0µ(x, x) =
λ exp(2λ|x|)

π
Im E1(2(λ+ ikF )|x|) . (11)

We show how this formula recovers the density change computed in [12] for a free Fermi
gas when the impurity λ is repulsive. The result given here and in [12] is exact for a
homogeneous free fermion system at all impurity strengths and distances and we note
that formulas given for these Friedel oscillations [9–11] are often given in the regime of
linear response or at long distances. However our formula in (11) holds for any x and λ.
In particular, we obtain an explicit formula for the density at the position of the impurity

ρµ(0) =
kF
π
− λ

π
arg(ikF + λ) =

kF
π
− λ

2
+
λ

π
tan−1

(
λ

kF

)
. (12)

We then compute the effective potential Veff(x1) felt by the impurity, where x1 denotes
the position of the impurity in the bulk, due to its interaction with the Fermi gas. This is
obtained by computing the change in the ground state energy of the many-body system
due to the addition of an impurity. This effective potential can be expressed in the scaling
form

Veff(x1) = Ω(µ)− Ω0(µ) =
~2λ2

2πm
W

(
kF (x1)

λ

)
, (13)

where Ω0(µ) = E0(µ)− µN0(µ) and the scaling function is given by

W (γ) = (γ2 + 1) tan−1

(
1

γ

)
+ γ − π

2
. (14)

The function W (γ) is shown in Fig. 1 and has the asymptotic properties

W (γ) '


−π θ(−γ) + π sgn(γ) γ

2

2 , γ → 0 ,

2 γ γ → ±∞ .

(15)

In Section 5 we investigate what happens when the impurity is placed at x1 to the
right of the edge xe, such that V (x1) > V (xe) = µ. When the impurity is attractive
we show that a phase transition occurs as the reduced strength λA = −λ > 0 of the
impurity is increased beyond a critical value. We call this transition a filling transition.
Let us recall from elementary quantum mechanics of a single particle that a delta potential
introduced at x1, in addition to a flat potential V (x) = V0, introduces a single bound
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Figure 1: The scaling function for the effective potential W (γ) defined in Eq. (14). Note
that although W is discontinuous at γ = 0 the potential Veff is continuous. Note that
although W is discontinuous at γ = 0, the potential Veff(x1) is continuous as a function of
λ at λ = 0.

state with wave function ψb(x) =
√
λA exp(−λA|x − x1|) and energy Eb = −~2λ2A

2m + V0.
Substituting V0 = V (x1) we find that there are two different phases: (i) weak impurity,
where Eb > µ implying that this bound state is unoccupied and consequently ρµ(x1) '
0; (ii) strong impurity, where Eb < µ implying that this bound state is occupied and
consequently ρµ(x1) ' λA. The transition occurs exactly at Eb = µ, which corresponds to
λA = κµ(x1) =

√
2(V (x1)− µ). This filling transition has some similarities with the BBP

transition in random matrix theory, where a rank one perturbation to a random matrix
can displace the maximal eigenvalue of the matrix [17,18].

In Section 6 we study the effect of adding two impurities in the bulk, say at x1 and
x2, close to x = 0. We assume that x1 and x2 are such that |V (x1) − V (x2)| � EF =
~2k2

F /(2m) where kF = kF (0) is the Fermi wave vector at x = 0. This condition ensures
that the potential remains effectively constant on the scale of the separation r = |x1− x2|
between the impurities. We show that the effective Casimir-like interaction between these
two impurities, mediated by the background Fermi gas, is given by

Vint(r, kF , γ1, γ2) = −2EF
πζ

Re

∫ ∞
0

ds

(
1− i s

ζ

)
× ln

(
1 +

γ1γ2

[1− i sζ − iγ1][1− i sζ − iγ2]
exp(−2ζi− 2s))

)
, (16)

where ζ = kF r and γi = λi/kF are the scaled impurity strengths. Our result is valid for
all ζ. Interestingly, using free fermionic field theory, an expression for Vint(r, kF , γ1, γ2)
was derived in Refs. [13, 14], which reads

Vint(r, kF , γ1, γ2) ' EF
πζ

Re Li2

(
− γ1γ2

[1− iγ1][1− iγ2]
exp(−2iζ)

)
, (17)

where Li2(z) =
∑∞

n=1 z
n/n2 is the di-logarithm function and Re denotes the real part.

Our formula (16) can be shown to reduce to (17) when ζ � 1. However, this form (17) is
an approximate form that holds only for large ζ. As ζ → 0, Vint(r, kF , γ1, γ2) in Eq. (17)
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diverges, which is not physical. Instead, our exact result (16), which holds for all ζ,
approaches to a constant as ζ → 0 (see Fig. 6).

In Section 7 we analyse the effect due to an impurity close to the edge of the Fermi
gas, i.e. x1 ≈ xe. The Friedel oscillations [9–11] around impurities in the bulk are strongly
suppressed near the edge. However weak oscillations, that are already present at the edge
without any impurities, still persist in the presence of impurities. The main effect of the
impurity is to alter the phase of these oscillations. For an attractive impurity, we show
that the filling transition discussed above becomes a smooth crossover on the scale of the
inter-particle distance at the edge and the local density profile is described by a universal
scaling function. Finally we obtain an analytic expression for the effective potential acting
on the impurity placed in the edge region.

In Section 8 present our general conclusions and perspectives for future studies.

3 Basic formalism and set up

We now describe how the single particle Green’s function can be used to extract the change
in the kernel due to the addition of an impurity at a fixed position in the system. The
results given below are derived in detail in a recent paper [8] and we refer the reader there
for detailed derivations.

3.1 Kernels via Green’s functions

The Green’s function Gµ′(x, y) associated to the Hamiltonian H in (1) is defined for an
arbitrary running Fermi energy µ′ as

Gµ′(x, y) =
∑
k

ψ∗k(x)ψk(y)

µ′ − i0+ − εk
. (18)

The Green’s function has poles at µ′ = εk + i0+, i.e., infinitesimally above the real axis in
the complex plane. In operator notation we also have the equivalent resolvent representa-
tion

Gµ′ = (µ′ − i0+ −H)−1, (19)

from which we see that Gµ′(x, y) is solution to the equation

~2

2m

∂2

∂x2
Gµ′(x, y) + (µ′ − i0+ − V (x))Gµ′(x, y) = δ(x− y). (20)

The kernel can be obtained from the Green’s function from the following formula

Kµ(x, y) =
1

π

∫ µ

−∞
dµ′ImGµ′(x, y) =

1

π
Im

∫ µ

−∞
dµ′Gµ′(x, y), (21)

where the imaginary part can be taken outside the integral as the integration contour is
real. Noting that when µ→∞ the kernel becomes the sum over a complete set of states,
we can derive an alternative representation

Kµ(x, y) = δ(x− y)− 1

π
Im

∫ ∞
µ

dµ′Gµ′(x, y). (22)

In this paper we will be interested in the change in the kernel due to an added impurity.
If we denote the Green’s function in the absence of impurities by G0µ(x, y), then we can
write the Green’s function as Gµ(x, y) = G0µ(x, y) + ∆Gµ(x, y) where ∆Gµ(x, y) is the
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change in the Green’s function due to the impurities. It is then easy to see that the change
in kernel ∆Kµ(x, y) = Kµ(x, y)−K0µ(x, y) is given by

∆Kµ(x, y) =
1

π
Im

∫ µ

−∞
dµ′∆Gµ′(x, y), (23)

if one uses Eq. (21), or alternatively

∆Kµ(x, y) = − 1

π
Im

∫ ∞
µ

dµ′∆Gµ′(x, y) (24)

if one uses Eq. (22). The fact that these two representations (23) and (24) are equiv-
alent can also be seen from the following argument. These integrals can be interpreted
as contour integrals in the complex µ′ plane along the real axis. In Fig. 2 these two
contours are represented as Γ1 = (µ,∞) for (24) and Γ2 = (−∞, µ) for (23), along with
the position of the poles which are infinitesimally above the real axis and are shown by
crosses. In terms of the contours Γ2 and Γ1 shown on the figure we have ∆Kµ(x, y) =
1
π Im

∫
Γ1
dµ′∆Gµ′(x, y) = − 1

π Im
∫

Γ2
dµ′∆Gµ′(x, y). The equivalence of the two represen-

tations can also be demonstrated as follows. First, using Cauchy’s theorem which, as there
are no poles in the lower half of the complex plane, gives

∫
Γ1∪Γ2∪Γ3

dµ′∆Gµ′(x, y) = 0,
where Γ3 is taken to be an infinite semicircle, with center at the origin, in the lower half of
the complex plane. One can then show that

∫
Γ3
dµ′∆Gµ′(x, y) = 0 to obtain the desired

result. Finally we should point out that by rotating the contour Γ1 about z = µ by −π/2
(so it is parallel to the imaginary axis) gives an integral representation that corresponds
to the sum over Matsubara frequencies in the fermionic field theory setting [13,14].

