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Abstract

Random matrix models provide a phenomenological description of a vast vari-
ety of physical phenomena. Prominent examples include the eigenvalue statis-
tics of quantum (chaotic) systems, which are characterized by the spectral form
factor (SFF). Here, we calculate the SFF of unitary matrix ensembles of infi-
nite order with the weight function satisfying the assumptions of Szegö’s limit
theorem. We then consider a parameter-dependent critical ensemble which
has intermediate statistics characteristic of ergodic-to-nonergodic transitions
such as the Anderson localization transition. This same ensemble is the matrix
model of UpNq Chern-Simons theory on S3, and the SFF of this ensemble is
proportional to the HOMFLY invariant of p2n, 2q-torus links with one compo-
nent in the fundamental and one in the antifundamental representation. This
is one example of a large class of ensembles with intermediate statistics arising
from topological field and string theories. Indeed, the absence of a local or-
der parameter suggests that it is natural to characterize ergodic-to-nonergodic
transitions using topological tools, such as we have done here.
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1 Introduction

1.1 Random Matrix Theory in disordered and complex systems: brief
overview

The idea of Wigner [1] to describe complex physical systems by treating its Hamiltonian
matrix as random has found since then a wide variety of applications. One of the main
interests and challenges of modern theoretical physics to which random matrix theory
has been very successfully applied is the description of interacting many-particle systems
subject to a certain degree of randomness. Physically, this randomness is often caused by
a true physical disorder, originating for instance from irregularities in a crystal lattice or
by the presence of impurities. One can also have auxiliary phenomenological randomness
representing the fact that the interactions in the system are too complicated to be described
in microscopic detail, which is the case, for instance, for heavy nuclei. Further, quantum
noise induced when a system is in contact with an external bath is a source of a temporal
randomness. Random matrix theory (RMT) allows one to deal with such problems on
a phenomenological level. This theory cannot answer questions about the microscopic
details of a system, but it focuses instead on universal relations and scaling properties of
relevant quantities. Indeed, one of the main results of RMT is the existence of universality
classes (see [2] for survey), in which the symmetry of the system determines the class and,
consequently, the statistical properties of the energy spectrum.

RMT models disordered and/or complicated Hamiltonians as matrices with random ele-
ments distributed according to a certain probability. Certain general physical symmetries
(like time-reversal symmetry) provide restrictions on how the matrix elements are corre-
lated. This leads to a different classes of random matrices [3], see the classic book by
Mehta [4] and a contemporary overview of RMT by Forrester [5]. Here, we will con-
sider ensembles of Hermitian or unitary matrices, in particular, their eigenvalue statistics.
A prominent RME is the GUE, which is an ensemble of Hermitian random matrices H
with Gaussian weight function. This entails that its eigenvalues are distributed according
to a UpNq-invariant Gaussian probability distribution P pHq „ expr´αTrV pHqs, where
V pHq “ H2 and α is a real positive parameter. Other classes correspond to ensembles of
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real symmetric matrices, with the probability measure being invariant under orthogonal
transformations, or self-dual Hermitian matrices with probability distribution invariant
under symplectic transformations, known as GOE and GSE, respectively [4]. Another no-
table generalization is the notion of circular Random matrix Ensemble (RME), where the
eigenvalues are distributed across the complex unit circle instead of the real line. The cir-
cular analogues of GOE, GUE, and GSE are known as COE, CUE, and CSE, respectively.
We will only be considering unitary ensembes here. Further, although many properties are
common to the Gaussian and circular ensembles, certain objects are easier to calculate in
the circular case, which is why these ensembles are the focus of this paper.

For typical systems, which obey a so-called Eigenstate Thermalization Hypothesis (see [6],
[7] for a recent review), almost every energy level contains “seeds" of thermal behavior
(even for isolated systems) leading to the chaotic nature of the RMT statistics. Therefore,
quantum states belonging to this type are called ergodic. In disordered systems, the de-
localized or chaotic phase is described by Wigner-Dyson statistics, in which case the level
spacing distribution is given by ppsq „ sβeaβs

2 , where s is the difference between consecu-
tive energy levels, β “ 1, 2, 4 for the unitary, orthogonal and symplectic cases respectively
and aβ is a constant. As the strength of randomness increases, there can occur a transition
to the situation where states of a system are localized in some basis. This could be a basis
of states relevant for the description of localization in real space (Anderson localization) or
in the Hilbert space (many-body localization). Deep inside a localized phase, the behavior
of the system is nonergodic and the RMT level’s statistics follows a Poisson distribution,
ppsq „ e´s. This type of statistics is usually found in quantum integrable systems, where
a sufficient number of conserved charges significantly constrains the dynamics.

1.2 Intermediate statistics and corresponding RMT approaches

Quantum systems whose classical counterparts are somewhere in between ordered and
chaotic have spectral statistics that exhibit a mixture of Wigner-Dyson and Poissonian
features, which we will refer to as intermediate statistics. An important example of such a
system is given by disordered conductors, where increasing the disorder strength beyond
a certain point causes electrons to undergo Anderson localization. In a sufficiently small
energy window around the mobility edge, electrons exhibit the aforementioned intermediate
statistics [8]. Further, at the point of transition between extended and localized regimes
the wave functions are multifractal, which entails that intersecting the wave function at
various amplitudes gives a set of varying fractal dimensions depending on the amplitude. A
natural question occurs: is it possible to unveil some universality, perhaps based on RMT,
for the ergodic-to-nonergodic transition itself for a broad range of systems? It should be
stressed once more that such RMT-based descriptions are purely phenomenological, and
that these do not capture e.g. the dimension-dependence of disorder-induced localization
in the genuine Anderson model. Indeed, RMT-based approaches would capture generic
features of ergodic-to-nonergodic transitions which includes, but is not limited to, the
Anderson transition. This is very much in the same spirit as the well-known fact that
Wigner-Dyson statistics describe the energy level statistics of generic quantum chaotic
systems, regardless of the microscopic details of these systems.

There were several proposals for an RMT-description of ergodic-to-nonergodic transitions
[9], [10], [11], [12], [13], [14], [15], [16]. Since Anderson transition occurs in real space,
the RME symmetry should be broken in some way: this is a general feature required
for the RMT to describe the transition. One obvious class of RMT’s should therefore
has a manifestly broken symmetry. A notable example of these theories are the banded,
non-invariant RMT’s [8]. The probability distribution P pHq „ expp´

ř

i,j |Hij |
2{Aijq is
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defined by the variance matrix Aij „ r1 ` pi ´ jq2{B2s´1, which is clearly non-invariant
with respect to the unitary transformations of the form H Ñ UHU :. It was explicitly
demonstrated that this ensembles describes an intermediate statistics and the multifractal
wave functions [17].

However, one can also have intermediate statistics in ensembles where the symmetry is not
explicitly broken, i.e. for which the measure is invariant with respect to the transformations
from the corresponding group. We focus on these ensembles here. Generically speaking,
one can classify ensembles according to the asymptotic behaviour of the confining potential.
Let us consider a power-law asymptotic scaling, V phq „ |h|α for |h| " 1 . If the exponent
α satisfies α ą 1, we talk about steep confinement. When on the other hand α ă 1, we
deal with a weakly confined Random Matrix Ensemble. A particular weakly confined RME
may be obtained from the generic one by a limiting procedure. Consider a potential of the
form Vαphq “ γ´1h´2p|h|α ´ 1q2 for large |h|. In the limit α Ñ 0 at fixed h, we find the
following confining potential

V pHq “
1

γ
log2 H, |H| " 1 , (1)

which shall be called log-Gaussian critical RME (or a log2-RME) [18]. It was realized
that several classes of invariant RMT’s, such as (1) exhibit intermediate statistics in terms
of eigenvalues and multifractal behavior in terms of statistics of its eigenfunctions. Re-
markably, both the spectral statistics and eigenvector multifractality at the mobility edge
were found to match the matrix ensemble prediction at the exact same value of q [19].
This behavior is somehow reminiscent of the spontaneous symmetry breaking conjectured
in [19], [20].

The intermediate RME exists in a ‘circular’ guise, i.e. where the matrices under consid-
eration are unitary instead of Hermitian, so that its eigenvalues lie on the complex unit
circle. In this case, the potential is given by

V pxq “ log

«

8
ź

j“1

p1` qj´1{2xqp1` qj´1{2z´1q

ff

, (2)

which, upon exponentiating, is proportional to the third Jacobi theta function. Again, due
to the fact that certain expressions are more tractable in the circular case, we focus on this
representation.

1.3 Connection to topological field and string theories

The intermediate RME described above was also found in a completely different context,
namely, as a matrix model of UpNq Chern-Simons theory S3 [21]. Chern-Simons is a
topological theory, indeed, Witten famously showed that its Wilson line expectation val-
ues are given by knot- and link invariants [22]. We suspect that it is not a coincidence
that the matrix model of a topological theory has intermediate statistics characteristics of
ergodic-to-nonergodic transitions. Indeed, the absence of a natural local order parameter
in ergodic-to-nonergodic transitions suggest that it is natural to use topological tools for
its characterization.

There is, in fact, a relation between strongly Anderson-localized systems and noninter-
acting topological states [23]. One of the most notable features of topological states of
matter is the existence of propagating edge states, which are robust with respect to the
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application of arbitrarily strong perturbations at the boundary that break translational
symmetry (e.g. disorder). It is quite remarkable that these gapless, extended states per-
sist in systems with strong disorder, as this means that such states are robust against
Anderson localization. As such, the problem of classifying all noninteracting topological
insulators in d spatial bulk dimensions is equivalent to a classification problem of Anderson
localization at the pd´ 1q-dimensional boundary. Indeed, the 10-fold classification scheme
of noninteracting topological insulators [24] is equivalent to the Altland-Zirnbauer classi-
fication of (noninteracting) Anderson insulators [25]. This correspondence however does
not describe transition from ergodic to nonergodic phases. This begs the question: can
the nonergodic phases and ergodic-to-nonergodic phase transitions be generally related to
certain interacting topological states of matter?

Indeed, UpNq Chern-Simons theory is such an interacting topological system which de-
scribes ergodic-to-nonergodic transitions. We conjecture that it is representative of a
broader correspondence, and that the appropriate tools for the description of ergodic-
to-nonergodic transitions are available in the topological part of the string theory. This
provides a potential new bridge (apart from AdS/CMT duality) between string theory and
quantum many-body theory, from which a fruitful exchange of ideas can arise. This is the
main motivation of the present work.

To further substantiate our conjecture, we note that close inspection of matrix model
potentials which appeared in the context of topological strings (see e.g. [26], [27], [28]) shows
that all of them belong to the class of weak confinement potentials, as far as the authors
are aware. As described above, weak confinement is a signature of intermediate statistics.
On the other hand, it appears that many, if not all, of the known intermediate invariant
one-matrix models that appeared in the condensed matter literature and which exhibit a
multifractal spectrum are described by some of the variants of topological string theory. In
the simplest case of the Chern-Simons matrix model, the connection to string theory arises
from the finding due to Witten [29] that a UpNq Chern-Simons theory on S3 describes
open topological strings on the co-tangent space T ˚S3, in the presence of N D-branes
wrapping S3. Later, Gopakumar and Vafa [30], [31] found that these models correspond to
closed topological strings on other spaces, called conifolds. This correspondence was named
geometrical transition between a so-called A and B models and is one of the manifestations
of the gauge-gravity duality (see [32] for an extensive review). In the N Ñ 8 limit, which
we focus on here, UpNq Chern-Simons theory on S3 undergoes a so-called crystal melting
transition [33], which is related to topological strings on certain Calabi-Yau manifolds [34].
We conjecture that matrix models with a similar origin in topological string theory, such
as those of UpNq Chern-Simons theories on general lens spaces or or ABJM theory, also
exhibit intermediate statistics.

1.4 Summary of main results

To clarify the connection between intermediate RME and topological string theory, we
calculate the asymptotic SFF for the Chern-Simons matrix model. The SFF is one of
the central objects in RMT, it has clear features which differentiate between ergodic and
nonergodic behaviors. While our original motivation was the intermediate Chern-Simons
matrix model mentioned above, the techniques we apply have far broader applicability.
In particular, they can be applied to any matrix model with unitary matrices of infinite
order and weight function satisfying the assumptions of Szegö’s limit theorem [35]. For
this reason, we treat both the general and the specific cases, so that certain sections may
be skipped depending on the particular interests of the reader.
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• Spectral Form Factor

To calculate the SFF, we express it as a sum over weighted unitary integrals with
the insertion of Schur polynomials. These integrals take the form of certain Toeplitz
minors [36], [37], [38], [39]. We assume we can write the weight function as fpzq “
Epx; zqEpx; z´1q or fpzq “ Hpx; zqHpx; z´1q, where Epx; zq pHpx; zqq is the gener-
ating function of elementary (homogeneous) symmetric polynomials defined in terms
of a set of variables x “ px1, x2, . . . q. We find that the SFF is then given by

1

N

@

|trUn|2
D

“

"

N´1
“

n` pnpxq
2
‰

, n{N ď 1 ,
1 , n{N ě 1 .

