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Abstract

QCD-jets at the LHC are described by simple physics principles. We show how super-
resolution generative networks can learn the underlying structures and use them to im-
prove the resolution of jet images. We test this approach on massless QCD-jets and
on fat top-jets and find that the network reproduces their main features even without
training on pure samples. In addition, we show how a slim network architecture can be
constructed once we have control of the full network performance.
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1 Introduction

Recent innovations in machine learning (ML) have provided boosts to many areas of par-
ticle physics. Ideas developed by the machine learning community to solve tasks unrelated
to physics often have potential for applications within analysis of data in particle physics,
even beyond improvements to analysis of high-dimensional data and speed improvements
of first-principle simulations. One such recent development is the ability to enhance the
resolution of images [1,2], by learning context-dependent general rules that can be applied
to specific observations to generate estimates of higher-resolution versions of the observed
images. Hadronic jets produced in collisions at the Large Hadron Collider (LHC) are ob-
vious candidates for testing many ML-methods, as they are measured in large numbers,
they come with a simple theoretical description, their complexity is balanced by their
local detector patterns, and they are an integral part of almost every LHC analysis. In
this paper, we apply super-resolution methods to LHC jets for the first time, generating
images of jets at significantly higher resolution than the original observations.

The idea of using ML methods for exploring jets has a rich history. Early jet classifica-
tion studies date to the early 1990s [3,4], and work has recently gained momentum through
applications of deep learning tools to low-level jet observables organized as calorimeter im-
ages [5–10]. This approach can also be applied to the theoretically and experimentally
well-defined task of top-quark tagging [11, 12]. An alternative approach to organizing
calorimeter deposits as pixelated images is to prepare a list of the 4-momenta of subjet
constituents [13–16], including recurrent neural networks inspired by language recogni-
tion [17, 18] or point clouds [19–23]. These various approaches have been compared in
detail [24], revealing that their expected performance in tagging hadronically-decaying
top quarks is relatively independent of the motivation and the architecture of the net-
work. Open questions include attempts to gain theoretical understanding of the network’s
learned strategy [25–28], the stability with respect to detector effects [29, 30], treatment
of the uncertainty [31, 32], extension to a wide range of inputs [20], and anomaly detec-
tion [22,33–35].

The first of these open questions inspires us to search for ways to apply machine
learning to improve experimental jet measurements, by combining the basic rules of jet
physics with the specific information of an observed jet. Independent of the nature of
a given jet, its physics is described by relatively few ingredients, most notably collinear
and soft QCD splittings, which can be measured at the LHC [36]. These basic principles
can allow a super-resolution algorithm [1, 2] to accurately estimate the higher-resolution
information that led to the observed results. Super-resolution algorithms are widely used
in image applications [37, 38], including those which use convolutional neural networks
CNNs [39]. They can be combined with generative networks [40, 41], which can describe
jets [42–47] and LHC events [48–51] and have the potential to increase the speed of LHC
event generators significantly [52–56]. Such super-resolution GANs [57, 58] have already
been applied to cosmological simulations [59,60].

A simple super-resolution task in jet physics is to improve the resolution of a calorime-
ter image, using general QCD patterns [61]. It raises the question of whether an up-
sampled jet image can include more information than the original, low-resolution image.
Naively, it seems that the answer must be no, based on the same reasoning that motivates
the argument that a generative network cannot produce more information than exists in
its statistically limited training data set. However, this argument fails to account for the
implicit knowledge embedded in the architecture of the network, which can contribute in-
formation in the same manner as a functional fit [62]. A super-resolution network applied
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to LHC jets combines the information from the low-resolution image with QCD knowledge
extracted from the training data, for instance the underlying theoretical principles of soft
and collinear splittings combined with mass drop patterns. While we will not attempt
to quantify the added information (such an answer will depend on individual applica-
tions), we will show that super-resolution networks can enhance calorimeter images, and
that training on QCD-jets vs top-quark jets indicates that model uncertainties for this
application are small.

