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Abstract

Gauge theories in various dimensions often admit discrete theta angles, that arise from
gauging a global symmetry with an additional symmetry protected topological (SPT) phase.
We discuss how the global symmetry and ’t Hooft anomaly depends on the discrete theta
angles by coupling the gauge theory to a topological quantum field theory (TQFT). We ob-
serve that gauging an Abelian subgroup symmetry, that participates in symmetry extension,
with an additional SPT phase leads to a new theory with an emergent Abelian symmetry
that also participates in a symmetry extension. The symmetry extension of the gauge the-
ory is controlled by the discrete theta angle which comes from the SPT phase. We find that
discrete theta angles can lead to two-group symmetry in 4d QCD with SU(N), SU(N)/Zk
or SO(N) gauge groups as well as various 3d and 2d gauge theories.
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1 Introduction

Gauge theories often admit topological terms that assign different weights to different bun-

dles in the partition function

Z =
∑
v

αvZv , (1.1)

where v denotes different topological sectors. Some sectors might be absent in the sum if

αv vanishes (see the examples in [1–3]1). If αv is nonzero, it can be a discrete phase in some

1Some models are also discussed in [4] and the references therein.
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theories. We will refer to it as a discrete theta angle. Some examples were presented in [3].

In this note we discuss the general relation among families of gauge theories with different

discrete theta angles. In particular, we will focus on their global symmetries and ’t Hooft

anomalies.2

Theories with different discrete theta angles often arise from gauging a global symmetry

in a quantum field theory with different symmetry-protected topological (SPT) phases.

Gauging the symmetry sums over different topological sectors labelled by the gauge field.

Let us denote two SPT phases by S and S ′ with partition functions αv, α
′
v, and their

resulting theories after gauging the symmetry by T and T ′. In such cases, the theories T
and T ′ are related by coupling to a topological quantum field theory (TQFT). The TQFT is

constructed by gauging the global symmetries in the SPT phase (S ′−S) with the partition

function αv(α
′
v)
∗ by summing over the topological sectors,

ZTQFT =
∑
v

αv(α
′
v)
∗ . (1.2)

When the symmetry being gauged is Abelian (for simplicity we will assume it to be discrete),

the theories T , T ′ as well as the TQFT has a dual non-anomalous Abelian symmetry A.

Gauging the symmetry in the theories T and T ′ restricts the sum over the topological

sector to a single term and recovers the original theory. More generally, one can use the

dual symmetry A to couple the theory T to the TQFT by gauging the diagonal symmetry

T ′ ←→ T × TQFT

A
. (1.3)

The coupling identifies the gauge fields in the theory T and in the TQFT so the theory

after gauging is equivalent to T ′ with a different discrete theta angles.

We can then determine the properties of the theory T ′ from the theory T and the

TQFT. Theories with different discrete theta angles form a family of theories. The difference

between theories within a family is captured universally by the TQFTs that relate them. In

this note we study these universal aspects that depend on the TQFTs.3 We discuss several

examples including gauge theories with or without matter in 3d and 4d.

In some examples, the symmetry that we gauge is a subgroup of a larger symmetry.

If the larger symmetry is a non-trivial extension of the gauged subgroup and its quotient

(in other words, not a direct product), we observe that the resulting gauge theories have

different extensions of global symmetries and ’t Hooft anomalies, that depend on the SPT

phases i.e. the discrete theta angles for the gauged symmetry.

2We will also present examples where theories with different discrete theta angles differ in their non-
invertible topological defects, see Section 5.4.

3For 4d theories a similar construction is discussed in [5] that studies different symmetry fractionaliza-
tions using the TQFT sector.
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When the discrete theta angle vanishes, our results agree with the general discussion

in [6], where a mixed anomaly is observed in the resulting gauge theory due to the symmetry

extension in the original theory. On the other hand, for nonzero discrete theta angle we

find such mixed anomaly can be absent.

When the symmetries involved in the extension are q-form symmetries with different

degrees q [7], the global symmetry describes a higher-group [8–10]. We stress that in

order to produce the symmetry extension, the original symmetry does not need to have

an anomaly (and adding an SPT phase also does not change the anomaly of the theory

). This is a generalization of the discussion in [11, 6, 9, 10], which describes a special case

(gauging a symmetry without adding an SPT phase). It was shown that a mixed anomaly

in the original symmetry produces a symmetry extension in the gauge theory, while here

we find that the mixed anomaly is not necessary for the symmetry extension in the gauge

theory. In particular, we show that theories with two-group symmetries can be constructed

by gauging a subgroup symmetry that does not have a mixed anomaly with the remaining

symmetry.

We use the method to study the global symmetry and its ’t Hooft anomaly in various

theories, including 3d gauge theory and 4d SU(N)/Zk and SO(N), Spin(N), O(N) gauge

theories.4 SU(N)/Zk gauge theory in 4d has a discrete theta angle p with even pk [12, 13]

2πp

2k

∫
P(wk2), p = 0, 1, · · · 2k − 1 , (1.4)

where wk2 is the obstruction to lifting the bundle to an SU(N) bundle, and P is the Pon-

tryagin square operation reviewed in Appendix B [14]. SO(N) gauge theory in 4d has a Z4

discrete theta angle [12]
2πp

4

∫
P(w

(1)
2 ), p = 0, 1, 2, 3 , (1.5)

where w
(1)
2 is the obstruction to lifting the gauge bundle to a Spin(N) bundle. O(N) gauge

theory in 4d has the discrete theta angle

2πp

4

∫
P(w

(1)
2 ) + πr

∫
(w1)

2w
(1)
2 , p = 0, 1, 2, 3, r = 0, 1 , (1.6)

where w1, w
(1)
2 are the first and second Stiefel-Whitney classes of the O(N) bundle. The

TQFTs corresponding to these discrete theta angles are two-form and one-form gauge

theories (see Section 2 and Appendix C for details). In particular, we find two-group

symmetries or symmetry extension that depends on the discrete theta angles of the gauge

4Unlike the SU(N), Spin(N) gauge group discussed here, Sp(N) gauge group only has a Z2 center which
does not have any nontrivial proper subgroup. Hence Sp(N) or Sp(N)/Z2 gauge theories with matters do
not have two-group symmetries with nontrivial Postnikov class, and we will not discuss them in this paper.
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theory. Some examples are

• 4d SU(N)/Zk gauge theory with discrete theta angle p andNf massless Dirac fermions

in the tensor representation with r boxes in the Young tableaux that satisfies the

relation gcd(N, r) = k. The theory has Zk magnetic one-form symmetry, and the

flavor 0-form symmetry

G(0) =
G̃(0)

ZN/k
, G̃(0) =

SU(Nf )L × SU(Nf )R × U(1)× Z2Nf I(R)

ZNf × ZNf × Z2

. (1.7)

where the various quotients are explained in section 3.3. The one-form symmetry and

the flavor symmetry combines into a two-group symmetry with Postnikov class5

Θ = pBock(wf2 ) , (1.9)

where wf2 is the obstruction associated with the ZN/k quotient in the flavor symmetry

background gauge field, and Bock is the Bockstein homomorphism for the short exact

sequence 1→ Zk → ZN → ZN/k → 1.6

• 4d SO(N) gauge theory with discrete theta angle p and Nf massless Weyl fermions

in the vector representation, with even N and Nf . The theory has a flavor symmetry

G(0) =
G̃(0)

Z2

, G̃(0) =
SU(Nf )× Z2Nf

ZNf
, (1.10)

and Z2 charge conjugation symmetry that extends the SO(N) gauge field to O(N)

gauge field. The theory also has a Z2 magnetic one-form symmetry. The symmetries

combine into a two-group symmetry with Postnikov class

Θ = p

(
N

2
Bock(wf2 ) + wf2B

C
1

)
, (1.11)

where wf2 is the obstruction associated with the Z2 quotient in the flavor symmetry,

and BC1 is the background gauge field of the charge conjugation symmetry. Bock

5For one-form symmetry G(1) and 0-form symmetry G(0), the Postnikov class Θ ∈ H3(G(0), G(1)) ex-
presses how the zero-form and one-form symmetries combine in terms of their backgrounds B1, B2

δB2 = B∗1Θ , (1.8)

where δ is the differential (the coboundary operator for C∗(M,G(1)) on spacetime M) and B∗1Θ is the
pullback of Θ.