(3)

where pnpxq are power sum polynomials in terms of x. SFF’s are typically charac-
terized by what has been termed a dip-ramp-plateau shape, see e.g. [40], [41], [42].
We find that the dip arises from the disconnected SFF, i.e. xtrUny2 “ pnpxq

2. The
factor n which saturates at n{N “ 1 gives the ramp and plateau; this contribution
arises from the connected SFF.

• Trace identities

As an auxiliary result to the calculation of the SFF, it is easy to show that, for
m,n P Z`,

@

trUmtrU´n
D

“ mδmn ` xtrUmy
@

trU´n
D

. (4)

Further, for a partition λ satisfying λ1 ` λ
t
1 ´ 1 ă n for some n P Z`, we have,

@

trλUtrU´n
D

“ xtrλUy
@

trU´n
D

. (5)

Consider instead the case where λ satisfies λ1 ` λt1 ´ 1 ă n, and define m :“ λ1 `

λt1 ´ 1´ n. Then, if m ď λ1 ´ λ2 and m ď λt1 ´ λ
t
2, (5) holds as well.

• Dualities

It is easy to see that, upon replacing Epx; zq byHpx; zq, we find exactly the same SFF.
Indeed, for any set of variables x for which ppnpxqq2 gives the same value for all n,
fpzq “ Epx; zqEpx; z´1q and f “ Hpx; zqHpx; z´1q gives the same SFF. We suspect
that this is an example of a larger class of dualities between various intermediate
RME’s.

• Application to Chern-Simons RME

We apply these results to the matrix model with weight function given by the third
Jacobi theta function,

fpzq “
ÿ

nPZ

qn
2{2zn “ pq; qq8

8
ź

k“1

p1` qk´1{2zqp1` qk´1{2z´1q , 0 ă |q| ă 1 . (6)

This is the matrix model described above, which was introduced in [13] as a phe-
nomenological model of intermediate statistics, and in [43] as a matrix model of UpNq
Chern-Simons theory on S3. In the latter context, the SFF is given by a topological
invariant, specifically, the HOMFLY invariant [44], of p2n, 2q-torus links with one
component in the fundamental and the other in the antifundamental representation.
As far as the authors are aware, these invariants have heretofore not appeared in the
literature. As for all matrix models considered here, the SFF is given by a linear
ramp which saturates at a plateau, plus a disconnected contribution. Since the SFF
corresponds to a p2n, 2q-torus link, it follows that the disconnected contribution is
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the product of two pn, 1q-torus knots. Calculating the invariant of an pn, 1q-torus
knots for general N , we find that it is given by the qn-deformation of N , which sim-
plifies even further upon implementing the limit N Ñ8. We thus find the following
expression for the SFF

1

N

@

|trUn|2
D

“

"

N´1
“

n` pq´n{2 ´ qn{2q´2
‰

, n{N ď 1 ,
1 , n{N ě 1 .

(7)

We plot this below for q “ 0.9k, k “ 1, . . . , 9, where we add lines at x`pqx`q´x´2q´1

for continuous x as a guide to the eye. The trace identities in (4) and (5) of course
apply to the Chern-Simons matrix model as well, where the latter entails that one
can ‘unlink’ an pn, 1q-torus knot in the fundamental representation and an unknot in
representation λ.

Figure 1: The SFF given in (104) plotted for n “ 1, 2, . . . , 20, with q “ 0, 9k ,
k “ 1 . . . , 9. The continuous lines are added to guide the eye. For q farther from
0, the disconnected contribution becomes larger, so that the dip is more pronounced
and the SFF displays greater deviations from a simple linear ramp. There are dashed
lines which indicate kn = constant, in particular kn “ 1, . . . , 9. From (91), it follows
that lines with kn = constant lie at 45 degrees for any SFF calculated here, i.e. any
SFF given by (89). Note that these SFF’s saturate at a plateau at n{N “ 1, which
is, of course, not indicated in this plot.

1.5 Outline of the paper

This paper organized as follows. In section 2, we set up the general framework of random
matrix ensembles and introduce important objects, including the SFF. In section 3, we
treat UpNq Chern-Simons theory on S3 and its expression as a matrix model, after which
we consider the expression of knot and link invariants as matrix integrals. In section 4, we
review the computation of such matrix integrals using their expression in terms of Toeplitz
minors. These Toeplitz minors, in turn, are given by symmetric polynomials in terms of
variables determined by the weight function. We then express the assumptions of Szegö’s
theorem as requirements on these symmetric polynomials, in particular the power sum
polynomials. Further, we find in this section that, although the expression in this work
are generally valid for N Ñ8, in certain cases they are valid for finite N as well.
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In section 5, we set out to compute the SFF using the techniques outlined in the previous
sections. Using fundamental relations in the theory of symmetric polynomials, we derive
the results for general weight function outlined in the previous subsection. The specific
case of the SFF of the Chern-Simons matrix model is worked out in section 5.2. We
then consider the broader implications of these calculations in the concluding remarks.
In the appendices, the reader can find more details about q-deformations and symmetric
polynomials, with special attention given to Schur polynomials.

2 Random matrix theory

We will consider random matrix ensembles, which have partition functions in the form of
a matrix integral,

ż

dMP pMq . (8)

Here, P pMq is the probability density function associated to M . Consider first the case
where the matrices M are Hermitian, so that they can be diagonalized by a unitary trans-
formation. Integrating over UpNq leads to an eigenvalue expression of the form [4]

Z “ CN

ż N
ź

i“1

dxi
2π

fpxiq
ź

iăj

pxi ´ xjq
2 , (9)

where CN is some multiplicative constant and fpxq is called the weight function. Choosing

P pMq9 expp´αtrM2q , (10)

where α is some positive numerical constant, leads to the familiar Gaussian unitary ensem-
ble (GUE) with weight function fpxq “ expp´αx2q. This ensemble is characterized by fully
extended eigenvectors and strong eigenvalue repulsion, which we will collectively refer to
as Wigner-Dyson statistics. It was conjectured in the 1980’s [45], [46], [47] that the eigen-
values of quantum systems whose classical counterpart is chaotic exhibit Wigner-Dyson
statistics (after an unfolding procedure, which is to say, a rescaling of the energies such
that the average inter-energy spacing equals unity). This conjecture has been so exten-
sively corroborated that Wigner-Dyson statistics are nowadays seen almost as a definition
of quantum chaos.

We will also consider ensembles whose elements are themselves unitary matrices. Histor-
ically, the first example of such an ensemble is the CUE introduced by Dyson [3], which
is mentioned in the introduction. Being unitary, the eigenvalues of these matrices are dis-
tributed across the complex unit circle. Such unitary ensembles have a partition function
of the form

Z “ C̃N

ż N
ź

i“1

dφi
2π

fpφiq
ź

iăj

|e´iφi ´ e´iφj |2 (11)

where we denote the matrices under consideration by U . For fpxiq=constant, (11) reduces
to Dyson’s circular unitary ensemble (CUE). in the limit N Ñ 8, the CUE and GUE
exhibit the same bulk statistics after unfolding, i.e. the CUE also described systems whose
classical counterpart is chaotic [4], [48].

While the Wigner-Dyson ensembles described above provide excellent phenomenological
descriptions of quantum chaotic systems, they naturally fail to describe systems with in-
termediate spectral statistics. An example of such a system consists of disordered electrons
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at the mobility edge of the Anderson localization transition [49], [8]. Muttalib and collabo-
rators introduced a family of random matrix ensembles [13] depending on some parameter
0 ď q ď 1. This matrix ensemble appears in two guises, analogous to GUE and CUE. In
case the matrices under consideration are Hermitian, the weight function is of the following
“log-squared” form

fpxq 9 exp

ˆ

´
1

2gs
log2 x

˙

, |x| " 1 . (12)

In the expression above, we define q “: e´gs , where gs is the string coupling constant in
the manifestation of Chern-Simons theory as a topological string theory on the cotangent
space. The domain of fpxq in (12) is the positive real line. In case the matrices we consider
are themselves unitary, the weight function is given by

fpeiφq “ Θ3pe
iφ; qq “

ÿ

n

qn
2{2einφ . (13)

That is, the weight function is given by Jacobi’s third theta function, which is defined on
the complex unit circle. One immediately sees that the matrix model with this weight
function reduces to the CUE as we take q Ñ 0. We will consider this limit in more detail
below. ON the other hand, it was shown in [13] that the Hermitian version of the matrix
model with weight function given in a certain limit by (12), after unfolding, displays GUE
statistics as one takes q Ñ 1. We intend to treat the Hermitian version of our results in
general and of weight function (12) in particular in a future work.

2.1 Density of states and spectral form factor

An important object in random matrix theory is the density of states, given by

ρpφq “
1

N

N
ÿ

i“1

δpφ´ φiq “
1

2πN

N
ÿ

i“1

ÿ

nPZ

einpφ´φiq “
1

2πN

ÿ

nPZ

trUneinφ , (14)

where we used the fact that

trUn “
N
ÿ

i“1

e´inφi . (15)

The density of states, averaged over the matrix ensemble, gives the probability of finding an
eigenvalue at φ. From these level densities, we can construct the n-point density correlation
functions for n “ 2, . . . and various related quantities. An important example thereof
which is often used to characterize the eigenvalue statistics of various ensembles is the
SFF, which is the Fourier transform of the two-point level density correlation function [4].
The two-point correlation function is given by,

xρpθqρpφqy “
1

N2

ÿ

k,lPZ

xtrUktrU lyeikθ`ilφ ´ 1 . (16)

The SFF is then defined as the expansion coefficients of einpθ´φq, n P Z`, rescaled by a
factor N , [4], [48],

Kpnq “
1

N
x|trUn|2y . (17)

The choice of normalization is made so that the CUE SFF saturates at unity. For future
convenience, we also define the connected part of the SFF

Kpnqc “ Kpnq ´
1

N
xtrUny2 ‘. (18)

For the CUE and GUE, the SFF is characterized by a linear ramp which saturates at
n “ N . For intermediate statistics, Kpnq displays deviations from this behavior, which
can be seen in figure 1 and which will be further detailed below.
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3 Chern-Simons matrix model and knot/link invariants

3.1 Knot operator formalism

We review the construction of Chern-Simons partition functions and knot invariants using
Heegaard splitting [22] and knot operators [50]. Heegaard splitting provides a way to
calculate the Chern-Simons partition functions of certain three-manifolds, which we denote
by M . We construct M by taking two separate three-manifolds M1 and M2 which share
a common boundary Σ, i.e. BM1 » Σ » BM2. M is then constructed by acting on the
common boundary Σ with some homeomorphism f and then gluing M1 and M2 together,
which we write as

M “M1

ď

f

M2 . (19)

In this construction, we take the boundaries of M1 and M2 to have opposite orientation,
so that M is a closed manifold. Writing the Hilbert space of Σ as HpΣq and its conjugate
as H˚pΣq, performing the path integral over M1 gives a state |ΨM1y P HpΣq, whereas
performing the path integral over M2 to find a state xΨM2 | in the conjugate Hilbert space
H˚pΣq due to the fact that the boundaries of M1 and M2 have opposite orientation. The
homeomorphism f induces a map Uf on HpΣq whose action we denote by

Uf : HpΣq Ñ HpΣq . (20)

The partition function is then given by

ZpMq “ xΨM1 |Uf |ΨM2y . (21)

In a seminal paper [22], Witten found that HpΣq is given by the space of conformal blocks
of the corresponding Wess-Zumino-Novikov-Witten (WZNW) model on Σ at level k. In
case there are no marked points on Σ where Wilson lines are cut, i.e. if all Wilson lines
can be embedded on Σ, HpΣq is given by the characters of the WZNW model on Σ. We
will be considering only the latter case.

