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Abstract

We present a novel route for attaining unconventional superconductivity in a

strongly correlated system without doping. In a simple model of a correlated

band insulator at half-filling we demonstrate, based on a generalization of

the projected wavefunctions method, that superconductivity emerges for a

broad range of model parameters when e-e interactions and the bare band-

gap are both much larger than the kinetic energy, provided the system has

sufficient frustration against the magnetic order. As the interactions are tuned,

the superconducting phase appears sandwiched between the correlated band

insulator followed by a paramagnetic metal on one side, and a ferrimagnetic

metal, antiferromagnetic half-metal, and Mott insulator phases on the other

side.
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1 Introduction

The discovery of unconventional superconductivity in a variety of materials, such as high
Tc superconductivity in cuprates [1], iron pnictides and chalcogenides [2], in organic su-
perconductors [3], in heavy fermions [4] and very recently in magic angle twisted bilayer
graphene [5, 6], has always ignited worldwide interest owing to their rich phenomenonol-
ogy, the theoretical challenges they pose, scientific implications and broad application
potential. In almost all of these examples, superconductivity appears upon chemically
doping the parent compound away from commensurate filling [1, 2, 5–8], though in some
cases inducing charge fluctuations by changing pressure also leads to the superconducting
phase [3, 8]. An important experimental fact is that chemical doping inevitably induces
disorder, as is clearly the case in high Tc superconductors (SCs), which makes these ma-
terials very inhomogeneous [9–12]. It is a theoretical and experimental challenge to come
up with new mechanisms and materials for clean high Tc SCs.

Theoretical analysis has shown that strong e-e correlations are crucial to achieve un-
conventional superconductivity. In most of the known unconventional SCs [1–3, 5–8] the
low temperature phase of the parent compound is either a strongly correlated AF Mott
insulator where charge dynamics is completely frozen, or a AF spin-density-wave phase
with at least moderately strong correlations. The unconventional superconductivity in
many of these materials can be understood, at least qualitatively, in terms of the strongly
correlated limit of the paradigmatic Hubbard model (single or multi band) doped away
from half-filling [7, 8, 13–16]. But the possibility of a SC phase in a strongly correlated

band-insulator has been explored very little so far, either theoretically or experimentally.
In this work, we show how a spin-exchange mediated SC can be realized without doping

in a simple model of a strongly correlated band insulator (BI), where the bare band gap
and the e-e interactions both dominate over the kinetic energy. As e-e interactions are
increased (but still remain of the order of the band-gap), the single particle excitation
gap in the BI closes, resulting in a metallic phase. Upon further increasing the e-e inter-
actions, superconductivity develops by the formation of a coherent macroscopic quantum
condensation of electron pairs, provided the metal has enough low energy quasiparticles
and the system has enough frustration against the magnetic order. The superconductivity,
which survives for a broad range of e-e interactions, features tightly bound short coherence
length Cooper pairs with a Tc well separated from the energy scale at which the pairing
amplitude builds up. The phase diagram, whose section with all model parameters fixed
except for the interaction to band-gap ratio is shown in Fig. 1, presents a plethora of
exoctic phases, that we discuss further below, in the vicinity of a broad region of the SC
phase.

2 Ionic Hubbard model and the limit of strong correlations

Our starting point is a variant of the Hubbard model, known as the ionic Hubbard model
(IHM), where, on a bipartite lattice with sub-lattices A and B, a staggered ionic potential
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Figure 1: Phase Diagram at a fixed t′ . The zero temperature phase diagram for the
2d square lattice for U = 10t and t′ = 0.4t. For ∆ ≫ U ≫ t, the system is a correlated
band insulator without any magnetic order which is adiabatically connected to the BI at
U = 0. On increasing U , first the gap in the single particle excitation spectrum closes,
as shown by the non-zero single particle density of states (DOS) at the Fermi energy
ρ(ω = 0), resulting in a metallic phase. On further increasing U/∆, superconductivity
sets in and lasts over a broad range (∆ ∈ [9.3 : 10]t) before the ferrimagnetic order with a
non-zero staggered magnetization (ms) and non zero uniform magnetization (mf ) sets in
via a first order transition. This is a Ferri metal phase with ρ↑(ω = 0) 6= ρ↓(ω = 0) > 0.
As U/∆ increases further, mf → 0 whence the magnetic order becomes AF. Furthermore,
a spectral gap opens up for the up-spin electrons such that ρ↑(ω = 0) = 0 while the
down-spin electrons are still conducting with ρ↓(ω = 0) being finite, resulting in a sliver
of AF half-metal. Eventually the system becomes a AF Mott insulator as U/∆ increases
further. Note that the SC phase is surrounded by metallic phases on both the sides.

∆/2 is present in addition to electron hopping and coulomb repulsion (U):

H = −∑

i,jσ(tijc
†
iσcjσ + h.c.)− µ

∑

i ni

−∆
2

∑

i∈A ni +
∆
2

∑

i∈B ni + U
∑

i ni↑ni↓ (1)

The amplitude for electrons with spin σ to hop between sites i and j is tij = t for near-
neighbours and tij = t′ for second neighbours. The chemical potential µ is chosen to fix
the average site occupancy at n = 1, corresponding to half-filling. The staggered potential
doubles the unit cell, and (for t′ < ∆/4) induces a gap between the two electronic bands
that result, making the system a BI at half-filling when the Hubbard on-site interaction
U is zero.