6The Bockstein homomorphism associated to a short exact sequence 1 → N → G → H → 1 can be
understood as an obstruction to lifting an H-valued coycle to a G-valued coycle. See Appendix B of [10]
for a review on Bockstein homomorphism.
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denotes the Bockstein homomorphism for the short exact sequence 1 → Z2 → Z4 →
Z2 → 1.

• 3d ZN gauge theory with discrete theta angle given by Chern-Simons level k, obtained

by gauging a ZN normal subgroup 0-form symmetry in a system with G̃ 0-form

symmetry. G̃ is the group extension 1 → ZN → G̃ → G → 1 described by η2 ∈
H2(G,ZN). We assume the ZN subgroup symmetry is non-anomalous and there is no

mixed anomaly between ZN and G̃. The new theory has two-group symmetry that

combines the emergent ZN dual one-form symmetry generated by the Wilson line and

G 0-form symmetry, with the Postnikov class

Θ = kBock(η2) , (1.12)

where Bock is the Bockstein homomorphism for 1→ ZN → ZN2 → ZN → 1.

• 2d Z2 gauge theory with discrete theta angle given by p times the quadratic refinement

from the Arf invariant [15–17]7 where p = 0, 1, obtained by gauging a Z2 normal

subgroup 0-form symmetry in a system with G̃ 0-form symmetry. G̃ is the group

extension 1 → Z2 → G̃ → G → 1. We assume the Z2 subgroup symmetry is non-

anomalous and there is no mixed anomaly between Z2 and G̃. If p = 0, the new

theory does not have discrete theta angle and it has Z2×G symmetry, while if p = 1

the theory has discrete theta angle given by the Arf invariant and the symmetry is

the extension G̃.

In Section 2, we review the global symmetry and its anomaly in 4d two-form gauge

theory, and then study the symmetry in QFTs that couple to the two-form gauge theory.

The two-form gauge theory controls the discrete theta angle of the QFTs. In Section 3,

we apply the results in Section 2 to study the symmetry in 4d SU(N)/Zk gauge theory

with discrete theta angle. In Section 4, we discuss the symmetry in 4d gauge theory with

Spin(N), SO(N), O(N) gauge groups, and determine how the symmetry and its anomaly

depends on the discrete theta angles. In Section 5, we review the symmetry and its anomaly

in ZN gauge theory, and then discuss how symmetry depends on the discrete theta angle

when we gauge a ZN zero-form symmetry in 3d. In Section 6, we discuss more examples of

3d gauge theories with discrete theta angles and examine their global symmetry. In Section

7, we discuss gauging Z2 zero-form symmetry in 2d with or without a discrete theta angle

given by the Arf invariant, and we find that the symmetry extension and ’t Hooft anomaly

depends on the discrete theta angle.

7It is the non-trivial fermionic SPT phase with unitary Z2 symmetry (in addition to the fermion parity)
in 2d described by the generator in Ω2

Spin(BZ2) = Z2
2 which is not the generator of the fermionic SPT phase

without any symmetry other than the fermion parity [18,19] classified by Ω2
Spin(pt) = Z2 [17].

6



There are several appendices. In Appendix A we summarize some mathematical back-

grounds for cochains and cohomology operations. In Appendix B we describe the symmetry

extension from the analogue of the Green-Schwarz mechanism using discrete notation for

discrete gauge fields. In Appendix C we discuss the symmetry in a class of TQFTs that can

be defined in any spacetime dimension by generalizing the two-form gauge theory discussed

in Section 2. In Appendix D we discuss gauging Z2 × Z2 symmetry in 2d Ising × Ising

model with or without discrete torsion labelled by H2(Z2 × Z2, U(1)) = Z2.

2 4d ZN two-form gauge theory

In 4d, we can consider a two-form gauge theory with the action [20,21,7]8

S =

∫
pN

4π
b̂ ∧ b̂, (2.1)

where pN is an even integer and b̂ is a U(1) two-form gauge field with a constraint∮
b̂ ∈ 2π

N
Z , (2.2)

such that b = N
2π
b̂ is a ZN cocycle.9 The coefficient p is an integer with the identification

p ∼ p + 2N , for more details see [13]. As discussed in [21, 7, 13], the theory has a ZN
one-form and a ZN two-form symmetry for p = 0. In the following we will review how

the symmetries are deformed when p is non-zero. Denote the background gauge fields for

the higher-form symmetries by a ZN 2-cochain B2 and a ZN 3-cocycle Y3. We use the

continuous notation to embed them in U(1) two gauge fields B̂2 and Ŷ3. The ZN 2-cochain

B2 couples to the system through the following term in the action

N

2π

∫
b̂ ∧ B̂2 . (2.3)

The ZN 3-cocycle Ŷ3 modifies the quantization of b̂

db̂ = Ŷ3 . (2.4)

8See [22,23] for a Hamiltonian model realization of such theory.
9We will use variables without a hat, such as b, to denote a discrete gauge field and the corresponding

variables without a hat, such as b̂, to denote its embedding in a U(1) gauge field such that
∮
b̂ = 2π

N

∮
b.

The former will be referred to as the discrete notation while the later will be referred to as the continuous
notation. The subscript denotes the degree of the gauge fields. We will omit ∧’s between U(1) gauge fields
and ∪’s between discrete gauge fields.
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The topological action (2.1) and the coupling (2.3) has a bulk dependence∫
5d

pN

4π
d(̂b ∧ b̂) +

N

2π
d(̂b ∧ B̂2) =

∫
5d

N

2π
b̂ ∧ (dB̂2 + pŶ3) +

N

2π
B̂2 ∧ Ŷ3 . (2.5)

The first term involves dynamical gauge fields so it has to be removed. It can be achieved

by demanding the following relation between the backgrounds

dB̂2 + pŶ3 = 0 . (2.6)

This implies that for gcd(N, p) 6= 1, the background Ŷ3 is non-trivial while pŶ3 is trivial.

When gcd(N, p) 6= 1, the symmetry has an ’t Hooft anomaly given by the bulk term for

the background fields:
N

2π

∫
5d

B̂2Ŷ3 . (2.7)

When gcd(N, p) = 1, the background Ŷ3 is trivial and the bulk dependence (2.7) can be

removed by a local counterterm (Nα/4π)
∫
4d
B̂2B̂2 of the background fields with integer α

that satisfies αp = 1 mod N , and thus it does not represent a genuine ’t Hooft anomaly.

The above computation is repeated using discrete notation in appendix B. In discrete

notation, the backgrounds obey

δB2 + pY3 = 0 , (2.8)

and the anomaly is
2π

N

∫
5d

B2Y3 . (2.9)

2.1 Symmetry enrichment

The two-form gauge theory can couple to background gauge fields for other global sym-

metries, such as 0-form symmetries, through symmetry enrichment [24–29]. This arises

naturally when the two-form gauge theory is the low energy effective theory of some ul-

traviolet theories. In such scenario, the ultraviolet symmetry is realized in the infrared by

their actions on extended operators in the two-form gauge theory. The symmetry can act

in an anomalous way on the extended operators. An example is fractional quantum Hall

system which has anyons that carry fractional electric charges at low energy. This is called

symmetry fractionalization.

We can describe the coupling using the background gauge field B2, Y3 of the ZN one-form

and ZN two-form symmetries in the two-form gauge theory that obey

δB2 + pY3 = 0 (2.10)
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where δ is the coboundary operator on C∗(M,ZN) for spacetime M .

For instance, we can couple the gauge theory to background gauge fields X1 for 0-form

symmetry G(0) and X2 for one-form symmetry G(1) by [10,5]

B2 = X∗1η2 + f(X2), Y3 = X∗1η3 + g(X2)X
∗
1η1 + qBock(h(X2)) , (2.11)

where q ∈ ZN , f, g, h ∈ Hom(G(1),ZN), Bock is the Bockstein homomorphism for 1 →
ZN → ZN2 → ZN → 1 and ηi ∈ Ci(BG(0),ZN) are constrained such that (2.10) is satisfied.