Our detailed study follows similar ideas as Ref. [61] on the way to wider applications
of super-resolution networks in particle physics. For example, such networks can automat-
ically test the consistency of a data set when applied to different layers of a calorimeter.
With an appropriate conditioning, they can become elements of a tagging algorithm. Up-
sampling from calorimeter to tracker resolution can provide consistency tests between
charged and neutral aspects of an event and can be turned into a new way of identifying
and removing pile-up. This is especially promising, as both sides of the up-sampling are
present in data and thereby allow training from data only.

2 Super-resolution GAN for Jets

Jet images The task for our super-resolution networks is to generate a high-resolution
(HR), super-resolved (SR) version of a given low-resolution (LR) image. While it is ill-
posed in a deterministic sense, as many distinct HR images can correspond to a single LR
image, it is well-defined in a statistical sense.

Our data set are jet images containing tt̄-events and QCD di-jets generated with
Pythia [63] for a center-of-mass energy of

√
s = 14 TeV, with Delphes [64] used to

model the ATLAS detector response, and with clustering and jet-finding done with Fast-
Jet [65]. The fat anti-kT jets [66] have a radius R = 0.8 and

pT,j = 550 ... 650 GeV and |ηj | < 2 , (1)

to have access to decent experimental resolution. The jet images are defined by pixel-wise
pT, with order of 50 active pixels. This means that, for instance, images with 160 × 160
pixels have a sparsity of 99.8%. For the training of super-resolution models, we provide
paired LR/HR jet images, which are generated by down-sampling the HR image. We use
sum pooling on the jet constituents as an approximation to reduced detector resolution
before we perform jet finding [67]. After jet finding, we select the hardest jet in each
of the HR and LR images as a candidate pair, rejecting the pair if either jet has fewer
than 15 constituents. To ensure that the selected HR-clustered and LR-clustered jets
correspond to the same hard parton, we require the angular distance between the two to
be ∆R =

√
∆η2 + ∆φ2 < 0.1. This procedure defines paired HR and LR jet images, where

the LR jet image contains no information from the HR image. We apply this procedure to
create LR-HR image pairs with down-scaling factors of 2, 4, and 8, removing events that
fail the requirement for any particular resolution from all samples, which ensures that all
jet samples contain the same set of events.

There are multiple ways of normalizing jet images to be better suited for machine
learning. Such transformations do not retain the absolute momentum, which may not be
a problem for classification, but for our purposes this information is needed. In Fig. 1, we
show typical energy distributions after re-scaling the pixel entries with a power p. Clearly,
some kind of re-scaling is helpful to enhance the otherwise extremely peaked spectrum.
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Figure 1: Distribution of energy deposition when pixel entries are raised by several different
powers E → Ep.

On the other hand, we know that the low-energy radiation is largely noise, which means
that choosing p too small is not helpful for the network to learn the leading patterns. We
find that p = 0.3 is a good compromise, to be combined with the original image p = 1.

Network architecture In our jet image study, we use a variant of the enhanced super-
resolution GAN (ESRGAN) [58], illustrated in Fig. 2. To begin with, the generator con-
verts a LR image into a SR image using a deep residual fully convolutional network. Its
main element is the dense residual block (DRB) [68], built out of consecutive convolutional
layers with (3× 3)-kernels, stride 1, padding 1, and 64 filters. The activation function is a
LeakyReLU with α = 0.2. The particularity of the DRB is that a layer receives the input
of all other layers in addition to the output of the previous layer. This structure fuses all
the feature maps inside the block. Three DRBs form a residual-in-residual dense block
(RRDB) [58], connected via residual connections.

All convolutions in the generator preserve the spatial dimensions of the input image.
Following Fig. 2, the up-sampling can be done by pixel-shuffle layers [69] or transposed
convolutions. Our generator up-samples by a factor of two in up to three consecutive steps
and works best if we alternate between pixel-shuffle and transposed convolutions. In the
HR feature space, there are two additional convolutional layers, one of which simply scales
the output by a fixed value.