The parameter range of interest for this work is U ∼ ∆ ≫ t, t′, where a theoret-
ical solution can be obtained based on a generalization of the projected wavefunctions
method [13, 17–23]. In this limit and at half-filling, holons are energetically expensive on
the A sites (with onsite potential −∆

2 ) and doublons are expensive on the B sites (with
onsite potential ∆

2 ); i.e., in the low energy subspace hA and dB are constrained to be
zero (with d representing a doublon and h a holon). Consequently, we can carry out a
similarity transformation to eliminate all hopping processes connecting the low and high
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energy sectors of the Hilbert space. Nevertheless, and unlike in the Hubbard model, in
the half-filled IHM the system still has charge dynamics through hopping processes which
take place entirely within the low-energy Hilbert space, e.g., first neighbor processes such
as |dAhB〉 ⇔ | ↑A↓B〉 and second neighbour hopping processes which allow doublons to
hop on the A sublattice and holons to hop on the B sublattice. Further details can be
found in Appendix A.

The effective low energy Hamiltonian at half-filling, Heff , is an extended t− t′−J−J ′

model acting on a projected Hilbert space:

Heff = −t
∑

<ij>,σ

P[c†iAσcjBσ + h.c.]P − t′
∑

<<ij>>,α,σ

P[c†iασcjασ + h.c.]P

+J ′
∑

<<ij>>

P
[

SiA.SjA − 1

4
(2− niA)(2− njA)

]

+

[

SiB.SjB − 1

4
niBnjB

]

P

+J
∑

<ij>

P(SiA.SjB − (2− niA)njB/4)P +H0 +Hd +Htr − µ
∑

i

ni + ... (2)

Here J = 2t2/(U+∆) and J ′ = 4t′2/U . H0 is the rescaled Hubbard interaction term in the
projected Hilbert space. Hd(Htr) indicates other dimer (trimer) processes. We treat the
projection constraint inHeff using the generalised Gutzwiller approximation [22] and solve
it using a renormalized Bogoliubov mean field theory. Gutzwiller approximations [19, 20,
22] of the sort we use have been well vetted against quantum Monte Carlo calculations [13,
18,23] and dynamical mean field theory [22]. Details of the Gutzwiller approximation and
the various terms in Heff are given in Appendix A.

3 Phase diagram and the order parameters

We solve the renormalized effective low energy Hamiltonian using three different versions
of the renormalized mean field theory (RMFT). (1) To explore the SC phase, we use
a generalised spin-symmetric Bogoliubov mean field theory, which basically maps onto
a two-site Bogoliubov-deGennes (BdG) mean field theory for each allowed k point in
the BZ. We do a mean field decomposition of the various terms in the Hamiltonian,
and self-consistently solve for the following mean fields : (a) pairing amplitude, ∆γ

AB ≡
〈c†iA↑c

†
i+γB↓−c†iA↓c

†
i+γB↑〉, where γ is x or y, considering d-wave pairing symmetry (∆x

AB =

−∆y
AB ≡ ∆d) and extended s-wave pairing symmetry (∆x

AB = ∆y
AB ≡ ∆s) separately; (b)

density difference between two sublattices, δ = (nA−nB)/2; (c) inter sublattice fock shifts,

χ
(1)
ABσ = 〈c†iAσcjBσ〉, j = i ± x, i ± y, χ

(2)
ABσ = 〈c†iAσcjBσ〉, j = i ± 2x ± y or i ± 2y ± x; and

(d) intra sublattice fock shift on A(B) sublattice, with χαασ = 〈c†iασci±2x/2yασ+h.c.〉, and
χ

′

αασ = 〈c†iασci±x±yασ+h.c.〉. (2) To explore the magnetic order and the phase transitions
involved, we solve the renormalized Hamiltonian using standard mean field theory allowing
non-zero values of the sublattice magnetization mα = nα↑−nα↓ with α = A,B, from which
one gets the staggered magnetization ms = (mA −mB)/2 and the uniform magnetisation
mf = (mA + mB)/2, along with all other mean-fields mentioned above except for the
SC pairing amplitudes ∆s/d. (3) The third calculation, where we allow for both the SC
pairing amplitudes and the magnetization along with all other mean fields metioned above,
uses a standard canonical transformation followed up by the Bogoliubov transformation
to diagonalise the mean field Hamiltonian neglecting the inter-band pairing as weak. We
solve the resulting RMFT self-consistent equations on the square lattice for various values
of U,∆ and t′ to obtain the phase diagram shown in Fig. 1 and Fig. 2 (See Appendix B for
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details). In the parameter regime where solutions with nonzero SC pairing amplitudes and
magnetization (from the first two calculations) are both viable, we compare the ground
state energy of the two mean-field solutions to determine the stabler ground state. We
finally compare the energy of this state with the one obtained in the third calculation to
determine the true ground state.
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Figure 2: Order Parameters and Complete Phase diagram. Top panels show the
staggered magnetization, ms and the uniform magnetization, mf as functions of U/∆ for
several values of t′ and U = 10t. With increasing t′, the transition point at which the
magnetic order turns on first decreases for t′ ≤ 0.12 and then starts increasing again. The
magnetic transition is of first order for t′ = 0 as well as for large values of t′, though
for intermediate values of t′ the magnetization tuns on continuously. Panel (c) shows the
SC pairing amplitude ∆d/s, for the d-wave and extended s-wave pairing symmetry. With
increasing t′ the range in U/∆ over which the superconductivity is stable gets wider, and
the amplitudes of both d-wave and extended s-wave pairings get enhanced. Note that
the extended s-wave order turns on only for t′ > 0.35t. Panel (d) shows the SC order
parameter Φd/s, which also gives an estimate of the SC transition temperature, Tc. The
bottom panel (e) shows the complete zero temperature phase diagram for U = 10t in the
t′-U/∆ plane. As we approach the SC phase from either the correlated band insualtor or
the MI phase, the charge fluctuations build up gradually through metallic phases, and the
superconductivity develops by the formation of coherent Cooper pairs between electrons
which reside on the Fermi pockets of these metallic phases.