If gcd(p,N) 6= 1, the low energy TQFT has non-trivial line and surface operators obeying

Zgcd(p,N) fusion algebra and the symmetries G(0), G(1) act on these operators. For instance,

if f, g, h is the trivial homomomorphisms and p = 0, non-trivial η2 represents symmetry

fractionalization for G(0) on the line operators. Similarly, non-trivial η3 represents a world-

volume anomaly on the surface operator charged under the two-form symmetry.

On the other hand, if gcd(p,N) = 1, the two-form gauge theory is an invertible TQFT,

and the symmetries G(0), G(1) only acts in the UV.

The symmetries G(0), G(1) in general has a mixed anomaly with the ZN one-form sym-

metry depending on p and f, g, h, ηi. This is given by the anomaly

2π

N

∫
5d

(B
(0)
2 +B2)Y3 =

2π

N

∫
5d

(B′2 +X∗1η2 + f(X2)) (X∗1η3 + g(X2)X
∗
1η1 + qBock(h(X2))) ,

(2.12)

where B′2 is the background for the ZN one-form symmetry generated by exp(i
∮
b). The

mixed anomaly involving B′2 is

2π

N

∫
5d

B′2 (X∗1η3 + g(X2)X
∗
1η1 + qBock(h(X2))) , (2.13)

As we will see, the mixed anomaly will be important for determining the symmetries in the

theories coupled to the two-form gauge theory.

2.2 Couple QFT to two-form gauge theory

Suppose we start with a 4d theory with a non-anomalous ZN one-form symmetry, and then

gauge the symmetry. We have a freedom of adding an SPT phase for the ZN two-form

gauge fields with the action (2.1) labelled by p. This leads to a theory with a discrete theta

angle p, which we will denote by T p. These theories are related by

T k+p ←→ T k × (ZN two-form gauge theory)p

Z(1)
N

. (2.14)
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As a special case with k = 0, the theories T p with discrete theta angle and T 0 without

discrete theta angle are related.

Let us discuss the relations between the symmetries in T p and T 0. The symmetry

in T 0 might have a mixed anomaly with the ZN one-form symmetry. When gauging the

diagonal ZN one-form symmetry, this contributes a non-trivial bulk dependence involving

the dynamical gauge field. On the other hand, the two-form gauge theory also contributes

a non-trivial bulk dependence (2.13) involving the dynamical gauge field. The two bulk

dependence cancel to give a well-defined 4d theory, and the cancellation might require the

background gauge fields to obey certain constraints. This implies that the symmetries of

T p and T 0 might be different. We will see many examples of this phenomenon in the rest

of the discussions.

2.2.1 Gauging Zk ⊂ ZN subgroup one-form symmetry

Let us start with a theory in 4d with a non-anomalous ZN one-form symmetry and then

gauge a Zk subgroup of the symmetry. We can add an SPT phase for the Zk one-form

symmetry with the action (2.1) labelled by a Z2k coefficient p [13].

Let us first discuss the symmetry of the theory T 0 with p = 0. The theory has an

emergent Zk dual one-form symmetry generated by the “Wilson surface” of the Zk two-

form gauge field. In addition, there is a remaining ZN/Zk = ZN/k one-form symmetry.

Denote the background two-form gauge fields for the ZN/k × Zk one-form symmetries by

Be
2, B

m
2 . The two one-form symmetries have a mixed anomaly described by the 5d SPT

phase10

2π

k

∫
5d

Bm
2 Bock(Be

2) , (2.16)

where Bock is the Bockenstein homomorphism of the exact sequence 1→ Zk → ZN → ZN/k.
The anomaly arises from the symmetry extension in the original theory [6]. As a check,

gauging the emergent Zk dual one-form symmetry recovers the ZN one-form symmetry in

the original theory. Promoting the Zk gauge field Bm
2 to a dynamical gauge field introduces

an emergent Zk two-form gauge field B′e2 that couples as 2π
k

∫
Bm

2 B
′e
2 . To cancel the gauge-

10The anomaly has order gcd(k,N/k) i.e. this many copies of the system has trivial anomaly. To see
this, note that there exists integers α, β such that gcd(N/k, k) = αk + βN/k. Thus multiplying the mixed
anomaly by gcd(N/k, k) gives

α

∫
δB̃e2
N/k

B̃m2 − β
∫
B̃e2

δB̃m2
k

= 0 mod 2πZ , (2.15)

where the tilde denotes a lift to a Z co-chain. This is consistent with the property that if gcd(N/k, k) = 1,
ZN = ZN/k × Zk → 1 so the symmetry extension 1→ Zk → ZN → ZN/k is trivial.
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global anomaly (2.16), the background gauge fields obey

δB′e2 = Bock(Be
2) . (2.17)

It recovers the ZN two-cocycle kB̃′e2 +B̃e
2 that serves as the background for the ZN one-form

symmetry in the original theory, where tilde denotes a lift to a ZN cochain.

Next, we study the symmetry in the theory T p with discrete theta angle p. The theory

is related to T 0 by

T p ←→
T 0 × (Zk two-form gauge theory)p

Z(1)
k

. (2.18)

Gauging the diagonal Zk one-form symmetry sets B2 = B′m2 + bm2 in (2.3) and Bm
2 = bm2

where b̂m2 is the dynamical gauge field for the diagonal one-form gauge symmetry and B′m2
is the background gauge field for the residue Zk one-form symmetry. The bulk dependence

of the theory has two contributions from (2.7) and (2.16)

2π

k

∫
5d

Y3(B
m
2 + bm2 ) + bm2 Bock(Be

2) . (2.19)

We remove the gauge-global anomaly by imposing the following constraint

Y3 = Bock(Be
2) . (2.20)

The backgrounds B2, Y3 in the Zk two-form gauge theory satisfy (2.10). Thus the back-

ground gauge fields Be
2, B

′m
2 in T p satisfy

δB′m2 + pBock(Be
2) = 0 . (2.21)

What’s the symmetry described by such backgrounds? The relations between back-

grounds can be translated into relations between symmetry charges. Denote the generators

that couple to B′m2 and Be
2 by U and V respectively, then we have the following relations

Up = V N/k, Uk = 1 . (2.22)

In particular, U generates the emergent Zk one-form symmetry, which is dual to the Zk
one-form symmetry that we gauged in the first place. For p = 0, V generates a ZN/k
one-form symmetry and the total one-form symmetry is the direct product ZN/k ×Zk. For

generic p, the total one-form symmetry is no longer a direct product; rather it becomes

an extension of the ZN/k one-form symmetry by the Zk one-form symmetry. For instance,

when p = 1 the total one-form symmetry is ZN , generated by V . In general, the symmetry
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group can be expressed as the quotient of Z×Z by the group generated by the columns of

the following matrix (
N/k p

0 k

)
. (2.23)

The matrix can be put into Smith normal form(
J 0

0 N/J

)
. (2.24)

with J = gcd(k,N/k, p), by multiplying SL(2,Z) matrices from the left and the right.

The resulting quotient group is invariant under the transformation. Hence the one-form

symmetry is

ZJ × ZN/J . (2.25)

For p = 0, the one-form symmetry is Zgcd(N/k,k)×ZN/ gcd(N/k,k) ∼= Zk×ZN/k which reproduces

the symmetry in T 0.11

Substituting the relation (2.20) back to (2.19) gives the bulk dependence of the theory

T p that describes the ’t Hooft anomaly:

2π

k

∫
B′m2 Bock(Be

2) . (2.28)

The bulk dependence is defined up to local counterterms on the boundary. Denote

L = gcd(p, k) , (2.29)

then there exists integers α satisfying αp = L mod k. Adding the local counterterm

2πα

2k

∫
P(B′m2 ) (2.30)

reduces the ’t Hooft anomaly to

2π(1 mod L)

k

∫
B′m2 Bock(Be

2) . (2.31)

11The isomorphism Zm × Zn ∼= Zgcd(m,n) × Zmn/ gcd(m,n) is as follows. Denote integers α, β that satisfy
` ≡ gcd(m,n) = αm+ βn. The element (x, y) ∈ Zm × Zn is mapped to

x′ = αx+ βy mod `, y′ = −(n/`)x+ (m/`)y mod mn/` . (2.26)

The inverse map is
x = (m/`)x′ − βy′ mod m, y′ = (n/`)x′ + αy′ mod n . (2.27)

12



In particular, there is no mixed anomaly for L = 1, but a non-trivial anomaly for L 6= 1.