It is important to note here that the representation given in Eq. (24) has a number of
advantages over that in Eq. (23). First, it involves an integral over µ′ > µ therefore we do
not need to know the Green’s function ∆Gµ′(x, y) for small µ′ < µ. Since µ is large, we
just need to know the Green’s function for large µ′ which can be conveniently computed
using the semi-classical approximation. Furthermore, we will see that the representation
in Eq. (24) is more suitable to asymptotic analysis of certain formulas.

3.2 Bulk and edge Green’s function

In this section, we recall the results obtained in Ref. [8] for the kernel both in the bulk as
well as at the edges, using the Green’s function method, for a smoothly varying trapping
potential V (x).

In the bulk. We start with the bulk and consider the potential around a point x0 where
we assume that V (x) ≈ V (x0) and solve Eq. (20) with a constant potential V (x0). This
gives

Gµ′(x0 + z, x0 + z′) =
im

~2

exp(−ikµ′(x0)|z − z′|)
kµ′(x0)

, (25)

where
kµ′(x0) =

√
2m(µ′ − V (x0))/~− i0+ (26)

is the local Fermi wave vector given the Fermi energy µ′. The positive value of the
square root is taken and it is understood to have a negative infinitesimal imaginary part
as indicated above. By inserting this expression (25) in Eq. (21), setting x = y and
performing the integral over µ′ one finds the density in the bulk

ρµ(x) =

√
2m(µ− V (x))

π~
=
kµ(x)

π
. (27)
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Γ1

μ′ 
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Figure 2: Contour integrals used in the integral representations of the kernel. Crosses,
×, indicate the poles of the Green’s function which are just above the real axis. Γ1 =
(µ,∞) is the contour used in representation Eq. (23) and Γ2 = (−∞, µ) that is used for
representation Eq. (24). The contour Γ3 is used to close the contour Γ1 ∪ Γ2 and is taken
to be a semi-circle in the lower half of the complex plane whose radius is taken to ∞.

These results are obviously exact for a flat potential V (x) = V0. However they are also
accurate as long as the relative variations of kµ(x) on microscopic scales, of order O(1/kµ)
are negligible, i.e.,

|kµ[x0 + 1/kµ(x0)]− kµ(x0)| ≈
∣∣∣∣k′µ(x0)

kµ(x0)

∣∣∣∣� kµ(x0) . (28)

Using k′µ(x0) ∝ V ′(x0)/kµ(x0) from Eq. (27), this condition (28) translates to [8]

R =
~|V ′(x0)|

m
1
2 |2µ− 2V (x0)|

3
2

� 1 . (29)

Note that this argument naturally introduces a length scale

ξ =
kµ(x0)

k′µ(x0)
(30)

which sets the size of the region over which this assumption that V (x) is constant holds.
The condition in (29) clearly gets violated in two cases: (i) when the potential is not
smooth, for instance when the potential exhibits a step structure as studied in [8] or when
there is a delta function contribution to the potential (ii) when the analysis is carried out
at the edge of the trap where the density in Eq. (27) vanishes.

At the edge. The edge xe of the Fermi gas occurs where the density vanishes, i.e. when

µ = V (xe) . (31)

We see from Eq. (29) that R diverges as x0 → xe. The physics near the edge region (the
so called Airy gas), can be studied by linearizing the potential V (x) near x = xe, i.e.

V (xe + z) ' V (xe) + zV ′(xe) . (32)
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In this region, by solving Eq. (20) with a linear potential (32), the Green’s function can
be written in the scaling form [8]

Gµ′(xe + z, xe + z′) =
1

αewe
ge

(
z

we
+
V (xe)− µ′

αe
,
z′

we
+
V (xe)− µ′

αe

)
, (33)

where we and αe are respectively the length scale associated with 1/ρe, where ρe is the
fermion density at the edge [5] and the energy scale associated with the edge given by

we =

(
~2

2mV ′(xe)

) 1
3

, αe =

(
~2V ′(xe)

2

2m

) 1
3

= V ′(xe)we . (34)

The function ge(ζ, ζ
′) is given by

ge(ζ, ζ
′) = −πAi(ζ)[−iAi(ζ ′) + Bi(ζ ′)] for ζ > ζ ′ (35)

= −πAi(ζ ′)[−iAi(ζ) + Bi(ζ)] for ζ < ζ ′ . (36)

For later purposes, we note that

Im
[
ge(ζ, ζ

′)
]

= πAi(ζ)Ai(ζ ′). (37)

Outside the bulk. In the classically forbidden region, far outside the edge where the
condition in (29) holds, we will again assume that V (x) is slowly varying around a point
x0. In this case, the solution of Eq. (20) reads

Gµ′(x0 + z, x0 + z′) ≈ −m
~2

exp(−(κµ′(x0) + i0+)|z − z′|)
[κµ′(x0) + i0+]

, (38)

where

κµ′(x0) =

√
2m(V (x0)− µ′)|

~
(39)

is positive. This result is similar to the one found in the bulk in Eq. (25) with a local
Fermi wavevector which is imaginary.

One can check, using the asymptotic properties of the Airy functions Ai(z) and Bi(z),
that the edge result for the Green’s function (33) matches (i) on the left with the bulk
result (20) and (ii) on the right with the result far outside the bulk (38).

3.3 Treating delta function potentials

In this section we show how one can use the Green’s function method to study systems
where the potential has a delta-function part. The delta function potential has been
extensively studied in quantum systems to model impurities [29]. Here we show that the
Green’s function method is particularly well suited to study this problem.

We start with a single particle Hamiltonian H0 and denote its Green’s function by

G0µ = (µ− i0+ −H0)−1 . (40)

We now add n impurities so that the total Hamiltonian is

H = H0 + ∆H, (41)

with

∆H =

n∑
i=1

giδ(x− xi). (42)
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The coordinates xi’s are the positions of the impurities and gi’s denote their interaction
strengths with the fermions. Note that the sign of gi can be positive (repulsive) or negative
(attractive). Many methods have been found [29] to extract the Green’s function Gµ =
(µ− i0+ −H)−1. A simple way to do this is to observe that

Gµ(x, y) = G0µ(x, y) +
n∑
i=1

AiG0µ(x, xi) , (43)

yields a solution to [µ− i0+ −H]Gµ = δ(x− y) if the Ai’s obey the linear equations.

Ai − giG0µ(xi, y)−
n∑
j=1

giAjG0µ(xi, xj) = 0 . (44)

Note that the Ai’s depend implicitly on both the xi’s and y. The solution of this linear
equation (44) can be expressed as

Ai =
n∑
j=1

R−1
ij gjG0µ(xj , y) (45)

where the n× n matrix R has components Rij given by

Rij = δij − giG0µ(xi, xj). (46)

This leads to the change in the Green’s function

∆Gµ(x, y) =

n∑
i,j=1

R−1
ij gjG0µ(x, xi)G0µ(xj , y) . (47)

For general x and y the above expression is quite complicated. However, if we consider
the Green’s function at points where there are impurities and define the n × n matrices
G0 and G such that G0ij = G0µ(xi, xj) and Gij = Gµ(xi, xj) things simplify a bit. In this
case, using Eq. (47) and adding to G0µ, one gets in the matrix form

G = G0(I +R−1ΛgG0) (48)

where the matrix Λg has components Λgij = giδij . Noting that Eq. (46) implies R+ΛgG0 =
I and multiplying both sides by R−1 gives I + R−1ΛgG0 = R−1. Using this result, Eq.
(48) now reads

G = G0R
−1 = G0(I − ΛgG0)−1 , (49)

where we further used Eq. (46) for R. Thanks to this relation, one can compute G if one
knows G0.

Using, furthermore, the formula for the derivative of the determinant of a matrix with
respect to a parameter t, i.e.

∂

∂t
ln[detA(t)] = Tr

[
A−1(t)

∂

∂t
A(t)

]
, (50)

we can rewrite Eq. (49) as

Gµ(xi, xi) = − ∂

∂gi
ln (det[1− ΛgG0]) . (51)

11
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We will use this representation later.
Let us consider the simplest case of a single impurity located at x1 with an amplitude

g1 = g (this corresponds to n = 1 in Eq. (42)). In this case, the full Green’s function can
be computed from Eq. (43), (45) and (46)

Gµ(x, y) = G0µ(x, y) +
g G0µ(x, x1)G0µ(x1, y)

1− gG0µ(x1, x1)
, (52)

which has a simple “Schwinger-Dyson” form. Expanding the denominator in powers of
g, this formula (52) has a simple physical interpretation: it adds up contributions to the
Green’s function arising from no scattering, one scattering, two scatterings, etc, from the
impurity. Exactly at the position of the impurity it reads

Gµ(x1, x1) =
G0µ(x1, x1)

1− gG0µ(x1, x1)
. (53)

We will see below that this formula is particularly useful to deduce the fermion density at
the impurity as well as the energy change induced by the introduction of an impurity.

In the following, we will use the formulae derived in this section in the case where H0

corresponds to a smooth trapping potential in the absence of a delta-potential.