Our main findings are summarised in the phase diagram of Fig. 1, which shows a linear
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section (along the U/∆ axis) of the full phase diagram in Fig. 2[e], for the IHM on a 2d
square lattice. The unconventional SC phase is sandwiched between paramagnetic and
ferrimagnetic metallic phases, which in turn are sandwiched between a correlated band
insulator and an AF Mott insulator (MI), along with an intervening sliver of AF half-metal.
The correlated band insulator, stable for ∆ ≫ U ≫ t, is paramagnetic and adiabatically
connected to the BI phase of the non-interacting IHM. As ∆ approaches U , the low
energy hopping processes (|dAhB〉 ⇔ | ↑A↓B〉) become more prominent, increasing charge-
fluctuations such that the gap in the single particle excitation spectrum closes, leading
to a finite density of states (DOS) ρ(ω = 0) at the Fermi energy, though for most of the
parameter regime the resulting paramagnetic metallic (PM) phase is a compensated semi-
metal with small Fermi pockets as shown in detail in Fig. 3. This PM phase is adiabatically
connected to the metallic phase observed for weak to intermediate strength of U/t as long
as U ∼ ∆ and the system is constrained to be paramagnetic, as shown in earlier work
on the IHM using DMFT and other approaches [24–27]. On further increasing U/∆, in
the presence of sufficiently large t′, superconductivity sets in for U ∼ ∆ (irrespective of
the strength of U/t, as shown in Appendix C) due to the formation of coherent Cooper
pairs of quasi-particles which live near the Fermi pockets, and survives for a broad range
of U/∆.

The pairing amplitude ∆d/s for both the pairing symmetries we have studied, namely,
the d-wave and the extended s-wave, increases monotonically with U/∆ and drops to zero
via a first order transition at the transition to the ferrimagnetic metal. Though there is
a metastable state in which the SC phase coexists along with the ferrimagnetic order for
a range of U/∆ after the transition (see Appendix B for details), due to the really tiny
Zeeman splitting (≤ 0.035t for U = 10t) produced by the small uniform magnetization mf

the possibility of a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state seems unlikely [28–30].
The ferrimagnetic metal (FM) phase is characterised by non-zero values of the stag-

gered magnetization ms as well as the uniform magnetization mf , along with a finite DOS
ρσ(ω = 0) at the Fermi energy. With further increase in U/∆ the FM evolves into an AF
half-metal phase in which the system has only staggered magnetization (i.e., mf = 0) and
the single particle excitation spectrum for up-spin electrons is gapped while the down-spin
electrons are still in a semi- metal phase. Eventually, for a large enough U/∆, both the
spin spectra become gapped, and the system becomes an AF MI. Though we have studied
the IHM on a square lattice, a qualitatively similar phase diagram is expected on any
bipartite lattice, but with changes involving appropriate symmetries, e.g., d + id pairing
symmetry on a honeycomb lattice. We would also like to emphasize that though most of
the results presented in this work are for a 2d square lattice, the phase diagram obtained
within the renormalized mean field theory for higher dimensional lattices is qualitatively
similar, as seen in the phase diagram for a 3d cubic lattice shown in Appendix D.

We next discuss the changes in behavior of the system with increasing U/∆ for varying
values of t′, as depicted in Fig. 2. For t′ = 0, the system shows a direct first order transition
from an AF ordered phase to a correlated band insulator with a sliver of a half-metallic
AF phase close to the AF transition point. This is consistent with a variational quantum
Monte Carlo study of the half-filled IHM for t′ = 0 [31] as well as with most other earlier
work [32, 33]. When t′ is non-zero, due to the breaking of particle-hole symmetry as well
as the frustration induced by the second neighbour spin-exchange coupling J ′, the system
first attains ferrimagnetic order characterized by non-zero values of both the staggered
(ms) and the uniform (mf ) magnetizations, for a range of U/∆, beyond which it has pure
AF order as shown in panel (a) of Fig. 2. The magnetic transition occurs at increasingly
larger values of U/∆ with increasing t′ (except for an initial decrease for small values of
t′) which helps in the development of a stable SC phase.
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To stabilize the superconducting phase, a minimum threshold value of t′ (which is a
function of U) is required, partly in order to frustrate the magnetic order as mentioned
above, but more importantly to gain sufficient kinetic energy by intra-sublattice hopping
of holons and doublons on their respective sublattices where they are energetically allowed.
While a stable d-wave SC phase turns on for t′ > 0.1t for U = 10t, as shown in Fig. 2
, superconductivity in the extended s-wave channel gets stabilized for the much larger
value of t′ > 0.35t . In an intermediate regime of U/∆ and t′, states with both d-wave
and extended s-wave symmetry are viable solutions with energies that are very close (See
Appendix B for details). As t′ increases, the pairing amplitude increases and the range
of U/∆ over which the SC phase exists becomes broader for both the pairing symmetries
studied. Though t′ helps in the formation of the SC phase with pairing amplitudes living
on the nearest neighbour bonds, there is no significant second neighbour pairing induced
by J ′.