In section 3 and section 4, we will apply the above analysis to pure SU(N)/Zk and SO(N)

gauge theory.

2.2.2 Gauging Zk one-form symmetry in two-group

Let us consider gauging a Zk one-form symmetry that is part of a two-group symmetry

with 0-form symmetry G and Postnikov class Θ. Denote the background gauge field for

the 0-form symmetry by B1, and the gauge field for the Zk one-form symmetry by b. The

two-group symmetry implies

δb = B∗1Θ , (2.32)

where δ is the differential (coboundary operator) acting on C∗(M,Zk) for spacetime M .

We can also add an SPT phase labelled by p for the one-form symmetry when gauging the

symmetry.

Let us begin with p = 0. The theory has an emergent dual Zk one-form symmetry gen-

erated by exp(2πi
k

∮
b), whose background gauge field we will denote by B2. The two-group

symmetry implies that the emergent dual Zk one-form symmetry has a mixed anomaly with

the 0-form symmetry G [6, 10]
2π

k

∫
B2B

∗
1Θ . (2.33)

Next, let us consider theory with non-zero p by coupling the p = 0 theory to the two-

form gauge theory with action labelled by p. From a similar analysis as in section 2.2.1, we

obtain the constraint

Y3 = B∗1Θ . (2.34)

The constraint (2.10) in the Zk two-form gauge theory implies that the backgrounds B2, B1

satisfy the constraint

δB2 + pB∗1Θ = 0 . (2.35)

Thus we find that the theory after gauging the one-form symmetry has different two-group

symmetries depending on the SPT phases (labelled by p). More precisely, the one-form

symmetry is Zk and the 0-form symmetry is G for all p, but the new Postnikov class Θ(p)

(that specifies how the one-form and 0-form symmetries “mix”) depends on p as follows

Θ(p) = −pΘ . (2.36)

The anomaly for the new two-group symmetry can be derived in a similar way as before,

given by
2π(1 mod L)

k

∫
B2B

∗
1Θ , (2.37)
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where L = gcd(p, k).

3 4d SU(N)/Zk gauge theory

3.1 Bundle and classical action

The topology of an SU(N)/Zk bundle, with k a divisor of N , is characterized by the

instanton number and the Zk discrete magnetic flux wk2 ∈ H2(M,Zk) where M is the

spacetime manifold.12 The magnetic flux wk2 can be understood as the obstruction to

lifting the bundle to an SU(N) bundle. When wk2 vanishes, the bundle can be lifted to an

SU(N) bundle. The instanton number is related to the magnetic flux by [12,21,7, 13, 31]

1

8π2

∫
Tr (F ∧ F ) =

(N −N/k)

2k

∫
P(wk2) mod 1 , (3.1)

where F is the field strength, and P(wk2) is the Pontryagin square operation (reviewed in

appendix (B)).

The gauge theory can include two topological terms in the action: a continuous θ angle

that multiplies the instanton number and a discrete Z2k theta angle p with pk being even

θ

8π2

∫
Tr F ∧ F + 2π

p

2k

∫
P(wk2) . (3.2)

The theta angles are subjected to an identification

(θ, p) ∼ (θ + 2π, p− (N −N/k)), and p ∼ p+ 2k . (3.3)

For even k, the theories with discrete theta angle p and p+ k differ by

π

∫
(wk2)2 = π

∫
wk2 ∪ w2(TM) , (3.4)

where w2(TM) is the second Stiefel-Whitney class of the tangent bundle. Thus the only

difference is that the spin of the magnetic line (with odd
∮
S2 w

k
2 on S2 that surrounds the

line) differs by 1/2. If we consider gauge theory with fermions on a spin manifold (where

w2 = 0), then p can be restricted to a Zk coefficient for both k even and odd, since one can

modify the magnetic line by a gravitational spin 1/2 line.

12One can also restrict the sum over instanton number, which gives rise to a modified theory with
three-form symmetry [30]. We will not consider such situation in our discussion.
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3.2 Global symmetry

The theory with discrete theta angle p has the following spectrum of line operators [12].

W kqe+pqmT qmN/k , (3.5)

where W,T are the basic Wilson and ’t Hooft lines.

The one-form symmetry of the pure gauge theory was analyzed in appendix C of [7],

ZJ × ZN/J , J = gcd(k,N/k, p) (3.6)

which agrees with (2.25). To relate the spectrum of line operators to the one-form symmetry

in the pure gauge theory, we examine how the line operators transform under the symmetry

charges. The magnetic charge U in (2.22) transforms the lines as

exp

(
2πiqm
k

)
, (3.7)

while the electric charge V in (2.22) transforms the lines as

exp

(
2πi

N
(kqe + pqm)

)
. (3.8)

We can then identify the trivial charges Uk and V N/kU−p. This reproduces the relation

(2.22), and thus matches the one-form symmetry (2.25). The one-form symmetry has an

’t Hooft anomaly, given by (2.31). The symmetry and ’t Hooft anomaly of an SU(N)/Zk

gauge theory have been discussed in [32]. Our results are in complete agreement.

3.3 Two-group symmetry in SU(N) and SU(N)/Zk QCD with ten-

sor fermions

3.3.1 SU(N) QCD

Let’s consider SU(N) QCD with Nf Dirac fermions of equal mass in the representation R

with r boxes in its Young Tableau. For simplicity we assume that the representation R is

complex. We first discuss the case when the fermions are massive with the same mass. The

discussion is similar in the massless case. The theory has a Zk one-form symmetry with

k = gcd(N, r) and a flavor symmetry

G(0) =
U(Nf )

ZN/k
=

G̃(0)

ZN/k
. (3.9)
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The fermion transforms under the group

G̃(0) × SU(N)/Zk
ZN/k

, (3.10)

where SU(N) is the gauge group, and the ZN/k quotient identifies

(g, a) ∼ (e2πir/Ng, e−2πi/Na) ∈ G̃(0) × SU(N)/Zk . (3.11)

Activating the background B2 for the Zk one-form symmetry modifies the SU(N) gauge

bundle to an SU(N)/Zk bundle. More generally, we can simultaneously activate B2 and the

background B1 for the G(0) flavor symmetry. Due to the identification (3.10), if B1 is a G(0)

background that can not be lifted to a G̃(0) background, the background B2 is necessarily

activated. The backgrounds B1, B2 modify the gauge bundle to a PSU(N) bundle [33]

described by

w2(PSU(N)) =
N

k
B̃2 + B̃∗1w

f
2 mod N , (3.12)

where w2(PSU(N)) is the obstruction to lifting the gauge bundle to an SU(N) bundle, tilde

denotes a lift to ZN cochain, and wf2 denotes the obstruction to lifting the G(0) background

to a G̃(0) background. This implies that the background satisfies a relation

δB2 = B∗1Bock(wf2 ) . (3.13)

Thus SU(N) QCD with Nf massive fermions in representation R has a two-group symmetry

that combines the Zk one-form symmetry and the flavor symmetry G(0), as described by

the Postnikov class

ΘSU(N) = Bock(wf2 ) . (3.14)

When the fermions are massless, the flavor symmetry G(0) is enlarged to

G(0) =
G̃(0)

ZN/k
, G̃(0) =

(
SU(Nf )L × SU(Nf )R × U(1)× Z2Nf I(R)

Z2

× ZNf × ZNf

)
. (3.15)

Here I(R) is the index of the representation R.13 The quotient in G̃(0) introduces the

13The index is defined as TrR(T aT b) = δabI(R)/(2h∨G) with h∨G the dual Coxeter number and T a nor-
malized such that Tradj(T

aT b) = δab. The index for the fundamental representation and the adjoint
representation is 1 and 2N respectively.
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following identification

(g, h, b, c) ∼ (g, h,−b,−c)
∼ (e2πi/Nfg, e2πi/Nfh, e−2πi/Nf b, c)

∼ (e2πi/Nfg, e−2πi/Nfh, b, e2πi/Nf c)

∈ SU(Nf )L × SU(Nf )R × U(1)× Z2Nf I(R) .