4 Impurity in the bulk

Here we consider the effects of delta-function impurities in the bulk. The overall smooth
trapping potential V (x) described by H0 (see Eq. (1)), as discussed before, can be taken
to be locally constant and without loss of generality we set V (x) = 0. Thus the Fermi
wave vector at Fermi energy µ is given by kF = kµ =

√
2mµ/~. The local density of the

system without impurity is given by ρ0µ = kF
π .

The effect of impurities has been well studied in the literature, notably the density
around impurities exhibits the well known Friedel oscillations [9–11]. However, in most
previous studies only the behavior of the density at distances greater than the inter-
particle distance `0 = 1/ρ0µ or in the linear response regime (i.e. to first order in λ).
In [12] the density change induced by a delta function impurity was studied exactly. Here,
by using a more versatile method, we show how this result can be rigorously extended
to inhomogeneous bulk systems. We also show how the result given in [12] is, simply,
modified to take properly into account the appearance of a bound state in the case of an
attractive impurity.

It is important to know the exact behavior of this density at the location of the impurity
since, as we will see, it determines the effective interaction between the impurity and the
surrounding fermions. We show that this density at the impurity is finite and depends on
the local Fermi-wave vector. We also compute the effective interaction and show that it
is given by Eq. (14).

4.1 Friedel oscillations

We start by computing the kernel in the presence of a single impurity of strength g1 = g
placed at x1 = 0. Here the change in the Green’s function, using Eqs. (24), (25) and
(52) for the bulk Green’s function yields a change in the kernel ∆Kµ(x, y) = Kµ(x, y) −
K0µ(x, y) which is given by

∆Kµ(x, y) =
gm2

π~2
Im

∫ ∞
µ

dµ′
exp(−ikµ′ [|x|+ |y|])
~kµ′(~kµ′ − igm~ )

. (54)
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ℂ k = 2μ′ 

Γ′ 2
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kF

x
x

xxxxxxx

x
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Γ4

Γ′ 3

Γ′ ′ 3

Figure 3: Contour integrals used in the integral representations of the kernel in terms
of the variable k =

√
2mµ′/~2. Crosses indicate the poles of the Green’s function in the

complex plane of k. The contours Γ′i for i = 1, 2, 3 correspond to the contours Γi shown in
Fig. 2 when mapped into the k plane. Note that the contour Γ′2 has two components: one
vertical, and one horizontal going from k = 0 to k = kF . The contour Γ′′3 denotes a portion
on Γ′3, shown in bold, which is useful for later purpose. The contour Γ4 = (kF , kF − i∞),
which is useful for asymptotic analysis, is also shown.

Now we change variables µ′ = ~2k/2m (so dµ′ = ~2kdk/m) and we assume that µ > 0 so
that the integration over k is along the real axis. The way in which all the contours in

Fig. 2 transform under the transformation k =
√

2m
~2 µ

′ is shown in Fig. 3 along with the

position of the original poles in the Green’s function shown again as crosses. This gives

∆Kµ(x, y) =
λ

π
Im

∫ ∞
kF

dk
exp(−ik[|x|+ |y|])

k − iλ
, (55)

where
λ = mg/~2 (56)

is an inverse length scale associated with the impurity, and kF = kF (0) =
√

2mµ/~ is the
Fermi wave vector at the position of the impurity.

The integral in Eq. (55) corresponds to the contour Γ′1. The contour Γ′1 can be
deformed onto the contour Γ4 as the integral over the contour Γ′3 is zero and there are no
poles crossed during this deformation [8], to give

∆Kµ(x, y) =
λ

π
Im

∫ ∞
0
−idκexp(−(ikF + κ)[|x|+ |y|])

kF − iκ− iλ
. (57)

The above can also be written in terms of standard functions via the change of variables
s′ = κ+ λ+ ikF to obtain

∆Kµ(x, y) =
λ exp(λ(|x|+ |y|))

π
Im

∫ ∞
λ+ikF

ds′

s′
exp(−(|x|+ |y|)s′)

=
λ exp(λ(|x|+ |y|))

π
Im E1[(λ+ ikF )(|x|+ |y|)] (58)
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where we recall that

E1(ζ) =

∫ ∞
ζ

dt
exp(−t)

t
(59)

is the exponential integral function [28].
Taking x = y we find that the change in the local density ∆ρµ(x) around the position

of the impurity at x = 0 is given by

∆ρµ(x) =
λ exp(2λ|x|)

π
Im E1(2(λ+ ikF )|x|) . (60)

This is an important result of this paper, since it is valid for all values of λ and at
all distances x. The comparison between this result (60) and the result of Ref. [12] is
performed in Appendix A. We now study this form of the density profile in Eq. (60) at
distances respectively very close and very far from the impurity.

Density close the impurity. Here we analyse the density in Eq. (60) very close
to the impurity, i.e. the limit x → 0. For small x we can use the asymptotic expansion
E1(x) = −γE−ln(x)+x+O(x2) at small x [28]. In particular at x = 0, taking the imaginary
part of the logarithm, we get the total local density (with the bulk term ρ0µ = kF /π
included)

ρµ(0) =
kF
π
− λ

π
arg(ikF + λ) =

kF
π
− λ

2
+
λ

π
tan−1

(
λ

kF

)
, (61)

where tan−1 above is the principle branch such that tan−1(0) = 0. The change in the
density is equal to zero when λ = 0 as because kF ≡ kF −i0+ one has that arg(ikF ) = π/2.
The change in the local density is significant if λ ∼ kF .

Repulsive case. In the limit of strong repulsion if λ = λR with λR > 0 and λR � kF we
find

ρµ(0) '
k3
F

3λ2
Rπ

, (62)

while for λR � kF one has

ρµ(0) ' kF
π
− λR

2
. (63)

Attractive case. In this case, setting λ = −λA with λA > 0, we find, for strong attraction
λA � kF

ρµ(0) ' λA +
k3
F

3λ2
Aπ

. (64)

Note that the dominant term λA in Eq. (64) is the contribution from the single bound
state associated to the attractive delta function. Indeed such a bound state has a wave
function

ψb(x) =
√
λA exp(−λA|x|) (65)

which gives rise to a density |ψbs(0)|2 = λA. On the other hand, for weak attraction
λA � kF

ρµ(0) ' kF
π

+
λA
2
. (66)

Density far from the impurity and Friedel Oscillations. In this case the asymptotic
expansion [28] for |ζ| � 1 and | arg(ζ)| < 3π/2,

E1(ζ) ∼ ζ−1 exp(−ζ), (67)
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can be used but one can also use the representation given in Eq. (57) where the long
distance behavior comes from an expansion about κ = 0. We find from (60) that the
density for large x decays as

∆ρµ(x) ' − λ

2π|x|(λ2 + k2
F )

[kF cos(2kF |x|) + λ sin(2kF |x|)] , (68)

which can be rewritten as

∆ρµ(x) ' − λ

2π|x|
√
λ2 + k2

F

sin

(
2kF |x|+ tan−1

(
kF
λ

))
. (69)

At large |x|, both the repulsive and attractive cases are described by the formula (69) with
λ = λR > 0 in the repulsive case while λ = −λA < 0 in the attractive case. In the limit of
small λ, one finds

∆ρµ(x) ' − λ

2πkF |x|)
cos(2kF |x|), (70)

which is the standard formula for large distance one-dimensional Friedel oscillations in the
regime of linear response [12].

In Fig. 4 we plot the relative perturbation of the exact density

∆ρµ(x)

ρ0µ
= n(ζ, γ) = γ exp(2γ|ζ|)Im E1(2(γ + i)|ζ|)) (71)

as a function of ζ = kFx where we recall that ρ0µ is the local density in the absence
of the impurity and where we have written λ = γkF [30]. In Fig. 4 we plot n(ζ, γ) in
the repulsive case with γ = 1. The asymptotic expansion Eq. (69) is also shown as an
orange dashed line. For ζ > 3, this asymptotic form describes accurately the exact result.
However, when extrapolated to small values of ζ, this asymptotic form diverges while the
exact result approaches a finite value as ζ → 0 (see Eq. (61)). In Fig. 5 we plot n(ζ, γ) for
an attractive impurity with γ = −1. We see the signature of the localized wave function
about the impurity which causes an increase in the local density. Again we see that the
asymptotic approximation for Friedel oscillations becomes accurate only for ζ ∼ 3.

Going beyond the density we can also analyse the kernel Kµ(x, y) in Eq. (58) for large
|x| and |y| by using the same asymptotics for the Exponential integral. We find at large
|x| and |y|, both for the repulsive and attractive cases,

∆Kµ(x, y) ' − λ

π(|x|+ |y|)
√
λ2 + k2

F

sin

(
kF (|x|+ |y|) + tan−1

(
kF
λ

))
. (72)

4.2 The effective potential acting on an impurity

Here we examine how the total energy of the fermion system is changed by adding of a
single impurity at fixed Fermi energy µ. The Hamiltonian H(λ) depends explicitly on
the parameter λ = gm/~2 where g is the impurity strength. We denote by εk(λ) the kth

energy level, as a function of λ. We define the total energy E(µ, λ) and the total number
of fermions N(µ, λ) as

E(µ, λ) =
∑
k

θ(µ− εk(λ))εk(λ) , N(µ, λ) =
∑
k

θ(µ− εk(λ)) . (73)
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Figure 4: The relative change in the density around the point x = x1, given by Eq. (71)
due to a repulsive delta function potential at the point x = 0 of amplitude λR = γkF for
γ = 1 (solid line), and its asymptotic approximation (dashed line) obtained using Eq. (69)
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Figure 5: The relative change in the density around the point x = x1, given by Eq. (71)
due to an attractive delta function potential at the point x = 0 of amplitude such that
λ = −λA = γkF for γ = −1 (solid line), and its asymptotic approximation (dashed line)
using Eq. (69).