The discriminator network is a relatively simple feed-forward convolutional network
with LeakyReLU activations, as proposed for the SRGAN [57]. It uses blocks consisting of
two convolutional layers with a (3× 3)-kernel and padding 1. While the first convolution
of each block conserves the spatial dimensions, the second layer halves it through a strided
convolution. We link four of those blocks and start with 64 filters, doubling the number
of filters after each block. We modify the original SRGAN structure by removing the
batch normalization layers and adding a gradient penalty [70–72]. We cut off the network
before flattening, feeding it into a fully connected layer and switching to a Markovian
discriminator. Finally, we include a second discriminator with exactly the same structure,
such that the full discriminator response is the sum of two discriminator networks. For
the second discriminator, we reset all weights after a fixed number of batches.

Loss function The SRGAN and ESRGANs include a set of excess functionalities, such as
perceptual loss which can potentially improve the quality of the output. This loss combines
the adversarial loss from the discriminator with a content loss that compares feature maps
of a pre-trained image classification network. The adversarial loss for a relativistic GAN
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Figure 2: Architecture of modified generator network from ESRGAN (upper) and discrim-
inator network modified from the SRGAN (lower).

trained on true events (T ) to generate new events (G) is

Ladv = −〈logD〉G − 〈log(1−D)〉T
with DT =σ (CT − 〈C〉G)

DG =σ (CG − 〈C〉T ) (2)

where σ is a sigmoid classifier function and C is the unactivated discriminator output.
Compared to a standard adversarial loss, we have an additional term because DT depends
on the generated data G. The original content loss is not needed for our purpose. Because
our HR images should resemble the ground truth, we add a L1 loss between the SR and
HR images. Our choice of L1 over L2 prevents blurring,

LHR = L1 (SR, HR) . (3)

In return, because the LR image should correspond to the HR-jet, we define a loss term
that compares the model input with the down-sampled model output pixel by pixel,

LLR = L1

∑
pool

(SR), LR

 . (4)

#RRDB batch size β rescaling λreg λstd λpow λHR λLR λadv λpatch reset interval

optimal 10 15 0.1 0.3 0.001 0.2 1 1 0.1 0.01 0.1 20k
medium 15 15 0.1 0.3 0.001 1.2 1 1 0.1 0.05 0.1 20k

Table 1: Sets of hyperparameters used for networks described in Fig. 2. Two sets are
presented, one which optimized performance, and a second which which performed slightly
worse. β is the residual scale factor.
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Figure 3: Training process for jet images. The generator and discriminator networks are
shown in Fig. 2.

When we up-sample the LR-jet image by a factor f , we need to distribute each LR pixel
energy over f × f SR pixels. These f × f pixels define a patch, and we encourage the
network to spread the LR pixel energy such that the number of active pixels corresponds
to the HR truth. This defines the additional loss term

Lpatch = L2 (patch(SR), patch(HR)) (5)

The combined generator loss over the standard and re-weighted jet images is then

LG =
∑

s∈{std, pow}

λs (λHR LHR + λLR LLR + λadv Ladv + λpatch Lpatch) , (6)

The GAN discriminator D measures how close the generated data set G is to the true
or training data T . In a relativistic average GAN [72], the discriminator is given by the
probability of a generated event being more realistic than the average true event, and vice
versa. It corresponds to the adversarial generator loss in Eq.(2) but with switched labels,

= −〈log(1−D)〉G − 〈logD〉T . (7)

To this expression we add a gradient penalty for stabilization,

Lreg = 〈(
∥∥∇X′C(X ′)

∥∥
2
− 1)2〉 . (8)

where X ′ is a randomly weighted average between a real and generated samples, X ′ =
εXT + (1− ε)XG and C(X’) is the unactivated discriminator output.

All hyperparameters are listed in Tab. 1. We use Adam [73] for the optimization with
β1 = 0.5 [74] and β2 = 0.9. The learning rate is λ = 0.0001. The training of a model
typically takes 50k-100k iterations.
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Training The starting point of our training, illustrated in Fig. 3, is the HR truth image,
from which the LR image is derived. All jet images are also raised to the power p = 0.3
as a pixel-wise operation. We work with an up-scale factor f = 23 = 8. In that case,
we divide the LR image by the total factor f and feed it into the RRDB generator. Its
output is divided by the factor 1/f and gives the SR image raised to the power p. This
intermediate result is saved for the computation of LHR. For the SR output image we need
to only take the pth root. This SR image is sum-pooled back to its LR version LRgen to
compute the different generator loss terms. Based on this set of LR, HR, and SR images,
with and without a p-scaling, we compute a set of L1 loss contributions to the generator
loss, as well as the discriminator losses from the HR-SR comparison.