(3.16)

The fermion transforms under the group

G̃(0) × SU(N)/Zk
ZN/k

, (3.17)

where SU(N) is the gauge group and the ZN/k quotient identifies

(a, b) ∼ (e2πi/Na, e−2πir/Nc) ∈ SU(N)/Zk × U(1) . (3.18)

Similar to the massive theory, the massless QCD also has a two-group symmetry that

combines the Zk one-form symmetry and the enlarged flavor symmetry G(0) in (3.15). The

corresponding Postnikov class is still given by (3.14) with wf2 now being the obstruction to

lifting the G(0) background to a G̃(0) background with G(0), G̃(0) in (3.15).

3.3.2 SU(N)/Zk QCD

Next, we gauge the Zk one-form symmetry with an SPT phase labelled by p for the Zk
two-form gauge field. This turns the theory into an SU(N)/Zk gauge theory with discrete

theta angle p that couples to Nf Dirac fermions in representation R. The theory has the

G(0) symmetry (3.9) and a magnetic Zk one-form symmetry whose background is denoted

by Bm.

Following the discussion in section 2.2.2, the background gauge fields satisfy a constraint

δBm = pB∗1Bock(wf2 ) , (3.19)

which describes a two-group symmetry that combines the Zk one-form symmetry and the

flavor symmetry G(0), with Postnikov class that depends on the discrete theta angle

ΘSU(N)/Zk = pBock(wf2 ) . (3.20)

The two-group symmetry has a mixed anomaly

2π(1 mod L)

k

∫
BmB∗1Bock(wf2 ) , (3.21)
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where L = gcd(p, k). In particular, there is no mixed anomaly if L = 1 but a non-trivial

anomaly otherwise.

When the fermion mass is large, the theory flows to an SU(N)/Zk pure gauge theory

with an accidental electric one-form symmetry. The two-group symmetry and the anomaly

is realized by the symmetry enrichment Be = B∗1w
f
2 . In the ultraviolet theory, one can inter-

pret the relation as an explicit breaking of the center one-form symmetry by the screening

from the fermion fields.

4 4d gauge theories with so(N) Lie algebra

In this section, we will discuss 4d gauge theories associated with so(N) Lie algebra, including

Spin(N), SO(N) and O(N) gauge theories.

4.1 Bundle

The gauge bundles associated with so(N) Lie algebra were reviewed in [3]. Here we briefly

summarize their topology which are characterised by the Stiefel-Whitney characteristic

classes wi ∈ H i(M,Z2), where M is the spacetime four-manifold.

The O(N) group has the largest set of possible bundles. They are characterized by w1

and w
(1)
2 , where w1 is the obstruction to restricting the bundle to an SO(N) bundle while

w
(1)
2 is the obstruction to lifting the bundle to a Pin+(N) bundle. All the SO(N) bundles

can be constructed by restricting the O(N) bundles whose w1 vanishes. The SO(N) bundles

are then characterized by w
(1)
2 , which is the obstruction to lifting the bundle to an Spin(N)

bundle. All the Spin(N) bundle can be constructed by lifting the SO(N) bundles whose

w
(1)
2 vanishes.

For evenN , we can also consider PSO(N) = SO(N)/Z2 or PO(N) = O(N)/Z2 bundles.

The PO(N) bundles have another characteristic class w
(2)
2 ∈ H2(M,Z2), which is the

obstruction to lifting the bundles to O(N) bundles. The characteristic classes w
(1)
2 , w

(2)
2 , w1

obey certain constraint

δw
(1)
2 =

N

2
Bock(w

(2)
2 ) + w

(2)
2 w1, δw

(2)
2 = 0, δw1 = 0 , (4.1)

where Bock is the Bockstein homomorphism associated with the extension 1→ Z2 → Z4 →
Z2 → 1. The constraint can be understood from the properties of the Spin(N) group.

For even N , Spin(N) has a center of order 4 (Z2 × Z2 for N = 0 mod 4 and Z4 for

N = 2 mod 4). The obstruction to lifting a PO(N) bundle to an Spin(N) bundle is

then characterized by w
(1)
2 , w

(2)
2 ∈ H2(M,Z2 × Z2) for N = 0 mod 4, and w̃2

(2) + 2w̃2
(1) ∈
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H2(M,Z4) for N = 2 mod 4, where tilde denotes the lift to a Z4 cochain. This leads to the

first term in the constraint (4.1).

The Spin(N) group has a Z2 charge conjugation outer-automorphism. It acts non-

trivially on the center of Spin(N) for even N . To see this, we can consider the semi-direct

product group Pin+(N) = Spin(N) o Z2. Its center is Z2 for even N [34–37]. It implies

that the charge conjugation outer-automorphism acts non-trivially on the center of Spin(N)

leaving a Z2 subgroup invariant. This leads the second term in the constraint (4.1).

Without loss of generality, we will always assume even N in the rest of the section unless

specified. The discussions can be applied to the odd N cases simply by setting w
(2)
2 and

other relevant quantities to be zero.

4.2 Classical action

4.2.1 Continuous theta angle

Both Spin(N) and SO(N) gauge theories have continuous θ angle that multiplies the

instanton number. In Spin(N) gauge theory it is 2π periodic, while in SO(N) gauge

theory with N > 3 it is 4π periodic on a non-spin manifold but 2π periodic on a spin

manifold [31].14 The difference between θ and θ + 2π is that the basic ’t Hooft line in the

SO(N) gauge theory differs in their spin by 1/2, and thus they are indistinguishable on

spin manifolds (or in a fermionic theory) where the theory has gravitational fermion line

that can be used to modify the line operators without changing the dynamics.

4.2.2 Discrete theta angles

Spin(N) gauge theory does not have any discrete theta angle while SO(N) gauge theory

admits discrete theta angle

2π
p

4

∫
P(w

(1)
2 ) , (4.2)

where p is a Z4 coefficient. The theta angles are subject to the identification [31]

N = 3 : (θ, p) ∼ (θ + 2π, p+ 1), and p ∼ p+ 4 ,

N > 3 : (θ, p) ∼ (θ + 2π, p+ 2), and p ∼ p+ 4 .
(4.3)

The theories with p and p+ 2 differ in the spin of the basic ’t Hooft lines.15 Hence they are

indistinguishable on spin manifolds. As discussed in [12], the theories with p = 0, denoted

14When N = 3, the theta angle in the SO(3) gauge theory is 4π periodic on a spin manifold and 8π
periodic on a non-spin manifold.

15This follows from the identity π
∫
w

(1)
2 ∪ w(1)

2 = π
∫
w

(1)
2 ∪ w2(TM) where w2(TM) is the second

Stiefel-Whitney class of the tangent bundle.
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by SO(N)+ and p = 1, denoted by SO(N)− have different line operator spectrum.

O(N) gauge theory has an additional discrete theta angle given by

rπ

∫
w

(1)
2 ∪ (w1)

2 = rπ

∫
w

(1)
2 ∪ Bock(w1) , (4.4)

where r is a Z2 coefficient and Bock is the Bockstein homomorphism for 1 → Z2 → Z4 →
Z2 → 1. This is an analogue of the topological term π

∫
w1w2 in 3d O(N) gauge theory

discussed in [38,3].16

4.3 Global symmetry

4.3.1 Spin(N) gauge theory

The theory has an electric one-form symmetry A determined by the center of the gauge

group:

A =


Z2 odd N

Z4 N = 2 mod 4

Z2 × Z2 N = 0 mod 4

. (4.5)

Denote the background for the Z2 subgroup one-form symmetry by B
(1)
2 . For even N ,

the one-form symmetry includes an additional Z2 factor whose background is denoted by

B
(2)
2 . The theory also has a Z2 0-form charge conjugation symmetry C whose background

is denoted by BC1 .