The goal is to compute the effective potential felt by the impurity at position x1 which
can be identified as the change in the grand-potential (since we are working at fixed Fermi
energy µ)

Veff(x1) = Ω(µ, λ)− Ω(µ, 0) where Ω(µ, λ) = E(µ, λ)− µN(µ, λ) . (74)

This problem for a homogeneous system, where the potential is constant, has been studied
in [22,23].

To perform this computation, we use the Hellmann-Feynman theorem which states
that

∂εk(λ)

∂λ
=

∫
dx ψ∗k(x, λ)

∂H

∂λ
ψk(x, λ) , (75)

where ψk(x, λ) is the eigenstate associated to the energy level εk(λ). In the present case

16



SciPost Physics Submission

of the delta-impurity this theorem (75) gives

∂εk(λ)

∂λ
=

~2

m
|ψk(x1, λ)|2. (76)

From this, one sees that every energy level is moved up for repulsive impurities and down
for attractive ones. Thus at fixed µ, the derivatives of the energy E(µ, λ) and of the
number of particles N(µ, λ) in Eq. (73) with respect to λ read

∂λE(µ, λ) =
∑
k

θ(µ− εk)∂λεk(λ)− µ
∑
k

∂λεk(λ)δ(µ− εk(λ)) (77)

∂λN(µ, λ) = −
∑
k

∂λεk(λ)δ(µ− εk(λ)) . (78)

Therefore, using Eq. (74), the derivative of Ω(µ, λ) with respect to λ, using (77) and (78)
together with (75) is given by

∂λΩ(µ, λ) =
~2

m

∑
k

θ(µ− εk(λ))|ψk(x1, λ)|2 =
~2

m
ρµ(x1, λ) , (79)

where we have made explicit the dependence of the fermion density on λ. The effective
interaction of the impurity with the fermion system is thus given by

Veff(x1) = Ω(µ, λ)− Ω(µ, 0) =
~2

m

∫ λ

0
dλ′ρµ(x1, λ

′) . (80)

We can now use the expression for the fermion density given in Eq. (61) to obtain

Veff(x1) =
~2

2πm

[
(k2
F (x1) + λ2) tan−1

(
λ

kF (x1)

)
+ kF (x1)λ− πλ2

2

]
=

~2λ2

2πm
W

(
kF (x1)

λ

)
,

(81)
where the function W (γ) is given in Eq. (14). When kF (x) is constant, the formula
Eq. (81) agrees with that found in [23] for homogeneous systems.

In the limit of a weak impurity strength |λ| � kF (x1) we find from (81)

Veff(x1) ' ~2λ kF (x1)

πm
. (82)

Therefore for λ > 0 the impurity is pushed away from a dense region, while for λ < 0
it is attracted by dense regions. On the other hand, for a strong impurity strength,
|λ| � kF (x1), we find

Veff(x1) ' ~2

4m

[
k2
F (x1)sgn(λ)− 2λ2θ(−λ)

]
. (83)

In the case where λ < 0 we see that Veff(x1) contains a term corresponding to the bound
state energy, Eb = −~2λ2/2m of the state localized around the impurity. Again we see
that repulsive impurities are repelled from dense regions and attractive impurities are
attracted by dense regions, which clearly agrees with physical intuition.

Link with the problem of mobile impurities. The above results on the effective
interaction potential felt by an impurity in an inhomogeneous system is to our knowledge
new, as mentioned above the problem for a homogeneous system was discussed in [22,23].
However a problem with a similar flavor, involving a mobile impurity, has been studied.
McGuire [19,20] considered the problem of N identical spin-less fermions with no mutual
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interactions. In this system, one introduces an additional particle, with coordinate x0,
which interacts with each of the N fermions via a delta function potential. In its most
general form we can consider the N + 1 body Hamiltonian given by

H =

N∑
i=1

− ~2

2m

∂2

∂x2
i

+ V (xi) + g

N∑
i=1

δ(xi − x0)− ~2

2M

∂2

∂x2
0

+ V(x0), (84)

where M is the mass of the impurity particle and V(x) the effective potential it feels
due to the trap. The problem examined by McGuire corresponds to identical masses, i.e.
M = m and to homogeneous system with V (x) = 0, hence kF (and thus the density)
being constant. The change in the energy due to the additional particle is found to be

∆E(kF , λ) =
~2

2πm

[
(2k2

F +
λ2

2
) tan−1

(
λ

2kF

)
+ kFλ−

πλ2

4

]
. (85)

Interestingly, we note that this formula (85) is strikingly similar to the expression obtained
here in the case of an immobile impurity and one can write

∆E(kF , λ) =
~2λ2

4πm
W

(
2 kF
λ

)
, (86)

with the same scaling function W (γ) given in Eq. (14). Note that the problem considered
in this paper corresponds to the limit M →∞ where the position x0 is fixed.

More recently the problem introduced by McGuire was revisited in the presence of an
external harmonic potential V (x) = mω2x2/2, which is the same on both the fermions and
the impurity particle. The effect of inhomogeneity was treated by combining McGuire’s
result with an LDA-like approximation, which turns out to be remarkably accurate even
for systems with a small number of fermions [24].

5 Impurity far from the bulk and the filling transition

We consider an impurity of strength g1 = g placed at x1 far from the bulk of the Fermi
gas, where the condition in Eq. (29) holds and the density vanishes. One may ask the
question whether an attractive impurity can pull fermions out of the bulk. In this region
the kernel in the region of the point x1 is given by

∆Kµ(x1 + z, x1 + z′) =
1

π
Im

∫ µ

−∞
dµ′∆Gµ′(x1 + z, x1 + z′), (87)

where in the above integral µ′ < µ � V (x1) (and thus the contour Γ2 in Fig. 2 is the
appropriate one to use). More precisely the condition in Eq. (29) holds in the above
integral and so we can use Eq. (38) for the Green’s function. When an impurity is placed
at the point x1 the induced change in the Green’s function is

∆Gµ′(x1 + z, x1 + z′) =
g G0µ′(x1 + z, x1)G0µ′(x1, x1 + z′)

1− gG0µ′(x1, x1)
(88)

=
mλ

~2

exp(−(κµ′(x1) + i0+)[|z|+ |z′|])
(κµ′(x1) + i0+)([κµ′(x1) + i0+] + λ)

, (89)

where κµ′(x1) is given by Eq. (39).
Now using dµ′ = −~2κdκ/m we find that the change in the kernel is

∆Kµ(x1 + z, x1 + z′) =
λ

π
Im

∫ ∞
κF (x1)

dκ
exp(−(κ+ i0+)[|z|+ |z′|])

[κ+ i0+] + λ
. (90)
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Here and below we denote κµ(x1) = κF (x1). We now use the standard identity

− 1

π
Im

1

−κ− λ− i0+
= −δ(κ+ λ), (91)

which gives, for λ > 0,
∆Kµ(x1 + z, x1 + z′) = 0 , (92)

as κF (x1) > 0. Hence a repulsive impurity far from the bulk has no effect on the Fermi
gas.

However for an attractive impurity, writing λ = −λA with λA > 0 we find

∆Kµ(x1 + z, x1 + z′) = λAθ(λA − κF (x1)) exp(−λA[|z|+ |z′|]). (93)

The above result is easily interpreted physically. It can be written as

∆Kµ(x1 + z, x1 + z′) = θ(λA − κF (x1))ψb(z)ψb(z
′), (94)

where ψb(z) is the bound state wave-function for a delta potential at z = 0 and in the
absence of any other potential given in Eq. (65). The kernel well outside the bulk is thus
generated by a single particle bound state. The fermion density at the position of the
impurity is thus given by

ρµ(x1) = λAθ(λA − κF (x1)). (95)

It exhibits a transition as a function of λA. It vanishes when λA < κF (x1) and is nonzero
for λA > κF (x1). This corresponds to a filling transition of the bound state where the
density exhibits a ”jump” by κF (x1). The transition is sharp for large κF (x1). At smaller
values of κF (x1), i.e. close to the edge, it is replaced by a smooth crossover, which is
analysed in Section 7.