3 Up-sampling jets

We benchmark the performance of the super-resolution algorithm for both QCD jets and
top-quark jets. QCD jets, which at the LHC arise from massless partons, exist in large
samples and are well described by collinear and soft splittings. As an alternative, we use
jets from top-quark decays, which are significantly different, but can be isolated exper-
imentally from semi-leptonic top-quark pair production and well-described theoretically
via perturbative QCD.

We start with a set of HR-jet images with 160 × 160 pixels. We down-sample each
of these images to a corresponding LR image by a linear factor 1/f = 1/8 to an im-
age of 20 × 20 pixels. For the up-sampling, we apply three doubling steps using pixel
shuffle, transposed convolution, and another pixel shuffle. The pixel shuffle has the ad-
vantage of encoding the full information from the feature maps. It simply redistributes
the information by transforming a large number of channels, as usually arise after deep
convolutions, into a set of feature maps with fewer channels but larger spatial dimensions.
The transposed convolution takes into account local information through a trainable ker-
nel. After learning meaningful weights it can help learning intricate, non-local patterns,
which would be missed by a global pixel shuffle. In the following, we first train and test
a network on QCD-jets, then on top-jets. To estimate the model uncertainties, we apply
networks trained on one class to the other class.

To evaluate the quality of the information in our image-based results in a physics
context, we calculate an established set of jet observables [29,75–77]

mjet =

(∑
i

pµi

)2

wpf =

∑
i pT,i∆Ri,jet∑

i pT,i

C0.2 =

∑
i,j pT,ipT,j(∆Ri,j)

0.2

(
∑

i pT,i)
2

τN =

∑
k pT,kmin(∆R1,k, ...,∆RN,k)∑

k pT,kR0
. (9)

The jet mass is the most relevant difference between pure QCD jets and top decay jets. The
girth wpf essentially describes the geometric extension of the hard pixels, while C0.2 is the
leading pixel-to-pixel correlation. The subjettiness ratios τ2/τ1 and τ3/τ2 can distinguish
between 2-prong and 3-prong decay jets.

3.1 Performance in QCD Jets

In an initial test, we train and test our super-resolution network on the sample of QCD jets,
which are characterized by a few central pixels which carry most of the jet energy. In this
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Figure 4: Demonstration of the performance of a network trained on QCD-jets and applied
to QCD-jets. Top left are averages of the HR and SR images, followed by distributions of
the square-root of the energy of leading pixels, sub-leading, etc. Also shown are average
(f × f)-patches for the SR and the HR images, and distributions of high-level jet observ-
ables, see text for definitions. The zero-bin in energy collects jets with too few entries.

case, it is important to include down-sampled kinematic distributions in the evaluation,
to disentangle the central patterns.

In Fig. 4 we compare the HR and SR images as well as the true LR image with their
generated LRgen counterpart. In addition to average SR and LR images, we show the
energy spectra for the leading four pixels. This reveals how the LR image resolution
reaches its limits, because the leading pixel carries most of the information. The sub-
leading pixels are often harder for the HR image, because the up-sampling often splits the
hardest LR pixel. From the 7th leading pixel and beyond, we see an increasing number
of empty pixels, and above the 10th pixel the QCD jet largely features soft noise. This
transition is the weak spot of the SR network. While it learns the underlying principles
of QCD splittings for the hard pixels and the noise patterns for the soft pixels, the mixed

8



SciPost Physics Submission

range around the 7th and 10th pixels indicates sizeable deviations. We also show the
average (f × f)-patches for the SR and the HR images to confirm that the spreading of
the hard pixels works at the 20% level.

