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Abstract1

Substantial acceleration of research and more efficient utilization of resources
can be achieved in modeling investigated phenomena by identifying the limits of
system’s accessible states instead of tracing the trajectory of its evolution. The
proposed strategy uses the Metropolis-Hastings Monte-Carlo sampling of the
configuration space probability distribution coupled with physically-motivated
prior probability distribution. We demonstrate this general idea by presenting
a high performance method of generating configurations for lattice dynamics
and other computational solid state physics calculations corresponding to non-
zero temperatures. In contrast to the methods based on molecular dynamics,
where only a small fraction of obtained data is consumed, the proposed scheme
is distinguished by a considerably higher, reaching even 80%, acceptance ratio.
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1 Introduction2

Every system can be successfully studied by methodical observation of its behaviour for3

a long enough time. However, especially for slowly changing characteristics, this could take4

proverbial eons. On the other hand, some elementary knowledge of possible features and5

existing constrains allows one to limit available states of the studied system and determine6

the probability distribution of these states in the configuration space. As a result, the7

system can be modeled based on its probable configurations. To illustrate this idea, we8

present its application to studies of vibrational properties of solids.9

1



SciPost Physics Submission

A number of problems in solid state physics connected with lattice dynamics can be10

effectively addressed with inter-atomic potential models constructed using data obtained11

from quantum mechanical calculations (e.g. Density Functional Theory – DFT). Probably12

the simplest of such models is harmonic approximation developed by Born and von Kármán13

at the beginning of the 20th century [1–3]. Over the years multiple increasingly more14

sophisticated models have been developed: Quasi-Harmonic approximation (QHA) [4],15

Temperature-Dependent Effective Potential [5–7], Self-Consistent Phonons (SCPH) [8] or16

Parlinski’s approach [9], to name just a few. All the above mentioned schemes share17

common feature – they need an appropriate set of data to build a model of inter-atomic18

potential which is essential for this type of methods. The data set should correspond to the19

system at thermal equilibrium or other physical state. It is usually comprised of atomic20

positions as well as resulting energies and forces calculated with some quantum mechanical21

(e.g. DFT) or even effective potential method.22

Presently, molecular dynamics is often used to investigate systems at non-zero tem-23

perature in thermal equilibrium. This is done either directly – by analysis of the MD24

trajectory – or as a source of configurations for building the mentioned effective models of25

the inter-atomic potential to be used in further analysis (e.g. with programs like ALAM-26

ODE [10, 11] or TDEP [7]). Both cases involve a very costly stage of running long MD27

calculations [12]. Since uncorrelated configurations from different parts of the phase space28

are required, they are generated by appropriate spacing of the sampling points over the29

computed trajectory or even by performing multiple independent MD runs. At the end30

only a small fraction of calculated configurations is used (typically 1-10%). Therefore, us-31

ing MD in this context is exceedingly wasteful. This makes it not only very expensive but32

also useless for larger and more complicated systems (of hundreds or more atoms), where33

even static, single-point DFT calculations are challenging. In such cases running a 3000034

steps MD becomes prohibitively expensive and impractical.35

In this work we propose a new, High Efficiency Configuration Space Sampling (HECSS)36

method for modelling systems in non-zero temperature, including non-harmonic effects,37

without using MD trajectory. We also indicate its possible application to some additional38

cases like disordered systems or large, complicated systems.39

2 General idea of HECSS40

To reproduce the thermal equilibrium in the system, independent configurations of dis-41

placements consistent with a desired non-zero temperature should be selected. Having42

any initial approximations for the lattice dynamics of the system (e.g. standard har-43

monic approach [2, 4, 13]) one can estimate temperature-dependent atomic mean-square-44

displacements (MSD) from a small set of force-displacement relations. Using these MSD45

data as a first approximation, the atomic displacements with normal distribution around46

equilibrium positions can be easily generated. There is, however, a subtle issue around47

displacements generated this way – they are uncorrelated between atoms, while in reality48

atomic displacements are correlated at least for their close neighbours. For example, it49

is easy to see that a simultaneous out-of-phase movement of neighboring atoms towards50