This transition can be interpreted by the following energy argument. The energy of
this bound state in the presence of a local potential is given by

E∗b (x1) = −
λ2
A~2

2m
+ V (x1) . (96)

Hence this state is occupied if E∗b < µ, which corresponds to λA > κF (x1). In contrast,
when E∗b > µ this bound state energy level exceeds the Fermi energy and hence it remains
unoccupied at zero temperature. We note that this type of transition is quite generic,
and not specific to a delta-function impurity. For instance, it can occur in a more general
context when there is a second additional potential well (i.e. a second minimum of the
trapping potential). When the Fermi energy increases above this second minimum, a
new disjoint interval arises in the support of the density. However the case of the delta
potential yields a particularly simple tractable example, since it corresponds to a rank one
perturbation.

A natural question to ask is whether there is an effective potential felt by the particle
when it is outside the bulk. This potential can, again, be derived using the Hellmann-
Feynman theorem (80) together with the expression for the density outside the bulk given
in Eq. (95). We find

Veff(x1) = − ~2

2m
θ(λA − κF (x1))

[
λ2
A − κF (x1)2

]
. (97)

Furthermore we note that using Eq. (39) we can write

Veff(x1) = θ(λA − κF (x1))

[
− ~2

2m
λ2
A + V (x1)− µ

]
. (98)
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Hence we see that for λA > κF (x1), the x1-dependence of the effective potential Veff(x1)
is the same as the trapping potential V (x1), this is due to the fermion which forms a state
bound about the impurity.

An analogy in random matrix theory. This filling transition is reminiscent of the
Baik-Ben Arous-Péché (BBP) transition in random matrix theory [17, 18]. The BBP
transition occurs when one considers a N × N random matrix M0, for instance from
the GUE with a semi-circle density of support [−

√
2N,
√

2N ] at large N (the Wigner
sea), perturbed by a fixed ranked one matrix, i.e. when considering the matrix sum

M = M0 +
√

N
2 γ|e1〉〈e1|. For a weak perturbation γ < 1 the Wigner sea is essentially

unchanged and the largest eigenvalue λmax ofM behaves as in the absence of perturbation,
i.e. λmax '

√
2N + 1√

2N1/6χ2 where χ2 = O(1) fluctuates according to the GUE Tracy-

Widom distribution. Above the threshold, for γ > 1, an outlier or spike eigenvalue detaches

from the Wigner sea, and the largest eigenvalue now behaves as λmax '
√

N
2 (γ + 1

γ ) +
1√
2
N (0, σ2 = 1 − 1

γ2
) (i.e., with Gaussian fluctuations). The analogy with our quantum

problem is suggested by the fact that (i) the joint PDF of the eigenvalues ofM0 is identical
to the joint PDF of the fermion positions in the ground state of the harmonic oscillator
V (x) = 1

2x
2 (ii) the perturbation is of rank one in each problem. It is then tempting

to establish an analogy between the spike/outlier from the Wigner sea, and the fermion
bound to the delta impurity outside the Fermi sea. A difference is that the analog of the
typical value of λmax would be x1, which in our problem is given. However, in both cases
the order parameter of the strong coupling phase (i.e. γ > 1 in RMT or λA > κF (x1) in the
fermion problem) is the overlap of the state of the system with the perturbation. Note that
the BBP transition has a non-trivial critical regime when γ − 1 = O(N−1/3), where λmax

gradually leaves the edge of the spectrum. The critical region in our problem corresponds
to the case where the impurity is placed near the edge studied below in Section 7.

6 Interaction between two impurities in the bulk

In this section we compute the effective interaction between two impurities in the bulk
separated by a distance r. We place impurity 1 at x1 and impurity 2 at x2. We assume that
|x2−x1| � ξ where the length ξ is defined in Eq. (30) such that the trapping potential can
be considered as constant. For two impurities we can still apply the Hellmann-Feymnam
theorem, for example differentiating with respect to λ2, which measures the interaction
strength of impurity 2. Writing explicitly the dependence on the coupling constants λ1

and λ2, we obtain the analogue of Eq. (79) valid for two impurities

∂Ω(µ, λ1, λ2)

∂λ2
=

~2

m
ρµ(x2, λ1, λ2) , (99)

where Ω(µ, λ1, λ2) is the grand-potential of the system in the presence of the two impu-
rities (it depends on both x1 and x2 but we omit the explicit dependence for notational
simplicity). In Eq. (99), ρµ(x2, λ1, λ2) denotes the density of the Fermi gas at the location
of the second impurity. Let us define the effective interaction between the two particles as

Vint(r) = Ω(µ, λ1, λ2)− Ω(µ, λ1, 0)− Ω(µ, 0, λ2) + Ω(µ, 0, 0) , (100)

which depends only on the distance r = |x2 − x1| since the system is translationally
invariant on scale of the order O(ξ). The interaction potential Vint(r) in Eq. (100) can be
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written as

Vint(r) =
~2

m

[∫ λ2

0
dλ′2 ρµ(x2, λ1, λ

′
2)−

∫ λ2

0
dλ′2 ρµ(x2, 0, λ

′
2)

]
. (101)

Now using the representation of ρµ(x2, λ1, λ2) in terms of the Green’s function in Eq. (21)
by setting x = y = x2 we find

ρµ(x2, λ1, λ2) = Kµ(x2, x2) =
1

π
Im

∫ µ

−∞
dµ′Gµ′(x2, x2) . (102)

We now use Eq. (51) which can be written as

Gµ′(x2, x2) = −m
~2

∂

∂λ2
ln (det[1− ΛgG0]) , (103)

thus facilitating the integration with respect to λ′2 in Eq. (101). This then yields

Vint(r) = − 1

π
Im

∫ µ

−∞
dµ′

[
ln
(
(1− g1G0µ′(x1, x1))(1− g2G0µ′(x2, x2))− g1g2G

2
0µ′(x1, x2)

)
− ln

(
1− g1G0µ′(x1, x1)

)
− ln

(
1− g2G0µ′(x2, x2)

) ]
. (104)

Using the fact that G0µ(x, y) = G0µ(x− y), we get

Vint(r) = − 1

π
Im

∫ µ

−∞
dµ′ ln

(
1−

g1g2G
2
0µ′(r)

(1− g1G0µ′(0))(1− g2G0µ′(0))

)
, (105)

where we recall that r = |x2 − x1|. Now using the expression for the Green’s function
in Eq. (25), valid in the bulk, and again changing the integration variable to k where
µ′ = ~2k2/2m, we find

Vint(r) = − ~2

πm
Im

∫
Γ′2

dk k ln

(
1 +

λ1λ2

[k − iλ1][k − iλ2]
exp(−2ikr)

)
, (106)

where the contour Γ′2 is shown in Fig. 3. As λ1 and λ2 are real, there are no poles inside
the region enclosed by the contours Γ′2, Γ4 and Γ′′3 shown in Fig. 3. Therefore Cauchy’s
theorem tells us that the contour integral around this region is identically zero. Using
further the fact that the integrand vanishes on the contour Γ′′3 as its radius is extended to
∞ we obtain

Vint(r) =
~2

πm
Im

∫
Γ4

dk k ln

(
1 +

λ1λ2 exp(−2ikr)

[k − iλ1][k − iλ2]

)
. (107)

Making the substitution k = kF − iκ where kF = kF (x1) ≈ kF (x2), we find the exact
result

Vint(r) = − ~2

πm
Im i

∫ ∞
0

dκ(kF − iκ) ln

(
1 +

λ1λ2 exp(−2ikF r − 2κr)

[kF − iκ− iλ1][kF − iκ− iλ2]

)
. (108)

Writing λi = kFγi and making the change of variable κ = kFu we find the interaction
energy, with its dependence on the physical parameters r, kF , γ1 and γ2 made explicit, is
given by

Vint(r, kF , γ1, γ2) = −
~2k2

F

πm
Im i

∫ ∞
0

du (1− iu) ln

(
1 +

γ1γ2 exp(−2ikF r − 2kFur)

[1− iu− iγ1][1− iu− iγ2]

)
= −

~2k2
F

πm
Re

∫ ∞
0

du (1− iu) ln

(
1 +

γ1γ2 exp(−2kF r(i+ u))

[1− iu− iγ1][1− iu− iγ2]

)
.

(109)
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For kF r � 1 one can expand the integrand about u = 0. The corrections due to terms of
order u are of order 1/kF r (see Eq. (112) below). We thus find for r large

Vint(r, kF , γ1, γ2) ' −
~2k2

F

πm
Re

∫ ∞
0

du ln

(
1 +

γ1γ2 exp(−2kF r(i+ u))

[1− iγ1][1− iγ2]

)
. (110)

This is exactly the result obtained in [13, 14] via a field theoretic method based on the
summation of Matsubara frequencies, which becomes a continuous integral at zero tem-
perature. In this large distance approximation the integral can be evaluated to give

Vint(r, kF , γ1, γ2) ' ~2kF
2rπm

Re Li2

(
−γ1γ2 exp(−2ikF r)

[1− iγ1][1− iγ2]

)
, (111)

where Li2 is the di-logarithm function [28].