Again in Fig. 4 we see that the jet mass peaks around the expected 50 GeV, for the
LR and for the HR-jet alike. Still, the agreement between LR and LRgen on the one hand
and between HR and SR on the other is better than the agreement between the LR and
HR images. A similar picture emerges for the pT-weighted distance to the jet axis, the
girth wpf, which essentially describes the extension of the hard pixels. The pixel-to-pixel
correlation C0.2 also shows little deviation between HR and SR on the one hand and LR
and LRgen on the other. Finally, we see how the specific subjettiness ratios τ2/τ1 and
τ3/τ2 increase for the HR/SR images, because the splitting of hard central pixels into two
hard and collinear, now resolved pixels increases the IR-safe subjet count. The ratio τ3/τ2
turns out to be one of the hardest of the HR-patterns to learn, with the effect that the
SR version leads to slightly smaller values. This implies that the SR network does not
generate quite enough splittings. Such a feature could of course be improved, but any
optimization has to be balanced with the ability of the network to also describe jets with
more than just collinear splittings, as we will see in the next case.

3.2 Performance in Top-Quark Jets

The physics of top-quark, light-quark, and QCD jets is very different. While for QCD-jets
collinear and, to some degree, soft splittings describe the entire object, top-quark jets
include the two electroweak decay steps. Comparing the top-quark jets shown in Fig. 5
with the QCD jets in Fig. 4 we see this difference already from the jet images — the
top-quark jets are much wider and their energy is distributed among more pixels. From
a SR point of view, this simplifies the task, because the network can work with more LR-
structures. Technically, the adversarial loss becomes more important, and we can indeed
balance the performance on top-quark jets vs QCD jets using λadv.

Looking at the ordered constituents, the additional mass drop structure is learned by
the networks extremely well. The leading four constituents typically cover the three hard
decay sub-jets, and they are described even better than in the QCD case. Starting with
the 4th constituent, the relative position of the LR and HR peaks changes towards a more
QCD-like structure, so the network starts splitting one hard LR-constituent into hard HR-
constituents. This is consistent with the top-quark jet consisting of three well-separated
patterns, where the QCD jets only show this pattern for one leading constituent. We
also see that up to the 15th constituent, the massive top-quark jet shows comparably
distinctive patterns and only few empty pixels.

For the high-level observables, we first see that the SR network shifts the jet mass
peak by about 10 GeV and does well on the girth wPF, aided by the fact that the jet
resolution has hardly any effect on the jet size. As for QCD-jets, C0.2 is no challenge for
the up-sampling. Unlike for QCD-jets, τ3/τ2 is as stable as τ2/τ1, because it is completely
governed by the hard and geometrically well-separated hard decays.

While our up-sampling network will work on one pair of LR-HR jets, with an up-scaling
factor eight, it is interesting to see what happens with these jet observables when we change
the jet resolution more continuously. In Fig. 6 we see that the three different down-scaling
steps indeed interpolate between the full HR and LR jets smoothly. While the maximum
in the number of active pixels shifts almost linearly, the jet mass is altogether not affected
much. The pT-weighted girth is only affected for the collimated QCD jets, similar to the
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Figure 5: Demonstration of the performance of a network trained on top-quark jets and
applied to top-quark jets. Top left are averages of the HR and SR images, followed by
distributions of the square-root of the energy of leading pixels, sub-leading, etc. Also
shown are average (f × f)-patches for the SR and the HR images, and distributions of
high-level jet observables, see text for definitions. The zero-bin in energy collects jets with
too few entries.

subjettiness ratio τ2/τ1. In contrast, the ratio τ3/τ2 indicates that we start losing the
prong multiplicity information also for top-quark jets.

3.3 Model dependence

The ultimate goal for jet super-resolution is to learn jet structures in general, such that
SR images can be used to improve multi-jet analyses. In practice, a network could then
be trained on some kind of representative jet sample. In our case, the QCD jets and top-
quark jets are extremely different, and we further amplify this effect by training the models
on one sample and applying them to the other. This gives an example of a large model
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Figure 6: Distribution of the number of active pixels and high-level observables mjet, τ2/τ1,
τ3/τ2, wpf, and for images down-scaled by factors 2, 4, and 8. Results are shown for QCD
jets (top rows) and top-quark jets (bottom rows).

dependence and allows us to understand the behavior by comparing with the correctly
assigned data sets.

In Fig. 7, we show the results from the network trained on QCD jets, now applied to
LR top-quark jets. Interestingly, the network generates all the correct patterns for the
ordered top-quark jet constituents, albeit with a slightly reduced precision for instance for
the 15th constituent. Similarly, the patches still do not include unwanted visible patterns,
but are slightly more noisy.