or away from each other will generate larger changes in energy than a synchronous in-51

phase movement of the same atoms. The former configuration should be represented with52

lower probability than the later, instead of equal probability present in the above simplistic53

scheme. Thus, while the static configurations generation may be a correct direction in gen-54

eral, such a naive approach is not sufficient. One can see that some additional mechanism55

is required to adjust probability distribution of generated samples in order to accurately56
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reproduce configurations drawn from thermodynamic equilibrium ensemble. Classical sta-57

tistical mechanics points to such a scheme for selection of configurations representing a58

system in thermal equilibrium.59

The general form of the equipartition theorem says that a generalized virial for any60

phase space coordinate (i.e. generalized coordinate or momentum) is proportional to tem-61

perature when it is averaged over the whole ensemble:62

〈
xm

∂H

∂xn

〉
= δmnkBT. (1)

If we assume ergodicity of the system, the ensemble average may be replaced with time63

average. For momenta this leads to the average kinetic energy per degree of freedom being64

equal to kBT/2 and provides the kinetic definition of temperature. However, the relation65

holds also for derivatives of Hamiltonian with respect to positions. Considering relation (1)66

for some atomic displacement q from the equilibrium configuration, and assuming the67

potential energy depends only on position, we can write position-dependent part of the68

Hamiltonian (i.e the potential energy Ep(q)) as a Taylor’s expansion with respect to the69

atomic displacement q from the equilibrium configuration:70

Ep(q) =
∞∑

n=2

Cnq
n, (2)

where the expansion coefficients Cn are, in general, functions of all remaining coordinates71

(displacements). The equipartition theorem (1) now takes the form:72

kBT =

〈
q

∞∑

n=2

nCnq
n−1

〉
=

∞∑

n=2

nCn 〈qn〉 (3)

and if we write n as (n− 2) + 2 and divide both sides by 2 we get:73

〈Ep(q)〉 =
kBT

2
−
∞∑

n=3

n− 2

2
Cn 〈qn〉 , (4)

which is similar to the kinetic energy counterpart except for an additional term generated by74

the anharmonic part of the potential and defined by the third and higher central moments of75

the probability distribution of the displacements. If we can assume that the second term of76

the Eq. 4 is small in comparison with kBT , we get a formula for the average potential energy77

of the system. Note that for harmonic systems the second part vanishes. For anharmonic78

systems omission of higher terms in Eq. 4 will provide first-order approximation of the79

mean potential energy. Only experience can tell us how good this approximation is and80

how wide its applicability range is. However, one should note that substantial higher-order81

terms are present only in parts of the formula connected with strongly anharmonic modes.82

Furthermore, for every atom in centro-symmetric position all odd-power moments vanish83

and the first non-zero moment is the fourth one. Finally, the formula for the potential84

energy of the whole system contains similar terms for all modes. Judging by extremely85

high efficiency of harmonic approximation for crystal lattice dynamics, we can expect that86

this averaging will make proposed approximation effective for a wide range of systems.87

To sum up, MD provides a representation of the system with the properly distributed88

kinetic energy. For a single particle it is a Maxwell-Boltzmann distribution. By virtue89

of the central limit theorem (CLT) [14, 15], if we increase the number of particles we will90

approach at infinity (i.e. in the thermodynamical limit) a Gaussian distribution with the91

same average (the same mean) and the variance which is scaled as inverse number of92

3



SciPost Physics Submission

−100 −50 0 50 100

Ek − 〈Ek〉 (meV/at.)

0.000

0.005

0.010

0.015
p(
E
k
)

Ek N=2

−20 0 20

Ek − 〈Ek〉 (meV/at.)

0.00

0.02

0.04

p(
E
k
)

Ek N=8

−10 −5 0 5 10

Ek − 〈Ek〉 (meV/at.)

0.00

0.05

0.10

p(
E
k
)

Ek N=64

−100 −50 0 50 100

Ep − 〈Ep〉 (meV/at.)

0.000

0.005

0.010

0.015

p(
E
p
)

Ep N=2

−20 0 20

Ep − 〈Ep〉 (meV/at.)