The pairing amplitude discussed above signals the strength of Cooper pairing on a
bond, but the SC order parameter Φd/s is defined in terms of the off-diagonal long-range

order in the correlation function Fγ1γ2(ri−rj) = 〈B†
iγ1

Bjγ2〉 where B†
iγ creates a singlet on

the bond (i, i + γ). Fig. 2 shows the SC order parameter, which has been obtained after
taking care of renormalization required in Fγ1γ2(ri − rj) in the projected wavefunction
scheme (see Methods section). Since the SC order parameter for this system is much
smaller than the strength of the pairing amplitude, with increase in temperature the
superconductivity will be destroyed at Tc by the loss of coherence among the Cooper
pairs, leaving behind a pseudo-gap phase with a soft gap in the single particle density of
states due to the Cooper pairs which will exist even for T > Tc. Thus Φd/s also provides
an estimate of the SC transition temperature Tc. The maximum estimated Tc for U = 10t
on a square lattice is approximately 0.03t for the d-wave SC phase, which for a hopping
amplitude comparable to that in cuprates (t ∼ 0.4eV ) gives a Tc ∼ 150K, and there is a
considerable scope for enhancing Tc by tuning U/∆ as well as t′.

We note that, in an earlier work [34] on the strongly correlated half-filled IHM with
t′ = 0, (i.e., in the absence of any of the frustration effects we have discussed above,) using
slave bosons to represent the projection processes in Eq. 2, and using a slave-boson mean
field theory approach to treat the problem, SC was shown to exist when U ∼ ∆ >> t.
However, this result is not consistent with the variational quantum Monte-Carlo study
mentioned above [31] where no SC phase was reported at half-filling in the absence of
frustration against the magnetic order. Within the Gutzwiller projection approach, while
we do find regions of parameter space inside the AFI region where SC pairing is viable
even in the t′ = 0 case, the SC phase has higher energy than the AFI phase and is
therefore metastable [35]; and as we have demonstrated above, only in the presence of
sufficient frustration against the magnetic order does SC exist in this simple model of a
band-insulator at half-filling.

4 Spectral functions and single-particle density of states

A striking feature of the phase diagram in Fig. 2 is that, though the origin of super-
conductivity in this model lies predominantly in the spin-exchange interactions (with a
weaker contribution from other dimer and trimer terms), superconductivity sets in only
after the system has evolved to a para metallic or a FM phase. In order to understand the
charge dynamics as the system approaches the SC phase with the tuning of U/∆, we have
analysed the single particle spectral functions which can be directly measured in angle
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Figure 3: Spectral Functions. The top two rows show the spin resolved low energy
spectral functions Aσ(k, ω ∼ 0) (integrated over |ω| ≤ (0.01 − 0.02)t for a 3000 × 3000
system) in the full Brillouin Zone (BZ) for t′ = 0.35t, U = 10t, to emphasize how the
charge fluctuations evolve as we approach the SC regime from the ferri metal side, with
A↑(k, ω ∼ 0)(A↓(k, ω ∼ 0)) shown in the first (second) row. At U/∆ = 1.09, the up
spin channel has electron pockets while the down spin channel has small hole pockets. As
U/∆ decreases, these Fermi pockets become bigger, the down spin spectral function gets
additional electron pockets and the up-spin spectral functions get additional hole pockets.
The last row shows A(k, ω ∼ 0) (same for up or down spins) for the para metal phase.
Moving towards the SC phase by increasing U/∆, Fermi pockets in the para metallic
state go on expanding until they almost start touching each other, at which point the
superconductivity sets in by formation of Cooper pairs between electrons close to the
Fermi energy.

resolved photoemission spectroscopy (ARPES). Fig. 3 shows the low energy spin resolved
spectral functions Aσ(k, ω ∼ 0), the non-zero value of which determine the energy contour
on which low energy quasiparticles live in the Brillouin zone (BZ) (see Appendix A for
details). Panels (a-c) show Aσ(k, w ∼ 0) in the FM phase for which the up-spin chan-
nel has electron pockets around the points K = (±π/2,±π/2) in the BZ and the down
spin spectrum has small hole pockets around the points K′ = (±π, 0), (0,±π) in the BZ as
shown in panel (a). As U/∆ decreases within the FM phase, and approaches the SC phase,
the electron pockets (hole-pockets) in the up-spin (down-spin) spectral function become
bigger, the down-spin channel gets additional electron pockets while the up-spin channel
gets additional hole pockets as shown in panel (c). In the PM phase, the low energy spec-
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Figure 4: Spectral functions. Here we show the low energy spectral functions Aσ(k, ω ∼
0) (integrated over |ω| ≤ (0.01− 0.02)t on a 3000× 3000 lattice) in the full Brillouin zone
(BZ) for the ferrimagnetic phase at a fixed U/∆ = 1.02 and for two values of t′. Upper
panels show A↑(k, ω ∼ 0), and the bottom panels A↓(k, ω ∼ 0).

tral functions have both electron pockets (around K) as well as the hole pockets (around
K′). As U/∆ increases through the PM phase, these Fermi pockets slowly expand such
that they almost touch each other before the system enters into the SC phase. Similar
behaviour is seen with an increase of t′ in the PM or the FM phases.

In order to understand the charge dynamics as the system approaches the SC phase
with the tuning of second neighbour hopping, t′, we have analysed the single particle
spectral functions for a fixed U/∆ in the ferrimagnetic metallic phase. We can understand
why the SC phase does not get stabilized for small values of t′ by looking at the evolution
of Aσ(k, ω ∼ 0) for a fixed U/∆ as one tunes t′. Fig. 4 shows Aσ(k, ω ∼ 0) close to the
magnetic transition point of t′ = 0, that is, for U/∆ = 1.02. For small values of t′, at
this value of U/∆ the system is in the ferrimagnetic metal phase. As we increase t′ inside
the ferrimagnetic metal phase, the up spin spectral functions get bigger electron pockets
around K = (±π/2,±π/2) points while the down spin spectral functions get bigger hole
pockets around K′ = (±π, 0), (0,±π) points. In addition to this, as t′ increases even
the up-spin spectral functions get hole pockets and the down spin spectral functions get
electron pockets. As a result of both these effects, an almost connected contour of Fermi
pockets is formed, whence superconductivity emerges by the formation of Cooper pairs of
the corresponding low energy quasiparticles.