A relatively simple example of a Heegaard splitting is given by the division of S3 into two
three-balls that share a boundary Σ “ S2. The only knot that can be embedded on S2

is the unknot, which is the trivial example of an unknotted circle. We therefore do not
consider this example any further. Let us instead consider the case where M1 and M2 are
given by solid tori S1 ˆ D2 which share a boundary torus BM1 “ S1 ˆ S1 “ BM2. The
manifolds which can be constructed via such a Heegaard spltting on a torus are known
as lens spaces [51]. The simplest example of a lens space is found by taking f to be the
identity map. In this case, we glue the two copies of D2 along their boundaries to form S2,
so that the resulting space is given by S2 ˆ S1. We normalize the Chern-Simons partition
function for S2 ˆ S1 to unity. Let us consider an example where we act on T 2 with a
nontrivial homeomorphism. The group of homeomorphisms of T 2 is given by SLp2;Zq,
which consists of matrices of the form

ˆ

a b
c d

˙

, ad´ bc “ 1 , a, b, c, d P Z . (22)

SLp2;Zq is generated by the modular S and T -transformations. Representing the 1-cycles

of the torus by basis vectors
ˆ

1
0

˙

and
ˆ

0
1

˙

, the S and T -transformations can be written
as

S “

ˆ

0 ´1
1 0

˙

, T “

ˆ

1 1
0 1

˙

. (23)
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That is, S interchanges the 1-cycles and reverses the orientation of the torus, while T cuts
open the torus along a 1-cycles to form a cylinder, twists one end of the cylinder by 2π,
and glues the two ends of the cylinder back together. Consider the case where we glue
two solid tori M1,2 along their boundaries after acting with an S-transformation. Since
S-transformations exchange the 1-cycles on the torus, the contractible cycle of M1 is glued
to the non-contractible cycle of M2 and vice versa. We thus find a closed three-manifold
with no non-contractible cycles which, from the Poincaré conjecture, is homeomorphic to
S3.

The construction of torus knots is analogous to the construction of lens spaces in the
sense that, if we insert a Wilson line corresponding to an unknot on the boundary torus,
we can act with arbitrary SLp2;Zq transformation on the torus which turns the unknot
into a non-trivial torus knot. Let us denote the torus knot operators, to be defined more
precisely below, by Wpp,qq

λ , where λ labels the irreducible representation of the Wilson line
and p and q are integers which count the winding of the knot around non-contractible and
contractible cycle of the torus, respectively. Note that p and q are coprime for torus knots,
whereas for p and q not coprime we would get a torus link, which is a generalization of a
torus knot with more than one component (i.e. more than one knotted piece of string).
The number of components of a torus link equals the greatest common divisor of p and q.
From the definition of the S and T -transformations, it is clear that they act on torus knot
as follows

S´1Wpp,qqS “Wpq,´pq ,

T´1Wpp,qqT “Wpp,q`pq .

For example, if we insert an unknot around the non-contractible cycle of the torus and
act n times with the T -transformation, we get a knot which still winds around the non-
contractible cycle once but which now also winds around the contractible cycle n times.
Note that this is topologically still an unknot; the additional winding around the con-
tractible cycle only gives rise to a multiplicative framing factor. Similar knots will play an
important role in the comparison with random matrix theory, to be outlined below.

It is easy to see that modular transformations map the set of torus knots into itself, as
these transformations do not change the number of components. Indeed, for any pair of
coprime integers pp, qq, one can easily see that pp, q ` pq are also coprime, so that the
number of components is unchanged under modular transformations. Further, due to
Bézout’s lemma [52], there is an SLp2;Zq-transformation corresponding to any pair of
coprime integers, so that we can construct any torus knot by acting on an unknot with an
SLp2;Zq-transformation.

Figure 2: Two examples of p2n, 2q-torus links. The Hopf link, on the left, is the p2, 2q-torus
link. On the right, we have the p4, 2q-torus link.

11
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The explicit form for the knot operators mentioned above was found by Labastida, Llatas,
and Ramallo [50], using the relation to WZNW-models previously found by Witten [22].
Let us summarize the salient points of the knot operator formalism. As mentioned above,
HpΣq is given by the conformal blocks of the corresponding WZNW-model on Σ with
group G at level k. In the case of Σ “ T 2 without marked points, which we will be
considering henceforth, HpΣq consists of the characters of integrable representations of
the corresponding WZNW-model. We denote the set of fundamental weights by tviu
and Weyl vector by ρ “

ř

i vi. A representation with highest weight Λ is integrable if
p :“ ρ` Λ “

ř

i pivi is in the fundamental Weyl chamber, that is,
ÿ

i

pi ă k ` y , pi ą 0 , @ i , (24)

where y is the dual Coxeter number of G, which equals N for G “ UpNq and N ´ 1 for
G “ SUpNq. Remember that an irrep with highest weight Λ “

ř

i Λivi corresponds to a
Young tableau where the length of the ith row is given by

Λi ` Λi`1 ` ¨ ¨ ¨ ` ΛI , (25)

where I equals N in the case of UpNq and N ´ 1 in the case of SUpNq. See appendix B
or e.g. section 13.3.2 of [53] for more background information on partitions and their role
in representation theory. From now on we will take G “ UpNq so that y “ N . We will
denote ket states corresponding to p by |py, which can be chosen in such a way that they
form an orthonormal basis. The vacuum state, that is, the state without any Wilson line
inserted, is given by |ρy “: |0y . If we act with a knot operator corresponding to an unknot
in representation corresponding to Λ, the result is [50]

Wp1,0q
Λ |ρy “ |ρ` Λy “ |py . (26)

The only further ingredient we need are the explicit expressions for the Hilbert space
operators induced by the modular transformations. We simply state these here, further
details may be found in [50]

Tpp1 “ δp,p1e
2πiphp´c{24q ,

Spp1 “
iNpN´1q{2

NN{2

ˆ

N

k `N

˙
N´1

2 ÿ

wPW

εpwq exp

ˆ

´2πip ¨ wpp1q

k `N

˙

. (27)

In the above expressions, W is the Weyl group, εpwq is the signature of Weyl reflection w,
c is the central charge of the WZNW-model, and hp is the conformal weigth of the primary
field corresponding to p, which is given by

hp “
p2 ´ ρ2

2pk ` yq
. (28)

3.2 Chern-Simons matrix model

Let us consider how the matrix model description of Chern-Simons theory arises. As
explained above, S3 can be constructed via a Heegaard splitting along a torus on which
we act with an S-transformation. We thus find that the Chern-Simons partition function
on S3 is given by

ZpS3q “ x0|S|0y “ S00 . (29)

12
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We plug in the expression for S00 from equation (27) and use Weyl’s denominator formula,
ÿ

wPW

εpwqewppq “
ź

αą0

2 sinhpα{2q , (30)

where α are the positive roots of UpNq. Expressing the roots of UpNq in terms of Dynkin
coordinates xi, we find

ZpS3q “
e´

gs
12
NpN2´1q

N !

ż

dxi
2π

N
ź

i“1

e´x
2
i {2gs

ź

iăj

ˆ

2 sinh
xi ´ xj

2

˙2

. (31)

Lastly, we define a new set of variables yi :“ eNgs`xi , in which the partition function is
given by [43]

ZpS3q “
e´p7N

3gs{12`N2gs{2´Ngs{24q

N !

ż 8

0

N
ź

i“1

dyi
2π

ź

iăj

pyi ´ yjq
2 exp

˜

´
1

2gs

ÿ

i

log2py1q

¸

.

(32)
Alternatively, we can use the following expression

qn
2{2 “

ż 2π

0

dφ

2π
Θ3pe

iφ; qqeinφ (33)

where we repeat the definition of the third Jacobi Theta function

Θ3pe
iφ; qq “

ÿ

nPZ

qn
2{2einφ . (34)

This gives

ÿ

wPW

εpwqq
1
2
pwpρq´ρq2 “

1

|W |
ÿ

w,w1PW

εpwqεpw1qq
1
2
pwpρq´wpρ1qq2

“
1

|W |

ż N
ź

i“1

dφi
2π

Θ3pe
iφi ; qq

ÿ

w,w1PW

εpwqεpw1qqipwpρq´wpρ
1q¨θ , (35)

where we added another summation over the Weyl group in the first equality and applied
(33) in the second. Lastly, the Weyl group W is isomorphic to the symmetric group SN so
that |W | “ N !. Using the Weyl denominator formula again leads to [34] [54].

Z “
1

N !

ż 2π

0

N
ź

i“1

dφi
2π

Θ3pe
iφj ; qq

ź

jăk

|eiφj ´ eiφk |2 . (36)

Note that (32) and (36) correspond precisely to the matrix ensemble introduced by [13],
given in (12) and (13), respectively. Further, using the Jacobi triple product formula, Θ3

can be written as a specialization of Epx; zq, the generating function of the elementary
symmetric polynomials. We can also replace Epx; zq by Hpx; zq at the cost of transpos-
ing all representations involved in the calculation, this amounts to replacing Θ3pz; qq by

1
Θ3p´z;qq

. Since the SFF is invariant under transposition of all representations (see e.g.
(78)), the calculation of the SFF done below is also valid for the case where the weight
function of of the form 1

Θ3
. Indeed, the above argument applies to any specialization i.e.

to any choice of variables xi. We will therefore use Epx; zq and Hpx; zq interchangeably in
the computations below.
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3.3 Computing torus knot and link invariants in the Chern-Simons ma-
trix model

We now consider knot and link invariants and their computation in the Chern-Simons
matrix model. First, we treat the multiplication properties of knot operators. If we take
WK
λ to be a knot operator corresponding to a knot K in representation λ, we can write

WK
λWK

µ “
ÿ

ν

Nν
λµWK

ν . (37)

The coefficients Nν
λµ in (37) are the fusion coefficients of the WZNW-model. When both

k and N are much larger than any of the representations under consideration, NR
R1R2

are
given by Littlewood-Richardson coefficients. This allows us to construct the invariants of
torus links. We label a torus link by P,Q P Z, where the number of components is given
by S “ gcdpP,Qq and the representations are labelled by j P t1, . . . , Su. These links are
given by [50], [55], [56]

S
ź

j“1

WP {S,Q{S
λj

“
ÿ

µ

Nµ
λ1,...,λS

WP {S,Q{S
µ , (38)

whereNµ
λ1,...,λS

are generalized Littlewood-Richardson coefficients appearing in the product
of representations λ1 b ¨ ¨ ¨ b λS .

We now outline the computation of torus knot and link invariants using the matrix model
for UpNq Chern-Simons on S3. The simplest knot, the unknot, is given by the ensemble
average of the matrix trace in the corresponding representation [57]. That is,

Wλ :“
A

Wp1,0q
λ

E

“ xtrλUy . (39)

If we diagonalize a matrix U to give diagpd1, d2, . . . , dN q, it is well known that

trλU “ sλpd1, d2, . . . , dN q “ sλpdq , (40)

where sλpdq is the Schur polynomial corresponding to representation λ in terms of variables
di . The reader can consult appendix C or the book by Macdonald [58] or Stanley [59] for
more information on Schur polynomials. In the remainder of this work, we will often write
traces without specified representations, in which case the trace is understood to be in the
fundamental representation.

In general, we can assign an orientation to a knot or component of a link, which corresponds
to a continuous non-zero tangent vector along K. When we project a knot or link into the
plane, we can assign a sign ` or ´ to each crossing, as in figure 3.
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Figure 3: After projecting a knot or link in the plane, crossings are given a sign in the way
indicated above.

We denote by λ the representation conjugate to λ. We then have [21]

trλU´1 “ trλU . (41)

in the language of knot theory, taking trλU to trλU´1 corresponds to inverting the orien-
tation of the component carrying representation λ. Of course, for the unknot, this does
not matter, as reverting the orientation can be compensated by a simple parity transfor-
mation. The same is true for the Hopf link, as overcrossings can be freely changed into
undercrossings. To convince oneself of this point, one can assign an orientation to both
components of the Hopf link in figure 2, and rotate one component along an axis parallel
to the projection plane whilst keeping the other component fixed. For more complicated
knots or links, such as the p4, 2q-torus link on the right hand side of figure 2, overcrossings
can no longer be turned into undercrossings and inverting the orientation of one component
will generally lead to a different expectation value.