0.00

0.02

0.04

p(
E
p
)

Ep N=8

−10 −5 0 5 10

Ep − 〈Ep〉 (meV/at.)

0.00

0.05

0.10

p(
E
p
)

Ep N=64

Figure 1: Probability distribution for single atom kinetic (upper) and potential (lower) energies
averaged over N = 2, 8 and 64 randomly selected atoms. Solid orange lines show fitted normal
distributions while dashed green lines show χ2 distribution for 3N degrees of freedom fitted to
kinetic energy histograms. Data derived from the MD trajectory.

particles. As we can see for kinetic energy the relation is very simple whereas for the93

potential energy we have a quantity approximately close to temperature if the system is94

not too far from a harmonic one. Nevertheless, we do not know, in general, the form95

of the distribution of the potential energy. That constitutes substantial difficulty, which96

fortunately can be overcome by application of the CLT to calculate distribution of potential97

energy.98

The CLT states that for any reasonable probability distribution, the distribution of the99

mean of the sample of the independent random variable drawn from it tends to the normal100

distribution with the same mean and variance scaled by the square root of the number101

of samples. The reasonable class is very broad here, certainly containing all physically102

interesting cases by virtue of requiring a finite variance and a well-defined mean. Thus,103

for potential energy per degree of freedom we can expect the probability distribution con-104

verging to the normal distribution:105

lim
N→∞

p(Ep) = N (〈Ep〉, σ/
√
3N). (5)

As shown above, one can approximate the 〈Ep〉 with the first term of Eq. 4 and the only106

unknown parameter in this formula is the variance of the distribution. Note that above107

expression is independent from the particular shape of the potential energy probability108

distribution for the single degree of freedom except of its mean 〈Ep〉 and variance σ.109

However, we need to consider that the Eq. 5 is true asymptotically. At this point we need110

to decide if this relation has any practical use for finite, and preferably not too large, N .111

The common wisdom in statistical community states that forN above ≈ 50 the distribution112

of the average is practically indistinguishable from the true normal distribution, and even113

for smaller N , if the starting distribution is not too wild, the convergence is usually very114

quick.115

3 Sampling of probability distribution116

To verify if this “folk wisdom” holds true for the typical kinetic and potential distributions117

we have checked this hypothesis against actual MD data of a typical system. This test does118

not require high-accuracy forces and energies but demands ability to efficiently calculate119
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moderately sized systems (e.g. 1000 atoms). Thus, instead of using DFT as a source of120

energies/forces we have used effective potential model of the cubic 3C-SiC crystal. We have121

used LAMMPS [16] implementation of the potential with parameters derived in [17,18] and122

the NVT-MD implemented in ASAP3 module of the Atomistic Simulation Environment123

(ASE) [19]. High performance of this implementation allowed for 5 · 104 time steps (of 1 fs124

length) runs of the 5 × 5 × 5 supercell (1000 atoms) to be executed on a single server in125

just a few hours.126
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Figure 2: Variance of the energy distribution
as a function of system size compared with
prediction of the central limit theorem (orange
line). Results for different numbers of ran-
domly chosen coordinates of 5× 5× 5 system
(blue circles) were put together with variance
of both the kinetic (green squares) and poten-
tial (red triangles) energies of smaller systems
(defined in the text).

The kinetic and potential energy probabil-127

ity distributions extracted from MD runs of128

systems of 2, 8 and 64 atoms (i.e. 6, 24, 192129

degrees of freedom) are presented in Fig. 1. At130

this stage we are interested in the speed of con-131

vergence of the probability distribution, and132

this experiment shows that for typical distri-133

butions present in crystals the convergence is134

quite quick. Already at the NDOF = 24 (i.e. 8135

atoms) the deviation from the normal distribu-136

tion is barely noticeable and at NDOF = 192137

(i.e. 64 atoms) it is indeed hardly visible. And138

that seems to hold true equally well for distri-139

butions of the kinetic and potential energy.140

This simple example demonstrates that for141

our practical purposes we can expect the cen-142

tral limit theorem in application to energy dis-143

tribution in crystals to hold above ≈ 30 de-144

grees of freedom, for both the kinetic and po-145

tential energies. This means that we can apply146

this approach even for very moderately sized147

systems of 10-20 or more atoms.148

The energy distributions in Fig. 1, derived from the MD runs mentioned above, show149

clearly Gaussian distributions for both the kinetic and potential energies even for NDOF ≈150