Finally, in Fig. 8 we show the results from the network trained on top-quark jets, but
applied to LR QCD-jets. In a detailed comparison with Fig. 4, we see that the network
does not generate the more challenging QCD patterns out of the narrow central pixel set.
It starts to fail already for the first and second constituents, and works slightly better
for the 7th constituent in the transition region before correctly reproducing the soft noise
patterns. In the distributions of high-level observables, the problem is most evident in
τ2/τ1. Here the training on the top-quark sample pushes the SR QCD-image towards
larger values or higher jet multiplicities. This reflects the broader structure of the training
sample with its generally larger values of τ2/τ1.
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3.4 Network Complexity Reduction

The flexibility of deep networks often comes at a cost of complexity. This complexity, in
the form of a large number of layers and nodes, means a large number of parameters must
be optimized during training. This hyper-flexibility can lead to undesirable side-effects
that ultimately hurt its utility especially when it comes to systematic studies. A network
with fewer parameters, which achieves the same performance, will be more efficient to
train, faster to evaluate, less prone to over-fitting and more likely to generalize. For
these reasons, we aim to determine the minimal necessary complexity of our GANs by
systematically reducing the number of layers until performance is impacted.

0

1000

2000

3000

4000

5000

SR

0

1000

2000

3000

4000

5000

HR

5 10 15 20

E [
√

GeV]

0

2000

4000

E
nt

ri
es

hardest pixel

SR

HR

LR

LRgen

5 10 15

E [
√

GeV]

0

2000

4000

6000

E
nt

ri
es

2nd hardest

SR

HR

LR

LRgen

2.5 5.0 7.5 10.0

E [
√

GeV]

0

2000

4000

6000

E
nt

ri
es

3rd hardest

SR

HR

LR

LRgen

2 4 6 8

E [
√

GeV]

0

2000

4000

6000
E

nt
ri

es
4th hardest

SR

HR

LR

LRgen

0 2 4 6

E [
√

GeV]

0

2000

4000

6000

E
nt

ri
es

7th hardest

SR

HR

LR

LRgen

0 2 4

E [
√

GeV]

0

2000

4000

6000

E
nt

ri
es

10th hardest

SR

HR

LR

LRgen

0 1 2 3 4

E [
√

GeV]

0

2000

4000

6000

E
nt

ri
es

15th hardest

SR

HR

LR

LRgen

SR HR

0.5 1.0 1.5 2.0

0 100 200 300
mjet[GeV]

0

2500

5000

7500

10000

E
nt

ri
es

SR

HR

LR

LRgen

0.0 0.1 0.2
wPF

0

1000

2000

3000

E
nt

ri
es

SR

HR

LR

LRgen

0 1 2 3
C0.2

0

2000

4000

6000

E
nt

ri
es

SR

HR

LR

LRgen

0.2 0.4 0.6
τ2/τ1

0

1000

2000

3000

E
nt

ri
es

SR

HR

LR

LRgen

0.2 0.4 0.6 0.8
τ3/τ2

0

1000

2000

E
nt

ri
es

SR

HR

LR

LRgen

Figure 7: Demonstration of the performance of a network trained on QCD jets and applied
to top-quark jets. Top left are averages of the HR and SR images, followed by distribu-
tions of the square-root of the energy of leading pixels, sub-leading, etc. Also shown are
average (f × f)-patches for the SR and the HR images, and distributions of high-level
jet observables, see text for definitions. The zero-bin in energy collects jets with too few
entries.
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Most of our network complexity resides in the core of the super-resolution GANs,
which comprises the residual-in-residual dense blocks (RRDBs), each of which includes 15
convolutional layers. In this section we experiment with a smaller number of blocks, but
the same network architecture. In Fig. 9 we compare pixel energy distributions for SR
images generated by the reduced-complexity network to those generated by the network
described earlier. In the first panels we see that for top-quark jet even a single-block
network is able to extract the truth features very well. The remaining challenge is to
properly describe the softer pixels, just as we see for the full network in Fig. 5. In the
second set of panels in Fig. 9 we show the corresponding result for a network trained on
and applied to QCD jets. As expected, the network task is much more challenging because
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Figure 8: Demonstration of the performance of a network trained on top-quark jets and
applied to QCD jets. Top left are averages of the HR and SR images, followed by distri-
butions of the square-root of the energy of leading pixels, sub-leading, etc. Also shown
are average (f × f)-patches for the SR and the HR images, and distributions of high-level
jet observables, see text for definitions. The zero-bin in energy collects jets with too few
entries.
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Figure 9: Demonstration of the performance of a reduced complexity (1 RRDB block)
network compared to a more complex network (10 RRDB blocks), for networks trained
on and applied top-quark jets (upper) and QCD jets (lower). Shown are distributions of
the square-root of the pixel energies for the true high resolution image (HR) and super
resolution images generated by the reduced and standard complexity network.