The interaction potential can then be written in terms of the Fermi energy EF =
~2k2F
2m

and the variable ζ = kF r to give

Vint(r, kF , γ1, γ2) = −2EF
πζ

Re

∫ ∞
0

ds

(
1− i s

ζ

)
ln

(
1 +

γ1γ2 exp(−2ζi− 2s))

[1− i sζ − iγ1][1− i sζ − iγ2]

)
,

(112)
and with the asymptotic form for large ζ given by

Vint(r, kF , γ1, γ2) ' EF
πζ

Re Li2

(
− γ1γ2

[1− iγ1][1− iγ2]
exp(−2iζ)

)
. (113)

In Fig. 6a we show the interaction energy in units of EF , U(ζ, γ1, γ2) = Vint(ζ, kF , γ1, γ2, )/EF ,
for the exact result Eq. (112) for two repulsive impurities with (γ1, γ2) = (1, 1), as a func-
tion of ζ, along with the corresponding large distance approximation of Eq. (113). As was
the case for Friedel oscillations the asymptotic result is accurate for ζ > 3 but diverges
towards −∞ as ζ → 0. The potential oscillates in a manner reminiscent of the Friedel
oscillations, exhibiting local minima, but is attractive for ζ < 1. In Fig. 6b we show the
corresponding result for two attractive impurities (γ1, γ2) = (−1,−1), again the potential
oscillates and presents local minima. A sharp barrier appears at ζ ∼ 1/2, but a deep min-
imum is formed for small ζ. In Fig. 6c we show the case for an attractive and repulsive
impurity with (γ1, γ2) = (1,−1). Here, in contrast to the case of impurities of the same
type, the short distance behavior of the potential is repulsive.

7 Impurity near the edge

In this section we investigate the effect of adding a delta function impurity near the edge
at x = xe such that µ = V (xe). In this region, in the absence of the impurity the Green’s
function satisfies the scaling form given in Eq. (33). The width of this region is given
by we and the corresponding energy scale is denoted by αe, both displayed in Eq. (34).
Consider now an impurity located at x = x1 = xe + z0 where z0 will be of the same order
as we. Substituting the scaling form from (33) into (52), we obtain the change in the
Green’s function due to the impurity as

∆Gµ′(x1 + z, x1 + z′) =
λ∗

αewe

ge(
z+z0
we

+ µ−µ′
α , z0we + µ−µ′

αe
)ge(

z0
we

+ µ−µ′
α , z

′+z0
we

+ µ−µ′
αe

, )

1− λ∗ge( z0we + µ−µ′
αe

, z0we + µ−µ′
αe

)
,

(114)
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Figure 6: Effective interaction U(z, γ1, γ2) (in units of the Fermi energy) between impu-
rities, solid lines exact interaction given by Eq. (112) and dashed lines asymptotic large
distance approximation Eq. (113). Shown in (a), (b) and (c) impurities with interactions
strengths (γ1, γ2) = (1, 1), (−1,−1) and (1,−1) respectively.

where ge(ζ, ζ
′) is given in (35) and

λ∗ =
~2λ

mαewe
= 2λwe (115)

is a dimensionless measure of the impurity strength in the edge region.
The kernel K0µ at the edge in the absence of impurity is given by,

K0µ(x, y) =
1

we
KAi

(
x− xe
we

,
y − xe
we

)
, KAi(a, b) =

∫ ∞
0

du Ai(a+ u)Ai(b+ u) (116)

in terms of the Airy kernel KAi. The change in the kernel, ∆Kµ = Kµ −K0µ, is obtained
from Eq. (24) by integrating over µ′ between µ and +∞, making the change of variables
z0
we

+ µ−µ′
αe

= −u and setting z0 = cwe then gives

∆Kµ(x1 + awe, x1 + bwe) = − λ∗

πwe

∫ ∞
−c

du Im
ge(a− u,−u)ge(−u, b− u)

1− λ∗ge(−u,−u)
, (117)

where function ge is given in (35) and the dimensionless number c given by

c =
z0

we
=
x1 − xe
we

, (118)

measures the relative position of the impurity compared to the edge. The above integral
has an integrand which oscillates and decays like 1/u for large u and it cannot, at least
in any obvious sense, be evaluated analytically. However if we use Eq. (23) we find the
alternative expression

∆Kµ(x1 + awe, x1 + bwe) =
λ∗

πwe

∫ ∞
c

du Im
ge(a+ u, u)ge(u, b+ u)

1− λ∗ge(u, u)
, c =

x1 − xe
we

,

(119)

23



SciPost Physics Submission

which converges quickly for u → +∞ allowing an efficient numerical integration (see
below).

7.1 Density at the edge

Of particular interest is how the density is modified by the presence of a delta function at
the edge. The average density of the Fermi gas around the impurity, can now be obtained
by setting coinciding points in the total kernel which, in terms of the scaled position a
measured from the position of the delta impurity, leads to

ρµ(x) =
n(a, c, λ∗)

we
, , a =

x− x1

we
(120)

where

n(a, c, λ∗) =

∫ ∞
c

du

[
Ai(u+ a)2 +

λ∗

π
Im

ge(a+ u, u)2

1− λ∗ge(u, u)

]
, c =

x1 − xe
we

(121)

and c is the scaled relative position of the delta impurity with respect to the edge. In the
above, when λ∗ = 0 we recover the usual edge density of the Airy gas which, in random
matrix theory, corresponds to the eigenvalue density for the Gaussian Unitary Ensemble
at the edge where the Wigner semi-circle law vanishes [31]. Using (35) the integrand in
the second term can be written more explicitly as

D(a, u) =
λ∗

π
Im

ge(a+ u, u)2

1− λ∗ge(u, u)
(122)

=


−πλ∗Ai(u+ a)2Ai(u)πλ

∗Ai(u)3+πλ∗Ai(u)Bi(u)2+2Bi(u)
(1+πλ∗Ai(u)Bi(u))2+(πλ∗)2Ai(u)4

, a > 0

−πλ∗Ai(u)2 πλ
∗Ai(u)2(Bi(u+a)2−Ai(u+a)2)+2Ai(u+a)Bi(u+a)(1+πλ∗Ai(u)Bi(u))

(1+πλ∗Ai(u)Bi(u))2+(πλ∗)2Ai(u)4
, a < 0 .

(123)

Let us recall the asymptotic behavior of the Airy functions. For u→ +∞ one has

Ai(u) '
exp(−2

3u
3
2 )

2
√
πu

1
4

, Bi(u) ∼
exp(2

3u
3
2 )

√
πu

1
4

, (124)

which implies that Ai(u)Bi(u) ' 1
2π
√
u

, and so we see that for u → +∞ the r.h.s. of

(123) behaves as ' −2πλ∗Ai(u)3Bi(u) and thus decays very quickly. On the other side,
for u→ −∞ both Ai(u) and Bi(u) decay as 1/|u|1/4 with oscillating prefactors. Hence it
seems that the integral can be easily evaluated numerically (apart from a subtlety arising
from the denominator for large negative λ∗ see below). Note also that as a → ±∞ the
change in the density due to the impurity decays to zero.

In Fig. 7 we have plotted n(a, 0, λ∗) as a function of a for the values λ∗ = 0, the case
where there is no impurity at the edge, and for value λ∗ = 1 (repulsive impurity) and the
value λ∗ = −1 (attractive impurity) for an impurity placed exactly at the edge c = 0.
We see that in all cases, the density oscillates in the region to the left of the edge (as one
moves towards the bulk) but decays monotonically to the right as one moves away from
the bulk. The presence of a repulsive impurity decreases the density, as expected, and
induces a small phase shift in the oscillations to the left. However the attractive impurity
increases the density at the original edge and leads to a larger density of fermions to the
right, again with monotonic decay. In addition, the oscillations in the density experience
a substantial phase shift with respect the the case of no impurity and a repulsive impurity.
The presence of an impurity introduces a discontinuity in the derivative of the density
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Figure 7: The rescaled density n(a, 0, λ∗) as a function of the rescaled distance a, for a
delta function interaction placed at the edge of a trap c = 0 on top of a potential which
is locally linear at the edge. In black solid is the case where λ∗ = 0, that is to say no
perturbation. In dashed is shown the case where λ∗ = 1 (repulsive impurity) while the
case λ = −1 (attractive impurity) is shown by the dotted line.

at x1, i.e. at a = 0. Similar effects are seen when the impurity is not placed exactly at
the edge x1 6= xe. For an attractive impurity placed on the right of the edge, the density
increases around the impurity.

Filling transition of an attractive impurity located far from the edge. Here
we examine, within the edge region, the filling transition already discussed in Section
5 in the context of the bulk. Clearly if the delta impurity is placed far to the right
of the edge, i.e. c = x1−xe

we
� 1, the local potential at the position of the impurity,

V (x1), is large compared to the value V (xe) at the edge. Being well above the Fermi
sea it should play no role in the Fermi gas, unless the amplitude of the delta impurity,
λ = −λA < 0, is tuned to be sufficiently attractive. Indeed, in that case we can revisit
the qualitative argument given in Section 5. An attractive delta impurity in a uniform
potential produces a bound state with a binding energy Eb = − ~2

2mλ
2
A = mα2

ew
2
eλ
∗2
A /(2~2),

hence its total energy is V (x1)+Eb. We can now surmise that when this energy is lowered
below the Fermi energy µ = V (xe), this bound state should be filled and be part of the
ground state of the Fermi gas. If one equates this binding energy with the energy shift
V (x1)− V (xe) = V ′(x1)(x1 − xe) = V ′(x1)wec by linearizing the potential near the edge,
one finds that the transition should occur at

λ∗A ' 2
√
c (125)

for large c � 1. It turns out that the estimate (125) is quantitatively correct, as we now
show.