The electron and hole pockets mentioned above, are best identified based on the mo-
mentum distribution function nσ(k) as defined in Appendix A. nσ(k) is uniformly half in
the entire BZ for any insulating phase of the model studied here. When the system goes
into a metallic phase, at least one of the bands cross the Fermi level resulting in filled or
empty Fermi pockets depending on the curvature of the band. Filled Fermi pockets, also
called electron pockets, have nσ(k) > 1/2, while empty Fermi pockets, also called hole
pockets, have nσ(k) < 1/2. Fig. 5 shows nσ(k) for t

′ = 0.35t for two values of U/∆. Panel
(a) shows the result for the ferrimagnetic metal phase and panel (b) shows the results
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Figure 5: Momentum Distribution Function. Momentum distribution function nσ(k)
in the ferrimagnetic metal and the para metal phases for t′ = 0.35t. In the ferrimagnetic
metal phase shown in panel (a) n↑(k) > 1/2 on (electron) pockets centered around the
K points while n↓(k) < 1/2 on (hole) pockets centered around the K′ points in the BZ.
Panel (b) shows the results for the paramagnetic metal phase, where the systen has spin
symmetry and nσ(k) < 1/2 around the K′ points while nσ(k) > 1/2 around the K points
for both the spin components. Everywhere else in the BZ nσ(k) = 1/2 in all the panels.

in the para metal phase. In the ferri-metal phase, n↑(k) has filled pockets around the
K points while the down-spin component has hole pockets around the K′ points in the
BZ. In the para-metal phase, shown in panel (b), there is a spin symmetry and nσ(k) has
electron and hole pockets for both the spin channels.

Fig. 6. shows the spin-resolved single particle density of states (DOS) ρσ(ω) which can
be measured directly in scanning tunneling spectroscopy (STS) experiments and provides
additional evidence for the existence of various metallic phases as in the phase diagram in
Fig. 2. The DOS at ω = 0 for these phases was presented in Fig. 1 as a function of U/∆,
and here we present the full ρσ(ω) vs ω. The para metal, ferri-metal and the AF half-metal
phases are all compensated semi metals, which is reflected in the depletion in the DOS
at the Fermi energy and is consistent with the small Fermi pockets shown in Fig. 3 (See
Appendix E,F for details). We have also analysed the DOS in the SC phase. As shown
in Fig. 6[d], ρ(ω ∼ 0) ∼ |ω| which is a signature of the gapless nodal excitations in the
d-wave SC phase. Interestingly, even for the extended s-wave SC phase ρ(ω ∼ 0) ∼ |ω| as
the pairing takes place around small Fermi pockets which are centered at K or K′ points
in the BZ where the pairing amplitude ∆s(k) = ∆s(cos(kx) + cos(ky)) has nodes as well,
resulting in gapless excitations. The gap, which is the peak to peak distance in the DOS,
is much larger in the d-wave SC phase than in the extended s-wave phase, consistent with
the former being the stable phase. Infact for the extended s-wave phase, Gaps is only
slightly larger than the SC order parameter Φs, which indicates that the extended s-wave
SC phase will have a narrower pseudogap phase above Tc, compared to the d-wave case.
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Figure 6: Single particle Density of states. Panels (a)-(c) show the spin resolved
single particle density of states (DOS) ρσ(ω) for t

′ = 0.15t and U = 10t. At U/∆ ∼ 1.04,
ρ↓(ω = 0) is finite where as ρ↑(ω = 0) = 0 with a finite spectral gap, corresponding to the
AF half-metal phase. At U/∆ = 1.03, the DOS at the Fermi energy is finite in both the
spin channels but ρ↑(ω) 6= ρ↓(ω) corresponding to the ferri metal phase. At U/∆ = 0.95,
the DOS is spin symmetric with a finite weight ρσ(ω = 0) at the Fermi energy and the
system is a para metal. Panel (d) shows ρ(ω) for the d-wave SC phase while panel (e)
shows that for the extended s-wave SC phase for U = 10t and t′ = 0.4t. ρ(ω) shows a
linear increase with |ω| for ω ∼ 0 for both the SC phases. Panel (f) shows the gap in the
DOS, which is basically the peak to peak distance in ρσ(ω), for both the d-wave and the
extended s-wave pairing symmetries.

5 Conclusions

As mentioned in the introduction, the origin as well as the basic features of unconventional
SC in most of the superconducting materials known today [3, 5, 7, 8] can be understood,
at least at the broad qualitative level [7,8,13–16], in terms of the strongly correlated limit
of the Hubbard model (single or multi band), but only upon doping the system away from
half-filling. In the theoretical model we have studied here, superconductivity appears even
at half-filling, and therefore without the disorder that inevitably accompanies doping, in
the special strongly correlated limit where U,∆ ≫ t, t′ and the second neighbour hopping is
sufficiently strong. A remarkable feature is that the SC phase in this model of a correlated
band insulator is sandwiched between paramagnetic metallic and ferrimagnetic metallic
phases (Fig. 2[e]), which makes the zero temperature phase diagram very different from
that of the known unconventional superconductors like high Tc cuprates [7] or the more
recent magic angle twisted bilayer graphene [5]. We expect that the SC phase in this
model has transition temperatures comparable to those of cuprates and that it also has a
pseudogap phase like in cuprates.