Activating only the charge conjugation background twists the gauge bundle to a Pin+(N)

bundle. More generally, we can activate all these background which twists the gauge bundle

to a PO(N) bundle with the characteristic classes

w1 = BC1 , w
(1)
2 = B

(1)
2 , w

(2)
2 = B

(2)
2 . (4.6)

The constraint (4.1) then implies the following relation

δB
(1)
2 =

N

2
Bock

(
B

(2)
2

)
+B

(2)
2 BC1 . (4.7)

We can also couple the theory to a different Z2 background gauge field B1 through a

non-trivial symmetry fractionalization

BC1 = B1, B
(1)
2 = B1 ∪B1, B

(2)
2 = 0. (4.8)

16On orientable manifold, π
∫
w3w1 = π

∫ (
Bock(w

(1)
2 )w1 + w

(1)
2 (w1)2

)
= π

∫
Sq1(w

(1)
2 w1) = 0 mod 2πZ,

and thus the π
∫
w3w1 term is trivial.
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In such case, the lines charged under the Z2 one-form symmetry that couples B
(1)
2 , such as

the Wilson lines in the spinor representations, are in the projective representation of the Z2

symmetry whose generator becomes of order 4. Activating this Z2 background twists the

gauge bundle to a Pin− bundle with w
(1)
2 = w1 ∪w1. This is consistent with the properties

of the Pin−(N) bundles [16].

All of these global symmetries do not have ’t Hooft anomalies i.e. they can be gauged.

Gauging the charge conjugation symmetry extends the gauge group to Pin+(N) while

gauging the Z2 symmetry with non-trivial fractionalization extends the gauge group to

Pin−(N).

4.3.2 SO(N) gauge theory

SO(N) gauge theory can be constructed from Spin(N) gauge theory by gauging the Z2

subgroup one-form symmetry that does not transform the Wilson lines in the vector rep-

resentations (as opposite to Wilson lines in the spinor representations). For N = 2 mod 4,

it gauges the Z2 subgroup of the Z4 one-form symmetry while for N = 0 mod 4, it gauges

one of the Z2’s of the Z2 × Z2 symmetry.

The theory has a Z4 discrete theta angle p. The theories with p and p + 2 are related

by the coupling π
∫
w

(1)
2 ∪ w2 which shifts the spin of the basic ’t Hooft line by 1/2.

The theory has an emergent dual Z2 magnetic one-form symmetry whose background is

denoted by Bm
2 . The full one-form symmetry depends on the discrete theta angle, following

from (2.25). It is summarized in table 1. The theory still has the Z2 charge conjugation

symmetry whose background is BC1 . It acts as a Z2 outer-automorphism on the one-form

symmetry when N is even. For even N the background gauge fields satisfy

δBm
2 = p

(
N

2
Bock(B

(2)
2 ) +B

(2)
2 BC1

)
, (4.9)

where B
(2)
2 is the background for the remaining electric one-form symmetry. The back-

grounds are independent when p is even, but are correlated when p is odd. In particular,

activating B
(2)
2 and BC1 necessarily activates Bm

2 .

Let us discuss the ’t Hooft anomaly of these symmetries. For odd N there is no ’t Hooft

anomaly. For even N , the anomaly depends on the discrete theta angle p

• When p = 0, the symmetries have an ’t Hooft anomaly. The relation (4.1) implies

that in the presence of the backgrounds B
(2)
2 and BC1 , the coupling to the background

Bm
2 for the magnetic one-form symmetry is not well-defined: it depends on the bulk

by

π

∫
δw

(1)
2 Bm

2 = π

∫ (
N

2
Bock(B

(2)
2 ) +B

(2)
2 BC1

)
Bm

2 . (4.10)
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odd N N = 2 mod 4 N = 0 mod 4
even p Z2 Z2 × Z2 Z2 × Z2

odd p Z2 Z4 Z2 × Z2

Table 1: One-form symmetry in SO(N) pure gauge theory with discrete theta angle p.

The theory flows to the Z2 two-form gauge theory (2.1) with p = 0 in the infrared [12].

The anomaly is matched by the symmetry fractionalization map Y3 = N
2

Bock(B
(1)
2 )+

B
(1)
2 BC1 , B2 = Bm

2 for Y3 and B2 in (2.7)

• When p = 1, the symmetries have no ’t Hooft anomaly. The anomaly (4.10) can be

removed by adding the local counterterm π
2

∫
P(Bm

2 ). The topological terms in the

action

π

2

∫
P(w

(1)
2 ) + π

∫
w

(1)
2 Bm

2 +
π

2

∫
P(Bm

2 ) =
π

2

∫
P(w

(1)
2 +Bm

2 ) , (4.11)

then becomes well-defined since wSO2 +Bm is a Z2 two-cocycle.

Let us now discuss gauging the Z2 magnetic one-form symmetry in the SO(N) gauge theory.

The gauging promotes the gauge field Bm
2 to a dynamical gauge field bm2 . We can introduce

a new Z2 two-form background gauge field B′2 that couples to the theory as π
∫
bm2 B

′
2. We

again have the freedom to include an additional SPT phase, p′π
2

∫
P(bm2 ) with p′ = 0, 1:

• p′ = 0. The gauge field bm2 acts as a Lagrangian multiplier that forces w
(1)
2 = 0 thus

we recover the Spin(N) gauge theory. To cancel the bulk dependence (4.10), the

background fields are constrained such that

δB′2 =
N

2
Bock(B

(2)
2 ) +B

(2)
2 BC1 . (4.12)

This recovers the constraint (4.7) on the background fields in Spin(N) gauge theory

if we identified B′2 with B
(1)
2 . Hence the full symmetry in Spin(N) gauge theory is

recovered. The discussion also applies to the p = 1 case since the local counterterm

for bm2 is fixed and no longer can be used to cancel the bulk dependence.

When p = 1, the symmetry extension (4.9) in the SO(N) gauge theory implies that

the coupling π
∫
bmB′2 is not well-defined but has a bulk dependence

π

∫
δbmB′2 = π

∫ (
N

2
Bock(B

(2)
2 ) +B

(2)
2 BC1

)
B′2 = π

∫
δB′2B

′
2 , (4.13)

which can be cancelled by the classical local counterterm (π/2)
∫
P(B′2).
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We conclude that gauging the Z2 magnetic one-form symmetry with p′ = 0 recovers

the original non-anomalous symmetries of the Spin(N) gauge theory.

• p′ = 1. After gauging, the resulting theory is equivalent to an SO(N) gauge theory

with a shifted discrete theta angle p → p − 1. This follows from the fact that the

TQFT for bm2 with p′ = 1 is invertible so we can integrate out bm2 as

pπ

2

∫
P(w

(1)
2 )+π

∫
w

(1)
2 bm2 +

π

2

∫
P(bm2 ) =

(p− 1)π

2

∫
P(w

(1)
2 )+

π

2

∫
P(b′m2 ) , (4.14)

where the last term is a decoupled invertible TQFT of a Z2 two-form gauge field

b′m2 = bm2 + w
(1)
2 .

Let us now show how the symmetry and anomaly for theories with different p are

related by such gauging. If we start with the p = 0 theory, δbm2 = 0 so the action

π

∫
(w

(1)
2 +B′2)b

m
2 +

π

2

∫
P(bm2 ) (4.15)

is well-defined only if the combination w
(1)
2 +B′2 is closed. This imposes the following

constraints on the background

δB′2 = −δw(1)
2 =

N

2
Bock(B

(2)
2 ) +B

(2)
2 BC1 mod 2 , (4.16)

which agrees with the symmetry of the SO(N) theory with odd p if we identified B′2
with B

(1)
2 .