Let us consider more complicated objects involving integer powers of U . Generally, any
product of traces of any GLpN,Cq matrix U ,

Sα “ ptrUqα1ptrU2qα2 . . . ptrU sqαs , αi P Z
` , (42)

can be expanded in characters of GLpN,Cq, denoted by χλpUq, with characters of the
symmetric group Sl as expansion coefficients, where l “

ř

i αi [60]. If U P UpNq, the
characters are given by Schur polynomials, see appendix C for more background. We then
have

trUα1trUα2 . . . trUαk “
ÿ

R

χRpCp~kqqtrRU , (43)

where
ř

R is a sum over all Young tableaux with total number of boxes equal to l, and
χRpCp~kqq is the character of the symmetric group Sl in representation R evaluated at the
conjugacy class of Sl given by cycle lengths α1, α2, . . . , αk. Despite its concise notation,
(43) is generally rather difficult to compute due to the sum over partitions of l. However,
in certain cases the above expression can be calculated. Taking U P UpNq with eigenvalues
di and choosing α1 “ n and αi “ 0 for i ‰ 1, we find [60]

trUn “
ÿ

i

dni “
ÿ

λ

χλpnqsλpUq “
n´1
ÿ

r“0

p´1qrspn´r,1rqpUq , (44)

where we used the fact that characters of the symmetric group satisfy

χλpnq “

#

p´1qr , if λ “ pn´ r, 1rq ,
0 , otherwise .

(45)

In words, (44) states that trUn is given by the sum over hook-shaped irreps with n boxes,
which appear with alternating signs. One may recognize from (44) that this is the expres-
sion of the nth power sum polynomial in terms of Schur polynomials. For n “ 4, one can
express (44) in terms of Young diagrams as follows.
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- + -

One can show [57], [61], [62] that xtrUny gives the invariant of an pn, 1q-torus knot [63],
which differs from any pn,mq-torus knot only by a framing factor. Equation (44) gives an
expansion of of trUn in terms of Schur polynomials. Explicit expressions for its expectation
value can be found in section 5.2. As noted above, an pn, 1q-torus knot is topologically
equivalent to an unknot and differs only due to framing [57]. However, terms of the
form xtrUntrU´ny, such as appear in the SFF, give p2n, 2q-torus links, which are not
topologically trivial for any n P Zzt0u.

4 Matrix integrals and Toeplitz minors

We review the computation of the unitary group integral over Schur polynomials using a
method outlined in [38] and [39], which in turn draw from results derived by Bump and
Diaconis [36], Tracy and Widom [37], among others. We start from an absolutely integrable
function on the unit circle in C,

fpeiθq “
ÿ

kPZ

dke
ikθ . (46)

We will specifically be considering the case where dk “ d´k, so that fpeiθq is real-valued.
We further require that fpeiθq satisfies the assumptions of Szegö’s theorem. That is, we
write fpeiθq as

fpeiθq “ exp

˜

ÿ

kPZ

cke
ikθ

¸

, (47)

and demand that
ÿ

kPZ

|ck| ă 8 ,
ÿ

kPZ

|k||ck|2 ă 8 . (48)

From the Fourier coefficients of f , we construct a Toeplitz matrix, which is a matrix that
is constant along its diagonals,

T pfq “ pdj´kqj,kě1 . (49)

We denote by TN pfq the N by N principal submatrix of T pfq, i.e. the matrix obtained
from T pfq by taking its first N rows and columns and neglecting the remainder. We will see
that various matrix integrals with weight function f can be expressed as minors of TN pfq,
that is, as determinants of matrices obtained from TN pfq by removing a (necessarily equal)
number of rows and columns. For a unitary matrix U with eigenvalues eiθ1 , eiθ2 , . . . , we
write,

f̃pUq “
N
ź

k“1

fpeiθkq . (50)

We employ Weyl’s integral formula [64] to express the integral of f̃pUq over UpNq with
respect to the de Haar measure as

ż

f̃pUqdU “
1

N !

ż 2π

0

ź

jăk

|eiθj ´ eiθk |2
N
ź

k“1

fpeiθkq
dθk
2π

, (51)
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where the angles satisfy 0 ď θk ă 2π. The expression for the Vandermonde determinant
in (132) allows us to use an identity due to Andreiéf, sometimes referred to as Heine or
Gram identity [65]. Take gj and hj , j P t1, 2, . . . , Nu, to be two sequences of integrable
functions on some measure space with measure µ, then

1

N !

ż

detpgjpxkqq
N
j,k“1 detphjpxkq

N
j,k“1

N
ź

k“1

dµpxkq “ det

ˆ
ż

gjpxqhjpxqdµpxq

˙N

j,k“1

. (52)

Choosing gjpe´iθq “ eipN´jqθ “ hjpe
iθq and dµpeiθq “ fpeiθq dθ2π , we find

ż

f̃pUqdU “ detpdj´kq
N
j,k“1 , (53)

where dk are again the Fourier coefficients of f ,

dk “
1

2π

ż 2π

0
fpeiθqeikθdθ . (54)

Now let λ “ pλ1, . . . , λmq and µ “ pµ1, . . . , µnq be partitions of |λ| “
ř`pλq
i λi and |µ| “

ř`pµq
j µj , respectively. Here, λi, µj P Z` and `p.q is the length of the partition. Ordering

as λi ě λi`1 and similarly for µj , these partitions label Young tableaux in the standard
way. One then obtains a Toeplitz minor T λ,µN pfq via the following procedure:

• We start from TN`κpfq, where κ “ maxtλ1, µ1u

• If λ1´µ1 ą 0, we remove the first λ1´µ1 colums from TN`κpfq, otherwise we remove
µ1 ´ λ1 rows.

• We then keep the first row and remove the next λ1 ´ λ2 rows, after which we again
keep the first row and remove the next λ2 ´ λ3 rows and so on and so forth.

• We repeat the third step where we replace λi by µi and where we remove columns
instead of rows

Note that the second step ensures that the resulting matrix T λ,µN pfq is of order N . We write
sλpUq “ sλpe

iθ1 , eiθ2 , . . . q, where sλ are Schur polynomials, which we review in appendix
C. The determinant of T λ,µN pfq can then be expressed as [36], [66]

Dλ,µ
N pfq :“ detT λ,µN pfq “

ż

UpNq
sλpU

´1sqsµpUqf̃pUqdU

“
1

N !p2πqN

ż 2π

0
sλpe

´iθ1 , . . . , e´iθN qsµpe
iθ1 , . . . , eiθN q

N
ź

j“1

fpeiθj q
ź

1ďjăkďN

|eiθj ´ eiθk |2dθj ,

“ det
`

dj´λj´k`µk
˘N

j,k“1
. (55)

One can recognize the pattern of striking rows and columns involved in the construction
of T λ,µN pfq, as the index j is shifted to j ´ λj and k to k ´ µk. One can easily verify that,
for two functions of the form

apeiθq “
ÿ

kď0

ake
ikθ , bpeiθq “

ÿ

kě0

bke
ikθ , (56)

the associated Toeplitz matrix satisfies

T pabq “ T paqT pbq . (57)
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Let us therefore write fpeiθq as follows

fpeiθq “ Hpx; eiθqHpy; e´iθq , (58)

where Hpx; zq is the generating function of the homogeneous symmetric polynomials hk
given in (123) and where we assume that hkpxq and hkpyq are square-summable, i.e.

ÿ

k

hk ă 8 . (59)

Gessel [67] showed that, for f as in (58),

DN pfq “
ÿ

`pνqďN

sνpxqsνpyq , (60)

where one should note that the sum runs over all partitions ν with at most N rows. Here,
we only consider the case where y “ x P R, but the expressions here easily generalize to
x ‰ y and x, y P C, subject to the assumptions of Szegö’s theorem. Equation (60) can
then be generalized as [38], [39]

ż

sλpU
´1qsµpUqf̃pUqdU “

ÿ

`pνqďN

sν{λpxqsν{µpxq . (61)

In the above expressions, we can replace Hpx; zq by Epx; zq if we simultaneously transpose
all partitions. Let us therefore consider the Jacobi triple product expansion of the third
theta function

ÿ

nPZ

qn
2{2einθ “ pq; qq8

8
ź

j“1

p1` qk´1{2eiθqp1` qk´1{2e´iθq

“ pq; qq8Epx; eiθqEpx; e´iθq , (62)

where we define x “ pq1{2, q3{2, . . . q in the last line. Then, fpeiθq “
a

pq; qq8 Epx; eiθqEpx; e´iθq
is the weight function of the Chern-Simons matrix model. This example is treated exten-
sively in [39], more details and proofs can be found there. Using (53) with dk “ qk

2{2, we
see that the partition function is given by

ZN “

ż

f̃pUqdU “ detpqpj´kq
2{2qNj,k“1 “ q

řN
j“1 j

2

detpq´jkqNj,k“1 “

N´1
ź

j“1

p1´ qjqN´j , (63)

which is a well-known result.

4.1 Infinite N

Let us now take the limit N Ñ 8. From (61) and the fact that [Chapter I.5, example 26
in [58]]

ÿ

ν

sν{µpyqsν{λpxq “
ÿ

ν

sλ{νpyqsµ{νpxq
ÿ

κ

sκpyqsκpxq , (64)

where the sums run over all partitions, we have [38], [39]

Wλµ :“

ş

sλpU
´1qsµpUqf̃pUqdU
ş

f̃pUqdU
“

ÿ

ν

sλ{νpxqsµ{νpxq . (65)

Taking (65) with µ “ H, we see that calculating the matrix integral of a single trace
in some representation (55) is given by the following procedure. The evaluation of the
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integral amounts to replacing the eigenvalues of the Schur polynomials by the variables
xi in fpzq “ Epx; zqEpx; z´1q or fpzq “ Hpx; zqHpx; z´1q. For fpeiθq equal to Θ3pe

iθq in
(62), Wλµ gives the HOMFLY invariant of the Hopf link [38], [39]. We see that is is given
by the following expression,

Wλµ “
ÿ

ν

spλ{νqtpq
1{2, q3{2, . . . qspµ{νqtpq

1{2, q3{2, . . . q , (66)

where one should note that the representations are transposed due to the fact that Θ3pe
iθq

is expressed in terms of Epx; zq rather than Hpx; zq.

Let us now consider what the assumptions of Szego’s theorem imply for a function of the
form fpzq “ Epx; zqEpx; z´1q or fpzq “ Hpx; zqHpx; z´1q. Let us consider first the case
fpzq “ Epx; zqEpx; z´1q. We repeat the top line of (123),

Epx; zq “
8
ÿ

k“0

ekpxqz
k “

8
ź

k“1

p1` xkzq “ exp

«

8
ÿ

k“1

p´1qk`1 pkpxq

k
zk

ff

, (67)

so that

fpzq “ exp

˜

8
ÿ

k“1

p´1qk`1 pkpxq

k
pzk ` z´kq

ff

. (68)

Therefore,

ck “ p´1qk`1 pkpxq

k
“ c´k , k ‰ 0 , (69)

and (48) is written as

8
ÿ

k“1

|pkpxq|
k

ă 8 ,
8
ÿ

k“1

|pkpxq|2

k
ă 8 , (70)

where we ignore an irrelevant factor 2. We see that

lim
kÑ8
|pkpxq|Ñ 0 , (71)

as
ř8
k“1

|pkpxq|
k diverges otherwise. If we take xj to be real-valued, as we do in the explicit

examples considered here, equation (71) requires that xj ă 1. The right requirement in
(70) is strictly weaker than the left, so it does give rise to any additional restrictions. In
the above expressions, if we replace Epx; zq by Hpx; zq, we have,

ck “
pkpxq

k
“ c´k , k ‰ 0 , (72)

so that the assumptions of Szegö’s theorem are given by (71) as well.

4.2 Finite N

Although the expressions given above were derived for N Ñ 8, some of them can, in
fact, be generalized to finite N in case the number of distinct non-zero variables xj is
smaller than N . From equations (60), (61), and (64), we see that, for finite N and fpzq “
Hpx; zqHpx; z´1q,
ş

sλpUqsµpU
´1qf̃pUqdU

ş

f̃pUqdU
“

ř

κpsκpxqq
2

ř

`pρqďN psρpxqq
2

ÿ

ν

sλ{νpxqsµ{νpxq ´

ř

`pνqąN sν{λpxqsν{µpxq
ř

`pρqďN psρpxqq
2

.

(73)
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Let us denote the number of non-zero variables by imax, i.e. xi ‰ 0 for i ď imax and xi “ 0
for i ą imax. In that case, sκpxq “ 0 for `pκq ą imax, see equation (136), so that

ř

κpsκpxqq
2

ř

`pρqďN psρpxqq
2
“ 1 . (74)

Indeed, in case N ´ `pλq ą imax and N ´ `pµq ą imax, we can apply (136) again to find
ÿ

`pνqąN

sν{λpxqsν{µpxq “ 0 . (75)

From this we conclude that, for N ´ |λ| ą imax and N ´ |µ| ą imax, we have
ş

sλpUqsµpU
´1qf̃pUqdU

ş

f̃pUqdU
“

ÿ

ν

sλ{νpxqsµ{νpxq , (76)

i.e. the asymptotic expression (65) still holds in this case. Again, the above expressions
still hold if we replace Hpx; zq by Epx; zq and all representations by their transposes.