of the smaller number of available LR-pixels and the much more focussed structure of QCD
jets. Similar to the full network results shown in Fig. 4, the slim network does not push
the energy for the softer pixels to the full truth values, but gets stuck at a slightly softer
spectrum.

To illustrate the super-resolution network performance we compute the first Wasser-
stein distance between the true HR images and the SR images. In Fig. 10 we show this
Wasserstein distance as a function of the number of RRDBs for top-quark jets (left) and
QCD jets (right). The global scale of Wasserstein distance values reflects the fact that top-
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Figure 10: Dependence of the performance of super resolution networks on the number
of internal RRDB blocks (See Fig. 2). Performance is measured via the one dimensional
Wasserstein distance between the distribution of quantities over true high-resolution im-
ages and the super-resolution images. Quantities examined are the energy of the leading
pixel, subleading, etc. Left (right) shows results for networks trained on top-quark (QCD)
jets and applied to top-quark (QCD) jets.

quark jets are better described by all networks, regardless of the number of RRDBs. As a
matter of fact, here the performance improvement from more RRDBs is almost completely
covered by the fluctuations from different network initializations and runs. In contrast,
the more challenging QCD jets show a significant improvement with an increased network
complexity. Interestingly, for both top-quark and QCD jets, the performance improve-
ment is not visibly related to, for instance, hard vs soft pixels. We also emphasize that
the larger network complexity required by QCD jets is in contrast to the complexity of the
actual jets. While the top-quark jets combine massive decay and QCD splitting patterns,
the physics principles behind the QCD jets are much simpler, so the required complexity
of the super-resolution network is not driven by the complexity of the underlying objects,
but by the effect of the reduced resolution.

4 Outlook

Jet physics in terms of low-level observables and with the help of deep networks defines
many new opportunities in jet physics and jet measurements at the LHC. For jet classifica-
tion, or jet tagging, deep networks typically outperform established high-level approaches.

In this paper, we propose a new application of deep learning to jet physics: jet super-
resolution, which aims to overcome the limitations of detector resolution and allow for
deeper analysis of jet data from ATLAS and CMS. Super-resolution networks can provide
additional information, and hence improved resolution, by encoding our knowledge about
jet physics in a generative network.

Our results demonstrate that a super-resolution network can indeed reproduce high-
resolution jet images of top-quark jets and QCD jets when trained on these samples.
We illustrated the performance of the super-resolution networks using images, low-level
observables, and high-level observables. The more challenging test of the generality of
the network is evaluated by applying a network trained on one sample to jets from the
other sample. We confirmed that our super-resolution network exhibits the necessary
model independence to be applied to different kinds of jets. This will allow us to train
jet super-resolution networks on mixed samples and avoid complications for instance with
the poorly defined separation of quark and gluon jets in a QCD sample.
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While the main focus of our study was to show that the technique of image super-
resolution works reliably on LHC jets, we already showed that it can be used to enhance
jet measurements in regions with poor calorimeter performance. Additionally, we showed
that the necessary complexity of the network depends on the source of the jets. Interest-
ingly, equivalent performance on top-quark jets can be achieved with far fewer parameters
than QCD jets, despite the former having greater complexities in the underlying physics
mechanisms. Such knowledge is helpful in efficiently allocating computational resources
when analyzing experimental jet data.
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