On the other hand, if we start with the p = 1 theory,

δbm2 = δw
(1)
2 =

N

2
Bock(B

(1)
2 ) +B

(1)
2 BC1 , (4.17)

so the action

π

∫
B′2b

m
2 +

π

2

∫
P(bm2 + w

(1)
2 ) (4.18)

is well-defined if δB′2 = 0. The action has a bulk dependence

π

∫ (
N

2
Bock(B

(2)
2 ) +B

(2)
2 BC1

)
B′2 , (4.19)

which agrees with the ’t Hooft anomaly of the SO(N) gauge theory with even p if we

identified B′2 with B
(1)
2 .

We conclude that gauging the Z2 magnetic one-form symmetry with p′ = 1 reproduces

the symmetry and anomaly of the SO(N) gauge theory with a shifted discrete theta
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angle p→ p− 1.

4.3.3 O(N) gauge theory

The O(N) gauge theory can be constructed from the SO(N) gauge theory by gauging the

Z2 charge conjugation symmetry. The theory has the following symmetries

• Z2 magnetic one-form symmetry generated by exp(iπ
∮
w

(1)
2 ). Denote its background

by Bm
2 .

• Z2 two-form symmetry generated by exp(iπ
∮
w1). Denote its background by B3.

• Z2 × Z2 0-form symmetries generated by exp(iπ
∮
w1w

(1)
2 ), exp(iπ

∮
w3

1) [5]. Denote

the corresponding backgrounds by X1, Y1.

These symmetries are free of ’t Hooft anomaly and can be gauged.

If N is even, the theory has an additional electric one-form symmetry. Denote its

background by B
(2)
2 . Depending on the discrete theta angles (p, r) in (4.2)(4.4), the center

one-form symmetry can form different symmetry groups with the other symmetries and

they can have non-trivial ’t Hooft anomaly as discussed below. We will always assume that

N is even.

(p,r)=(0,0): no discrete theta angles. The electric one-form symmetry is Z2. Its

background B
(2)
2 modifies

δw
(1)
2 =

N

2
Bock(B

(2)
2 ) +B

(2)
2 w1 . (4.20)

Thus the coupling

π

∫
w

(1)
2 Bm

2 + π

∫
w1w

(1)
2 X1 , (4.21)

is no-longer well-defined. We can extend the fields to the bulk, then these terms have the

bulk dependence

π

∫ (
N

2
Bock(B

(2)
2 ) +B

(2)
2 w1

)
(Bm

2 + w1X1) , (4.22)

where the part that represents a gauge-global anomaly can be cancelled by π
∫
w1B3 with

the modified cocycle condition

δB3 = Be
2B

m
2 +

N + 2

2
Bock(Be

2)X1 +Be
2Bock(X1) . (4.23)
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This can be interpreted as a three-group symmetry. The classical term in the bulk is the

SPT phase that describes the ’t Hooft anomaly for the 3-group symmetry:

N

2

∫
Bock(B

(2)
2 )Bm

2 . (4.24)

(p,r)=(0,1). In addition to the bulk dependence (4.22), the topological term of r = 1

also contributes to the bulk dependence

π

∫
(w1)

2δw
(1)
2 =

N

2
π

∫
w1(TM)w1Bock(B

(2)
2 ) + π

∫
B

(2)
2 (w1)

3 , (4.25)

where the first term is trivial on orientable manifolds (whose first Stiefel-Whitney class w1

vanishes). The last term represents a gauge-global anomaly. One can attempt to cancel it

using the coupling π
∫
Y1(w1)

3, which leads to the relation

B
(2)
2 = δY1 . (4.26)

It implies that the background B
(2)
2 is trivial. Hence the electric one-form symmetry is

explicitly broken. Another way to see this is by examining the one-form symmetry trans-

formation B
(2)
2 → B

(2)
2 + δλ, which shifts w

(1)
2 → w

(1)
2 + w1λ due to the constraint (4.20),

and accordingly transforms the topological term of r = 1 by

π

∫
(wO1 )3λ . (4.27)

This implies that the one-form symmetry transformation is broken by the point operators

which carry non-trivial flux exp(iπ
∮
S3(w1)

3) = −1 on the S3 surrounding it.17

Thus in contrast to the case (p, r) = (0, 0), the symmetries do not form a three-group,

and the anomaly (4.24) vanishes since B
(2)
2 vanishes.

(p, r) = (1,0). In additional to the bulk dependence (4.22), the topological term of p = 1

also contributes to the bulk dependence

π

∫
w

(1)
2

(
N

2
Bock(B

(2)
2 ) +B

(2)
2 w1

)
(4.28)

17As discussed in section 4.3 of [6], this anomalous transformation (4.27) can be interpreted as a gauge
anomaly π

∫
3d

(w1)3 on the worldvolume of the one-form symmetry defect (which is a surface operator).
This gauge anomaly can be cancelled by introducing a non-trivial TQFT coupled to w1 on the worldvolume
of the surface operator, which gives rise to non-invertible defects.
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It represents a gauge-global anomaly. One can attempt to cancel the second term using the

coupling π
∫
w

(1)
2 w1X1, which leads to the relation

B
(2)
2 = δX1 . (4.29)

It implies that the background B
(2)
2 is trivial. Hence the electric one-form symmetry

is explicitly broken. It is violated by the point operators that carry non-trivial flux

exp(iπ
∫
S3 w1w

(1)
2 ) = −1 on the S3 that surrounds it.

Thus in contrast to the previous case (p, r) = (0, 0), the symmetries do not form a

three-group, and the anomaly (4.24) vanishes since B
(2)
2 vanishes.

(p, r) = (1,1). The theory has three contributions (4.22), (4.25), (4.28) to its bulk depen-

dence. The gauge-global anomaly implies that the electric one-form symmetry is broken

explicitly by the operator with non-trivial flux exp
(
iπ
∫
S3(w1w

(1)
2 + (w1)

3)
)

= −1 on the

S3 surrounding it.

Thus in contrast to the case (p, r) = (0, 0), the symmetries do not form a three-group,

and the anomaly (4.24) vanishes since B
(2)
2 vanishes.

4.4 Two-group symmetry in Spin(N) QCD with vector fermions

Consider Spin(N) gauge theory with Nf massless Weyl fermions in the vector representa-

tion. The theory has mesons ψaIψ
a
J and baryons εa1···aNψ

a1
I1
· · ·ψaNIN as local operators where

I, J = 1, · · · , Nf and a1, a2 · · · = 1, · · ·N are flavor and color indices.

The baryons are charged under a Z2 charge conjugation symmetry. We will denote the

symmetry by ZC2 and denote its background by BC1 . Two baryons can annihilate into mesons

using the identity

εa1···aN εa′1···a′N =
∑
σ

(−1)sign(σ)δa1a′σ(1) · · · δaNa′σ(N)
. (4.30)

Hence the baryon number is only conserved mod 2 so it can be identified with the Z2 charge

of the charge conjugation symmetry.

The baryons and mesons transform under an S̃U(Nf ) = (SU(Nf ) × Z2Nf )/ZNf flavor

symmetry. When Nf is odd, the flavor symmetry factorizes into S̃U(Nf ) = SU(Nf )× Z2.

When N is even, the (−1)F symmetry, which is a Z2 subgroup of the flavor symmetry, can

be identified with a gauge rotation in the center of the gauge group and thus acts trivially

on the local operators. When N is odd, the (−1)F symmetry is identified with the charge
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conjugation symmetry. In summary, the ordinary global symmetry is

Odd N Even N

Odd Nf SU(Nf )× Z2 SU(Nf ) o ZC2
Even Nf S̃U(Nf )

(
S̃U(Nf )/Z2

)
o ZC2

(4.31)

We will focus on the cases when both N and Nf are even. The background for the

flavor symmetry can be decomposed into a PSU(Nf ) gauge field A and a Z2Nf gauge field

Aχ with a constraint

δAχ = 2w̃
(Nf )
2 +Nf w̃

f
2 mod 2Nf , (4.32)

where w
(Nf )
2 is the obstruction to lifting the PSU(Nf ) bundle to an SU(Nf ) bundle, and

wf2 is the obstruction to lifting the S̃U(Nf )/Z2 bundle to an S̃U(Nf ) bundle.