5 Spectral form factor

Although the main focus of this paper is the SFF of the UpNq Chern-Simons matrix model,
many of the techniques applied to this particular case can be applied to any function fpzq
satisfying the assumptions of Szegö’s theorem [38], [39]. We will first keep the treatment
general before considering the case fpzq “ Θ3pzq.

5.1 The spectral form factor for general weight function

We repeat for convenience [62], [68]

trUn “
ÿ

λ

χλpnqsλpUq “
n´1
ÿ

r“0

p´1qrspn´r,1rqpUq , (77)

where we take n P Z`. It is clear that this also holds when we replace U with U´1.
Indeed, the expressions given below generalize to all integers if we replace n by |n| in the
expressions below. The SFF is given by

NKpnq “
1

ZN

ż

dUf̃pUq
n´1
ÿ

r,s“0

p´1qr`sspn´r,1rqpU
´1qspn´s,1sqpUq , (78)

where we remind the reader that pn ´ r, 1rq is a representation corresponding to a hook-
shaped Young tableau with n ´ r boxes in the first row and r further rows with a single
box. Writing fpeiθq “ Hpx; eiθqHpx; e´iθq, we use (65) to find

NKpnq “
ÿ

ν

n´1
ÿ

r,s“0

p´1qr`sspn´r,1rq{νpxqspn´s,1sq{νpxq , n P Zzt0u . (79)

The first sum on the right hand side runs over all representations ν satisfying ν Ď pn´r, 1rq
as well as ν Ď pn´ s, 1sq, so that ν “ pa, 1bq with a ď n´ r, n´ s and b ď r, s. e remind
the reader that (79) also holds when we replace Hpx; zq by Epx; zq due to the fact that
the SFF is invariant under transposition of the representations pn´ r, 1rq and pn´ s, 1sq.
There are three types of skew Schur polymomials sλ{µ which appear in (79):
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1. If ν “ λ, the skew Schur polynomial sλ{ν “ sλ{λ “ 1.

2. If ν is the empty partition ν “ H, sλ{ν “ sλ i.e. the skew Schur polynomials reduces
to the usual (non-skew) Schur polynomial.

3. Then there is the case of two non-empty hook-shaped diagrams λ “ pn ´ r, 1rq and
ν “ pa, 1bq with n´ r ą a and r ą b and ν non-empty, so that λ{ν consists of a row
of n´ r ´ a boxes and a column of r ´ b boxes. It is clear from equation (130) that
the skew Schur polynomial factorizes as

sλ{µ “ spn´r´aqsp1r´bq “ hn´r´aer´b . (80)

This can be made more clear using Young diagrams. Taking n “ 6, r “ 2 and a “ 2,
b “ 1, equation (80) is given by the following, where one should keep in mind that the
contributions corresponding to the two disconnected young diagrams are multiplied

/ =

From the first point listed above, we see that there are n terms in (79) with for which
λ “ µ “ ν “ pn´ r, 1rq. These terms give the following contribution

n´1
ÿ

r“0

sHpU
´1qsHpUq

loooooooomoooooooon

“1

“ n . (81)

Perhaps surprisingly, we see from the above expression that terms satisfying λ “ µ “ ν
always reproduce the linear ramp of the CUE spectral form factor for n ď N (see e.g.
(5.14.14) in [48]). It is well known that, for the CUE SFF, the linear ramp saturates at
a plateau for n ě N [4], [48]. Here, too, the linear ramp gives way to a plateau, which
comes about as follows. Remember that sλpxq vanishes if the longest column in λ contains
more boxes than the number of non-zero variables in the set x (136). We saw that we get
a contribution equal to unity for every term for which pn ´ r, 1rq “ ν “ pn ´ s, 1sq for
0 ď r ď Minpn´1, N´1q. However, there are only N such reps, as spa,1bqpxq “ 0 if b ě N .
From this, we conclude that the contributions coming from λ “ ν “ µ exactly reproduce
the ramp and plateau.

Let us now consider those terms from which deviations from the linear ramp may arise. If
ν is the empty set, as in point 2, we recover the disconnected part of the SFF, which is
given by the square of

n´1
ÿ

r“0

p´1qrspn´r,1rqpxq “ xtrUny . (82)

The remaining terms, coming from point 3, is given by the square of

n´1
ÿ

r“0

ÿ

ν‰H
ν‰pn´r,1rq

p´1qrspn´r,1rq{νpxq (83)

At first sight, this may seem like a rather rather complicated expression. Let us factor
the expression in (83) into two separate sums over r and s and consider one such sum for
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a fixed choice of ν “ p1q. Remembering that spn´r,1rq{p1q “ hn´r´1er and using equation
(2.6’) of [58], we find for a single such sum,

n´1
ÿ

r“0

p´1qrspn´r,1rq{p1q “
n´1
ÿ

r“0

p´1qrhn´r´1er “ 0 . (84)

Taking n “ 4, the above identity can be expressed in terms of Young diagrams as follows.

- + - = 0

The identity
řn´1
r“0 p´1qrhn´r´1er “ 0 can be seen from Hpx; tqEpx;´tq “ 1, see equation

(123). Equation (84) can then be found by checking every order of t in Hpx; tqEpx;´tq.
One can see from these considerations that any term corresponding to a single choice of ν
in (83) is equal to zero. The contribution for general ν “ pa, 1bq Ă pn´ r, 1rq with ν ‰ H
and ν ‰ pn´ r, 1rq is given by

n´a
ÿ

r“b

p´1qrhn´r´aer´b “
n´b´a
ÿ

r“0

p´1qrhn´b´a´rer “ 0 . (85)

In short, the contribution arising from ν ‰ H, pn´ r, 1rq is equal to zero.

We now compute the explicit expression for the disconnected SFF. Applying (66) with
µ “ H, we have,

xtrUny “ pnpxq “
ÿ

i

xni . (86)

The functions pnpxq are the power-sum polynomials, mentioned in appendix B. The fact
that we get power-sum polynomials should not be surprising due to the statements below
equations (44) and (65). Namely, trUn is the nth power sum polynomial in the eigenvalues
of U , and the evaluation of the matrix integral of a single matrix trace amounts to replacing
the eigenvalues by the variables xi, which immediately leads to (86). Below equation (70),
we show that the assumptions of Szegö’s theorem require

lim
kÑ8

pkpxq “ 0 , (87)

so that the disconnected part of the SFF goes to zero. Hence, we see that the plateau of
the SFF is exact, that is

lim
nÑ8

Kpnq “ 1 . (88)

We thus find,

Kpnq “

"

1
N

“

n` pnpxq
2
‰

, n{N ď 1 ,
1 , n{N ě 1 .

(89)

This is the main result of the present work.

Let us now give some basic expressions for the SFF itself. From the form of (89), we
can give an expression for the behaviour of the SFF upon rescaling xi. The linear ramp
remains unaffected by rescaling as it is independent of choice of variables xi. Further, since
xtrUny “

řn´1
r“0 p´1qrspn´r,1rqpxq is a sum of polynomials of degree n in xi, we have upon

rescaling as xj ÞÑ Axj , where A is some number,

pnpAxq “ Anpnpxq . (90)
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Further, we take xj ÞÑ pxjq
k with k P Z`, we have, writing xk “ pxk1, xk2, . . . q,

pnpx
kq “ pknpxq . (91)

This naturally generalizes to k P R if we take the label n of pnpxq to be a general real
number. We plot an example of an SFF in figure 1. In the figure, we indicate lines with
kn “constant, which lie at 45 degrees. Although this SFF was computed for a specific
choice of weight function, it follows from equation (91) that lines of constant kn always lie
at 45 degrees. The linear ramp then corresponds to knÑ8.

For a finite number of variables, the calculation of the SFF from (89) is rather straightfor-
ward. In case we have a very large number of non-zero variables, pnpxq is generally rather
hard to calculate, except for certain known examples. Let us take xk “ 1{pk ` 1q2. Using
the well-known product expansion of the hyperbolic sine as sinhpπtq “ πt

ś

kě1

´

1` t2

k2

¯

,
we have

fpzq “
8
ź

k“1

ˆ

1`
z

pk ` 1q2

˙ˆ

1`
z´1

pk ` 1q2

˙

“
sinhpπz1{2q sinhpπz´1{2q

π2p2` z ` z´1q
. (92)

Further, we have,

pnpxq “
8
ÿ

k“1

1

pk ` 1q2n
“ ζp2nq ´ 1 , (93)

where ζpsq is the Riemann zeta function. The SFF for weight function (92) is therefore
given by

NKpnq “

"

n` pζp2nq ´ 1q2 , n ď N ,
N , n ě N .

(94)

5.1.1 General trace identities

We now consider some expectation values of trUn with some more general objects. For
example we can conclude from the arguments leading to (89) that the connected part of
xtrUntrU´ky, for k, n P Z`, is given by

xtrUntrU´kyc “
k´1
ÿ

s“0

n´1
ÿ

r“0

ÿ

ν‰H

p´1qr`sspk´s,1sq{νspn´r,1rq{ν “ nδnk . (95)

In particular, let us take k ă n. In that case, any ν P pk ´ s, 1sq for all s P t0, . . . , k ´ 1u
necessarily satisfies |ν| ď k ă n, so that pn ´ r, 1rq{ν ‰ H for any partition pn ´ r, 1rq,
r P t0, . . . , n´ 1u. Using (85), the result is again zero. Note that equation (95) can easily
be found for the CUE case by using bosonization [69] [70]. More generally, let us consider
expectation values of the form

@

trU´ntrλU
D

c
“

ÿ

ν‰H

n´1
ÿ

r“0

p´1qrspn´r,1rq{ν sλ{ν . (96)

Since fixing any ν Ď pn´ r, 1rq in (96) with ν ‰ pn´ r, 1rq gives zero upon summing over
r, we only get a nonzero answer for terms for which ν “ pn´ 1, 1rq Ď λ. That is,

@

trU´ntrλU
D

c
“

minpn´1,λt1`1q
ÿ

r“minp0,n´λ1q

p´1qrsλ{pn´r,1rq , (97)
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where the boundaries on the sum arise from the fact that we only sum over those repre-
sentations pn´ r, 1rq which satisfy pn´ r, 1rq Ď λ. Equation (97) greatly simplifies certain
calculations. For example, consider pn ´ r, 1rq Ę λ @ r P t0, . . . , n ´ 1u. Another way to
write this is that λ1 ` λ

t
1 ´ 1 ă n. We then have,

@

trU´ntrλU
D

c
“ 0 . (98)

Let us represent λ in Frobenius notation as λ “ pa1, . . . , ak|b1, . . . , bkq with ai and bj non-
negative integers satisfying a1 ą ¨ ¨ ¨ ą ak and b1 ą ¨ ¨ ¨ ą bk. In this case, a1 ` b1 ` 1 gives
the number of boxes in the upper left hook of λ, or, equivalently, the hook-length of the
top left box in λ, labelled by x “ p1, 1q in the notation of appendix C. In this notation,
(98) states that xtrU´ntrλUyc “ 0 if a1 ` b1 ` 1 ă n. For the specific case of the Chern-
Simons matrix model this identity has an interesting interpretation which we comment on
in section 5.2.

We can find similar identities for certain representations λ with a1 ` b1 ` 1 ą n. Define
m :“ a1`b1`1´n and consider λ “ pa|bq “ pa1, . . . , ak|b1, . . . bkq satisfyingm ď a1´a2´1
and m ď b1 ´ b2 ´ 1, or, equivalently, m ď λ1 ´ λ2 and m ď λt1 ´ λ

t
2, respectively. Let us

take µ “ pa2, . . . , ak|b2, . . . , bkq, which is constructed from λ by removing the first row and
column. For any rep pn´ r, 1rq satisfying pn´ r, 1rq Ď λ, we then have

λ{pn´ r, 1rq “ pa1 ` 1, 1b1q{pn´ r, 1rq ˆ µ “ pa1 ` 1´ n` rq ˆ p1b1´rq ˆ µ . (99)

That is, λ{pn´r, 1rq factorizes as the skew partition of two hook shapes times the partition
obtained from λ by deleting the top-left hook. In terms of Young diagrams, an example is
given by the following.