25 degrees of freedom. Furthermore, the variance of these distributions plotted against the151

system’s size and shown in Fig. 2 follows closely CLT prediction in Eq. 5. And this holds152

true for parts of a larger system (blue circles in Fig. 2) as well as for the whole smaller153

crystals (squares and triangles in Fig. 2). The dispersion of small systems’ data in Fig. 2154

is due to large temperature fluctuations in small sets of particles.155

Thus, we have checked that, at least in our test case, the convergence to thermody-156

namic and CLT limits required by the Eqs 4 and 5 is quick enough to be useful in practical157

calculations for systems of just tens of atoms. The main problem now is that there is158

no direct access to potential energy and there is no way to invert relation from positions159

to potential energy – even in principle since the relation is many-to-one. Our goal here160

is to reproduce the potential energy distribution described by Eq. 5 and present in MD161

data by intelligently sampling the configuration space of the system – since this is the162

only input we can directly specify. Fortunately, computational statistics provides multiple163

algorithms dedicated to the task of sampling of indirectly specified probability distribu-164

tions. In particular, the Metropolis-Hastings Monte Carlo [20] seems well suited to our165

purposes. To use it effectively we need to generate a prior distribution which covers the do-166

main and, preferably, is fairly close to the target distribution. Obviously, we are unable to167

generate configurations corresponding to the distribution from Eq. 5 but we can use physi-168

cally motivated approximation. We propose to approximate displacements of atoms in the169
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system by Gaussian probability distribution with variance tuned to the temperature and170

to the resulting energy. Our HECSS software package provides the Metropolis-Hastings171

implementation together with a tuned prior probability distribution generator. The tun-172

ing algorithm adjusts the variance of the atomic displacement distribution in each step:173

σn+1 = (1 + s(Ep(xn)))σn, according to the modified logistic sigmoid function:174

s(Ep) = δ

(
2

1 + e−(Ep−E0)/(w·σEp )
− 1

)
, (6)
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Figure 3: Prior energy probability distribution
(orange filling) versus target distribution (blue
filling). The lines indicate target distribution
(red dashed line) and Gaussian distribution
fitted to generated sample (green solid line).

where σEp = kBT
√
3/2N is the variance of175

the target potential energy distribution (5)176

and δ ≈ 0.005 − 0.02 is a small tuning pa-177

rameter controlling the speed of the variance178

adjustment, while w ≈ 3 controls the width179

of the prior distribution. Both parameters180

have substantial practical importance – they181

influence the effectiveness of the procedure –182

but play no fundamental role in the algorithm.183

Changing these parameters to the unsuitable184

values leads only to slower convergence of the185

procedure, since the Metropolis-Hastings algo-186

rithm is guaranteed to asymptotically produce187

the target distribution for any non-vanishing188

prior distribution. A good selection of the189

prior distribution means getting higher than190

50% (in practice even above 80%) acceptance191

ratio instead of a few percent or even less if the prior distribution is very far from the target.192

The prior distribution we are proposing here is already of similar shape to the target one,193

thus it results in several additional samples at the start of the procedure to properly tune194

the width parameter – if it was not set correctly.195
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Figure 4: Probability distribution of poten-
tial energy per atom generated with HECSS
scheme (blue shape) versus distribution ex-
tracted from the MD trajectory (orange con-
tour). The dashed line indicates normal dis-
tribution fitted to HECSS sample.