To see this we return to the formula (121) and (123) for the density around the impurity
and recall from (35) that ge(u, u) = −πAi(u)[−iAi(u) + Bi(u)]. If c� 1, then the integra-
tion region is u > c � 1 and we can use the asymptotics (124), and Ai(u)Bi(u) ' 1

2π
√
u
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for u� 1. We see that the denominator in (123) becomes at large u

1

1− λ∗ge(u, u)
' 1

1 + λ∗

2u
1
2
− iλ∗ exp(− 4

3
u

3
2 )

4u
1
2

, (126)

We see that the real part of the denominator vanishes at u = uc = λ∗2A /4 when λ∗ =
−λ∗A < 0, i.e. for an attractive impurity. To study the transition, from (125) we should
consider λA large, hence uc � 1. In this case since the imaginary part is very small we
can make the approximation

1

1− λ∗ge(u, u)
' P 1

1− λ∗A

2u
1
2

− iπδ
(

1−
λ∗A

2u
1
2

)
= P

1

1− λ∗A

2u
1
2

−
iπλ∗2A

2
δ(u− uc) , (127)

where P denotes the Cauchy principle part. This means that the local density of states
has a sharp resonance at u = uc. Inserting into (123) and (121) we see that the term
which converges to a delta function gives a contribution

Dδ(a, u) = −λ
3

2
(Re[ge(a+ uc, uc)])

2 ' δ(u− uc)
λ∗A
2

exp(−λ∗A|a|). (128)

Using Re[ge(a + uc, uc)] ' 1
2
√
uc
e−2a

√
uc for large uc, we find that the corresponding con-

tribution to the local density reads

nδ(a, c) ' θ(uc − c)
λ∗A
2

exp(−λ∗A|a|). (129)

This contribution was obtained under the assumption that uc � 1. We see that it is non
zero if uc > c, that is for λ∗A > 2

√
c, exactly the same condition as (125). In that case the

above contribution (129) corresponds precisely to a total of one particle, since its integral
over a is equal to 1. Hence for λ∗A > 2

√
c there is a local density peak corresponding to a

total of one fermion. When λ∗A < 2
√
c this extra fermion is no longer present.

We see that this transition is very sharp for c� 1 and thus coincides with the transition
discussed in section 5. One can perform a slightly more precise estimate of the above
formula (121) and (123) for the density near the impurity and obtain for aλ∗A = O(1) and
c� 1, the Lorentzian dependence in the impurity position c near the transition at c = uc

n(a, c,−λ∗A) '
λ∗A
2

exp(−λ∗A|a|)
∫ +∞

c
du

1

π

η

(u− uc)2 + η2
, (130)

where

η =
π(λ∗A)3

2
Ai(uc)

2 , uc = λ2
A/4 . (131)

Hence the width η is exponentially small, i.e. η ' e−
4
3
u
3/2
c .

Note that from the denominators in (123) we see that the effect described above persists
for smaller values of c = O(1), at the location uc of the root of Ai(uc)Bi(uc) = − 1

πλA
.

However it is broader if both c, uc = O(1). Hence it is a crossover for c = O(1) and
becomes a sharp transition as c→ +∞.

It is important to also compute the fermion density at the position of the impurity,
e.g. to derive the effective potential in the next section. It is obtained by setting x1 = x
and thus a = 0 in (132). Recalling that the first term is the imaginary part of 1

πge(u, u)
we see that the formula simplifies into

ρµ(x1) =
1

we

1

π
Im

∫ ∞
c

du
ge(u, u)

1− λ∗ge(u, u)
=

1

weλ∗
1

π
Im

∫ ∞
c

du
1

1− λ∗ge(u, u)
. (132)
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Figure 8: The scaled potential Wedge(c, λ
∗) felt by an impurity at the edge as a function

of the distance c from the edge measured in units of we as give in Eq. (135). Shown from
top to bottom is the potential for λ∗ = 1, 0.5, −0.5, −1.

In the limit where c = (x1 − xe)/we → −∞, i.e. when the position of the impurity enters
the bulk, one can easily check, using the explicit expression of we in Eq. (34) and of λ∗

in Eq. (115), that ρµ(x1) ' kF (x1)/π, independently of the sign of λ, i.e. both for a
repulsive and an attractive impurity. This behavior matches perfectly with the behavior
found in the bulk in Eqs. (63) and (66) in the limit |λ| � kF . This is expected since that
the edge scaling form in Eq. (132) holds for finite λ∗, which implies λ ' 1/we [see Eq.
(115)], and thus |λ| � kF (since we � 1/kF for large µ).

7.2 Effective potential at the edge

We now calculate the effective potential felt by an impurity in the edge region, as defined
in (74). We can again use the Hellmann-Feynman theorem as in (80) which requires the
density at the location of the impurity as given in (132). Since this density is expressed in
terms of λ∗ it is convenient to write the Hellmann-Feynman formula in terms of λ∗ using
(115). It reads

∂Veff(x1, λ)

∂λ
=

~2

mαewe

∂Veff(x1, λ)

∂λ∗
=

~2

m
ρµ(x1) (133)

This equation can then easily be integrated with respect to λ∗ using Eq. (132) to obtain

Veff(x1, λ) = αeWedge(
x1 − xe
we

, λ∗), (134)

with

Wedge(c, λ
∗) =

1

π

∫ ∞
c

du tan−1

(
λ∗πAi(u)2

1 + λ∗πAi(u)Bi(u)

)
. (135)

The function Wedge(c, λ
∗) can be evaluated numerically and is plotted in Fig. 8 as a

function of c for several values of λ∗. At large negative values of λ∗ the numerical evaluation
becomes difficult, presumably due to the formation of a bound state about the impurity to
the left of the edge. A more detailed analysis of this regime would be interesting to pursue
and we leave this for future work. One can also verify, numerically, that Eq. (135) matches
with the bulk form given in Eq. (13) as it should (see the discussion below Eq. (132)),
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although an analytic demonstration is not obvious given the highly oscillatory nature of
the integrand.

8 Discussion

In this paper we studied non interacting fermions in a trap at zero temperature, in the
presence of a singular potential created by delta function impurities. The presence of
these impurities changes the density of the Fermi gas around the impurities. For a single
impurity the change in the density profile has been studied using a number of techniques
from condensed matter physics. These methods have allowed the characterization of the
density at distances far from the impurity, which shows the celebrated Friedel oscillations.
In this paper, using a Green’s function method developed in our previous work we have
computed the exact form of the density at all distances from the impurity. Furthermore
our method goes beyond the one point function and also allowed to obtain the quantum
correlations by computing the central object known as the kernel. In addition this allowed
us to compute the effective potential felt by the impurity.

We have shown how the behavior of the density and of the effective potential changes
as one moves the impurity from the bulk of the Fermi gas to the edge created by the
confining potential. We also unveiled an interesting ”filling transition” which occurs when
the impurity is moved outside of the support of the density of the Fermi gas. All these
results are exact and non-perturbative in the strength of the impurity.

In addition when a pair of impurities is placed in the bulk of the Fermi gas at a
distance r from each other, the fermion background gives rise to an effective interaction
Vint(r) between them, much like the Casimir effect in quantum electrodynamics. We have
calculated exactly this effective interaction Vint(r) at all distances, and our formula agrees
with previous results known only for large distances.

In this paper all calculations in the presence of impurities are performed in the ensemble
where the Fermi energy µ is fixed, and the system is in contact with a reservoir, so that
the number of fermions can vary. This corresponds to the grand-canonical ensemble (here
at zero temperature). In the Appendix B we briefly discuss the possible differences which
may appear if instead one works in the canonical ensemble where the number of fermions
is fixed (isolated system) as the impurity strength and position may vary.

We have focused here on the zero temperature limit, however it is important to derive
the results at finite temperature since experiments are usually conducted at finite tem-
perature. Indeed, the results derived here can be extended to finite temperature T in a
straightforward way. As shown in [5, 32] the kernel at finite temperature in the grand
canonical ensemble at chemical potential µ̃ can be obtained from the zero temperature
kernel, a relation which in the present framework can be written as

Kµ̃(x, y) =
1

π

∫
dµ′

1

1 + eβ(µ′−µ̃)
ImGµ′(x, y) , (136)

with β = 1/(kBT ). Using this expression, integral formulas can be obtained for all of the
quantities studied in this paper. It would be challenging to analyse these formula in the
future.