/ =

Since pa1` 1, 1b1q{pn´ r, 1rq is a product of a row and a column, we can again use (84) to
find

@

trU´ntrλU
D

c
“

b1
ÿ

r“n´a1´1

p´1qrsλ{pn´r,1rq

“ p´1qn´a1´1sµ

m
ÿ

k“0

p´1qkhm´kek “ 0 . (100)

5.2 The SFF of the Chern-Simons matrix model

As noted before, the SFF of the Chern-Simons matrix model corresponds to a p2n, 2q-
torus link with one component in the fundamental and the other in the antifundamental
representation. Whereas expressions for link invariants of the form xtrUn1trUn2 . . . y with
ni ě 2 have appeared in the literature [68], [71], [72], expressions with powers of mixed
signature, to the best of the authors’ knowledge, have not. The expressions presented in
the previous section allow us to calculate precisely those objects. In particular, the SFF,
is again given by (89). We can easily calculate the non-trivial part of the SFF, xtrUny2,
for |q| ă 1, by using the expression in terms of power-sum polynomials. However, it is
instructive to see how this arises from the functional form of this object as a function of
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N , before taking N Ñ 8. This is particularly useful in knot theory, as the expression for
general N may allows one to distinguish various knots and links which may have the same
invariant when one ignores the dependence on N . Let us apply (138) to the hook-shaped
representation pa, 1bq, which gives the following expression for general N

spa,1bqpxi “ qi´1q “ q
1
2
bpb`1q rN ` a´ 1s!

rN ´ b´ 1s!ra´ 1s!rbs!ra` bs
. (101)

We now use (77) and (66) to calculate xtrUny, which, for the lowest values of n, is given
by

xtrUy “ q1{2 1´ qN

1´ q
“ q1{2rN sq ,

@

trU2
D

“
qp1´ q2N q

1´ q2
“ qrN sq2 ,

@

trU3
D

“
q3{2p1´ q3N q

1´ q3
“ q3{2rN sq3 . (102)

One can see a simple pattern emerge in (102). Indeed, using (77) and taking into account
the comments made below (65), we see that

xtrUny “ pnpxj “ qj´1{2q “ qn{2
N
ÿ

j“1

qnpj´1q “ qn{2
1´ qnN

1´ qn
“ qn{2rN sqn . (103)

That is, the asymptotic pn, 1q-torus knot invariant is given by the qn-deformation of N
times a factor qn{2. As far as the authors are aware, this statement has heretofore not
appeared in the literature.

As mentioned above, as well as in appendix C, the limit N Ñ8 simplifies these expressions
even further. Upon this simplification, the final expression for the SFF is then given by

NKpnq “

#

n` pqn ` q´n ´ 2q´1 , n ď N ,

N , n ě N .
(104)

The SFF is plotted in 1 for n “ 1, . . . , 20, with q “ 0, 9k, k “ 1, . . . , 9.

5.2.1 General identities for the Chern-Simons matrix model

The identities we derived in 5.1.1 apply to the Chern-Simons matrix model as well, in
which case they have an interpretation in terms of knot and link invariants. For example,
take (98), which says that, for λ satisfying pn´ 1, 1rq Ę pn´ r, 1rq @r P t1, . . . , n´ 1u,

@

trU´ntrλU
D

c
“ 0 ñ

@

trU´ntrλU
D

“
@

trU´n
D

xtrλUy . (105)

In terms of knot and link invariants, the above expression entails that expectation value
of the product of an pn, 1q-torus link with an unknot in representation λ with opposite
orientation equals the product of their expectation values.

Another trace identity derived in 5.1.1 is equation (105). This equation expresses the fact
that a Wilson line in the (anti)fundamental rep winding n times around a article in rep
some λ will give a vanishing connected expectation value if the λ1 ´ λ

t
1 ´ 1´ n ď λ1 ´ λ2

and λ1 ´ λ
t
1 ´ 1´ n ď λt1 ´ λ

t
2. Further, it is worth emphasizing that, using (97), one can

calculate pretty much any object of the form
@

trU´ntrλU
D

, (106)
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as all the objects appearing on the right hand side of the above expression are skew Schur
polynomials with variables xi “ qi´1{2, to which we can apply the q-hook length formula
in equation (138).

6 Overview and Conclusions

Here, we put forward a conjecture that many, if not all, examples of invariant one-matrix
models which exhibit intermediate statistics are given by matrix models of topological
field or string theories. We explicitly support this conjecture by the example of the matrix
model introduced in [13], which is the matrix model of UpNq Chern-Simons model on
S3. The latter model is directly related to A and B topological string models via the
Gopakumar-Vafa duality.

To calculate the SFF of the Chern-Simons matrix model, we consider general infinite
order unitary matrix models with weight functions satisfying the assumptions of Szegö’s
theorem. We find that the SFF’s for these models have a surprisingly concise form, with
the connected SFF giving rise to the linear ramp and plateau, while the disconnected part
gives rise to a dip. Moreover, from the assumptions of Szegö’s theorem, it follows that the
dip had to go to zero, so that the plateau is exact. Further, we derive certain identities on
expectation values of products of traces, as well as the behavior of the SFF under certain
changes of the weight function.

We then apply these general results to the matrix model for UpNq Chern-Simons theory
for S3, studied by Muttalib and collaborators for its intermediate statistics. The SFF of
this model is a topological (link) invariant. In particular, it is given by the HOMFLY
invariant p2n, 2q-torus links with one component in the fundamental and the other in the
antifundamental representation, an explicit expression of which, to the best of the authors
knowledge, did not appear in the literature before. It displays the hallmark characteristics
of intermediate statistics, with a dip that becomes more pronounced as we move further
away from the CUE limit, q Ñ 0. One can identify various matrix models which have the
same SFF, an immediate example of which is given by replacing Epx; zq by Hpx; zq.

The present work provides the tools to shed more light on the connections between topo-
logical field theories and intermediate statistics; we believe that the matrix models which
arise in topological string theory are natural tools for describing ergodic-to-nonergodic
phase transitions. Indeed, this paper provides a first example of what we suspect to be a
broader connection between intermediate statistics and topology.
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A q-Numbers

We review some basic facts and useful relations involving q-numbers, which are so-called
q-deformations of more familiar (generally complex) numbers. We will only be considering
q-deformation of positive integers here, which are defined as

rnsq “ p1` q ` ¨ ¨ ¨ ` q
n´1q “

1´ qn

1´ q
, n P Z` . (107)

Other definitions of rnsq, such as q´n{2´qn{2

q´1{2´q1{2
, also appear in the literature. Their common

feature is that
lim
qÑ1´

rnsq “ n . (108)

Note that, for k,m, n P Z` satisfying m
n “ k, we have

rmsq
rnsq

“ rksqn ,
rr ¨ms

rr ¨ ns
“ rksqnr (109)

for example,
r8sq
r2sq

“
1` q ` ¨ ¨ ¨ ` q7

1` q
“ 1` q2 ` q4 ` q6 “ r4sq2 . (110)

We will write rnsq as rns henceforth and only specify the deformation parameter in case it
is different from q. q-Factorials and q-binomials are defined as follows. For n, k P Z`

rN s! “ p1` qqp1` q ` q2q . . . p1` q ` ¨ ¨ ¨ ` qN´1q ,

„

N
k



“
rN s!

rN ´ ks!rks!
. (111)

We then introduce the q-Pochhammer symbol, which is defined as

pa; qqk “ p1´ aqp1´ aqq . . . p1´ aq
k´1q . (112)

Note that
pa; qqn “

pa; qq8
paqn; qq8

. (113)

Note also that
rns! “

pq; qqn
p1´ qqn

, (114)

from which follows
„

N
k



“
pq; qqN

pq; qqN´kpq; qqk
“
p1´ qN qp1´ qN´1q . . . p1´ qN´r`1q

p1´ qqp1´ q2q . . . p1´ qkq
. (115)

We see from this expression that, for q ă 1, we have

lim
NÑ8

„

N
k



“
1

pq; qqk
, (116)

q-Pochhammer symbols can be generalized as follows

pa1, a2, . . . , am; qqn “
m
ź

j“1

paj ; qqn . (117)

These are rather versatile objects. For example, Jacobi’s third theta function can be
expressed through the Jacobi triple product as

ÿ

nPZ

qn
2{2zn “ pq,´q1{2z,´q1{2{z; qq8 , 0 ă |q| ă 1 . (118)

Note that that the definition in (118) has qn2{2 rather than qn2 as expansion coefficients,
following the convention of e.g. [34]. This is the origin of the differences with the expressions
appearing e.g. in [68], which are related to the expressions given here by taking q Ñ q2.
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B Symmetric polynomials

We review here some basic aspects of symmetric polynomials in the set of variables x “
px1, x2, . . . qf . The elementary symmetric polynomials are then defined as

ekpxq “
ÿ

i1ă¨¨¨ăik

xi1 . . . xik . (119)

Some examples include

e0 “ 1 ,

e1px1q “ x1 ,

e1px1, x2q “ x1 ` x2 ,

e2px1, x2q “ x1x2 .

Closely related are the complete homogeneous symmetric polynomials, defined as

hkpxq “
ÿ

i1ď¨¨¨ďik

xi1 . . . xik , (120)

which contains all monomials of degree j. Note the difference in the summation bounds
between (119) and (120). Some examples of these include

h0 “ 1 ,

h1px1q “ x1 ,

h1px1, x2q “ x1 ` x2 ,

h2px1, x2q “ x2
1 ` x

2
2 ` x1x2 .

Another example is the set of power-sum symmetric polynomials,

pkpxq “ xk1 ` x
k
2 ` . . . . (121)

Note that if a matrix U has di as its eigenvalues, traces of moments of U are given by
power-sum symmetric polynomials, that is,

trUk “ pkpdq . (122)

Defining z “ eiθ as in (46), we have the following relations between the above polynomials
[58]

Epx; zq “
8
ÿ

k“0

ekpxqz
k “

8
ź

k“1

p1` xkzq “ exp

«

8
ÿ

k“1

p´1qk`1

k
pkpxqz

k

ff

,

Hpx; zq “
8
ÿ

k“0

hkpxqz
k “

8
ź

k“1

1

1´ xkz
“ exp

«

8
ÿ

k“1

1

k
pkpxqz

k

ff

. (123)

Consider the example where xi “ qi´1, so that (see [58] I.2 examples 3 and 4)

Eptq “
N´1
ź

i“0

p1` qitq “
N
ÿ

k“0

qkpk´1q{2

„

N
k



tk . (124)

Similarly,

Hptq “
N´1
ź

i“0

p1´ qitq´1 “

N
ÿ

k“0

„

N ` k ´ 1
k



tk , (125)
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so that

ek “ qkpk´1q{2

„

N
k



, hk “

„

N ` k ´ 1
k



. (126)

Here, ek is only defined for k ď N . From (116), we see that, for q ă 1 and N Ñ8,

ek “
qkpk´1q{2

pq; qqk
, hk “

1

pq; qqk
. (127)

C Schur polynomials

A somewhat less straightforward type of symmetric polynomial is the Schur polynomial,
which reduces to some of the above examples in certain cases. Schur polynomials play
an important role as characters of irreducible representations, often referred to as irreps,
of general linear groups and subgroups thereof. Irreps can be conveniently classified by
partitions, and we use these terms interchangably in this work. We denote partitions as
λ “ pλ1, λ2, . . . , λ`q, which are sequences of non-negative integers ordered as λ1 ě λ2 ě . . .
Typically, partitions are taken to have a finite number of elements, that is, only a finite
number of λi are non-zero, but we will impose no such restriction. The weight of a partition
(not to be confused with the highest weight of the corresponding irrep) is given by the sum
of its terms |λ| “

ř

i λi and its length `pλq is the largest value of i for which λi ‰ 0. A
semistandard Young tableau (SSYT) corresponding to λ is then given by positive integers
Ti,j satisfying 1 ď i ď `pλq and 1 ď j ď λi. These integers are required to increase
weakly along every row and increase strongly along every column, i.e. Ti,j ě Ti,j`1 and
Ti,j ą Ti`1,j for all i, j. Label by αi the number of times that the number i appears in the
SSYT. We then define

xT “ xα1
1 xα2

2 . . . . (128)

The Schur polynomial sλpxq is given by [59].

sλpxq “
ÿ

T

xT , (129)

where the sum runs over all SSYT’s corresponding to λ i.e. all possible ways to inscribe
the diagram corresponding to λ with positive integers that increase weakly along rows and
strictly along columns. We give an example of an SSYT corresponding to a Young diagram
λ “ p3, 2q. From (131) one can see that the contribution of the SSYT below would be given
by x2

1x2x
2
3.