The question as to what are the possible experimental situations where this mechanism
of superconductivity at half-filling, with its promise of large transition temperatures and
no intrinsic disorder, can be realized is of obvious importance. Since the IHM has been
realized for ultracold fermions on an optical honeycomb lattice [36], where the state-of-the
art engineering allows the parameters in the Hamiltonian to be tuned with great control,
it will be interesting and perhaps the easiest to explore our theoretical proposal in these
systems. Due to the recent developments in layered materials and heterostructures, it
is indeed possible to think of many scenarios where the IHM can be used as a minimal
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model, for example, graphene on h-BN substrate and bilayer graphene in the presence
of a transverse electric field [37], which plays the role of the staggered potential. The
limit of strong correlation, crucial for realizing the SC phase, can be achieved in these
materials by applying a strain or twist. Band insulating systems with two inequivalent
strongly correlated atoms per unit cell, frustration in hopping and antiferromagnetic ex-
change, and lack of particle-hole symmetry, are likely tantalizing candidate materials as
well. Our work suggests that further theoretical and experimental exploration of such
novel possibilities where superconductivity can be realized with sufficiently high transi-
tion temperatures without doping in strongly correlated band insulators is an exciting and
worthwhile pursuit.
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A Details of strong correlation limit and Gutzwiller projec-

tion

We first describe the similarity transformation used to obtain the different terms in the
low energy effective Hamiltonian (Eq. 2). We then describe the generalized Gutzwiller
projection for obtaining the projected Hilbert space on which the low energy effective
Hamiltonian acts, along with the details of Gutzwiller factors which renormalize the vari-
ous couplings in the low energy Hamiltonian when the projection is implemented approx-
imately.

We solve the model in Eq. 1, in the limit U ∼ ∆ ≫ t, t′. In this limit and at half-filling,
holons are energetically expensive on the A sites (with onsite potential −∆

2 ) and doublons
are expensive on the B sites (with onsite potential ∆

2 ); i.e., in the low energy subspace
hA and dB are constrained to be zero. We do a generalized similarity transformation
on this Hamiltonian, H̃ = e−iSHeiS , such that all first and second neighbour hopping
processes connecting the low energy sector to the high energy sector of the Hilbert space
are eliminated. The similarity operator of this transformation is S = − i

U+∆
(H+

t A→B
−

H−

t B→A
)− i

∆
(H0

t A→B
−H0

t B→A
)− i

U
(H+

t′ A→A
−H−

t′ A→A
)− i

U
(H+

t′ B→B
−H−

t′ B→B
) where H+

t/t′

represents first or second neighbour hopping processes which involve an increase in hA
or dB by one and H−

t/t′ on the other hand represent hopping processes which involve a

decrease in hA or dB by one. H0
t processes do not involve a change in hA and dB. The

low energy effective Hamiltonian obtained by this transformation is given in Eq. 2, with
H0 = U−∆

2

∑

i[niA↑niA↓ + (1 − niB↑)(1 − niB↓)]. Further details can be found in [22].
Heff acts on a projected Hilbert space which consists of states |Φ〉 = P|Φ0〉 where the
projection operator P eliminates components with hA ≥ 1 or dB ≥ 1 from |Φ0〉. We use
here the Gutzwiller approximation [13, 19, 22] to handle the projection, by writing the
expectation value of an operator Q in a state P|Φ0〉 as the product of a Gutzwiller factor
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gQ times the expectation value in |Φ0〉 so that 〈Q〉 ≃ gQ〈Q〉0. The standard procedure [19]
for calculating gQ has been generalised by us for the case where holons are projected out
from one sublattice and doublons from the other [22].

We thus obtain the renormalized effective Hamiltonian with the inter-sublattice ki-
netic energy 〈c†iAσcjBσ〉 ≈ gtσ〈c†iAσcjBσ〉0, and intra-sublattice kinetic energy 〈c†iασcjασ〉 ≈
gασ〈c†iασcjασ〉0. The inter-sublattice spin correlation 〈SiA · SjB〉 ≈ gsAB〈SiA · SjB〉0 while
the intra-sublattice spin exchange term gets renormalized with a different factor of gsαα.
The only other dimer term which does not get rescaled under the Gutzwiller projection is

Hd = − t2

∆

∑

<ij>,σ

[(1− niAσ̄)(1− njB) + (niA − 1)njBσ̄] (3)

as it consists of only density operators [19, 22].
Then we have the important trimer terms:

Htr = − t2

∆

∑

<ijk>,σ

[gAσc
†
kAσnjBσ̄ciAσ + g2ciAσ̄c

†
jBσ̄cjBσc

†
kAσ]

− t2

∆

∑

<jil>,σ

[gBσclBσ(1− niAσ̄)c
†
jBσ + g2clBσc

†
iAσciAσ̄c

†
jBσ̄]

+
tt′(U +∆)

2U∆

∑

<kj>,<<ik>>σ

[

gtσc
†
iAσ(1− nkAσ̄)cjBσ − gtσc

†
jAσnkBσ̄ciBσ +

gAABσc
†
iAσc

†
kAσ̄ckAσcjBσ̄ + gBBAσc

†
jAσc

†
kBσ̄ckBσciBσ̄

]

+ h.c. (4)

The various Gutzwiller factors involved (see [22] for details) are as follows:

• gAσ = 2δ/(1 + δ + σmA), gBσ = 2δ/(1 + δ − σmB) and gtσ =
√
gAσgBσ;

• gsα1α2
= 4/

√

((1 + δ)2 −m2
α1
)((1 + δ)2 −m2

α2
), and g2 = δgsAB;

• gα1α1α2σ = 4δ/
√

((1 + δ)2 −m2
α1
)(1 + δ + σmα1

)(1 + δ + σmα2
) .