Another line of investigation would be to study the Wigner function [35, 36] in the
neighborhood of impurities both in the bulk and at the edge [37]. As well as being
interesting in its own right, this might be a first step to understand the dynamics of
systems in the presence of impurities as the Wigner function turns out to be a useful tool
in the context of dynamics [38,39].
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Finally, another interesting problem for further investigation is the question about a
mobile impurity in a Fermi gas. This problem has been studied in several works, notably
by McGuire [19, 20]. It would be interesting to see if one could develop a general theory
which extrapolates between the static impurity case studied here and the mobile impurity
problem, which could explain the similarities between the two cases which we unveiled in
Eq. (86).
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A Comparison with the results of Ref. [12]

In this appendix, we compare our exact result for the density in the presence of a delta-
function impurity in the bulk, given in Eq. (60), to the formula obtained in Ref. [12] by a
quite different method. For this purpose, it is convenient to start from the formula given
in Eq. (57). This formula can also be represented using the contour Γ′2 (see Fig. 3) which
yields

∆Kµ(x, y) = −λ
π

Im

∫
Γ′2

dk
exp(−ik[|x|+ |y|])

k − iλ
. (137)

Note however that this representation is only valid for uniform systems, as it assumed
that the bulk approximation for the Green’s function is valid for small k, which in general
is not.

The case λ > 0: in this case there is no bound state and there is no contribution to
∆Kµ(x, y) in Eq. (137) coming from the part of Γ′2 along the negative imaginary axis.
Assuming that the system is homogeneous, taking the imaginary part in Eq. (137) we
find

∆Kµ(x, y) =
1

π

∫ kF

0
dk

kλ sin(k[|x|+ |y|])− λ2 cos(k[|x|+ |y|])
k2 + λ2

. (138)

Using this representation when one sets x = y we obtain the formula of [12] for the change
in the density - however we note that there is a factor of 2 difference as in [12] spin 1/2
fermions were treated.

The case λ < 0: When λ < 0 the integral over the contour Γ′2 in (137) picks up a half
pole contribution at k = iλ, we thus find

∆Kµ(x, y) = −λ
π

Im

∫ kF

0
dk

exp(−ik[|x|+ |y|])
k − iλ

− λθ(−λ) exp(λ[|x|+ |y|]) , (139)

where the last term comes from the negative imaginary axis and corresponds to a bound
state. The contribution from this bound state was in fact overlooked in Ref. [12]. In fact the
formula Eq. (138) was computed in [12] via a direct summation of eigenfunctions, however
when λ < 0 this formula misses the bound state which is introduced by an attractive
impurity. Note however that the omission of this bound state does not affect the behavior
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at large distance from the impurity of the Friedel oscillations since the contribution of the
bound state to the density decays exponentially at large distance.

The small λ limit: We note that taking the small λ limit in Eq. (60) gives, to order O(λ)

∆ρµ(x) ≈ λ

π
Im E1(2ikF |x|) =

λ

π
si(2kF |x|), (140)

where

si(z) = −
∫ ∞
z

dt
sin(t)

t
, (141)

is the sine integral [28]. This matches perfectly with the linear response formula derived
in [12].

B Canonical ensemble

We discuss here how one would approach the problem of adding impurities in the canonical
ensemble where the number of particles if fixed and equal to N . Consider for example
adding one impurity of strength λ. The number of single particle energy levels below the
Fermi energy µ (i.e. the integrated density of states) is given by

N(µ, λ) =
∑
k

θ(µ− εk(λ)) (142)

which is a function of λ. In order that N be fixed µ must be a function of λ, µ(λ) such
that

N(µ(λ), λ) =

∫
dx ρµ(λ)(x, λ) = N (143)

Let us define the change, due to the introduction of the impurity, in the integrated density
of states as

∆N(µ, λ) = N(µ, λ)−N(µ, 0). (144)

Given that the energy change is of order 1 and that the perturbation in the density is local
it is clear that ∆N(µ, λ) is also of order 1 [33]. Denoting ∆µ = µ(λ)−µ(0) with µ(0) = µ
we can rewrite (143) as

N(µ+ ∆µ, 0) + ∆N(µ+ ∆µ, λ) = N = N(µ, 0), (145)

where ∆µ is the shift in the Fermi energy due to the impurity. To analyse what happens
in the canonical ensemble one must carry out the computations in this paper at chemical
potential µ+∆µ, so the total fermion number is fixed upon adding the impurity. However,
if ∆µ is zero, then the results in this paper can simply be applied to the canonical ensemble.

A first example of where the canonical and grand canonical ensembles are equivalent is
in a bulk system of volume V where one has a total particle number N = N(µ, 0) = kF (µ)V

π .

Now using Eq. (26) for a bulk system, kF (µ) =
√

2mµ/~, we see that µ = ~2π2 N2

2mV 2 and

so ∆µ ' −~2π2N∆N(µ+∆µ,λ)
mV 2 . From this we see that ∆µ → 0, since ∆N(µ + ∆µ, λ) is of

order one, in the thermodynamic limit where N → ∞ and with N/V fixed. Note that a
bulk system can have a varying periodic potential, and so the results given here are not
just valid for constant potentials.

For a generic trap, we assume that for large µ one has N(µ, 0) = ( µµ0 )z, where µ0 is an
intrinsic energy scale, and as N(µ, 0) must increase with µ we must have z > 0. Indeed,
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using the LDA in the bulk to compute N(µ, 0) as a function of µ for potentials of the form
V (x) ∼ xp we find

N(µ, 0) =

∫
dxρ0µ(x) =

√
2m

π~

∫
B
dx
√
µ− V (x) , (146)

where B denotes the bulk region where
√
µ− V (x) is real. Writing V (x) = v|x|p then

gives

N(µ, 0) =

√
2m

π~

∫ (µv )
1
p

−(µv )
1
p

dx
√
µ− vxp =

√
2mµ

π~

(µ
v

) 1
p

∫ 1

−1
dy
√

1− yp , (147)

so we find

N(µ, 0) '
(
µ

µ0

) 1
2

+ 1
p

, (148)

and thus see that z = 1
2 + 1

p . For µ large the condition in Eq. (145) reads

∆µ

µ
= −∆N(µ, λ)

zN(µ, 0)
= −∆N(µ, λ)

zN
, (149)

and so we see that in the thermodynamic limit ∆µ
µ → 0. However

∆µ = −∆Nµ0

z
N

1
z
−1, (150)

and so only when z > 1 or, equivalently, when p < 2 we see that ∆µ→ 0.
In essence the results here are valid when the large energy states near the Fermi energy

can be described as a continuum and the effects of discreteness can thus be neglected. Here
a local analysis suffices to understand the physics. It would be interesting to extend the
analysis to the cases where ∆µ remains finite (for instance the case of the harmonic trap
p = 2) or indeed diverges, traps with p > 2 and where, depending on the strength of the
perturbation, the effects of discreteness in the spectrum of H0 can be expected to play
a role.
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[18] S. Péché, The largest eigenvalue of small rank perturbations of Hermitian random
matrices, Probab. Theory Relat. Fields 134, 127 (2005).

[19] J. B. McGuire, Interacting fermions in one dimension. I. Repulsive potential, J. Math.
Phys. 6, 432 (1965).

[20] J. B. McGuire, Interacting fermions in one dimension. II. Attractive potential,
J. Math. Phys. 7, 123 (1966).

[21] H. Castella, and X. Zotos, Exact calculation of spectral properties of a particle inter-
acting with a one-dimensional fermionic system, Phys. Rev. B 47, 16186, (1993).

[22] R. Combescot, A. Recati, C. Lobo, and F. Chevy, Normal state of highly polarized
Fermi gases: simple many-body approaches, Phys. Rev. Lett. 98, 180492 (2007).

[23] S. Giraud and R. Combescot, Phys. Rev. A, 79, 043615 (2009)

[24] G. E. Astrakharchik, and I. Brouzos, Trapped one-dimensional ideal Fermi gas with
a single impurity, Phys. Rev. A 88, 021602(R) (2013).

[25] O. Gamayun, A. G. Pronko, M. B. Zvonarev, Impurity Green’s function of a one-
dimensional Fermi gas, Nucl. Phys. B 892, 83 (2015).

32



SciPost Physics Submission

[26] G. Ness, C. Shkedrov, Y. Florshaim, O. K. Diessel, J. von Milczewski, R. Schmidt,
and Y. Sag, Observation of a smooth polaron-molecule transition in a degenerate Fermi
gas, Phys Rev. X 10, 041019 (2020).

[27] M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D. A. Abanin and E. Demler, Time-
dependent impurity in ultracold fermions: Orthogonality catastrophe and beyond, Phys.
Rev. X 2, 041020 (2012).

[28] M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Tables, (Dover, New
York, 1965).

[29] M. Belloni, and M.W. Robinett, The infinite well and Dirac delta function potentials
as pedagogical, mathematical and physical models in quantum mechanics, Phys. Rep.
540, 25 (2014).

[30] Due to the mirror symmetry ζ ↔ −ζ of the density, only the regime ζ ≥ 0 is plotted
in Figs. 4 and 5.
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