1 1 3

2 3

We can see from the above definition that

sp1nq “ en , spnq “ hn , (130)

i.e. the Schur polynomial of a column or row of n boxes is given by a degree n elementary
or homogeneous symmetric polynomial, respectively. Schur polynomials have a natural
generalization to so-called skew Schur polynomials. In this case we have two diagrams λ
and µ such that µ Ď λ i.e. µi ď λi, @ i. We denote by λ{µ the complement of µ in the
diagram corresponding to λ. Define a semistandard skew Young tableau corresponding to
λ{µ similar to the above, namely, as an array of positive integers Tij satisfying 1 ď i ď `pλq
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and µi ď j ď λi which increase weakly along rows and strictly along columns. We then
define the skew Schur polynomial corresponding to λ{µ as

sλ{µ “
ÿ

T

xT , (131)

where the sum again runs over all SSYT’s corresponding to λ{µ. Note that if µ is the
empty partition, i.e. µi “ 0, @i, we have sλ{µ “ sλ, and if λ “ µ, sµ{µ “ 1. Let us consider
λ “ p3, 2q and µ “ p1q. Below, we give an SSYT corresponding to the skew partition λ{µ,
which would contribute x2

1x2x3 to the skew Schur polynomial.

1 3

1 2

Skew Schur polynomials can also be expressed in determinantal form. Using a matrix
of the form M “ px

pN´kq
j qNj,k“1, we have the following expression for the Vandermonde

determinant
detpx

pN´kq
j qNj,k“1 “

ź

1ďjăkďN

pxj ´ xkq . (132)

We then have

sλpUq “ sλpxjq “
det

´

xN´k`λkj

¯N

j,k“1

det
´

xN´kj

¯N

j,k“1

. (133)

The (skew) Schur polynomials can be expressed in terms of elementary symmetric poly-
nomials ekpxq or complete homogeneous symmetric polynomials hkpxq via the following
determinantal expressions, known as the Jacobi-Trudi identities,

spµ{λq “ detphµj´λk´j`kq
`pλq
j,k“1 “ detpeµtj´λtk´j`k

q
λ1
j,k“1 “ Dλ,µ

N pHpx; zqq ,

spµ{λqt “ detpeµj´λk´j`kq
`pλq
j,k“1 “ detphµtj´λtk´j`k

q
λ1
j,k“1 “ Dλ,µ

N pEpx; zqq . (134)

where the partition λt is obtained from λ by transposing the corresponding Young tableau
and where H refers to the empty partition. The objects on the right hand side of (134)
are explained in section 4. Schur polynomials satisfy various useful identities, including
the so-called Cauchy identity and its dual,

ÿ

λ

sλpxqsλpyq “
8
ź

i“1,j“1

1

1´ xiyj
,

ÿ

λ

sλpxqsλtpyq “
8
ź

i“1,j“1

1´ xiyj . (135)

Other useful identities for our purposes are the following, which can be found in Chapter
I.5 of [58],

sλ{µpx1, . . . , xnq “ 0 unless 0 ď λti ´ µ
t
i ď n for all i ě 1 . (136)

Note that an example of (136) is given by the fact that ekpx1, . . . , xN q “ 0 for k ą N .
We consider some Schur polynomials which are treated in I.3 examples 1-4 of [58]. Schur
polynomials with all variables equal to 1 give the hook-length formula for the dimension
of the representation, that is

sλp1, . . . , 1q “
ź

xPλ

N ` cpxq

hpxq
“: dimpλq , (137)
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where cpxq “ j ´ i for x “ pi, jq P λ is the content of x P λ, hpi, jq “ λi ` λ
t
j ´ i´ j ` 1 is

its hook-length, and npλq “
ř

ipi´ 1qλi. If, instead, we choose variables as xi “ qi´1, we
get the following q-deformation of the dimension of λ

sλpxi “ qi´1q “ qnpλq
ź

xPλ

rN ` cpxqs

rhpxqs
“: qnpλq dimqpλq . (138)

The quantity dimqpλq is known as the quantum dimension, or q-dimension. It is given by
the hook length formula (137) where numbers are replaced by q-numbers. If we consider
knots and links as consisting of the world lines of anyons carrying some representations
λ, . . . , dimqpλq gives the dimension of the Hilbert space of λ [73]. Note that (109) implies
that irreps with the same dimension can have different quantum dimensions. This is why
Chern-Simons theory with 0 ă q ă 1 can distinguish between certain (un)knots which give
identical results in the limit q Ñ 1 or q Ñ 0.

In fact, the above expression simplifies even further. In particular, one can easily see that,
for |q| ă 1 and N Ñ 8, quantum dimensions for reps with finite column lengths depend
only on the hook lengths. This is because qN´k “ 0 for k finite, so that, for λ such that
cpxq is finite for all x P λ,

ź

xPλ

rN ` cpxqs

rhpxqs
“

1

p1´ qq|λ|

ź

xPλ

1

rhpxqs
. (139)

In fact, since the Jacobi triple product expansion is only valid in case 0 ă |q| ă 1 and we
take N Ñ 8 here, we see that the numerical values of the Schur polynomials considered
here only depend on the hook-lengths of their components. Of course, one can still use
the full functional form involving terms of the form qN to in the context of knot theory,
as these functional forms can allow one to distinguish between knots or links which have
the same hook-lengths. For example, the quantum dimensions of p2q and p12q are different
when taking into account their dependence on N . On the other hand, these quantum
dimensions are identical when we take into account the fact that qN “ 0 for |q| ă 1
and N Ñ 8. Lastly, one should note that, since the hook-lengths are invariant under
transposition, the quantum dimensions involved are invariant under transposition as well.

References

[1] E. P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions,
Annals of Mathematics 62(3), 548 (1955), doi:10.2307/1970079.

[2] T. Tao and V.Vu, Random matrices: The universality phenomenon for wigner ensem-
bles (2012), doi:http://dx.doi.org/10.1090/psapm/072/00615.

[3] F. Dyson, Statistical theory of the energy levels of complex systems, Journal of Math-
ematical Physics 3(1), 140, 157, 166 (1962), doi:10.1063/1.1703773.

[4] M. Mehta, Random matrices (1991), doi:https://doi.org/10.1016/C2009-0-22297-5.

[5] P. Forrester, Log-Gases and Random Matrices, London Mathemat-
ical Society Monographs. Princeton University Press, Princeton, NJ,
doi:https://doi.org/10.1515/9781400835416 (2010).

[6] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigen-
state thermalization to statistical mechanics and thermodynamics, Advances in Physics
65(3), 239–362 (2016), doi:10.1080/00018732.2016.1198134.

31

https://doi.org/10.2307/1970079
https://doi.org/http://dx.doi.org/10.1090/psapm/072/00615
https://doi.org/10.1063/1.1703773
https://doi.org/https://doi.org/10.1016/C2009-0-22297-5
https://doi.org/https://doi.org/10.1515/9781400835416
https://doi.org/10.1080/00018732.2016.1198134


SciPost Physics Submission

[7] J. M. Deutsch, Eigenstate thermalization hypothesis, Reports on Progress in Physics
81(8), 082001 (2018), doi:10.1088/1361-6633/aac9f1.

[8] F. Evers and A. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008),
doi:10.1103/RevModPhys.80.1355.

[9] B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides and H. B. Shore, Statistics
of spectra of disordered systems near the metal-insulator transition, Phys. Rev. B 47,
11487 (1993), doi:10.1103/PhysRevB.47.11487.

[10] M. Moshe, H. Neuberger and B. Shapiro, Generalized ensemble of random matrices,
Phys. Rev. Lett. 73, 1497 (1994), doi:10.1103/PhysRevLett.73.1497.

[11] E. Hofstetter and M. Schreiber, Statistical properties of the eigenvalue spectrum
of the three-dimensional anderson hamiltonian, Phys. Rev. B 48, 16979 (1993),
doi:10.1103/PhysRevB.48.16979.

[12] B. Altshuler and L. Levitov, Weak chaos in a quantum kepler problem, Physics Reports
288(1), 487 (1997), doi:https://doi.org/10.1016/S0370-1573(97)00038-0.

[13] K. Muttalib, Y. Chen, M. Ismail and V. Nicopoulos, New family of unitary random
matrices, Phys. Rev. Lett. 71, 471 (1993), doi:10.1103/PhysRevLett.71.471.

[14] V. E. Kravtsov and A. M. Tsvelik, Energy level dynamics in systems with weakly multi-
fractal eigenstates: Equivalence to one-dimensional correlated fermions at low temper-
atures, Physical Review B 62(15), 9888–9891 (2000), doi:10.1103/physrevb.62.9888.

[15] I. Varga, E. Hofstetter, M. Schreiber and J. Pipek, Shape analysis of the level-spacing
distribution around the metal-insulator transition in the three-dimensional anderson
model, Phys. Rev. B 52, 7783 (1995), doi:10.1103/PhysRevB.52.7783.

[16] E. B. Bogomolny, U. Gerland and C. Schmit, Models of intermediate spectral statistics,
Phys. Rev. E 59, R1315 (1999), doi:10.1103/PhysRevE.59.R1315.

[17] A. Mirlin, Y. Fyodorov, V. Yan, F. Dittes, J. Quezada and T. Seligman, Transition
from localized to extended eigenstates in the ensemble of power-law random banded
matrices, Phys. Rev. E 54, 3221 (1996), doi:10.1103/PhysRevE.54.3221.

[18] V. E. Kravtsov, Random matrix representations of critical statistics,
doi:10.1093/oxfordhb/9780198744191.013.12 (2009).

[19] C. M. Canali, Model for a random-matrix description of the energy-level statistics
of disordered systems at the anderson transition, Phys. Rev. B 53, 3713 (1996),
doi:10.1103/PhysRevB.53.3713.

[20] V. E. Kravtsov and K. A. Muttalib, New class of random matrix en-
sembles with multifractal eigenvectors, Phys. Rev. Lett. 79, 1913 (1997),
doi:10.1103/PhysRevLett.79.1913.

[21] M. Marino, Chern-Simons theory, matrix models, and topological strings, vol. 131,
Oxford Science Publications, doi:10.1093/acprof:oso/9780198568490.001.0001 (2005).

[22] E. Witten, Quantum field theory and the jones polynomial, Comm. Math. Phys.
121(3), 351 (1989), doi:https://doi.org/10.1007/BF01217730.

[23] S. Ryu, A. P. Schnyder, A. Furusaki and A. W. W. Ludwig, Topological insulators
and superconductors: tenfold way and dimensional hierarchy, New Journal of Physics
12(6), 065010 (2010), doi:10.1088/1367-2630/12/6/065010.

32

https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevB.47.11487
https://doi.org/10.1103/PhysRevLett.73.1497
https://doi.org/10.1103/PhysRevB.48.16979
https://doi.org/https://doi.org/10.1016/S0370-1573(97)00038-0
https://doi.org/10.1103/PhysRevLett.71.471
https://doi.org/10.1103/physrevb.62.9888
https://doi.org/10.1103/PhysRevB.52.7783
https://doi.org/10.1103/PhysRevE.59.R1315
https://doi.org/10.1103/PhysRevE.54.3221
https://doi.org/10.1093/oxfordhb/9780198744191.013.12
https://doi.org/10.1103/PhysRevB.53.3713
https://doi.org/10.1103/PhysRevLett.79.1913
https://doi.org/10.1093/acprof:oso/9780198568490.001.0001
https://doi.org/https://doi.org/10.1007/BF01217730
https://doi.org/10.1088/1367-2630/12/6/065010


SciPost Physics Submission

[24] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder and S. Ryu, Classification of topo-
logical quantum matter with symmetries, Rev. Mod. Phys. 88, 035005 (2016),
doi:10.1103/RevModPhys.88.035005.

[25] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in meso-
scopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997),
doi:10.1103/PhysRevB.55.1142.

[26] R. Dijkgraaf and C. Vafa, Toda theories, matrix models, topological strings, and n=2
gauge systems, doi:10.1.1.245.9725 (2009).

[27] P. Sułkowski, Matrix models for beta-ensembles from nekrasov partition functions,
Journal of High Energy Physics 2010(4) (2010), doi:10.1007/jhep04(2010)063.

[28] H. Ooguri, P. Sułkowski and M. Yamazaki, Wall crossing as seen by ma-
trix models, Communications in Mathematical Physics 307(2), 429–462 (2011),
doi:10.1007/s00220-011-1330-x.