Superconducting order parameter Φd/s:
The SC correlation function is the two particle reduced density matrix defined by Fγ1γ2(ri−
rj) = 〈B†

iγ1
Bjγ2〉 where B†

iγ , defined above, creates a singlet on the bond (i, i + γ). The
SC order parameter Φd/s is defined in terms of the off-diagonal long-range order in this

correlation Fγ1,γ2(ri − rj) → 〈B†
iγ1

〉〈Bjγ2〉 = Φγ1Φγ2 as |ri − rj | → ∞. Since Fγ1γ2(ri − rj)
also corresponds to hopping of two electrons from (j, j + γ2) to sites (i, i + γ1), in the
projected wavefunction scheme it scales just like the product of two hopping terms such
that Fγ1γ2 ≈ gA↑gB↓F

0
γ1γ2 . Hence the rescaled form of the superconducting order parameter

is Φd/s ≈ √
gA↑gB↓Φ

0
d/s where Φ0

d/s ≡ ∆d/s is the order parameter calculated in the
unprojected wavefunction of the low energy effective Hamiltonian in Eq. 2.

Spectral Functions and Density of States:

In the paper we also discuss the single particle density of states (DOS) and the spectral
functions. In the Gutzwiller projection method, the Green’s function is rescaled with
the appropriate Gutzwiller factor such that Gασ(k, ω) = gασG

0
ασ(k, ω) where G0

ασ(k, ω)
is calculated in the unprojected basis. Here α represents the sublattice A or B and σ is
the spin index. The spectral function, Aασ(k, ω) which is imaginary part of the Green’s
function also get rescaled with the same Gutzwiller factors. The results presented in
the paper are for the spectral functions averaged over the two sublattices Aσ(k, ω) =
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1
2

∑

αAασ(k, ω) which can be expressed as A↑(k, ω) = (|u1↑k|2 + |u2↑k|2)δ(ω − E1↑(k)) +
(|u3↑k|2 + u4↑k|2)δ(ω −E2↑(k)) + (|v1↑k|2 + |v2↑k|2)δ(ω +E1↓(k)) + (|v3↑k|2 + |v4↑k|2)δ(ω +
E2↓(k)). The down spin spectral function can be obtained by replacing ui↑k ↔ vi↓k (and
vice-versa) and by replacing Eiσ(k) by −Eiσ(k). Here E1,2,↑(k) are the eigenvalues of
the BdG equation for a given k in the BZ with eigenvectors (u1↑k, u2↑k,−v1↓k,−v2↓k)
and (u3↑k, u4↑k,−v3↓k,−v4↓k) respectively and −E1,2↓ are eigenvalues corresponding to
eigenvectors obtained by uiσk → viσk and viσk → −uiσk. In order to get the low energy
spectral functions, we integrate Aσ(k, ω) over a small ω range such that |ω| ≤ (0.01−0.02)t.

The single particle density of states is defined as, ρασ(ω) =
∑

k Aασ(k, ω). The results
presented in the paper are for the single particle density of states (DOS) in the up spin
and down spin channels, defined as ρσ(ω) = (ρAσ(ω) + ρBσ(ω))/2. The zero temperature
momentum distribution function, which helps in identifying whether a Fermi pocket is an
electron pocket or a hole pocket can also be obtained from the spectral function using
nσ(k) =

∫ 0
−∞

dωAσ(k, ω).
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Figure 7: Order parameters and the ground state energy. Left panels show various
mean fields, namely, the staggered magnetization ms, uniform magnetization mf , d-wave
pairing amplitude ∆d and the extended s-wave pairing amplitude ∆s as functions of U/∆
for different values of t′ at U = 10t for the 2d square lattice. Right panels show the
ground state energies for the d-wave SC phase, extended s-wave SC phase and the non-
superconducting phase where only magnetic order is allowed, as functions of U/∆.
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B Competing order-parameters and ground state energy

comparison

We solve the effective low energy Hamiltonian using three different versions of renormalized
mean field theory (RMFT), the first which allows for superconductivity but not magnetic
order, the second which allows for the magnetic order but not superconductivity, and the
third which allows for both, along with various other mean fields, as discussed in Section
3 of the paper. When we compare the results from the first two calculations, we find
that there is a significantly broad regime of parameters over which the SC and magnetic
orders both exist and compete with each other. In order to determine the true nature of
the ground state in this parameter regime, we compare the ground state energies of the
different RMFT solutions.

 0

 0.2

 0.4

 0.6

 0.8

 1  1.04  1.08  1.12  1.16

(a) d-wave

U/∆

ms
2 x mf

∆d

M E T A -

S T A B L E 

S C

S T A B L E 

S C

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

 1  1.04  1.08  1.12  1.16

(b)

d-wave
E

gs

U/∆

Pairing+
 magnetic order

 Non-pairing

 0

 0.2

 0.4

 0.6

 0.8

 1  1.04  1.08  1.12  1.16

(c) extd s-wave

U/∆

ms
2 x mf

∆s

M E T A -

S T A B L E 

S C

S T A B L E 

S C

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

 1  1.04  1.08  1.12  1.16

(d)

extd s-waveE
gs

U/∆

Figure 8: Comparison of different renormalized mean field theories. Top left
panel shows several mean fields obtained from the third solution of the RMFT where
both SC pairing and magnetic order are allowed, namely, the staggered magnetization ms,
uniform magnetization mf , and the d-wave pairing amplitude ∆d as functions of U/∆
for t′ = 0.45t and U = 10t. Top right panel shows the ground state energy of the non-
superconducting phase where only magnetic order is allowed and the energy for the third
solution as functions of U/∆. Note that the phase with both orders coexisting is only a
metastable phase. Lower panels show similar results for the extended s-wave SC order.