The typical good relationship between196

prior and target distribution as well as the197

sampling produced by the proposed algorithm198

is illustrated in Fig. 3. Furthermore, the near-199

independent drawing of each step in the algo-200

rithm means that each sample from the pro-201

duced set is potentially usable. Therefore, the202

burn-in period may be reduced to just a few203

samples required for tuning of the prior dis-204

tribution parameters. The only source of pos-205

sible correlations between samples in consecu-206

tive steps is the change in variance of the prior207

distribution, which is tuned after each step ac-208

cording to the sigmoid function (defined by209

Eq. 6). This is a very weak correlation since210

the variance is not supposed to change by more211

than δ ≈ 0.5 − 2%. What is more, these pa-212

rameters are independent from the size of the213

system and their values are not critical. The variance of the prior distribution, which is214

self-tuning, should be estimated with 20% accuracy in order for the burn-in period to be re-215

duced to just one or two samples. Thus, the initial tuning may be performed using a small216
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supercell or even a primitive unit cell – depending on the system – by just recording the217

self-tuning trajectory of the algorithm and adapting initial parameters of the production218

run accordingly.219

The end result of these algorithms is a series of samples (i.e. configurations) which220

reproduce expected probability distribution (5) of potential energy for the system in ther-221

mal equilibrium at the target temperature. The comparison between the potential energy222

probability distribution in the samples generated by HECSS and extracted from the MD223

run is depicted in Fig. 4.224

4 Convergence of derived quantities225
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Figure 5: Consistency and convergence of
phonon frequencies in 3C-SiC crystal deter-
mined with harmonic model derived from MD
(dashed lines) and HECSS (solid lines) data.
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Figure 6: Consistency and convergence of 3C-
SiC phonon lifetimes derived with third order
model based on MD (blue and orange) and
HECSS (green and red) generated data.

The results presented above demonstrate that226

it is possible to effectively generate samples227

with potential energy distributions consistent228

with the data from the MD trajectories. The229

remaining, much more difficult, question is230

whether these samplings indeed provide an231

appropriate representation of the system in232

thermal equilibrium at a given temperature.233

This issue may be tested in various ways. In234

this work we propose to check if the potential235

model built basing on the HECSS-generated236

displacement-force data provides phonon fre-237

quencies and lifetimes consistent with those238

derived from the MD trajectory data.239

Therefore, we have compared the results240

obtained from the calculations of 3C-SiC crys-241

tal with LAMPPS potential used in the previ-242

ous section. The samples obtained by both243

methods (i.e. MD and HECSS) have been244

used to build force constants matrices for the245

material with ALAMODE program. Both246

second- and third-order force constants have247

been determined based on different number248

of samples. The resulting phonon frequencies249

and lifetimes are presented in Fig. 5 and Fig. 6,250

respectively. These findings demonstrate not251

only high-level of consistency between both252

data sets and models, but also similar conver-253

gence characteristics between both methods.254

It is important to note that HECSS-255

generated data sets consist of first N gener-256

ated samples (after initial burn-in period of 3257

samples), not the N samples selected from the258

larger set, as it is done with MD trajectory.259

Obviously, if one were forced to run as many steps of HECSS algorithm as time steps, of260

the MD trajectory the whole effort would be pointless. It is evident that the results of both261

approaches are very similar, despite a large difference in necessary computational effort –262

which provides a clear justification for future application of the presented method to the263
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much more expensive DFT-based variant of the potential energy calculation.264

5 Conclusions265

We have introduced a new high efficiency configuration space sampling (HECSS) scheme266

as an alternative for application of Molecular Dynamics as a source of configurations rep-267

resenting systems at non-zero temperatures. The results presented above demonstrate268

potential of the proposed HECSS method to generate faithful configuration samplings for269

systems in thermal equilibrium, which can be used to investigate anharmonic effects present270

in crystalline solids. It is worth noting that this method is not limited to crystals or to271

only geometric degrees of freedom. In principle, it is possible to extend its applicability272

to magnetic degrees of freedom or disordered systems. Furthermore, due to its inherent273

ability to provide 3×number-of-atoms force-displacement data points per configuration, it274

reduces number of DFT calculations required for simple harmonic model determination.275

This reduction is much more pronounced in higher-order models, where number of inde-276

pendent variables is usually large. It should also be emphasized that the generated samples277

are drawn from the physically meaningful distribution and not from the non-physical, sin-278

gle axis displacements. This difference may become important if there is any substantial279

anharmonicity in the system, which couples degrees of freedom.280
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