[29] E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math. 133, 637
(1995), doi:https://doi.org/10.1007/978-3-0348-9217-9_28.

[30] R. Gopakumar and C. Vafa, Topological gravity as large N topological gauge theory,
Adv. Theor. Math. Phys. 2, 413 (1998), doi:10.4310/ATMP.1998.v2.n2.a8.

[31] R. Gopakumar and C. Vafa, On the gauge theory / geometry correspondence, AMS/IP
Stud. Adv. Math. 23, 45 (2001), doi:10.4310/ATMP.1999.v3.n5.a5.

[32] D. Auckly and S. Koshkin, Introduction to the gopakumar–vafa large n duality,
The interaction of finite-type and Gromov–Witten invariants (BIRS 2003) (2007),
doi:10.2140/gtm.2006.8.195.

[33] A. Okounkov, N. Reshetikhin and C. Vafa, Quantum Calabi-Yau and classical crystals,
Prog. Math. 244, 597 (2006), doi:10.1007/0-8176-4467-9_16.

[34] T. Okuda, Derivation of Calabi-Yau crystals from Chern-Simons gauge theory, JHEP
03, 047 (2005), doi:10.1088/1126-6708/2005/03/047.

[35] G. Szegö, Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen pos-
itiven Funktion, Math. Ann. 76, 490–503 (1915), doi:10.1007/BF01458220.

[36] D. Bump and P. Diaconis, Toeplitz minors, Journal of Combinatorial Theory, Series
A 97(2), 252 (2002), doi:https://doi.org/10.1006/jcta.2001.3214.

[37] C. Tracy and H. Widom, On the limit of some Toeplitz-like determinants (2001),
doi:http://dx.doi.org/10.1137/S0895479801395367.

[38] D. García-García and M. Tierz, Toeplitz minors and specializations of skew schur
polynomials, Journal of Combinatorial Theory, Series A 172, 105201 (2020),
doi:https://doi.org/10.1016/j.jcta.2019.105201.

[39] D. García-García and M. Tierz, Matrix models for classical groups and toeplitz ˘
hankel minors with applications to chern–simons theory and fermionic models, Journal
of Physics A: Mathematical and Theoretical 53(34), 345201 (2020), doi:10.1088/1751-
8121/ab9b4d.

[40] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stan-
ford, A. Streicher and M. Tezuka, Black holes and random matrices, Journal of High
Energy Physics 2017(5) (2017), doi:10.1007/jhep05(2017)118.

33

https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1.1.245.9725
https://doi.org/10.1007/jhep04(2010)063
https://doi.org/10.1007/s00220-011-1330-x
https://doi.org/https://doi.org/10.1007/978-3-0348-9217-9_28
https://doi.org/10.4310/ATMP.1998.v2.n2.a8
https://doi.org/10.4310/ATMP.1999.v3.n5.a5
https://doi.org/10.2140/gtm.2006.8.195
https://doi.org/10.1007/0-8176-4467-9_16
https://doi.org/10.1088/1126-6708/2005/03/047
https://doi.org/10.1007/BF01458220
https://doi.org/https://doi.org/10.1006/jcta.2001.3214
https://doi.org/http://dx.doi.org/10.1137/S0895479801395367
https://doi.org/https://doi.org/10.1016/j.jcta.2019.105201
https://doi.org/10.1088/1751-8121/ab9b4d
https://doi.org/10.1088/1751-8121/ab9b4d
https://doi.org/10.1007/jhep05(2017)118


SciPost Physics Submission

[41] A. del Campo, J. Molina-Vilaplana and J. Sonner, Scrambling the spectral form
factor: Unitarity constraints and exact results, Phys. Rev. D 95, 126008 (2017),
doi:10.1103/PhysRevD.95.126008.

[42] P. Forrester, Quantifying dip-ramp-plateau for the laguerre unitary ensemble structure
function (2020).

[43] M. Marino, Chern-Simons theory, matrix integrals, and perturbative three manifold
invariants, Commun. Math. Phys. 253, 25 (2004), doi:10.1007/s00220-004-1194-4.

[44] P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K. Millett and A. Ocneanu, A new
polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 pp. 239–246
(1985), doi:https://doi.org/10.1090/S0273-0979-1985-15361-3.

[45] G. Casati, , F. Valz-Gris and I. Guarnieri, On the connection between quantization
of nonintegrable systems and statistical theory of spectra, Lettere al Nuovo Cimento
(1971-1985) 28(8), 279 (1980), doi:10.1007/BF02798790.

[46] M. Berry, Quantizing a classically ergodic system: Sinai’s billiard and the kkr
method, Annals of Physics 131(1), 163 (1981), doi:https://doi.org/10.1016/0003-
4916(81)90189-5.

[47] O. Bohigas, M. Giannoni and C. Schmit, Characterization of chaotic quantum
spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984),
doi:10.1103/PhysRevLett.52.1.

[48] F. Haake, S. Gnutzmann and M. Kuś, Quantum Signatures of Chaos, Physics and
astronomy online library. Springer, ISBN 9783540677239, doi:10.1007/978-3-642-
05428-0 (2001).

[49] P. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492
(1958), doi:10.1103/PhysRev.109.1492.

[50] J. Labastida, P. Llatas and A. Ramallo, Knot operators in Chern-Simons gauge theory,
Nucl. Phys. B348, 651 (1991), doi:10.1016/0550-3213(91)90209-G.

[51] B. Dubrovin, A. Fomenko and S. Novikov, Modern Geometry - Meth-
ods and Applications, vol. 1, Springer-Verlag, ISBN 978-0-387-97663-1,
doi:https://doi.org/10.1017/S0013091500017879 (1992).

[52] J. Tignol, Galois’ Theory of Algebraic Equations, World Scientific, ISBN
9789810245412 (2001).

[53] P. D. Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Graduate
texts in contemporary physics. Island Press, ISBN 9781461222576, doi:10.1007/978-
1-4612-2256-9 (1996).

[54] Y. Dolivet and M. Tierz, Chern-Simons matrix models and Stieltjes-Wigert polyno-
mials, J. Math. Phys. 48, 023507 (2007), doi:10.1063/1.2436734, hep-th/0609167.

[55] J. Isidro, J. Labastida and A. Ramallo, Polynomials for torus links
from chern-simons gauge theories, Nuclear Physics B 398(1), 187 (1993),
doi:https://doi.org/10.1016/0550-3213(93)90632-Y.

[56] J. Labastida and M. Marino, The HOMFLY polynomial for torus links
from Chern-Simons gauge theory, Int. J. Mod. Phys. A10, 1045 (1995),
doi:10.1142/S0217751X95000516.

34

https://doi.org/10.1103/PhysRevD.95.126008
https://doi.org/10.1007/s00220-004-1194-4
https://doi.org/https://doi.org/10.1090/S0273-0979-1985-15361-3
https://doi.org/10.1007/BF02798790
https://doi.org/https://doi.org/10.1016/0003-4916(81)90189-5
https://doi.org/https://doi.org/10.1016/0003-4916(81)90189-5
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1007/978-3-642-05428-0
https://doi.org/10.1007/978-3-642-05428-0
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1016/0550-3213(91)90209-G
https://doi.org/https://doi.org/10.1017/S0013091500017879
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1063/1.2436734
hep-th/0609167
https://doi.org/https://doi.org/10.1016/0550-3213(93)90632-Y
https://doi.org/10.1142/S0217751X95000516


SciPost Physics Submission

[57] A. Brini, B. Eynard and M. Marino, Torus knots and mirror symmetry, Annales
Henri Poincare 13, 1873 (2012), doi:10.1007/s00023-012-0171-2, 1105.2012.

[58] I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford clas-
sic texts in the physical sciences. Clarendon Press, ISBN 9780198504504,
doi:doi:10.1017/S0013091500023592 (1998).

[59] R. Stanley and S. Fomin, Enumerative Combinatorics: Volume 2, Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, ISBN 9780521789875,
doi:https://doi.org/10.1017/CBO9780511609589 (1997).

[60] D. Littlewood, The Theory of Group Characters and Matrix Representations of
Groups, AMS Chelsea Publishing Series. University Microfilms, ISBN 9780821874356,
doi:https://dx.doi.org/10.1090/chel/357 (1977).

[61] S. Stevan, Chern-Simons Invariants of Torus Links, Annales Henri Poincare 11, 1201
(2010), doi:10.1007/s00023-010-0058-z.

[62] G. Giasemidis and M. Tierz, Torus knot polynomials and susy Wilson loops, Lett.
Math. Phys. 104, 1535 (2014), doi:10.1007/s11005-014-0724-z.

[63] M. Rosso and V. Jones, On the invariants of torus knots derived from quantum groups,
J. Knot Theor. Ramifications 2, 97 (1993), doi:10.1142/S0218216593000064.

[64] H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton Uni-
versity Press, ISBN 9780691057569, doi:https://doi.org/10.2307/j.ctv3hh48t (1966).

[65] C. Andréief, Note sur une relation entre les intégrales définies des produits des fonc-
tions, Mém. Soc. Sci. Phys.Nat. Bordeaux 3, 1 (1886).

[66] M. Moerbeke, Virasoro action on schur function expansions, skew young tableaux, and
random walks, Communications on Pure and Applied Mathematics 58, 362 (2003),
doi:https://doi.org/10.1002/cpa.20062.

[67] I. Gessel, Symmetric functions and p-recursiveness, Journal of Combinatorial Theory,
Series A 53(2), 257 (1990), doi:https://doi.org/10.1016/0097-3165(90)90060-A.

[68] G. Andrews and E. Onofri, Lattice gauge theory, orthogonal polynomials and q-
hypergeometric functions (1984), doi:10.1007/978-94-010-9787-1_4.

[69] M. Douglas, Conformal field theory techniques in large N Yang-Mills theory, In
NATO Advanced Research Workshop on New Developments in String Theory, Con-
formal Models and Topological Field Theory, doi:https://doi.org/10.1007/978-1-4615-
1819-8_10 (1993).

[70] V. Kazakov, I. Kostov and D. Kutasov, A Matrix model for the two-dimensional black
hole, Nucl. Phys. B 622, 141 (2002), doi:10.1016/S0550-3213(01)00606-X.

[71] J. Labastida and M. Marino, Polynomial invariants for torus knots and topological
strings, Commun. Math. Phys. 217, 423 (2001), doi:10.1007/s002200100374.

[72] J. Labastida and M. Marino, The HOMFLY polynomial for torus links
from Chern-Simons gauge theory, Int. J. Mod. Phys. A10, 1045 (1995),
doi:10.1142/S0217751X95000516.

[73] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96,
110404 (2006), doi:10.1103/PhysRevLett.96.110404.

35

https://doi.org/10.1007/s00023-012-0171-2
1105.2012
https://doi.org/doi:10.1017/S0013091500023592
https://doi.org/https://doi.org/10.1017/CBO9780511609589
https://doi.org/https://dx.doi.org/10.1090/chel/357
https://doi.org/10.1007/s00023-010-0058-z
https://doi.org/10.1007/s11005-014-0724-z
https://doi.org/10.1142/S0218216593000064
https://doi.org/https://doi.org/10.2307/j.ctv3hh48t
https://doi.org/https://doi.org/10.1002/cpa.20062
https://doi.org/https://doi.org/10.1016/0097-3165(90)90060-A
https://doi.org/10.1007/978-94-010-9787-1_4
https://doi.org/https://doi.org/10.1007/978-1-4615-1819-8_10
https://doi.org/https://doi.org/10.1007/978-1-4615-1819-8_10
https://doi.org/10.1016/S0550-3213(01)00606-X
https://doi.org/10.1007/s002200100374
https://doi.org/10.1142/S0217751X95000516
https://doi.org/10.1103/PhysRevLett.96.110404

	Introduction
	Random Matrix Theory in disordered and complex systems: brief overview
	Intermediate statistics and corresponding RMT approaches
	Connection to topological field and string theories
	Summary of main results
	Outline of the paper

	Random matrix theory
	Density of states and spectral form factor

	Chern-Simons matrix model and knot/link invariants
	Knot operator formalism
	Chern-Simons matrix model
	Computing torus knot and link invariants in the Chern-Simons matrix model

	Matrix integrals and Toeplitz minors
	Infinite N
	Finite N

	Spectral form factor
	The spectral form factor for general weight function
	General trace identities

	 The SFF of the Chern-Simons matrix model
	General identities for the Chern-Simons matrix model


	Overview and Conclusions
	q-Numbers
	Symmetric polynomials
	Schur polynomials
	References