As shown in Fig. 7 , even for small values of t′, the SC pairing amplitudes, in both
the pairing channels studied, turn on but the magnetic transition precedes the transition
into the SC phase. Once the magnetic order turns on, the ground state energy of the
non-superconducting solution becomes lower than that of both the SC phases studied as
shown in the right panels of Fig. 7. Thus for t′ < 0.1t there is no stable SC phase, as shown
in Fig. 2[e] of the main paper. For larger values of t′, as U/∆ increases superconductivity
turns on before the magnetic order sets in. There continues to be a solution of the
RMFT with pairing amplitudes, in either of the symmetry channels, non zero even in the
magnetically ordered regime, but the non-superconducting magnetically ordered solution
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is lower in energy here. Thus the pure SC phase is a stable phase only before the magnetic
transition point.

There is a third scenario possible where one can do a RMFT allowing for non-zero
values of both SC and magnetic order parameters along with other mean fields. Before
the magnetic order turns on, this theory is consistent with the spin-symmetric Bogoli-
ubov theory described above. After the magnetic order sets in, differences between the
two calculations become visible. In the third calculation, the SC order coexists with the
ferrimagnetic order for a range of parameters as shown in Fig. 8 though the pairing am-
plitudes decrease with increasing U/∆. Comparing the energy of this phase with that of
the ferrimagnetic metal phase, which was found to be the stabler phase by comparing the
energies in the first two calculations in this regime, we find that the coexistence phase is
also a metastable phase, and the system actually stabilizes into the ferrimagnetic metallic
phase as shown in Fig. 2 of the paper.

C Phase-diagram in U/t− U/∆ plane for a fixed t′
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Figure 9: Phase diagram in U/t−U/∆ plane. Phase diagram of the half-filled IHM on
a 2d square lattice in U/t−U/∆ plane for t′ = 0.4t. Note that the SC phase always turns
on for U ∼ ∆ irrespective of the value of U/t within the range of validity of the calculation.
As U/t increases, the range of U/∆ over which both the s-wave and the d-wave SC phases
are viable solutions and almost degenerate shrinks rapidly while the range of U/∆ over
which only the d-wave SC phase is stable reduces rather slowly.

Earlier in this paper we have shown and discussed the phase-diagrams for the IHM on
a 2d square lattice for a fixed value of U/t. Fig. 2[e] shows the phase diagram in t′/t−U/∆
plane for a fixed U and Fig. 1 shows a section of this phase diagram for t′ = 0.4t. In order
to understand how the different phases and the phase boundaries between them evolve
with varying U , here we show in Fig. 9 the phase diagram in U/t−U/∆ plane for a fixed
t′/t. As is clear from the figure, superconductivity always turns on for U ∼ ∆ irrespective
of the value of U/t though with increase in U/t, the range of U/∆ over which both pairing
symmetries are almost degenerate solutions shrinks rapidly such that eventually, for large
enough values of U/t, the system has only a d-wave SC phase.
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D Phase-diagram for a cubic lattice

All the results presented so far in the paper are for the 2d square lattice. We would
like to emphasize that within the renormalized mean field theory the phase diagram is
qualitatively similar for higher dimensional systems as well. This is clear from Fig. 10
which shows the phase diagram for a cubic lattice.
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Figure 10: Phase diagram for cubic lattice. Phase diagram of the half-filled IHM on
a 3d cubic lattice for U = 12t and t′ = 0.35t. Note that the phase diagram obtained for
cubic lattice is qualitatively similar to the one obtained for a 2d square lattice.

E Band dispersion and the nature of Fermi pockets

Fig. 11 shows the band dispersion Enσ(k) for both the bands on paths along high symmetry
directions in the BZ. In the AF half-metal phase, the down spin channel has small hole
pockets around K′ and tiny electron pockets around K. In the Ferrimagnetic metal phase,
the down spin band E1↓(k) crosses the Fermi energy around the K′ points resulting in
small hole pockets and E2↑(k) crosses the Fermi energy near the K points resulting in
small electron pockets. In the paramagnetic metal phase, E1(k) crosses the Fermi energy
around the K′ points resulting in hole pockets and E2(k) crosses the Fermi level around
K resulting in electron pockets, where, because of the spin symmetry, we have suppressed
the spin indices.

F Spectral functions in the AF half-metal phase

Finally, we show the low energy spectral function Aσ(k, ω ∼ 0) for the AF half-metal
phase (see Fig. 12), which is fully consistent with the band-dispersions shown above. The
up-spin channel is gapped while A↓(k, ω ∼ 0) has tiny electron pockets at the K points
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Figure 11: Band Dispersion. Band dispersion Enσ(k) on paths along high symmetry
directions in the BZ. Panel (a) shows bands in the AF half-metal phase where both the
down spin bands cross the Fermi level near the K and K′ points while the up spin bands
are fully gapped. Panel (b) shows bands in the ferrimagnetic metal phase, where one
down-spin band crosses the Fermi level near the K′ points while one up-spin band crosses
the Fermi level near the K point and the other two bands are gapped. Panel (c) shows
bands in the paramagnetic metal phase where there is a spin symmetry and all the bands
cross the Fermi level. The lower panels zoom in close to the band crossing at the Fermi
energy.
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Figure 12: Spectral functions in the AF half-metal phase. Spin resolved low energy
spectral function Aσ(k, ω ∼ 0) (integrated over |ω| ≤ 0.01t) in the AF half-metal phase.
Left (right) panel shows the spectral function for the up-spin (down-spin) channel.

and hole pockets at the K′ points in the BZ.
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