The theory also has Wilson lines in the spinor representations that are not screened

by the matter. The Wilson lines are charged under a Z2 electric one-form symmetry. We

will denote the background for the one-form symmetry by B
(2)
2 . For even N and Nf , the

one-form symmetry combines with the flavor symmetry to a two-group symmetry.18 The

background of the two group symmetry is

δB
(2)
2 =

N

2
Bock(wf2 ) + wf2B

C
1 . (4.33)

The one-form symmetry is expected to be unbroken at low energy which signals confinement.

The two-group symmetry implies that the strings charged under the one-form symmetry

carry an ’t Hooft anomaly on their worldsheet characterized by

π

∫
3d

(
N

2
Bock(wf2 ) + wf2B

C
1

)
. (4.34)

4.5 Two-group symmetry in SO(N) QCD with Nf vector fermions

The theory can be constructed from Spin(N) QCD by gauging the Z2 electric one-form

symmetry. One can include discrete theta angle p. As in Spin(N) QCD, We will focus on

the case where both N,Nf are even.

The theory has a dual Z2 magnetic one-form symmetry generated by exp(iπ
∮
w

(1)
2 ).

Denote the background for the dual magnetic one-form symmetry by Bm
2 , which couples to

18Similar results on the two-group symmetries (without the charge conjugation symmetry) in Spin(N)
and SO(N) QCD have been obtained independently by Yasunori Lee, Kantaro Ohmori and Yuji Tachikawa
[39].
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the theory as

π

∫
w

(1)
2 Bm

2 . (4.35)

Since π
∫
w

(1)
2 w

(1)
2 = π

∫
w

(1)
2 w2 with w2 the second Stiefel-Whitney class of the space-

time manifold, we have the identification (p,Bm
2 ) ∼ (p + 2, Bm

2 + w2). Without loss of

generality, we can restrict to p = 0, 1. These two theories are denoted by SO(N)+ and

SO(N)− respectively.

4.5.1 SO(N)+ QCD

When p = 0, the two-group symmetry in the Spin(N) QCD becomes a mixed anomaly

after gauging

π

∫
δw

(1)
2 ∪Bm

2 = π

∫ (
N

2
Bock(wf2 ) + wf2B

C
1

)
Bm

2 . (4.36)

It is a mixed anomaly between the magnetic one-form symmetry and the flavor symmetry

(and charge conjugation symmetry).

4.5.2 SO(N)− QCD

When p = 1, the theory couples to the two-form gauge theory (2.1). Applying the discussion

in section 2.2.2, the theory has a two-group symmetry whose backgrounds obey the relation

δBm
2 =

N

2
Bock(wf2 ) + wf2B

C
1 . (4.37)

In contrast to SO(N)+ QCD, the symmetry has no ’t Hooft anomaly.

5 3d ZN one-form gauge theory

5.1 Bosonic ZN one-form gauge theory

In 3d, we can consider a class of ZN one-form gauge theories that can be constructed from

U(1) × U(1) Chern-Simons theories [40, 41, 21]. These theories, denoted by (ZN)k, are

labelled by their Chern-Simons level k ∼ k + 2N . They include all possible bosonic ZN
gauge theories classified by H3(ZN , U(1)) = ZN and some fermionic gauge theories. Their

Lagrangian is
k

4π
âdâ+

N

2π
âdb̂ . (5.1)

Integrating out the gauge field b̂ constrains â to be a ZN gauge field
∮
â ∈ 2π

N
Z.
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We define the electric and magnetic line operators as U = exp(i
∮
â) and V = exp(i

∮
b̂)

respectively. They obey the relation

UN = 1, UkV N = ψk , (5.2)

where ψ is the transparent fermion line. For odd k, the theory contains ψ, and hence it is a

fermionic theory that depends on spin structure. For simplicity, we will restrict to bosonic

ZN gauge theories, i.e theories with even k below.

The line operators form an Abelian group. The group can be understood as the quotient

of Z× Z by the group generated by the columns of the following matrix(
N k

0 N

)
. (5.3)

The matrix can be put into Smith normal form(
L 0

0 N2/L

)
(5.4)

with L = gcd(k,N) by multiplying SL(2,Z) matrices from the left and the right. The

resulting quotient group is invariant under the transformation. Hence for even k the line

operators generate a A = ZL×ZN2/L one-form symmetry (for odd k the one-form symmetry

will be modified by the additional Z2 symmetry generated by ψ). We emphasize that the

one-form symmetry A always has a ZN subgroup generated by U . This ZN subgroup will

be important in the later discussions.19

We can couple the one-form symmetry A to background gauge fields as follows. Let

Be
2 be a ZN two-cocycle and Bm

2 be a ZN two-cochain. The background Be
2 couples to the

theory by modifying the quantization of a∮
dâ

2π
=

1

N

∮
Be

2 mod Z , (5.5)

while the background Bm
2 couples to the ZN one-form symmetry generated U = exp(i

∮
â).

In continuous notation, we can embed the discrete ZN background gauge fields into

U(1) gauge fields B̂e
2 and B̂m

2 with∮
B̂e

2 =
2π

N

∮
Be

2 mod 2πZ,
∮
B̂m

2 =
2π

N

∮
Bm

2 mod 2πZ . (5.6)

19The theory can also have non-trivial zero-form symmetries that permutes the line operators (see e.g.
[42]).
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Then the background gauge fields can couple to the theory by adding the following term

to the Lagrangian (5.1)
N

2π
âB̂m

2 +
N

2π
b̂B̂e

2 . (5.7)

Integrating out b̂ imposes the constraint (5.5) which implies that the gauge field â is no

longer properly quantized. Hence the remaining action develops a bulk dependence∫ (
k

4π
d(âdâ) +

N

2π
d(âB̂m

2 )

)
=
N

2π

∫
â

(
k

N
dB̂e

2 − dB̂m
2

)
+

∫ (
N

2π
B̂e

2B̂
m
2 −

k

4π
B̂e

2B̂
e
2

)
mod 2πZ .

(5.8)

The first term involves dynamical gauge fields so it has to be removed. This can be achieved

by imposing the following constraint on the backgrounds

N
dB̂m

2

2π
= k

dB̂e
2

2π
. (5.9)

The second term of (5.8) depends only on the background fields. It represents an ’t Hooft

anomaly, ∫ (
N

2π
Be

2B
m
2 −

k

4π
Be

2B
e
2

)
. (5.10)

The anomaly is also given by the spin of the symmetry line operators [13].

The above calculation is repeated in discrete notation in appendix B. In the discrete

notation, the backgrounds obay

δBm
2 = kBock(Be

2) , (5.11)

where Bock is the Bockstein homomorphism for the exact sequence 1 → ZN → ZN2 →
ZN → 1. The anomaly is

2π

N

∫
Be

2B
m
2 −

2πk

2N2

∫
P(Be

2) . (5.12)

5.2 Fermionic Z2 one-form gauge theory

Fermionic Z2 gauge theory in 3d can be constructed by gauging the Z2 symmetry in the

3d SPT phase with unitary Z2 symmetry, the later admits Z8 classification [43–46, 17, 47]

from Ω3
Spin(BZ2) = Z8. The Abelian Chern-Simons theory construction discussed above

only accounts for four of them. The other four fermionic gauge theories have non-Abelian

anyons. All these Z2 gauge theories, denoted by (Z2)L, can be described by (see Appendix
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B of [3])

(Z2)L ←→ Spin(L)−1 × SO(L)1 , (5.13)

where L ∼ L + 8. The Z2 gauge theory (Z2)k, that has an Abelian Chern-Simons theory

construction (5.1), is mapped to (Z2)2k by tensoring with an almost trivial theory {1, ψ}
with ψ the transparent fermion line.

The Spin(L)1 TQFT was studied in [48] (also see e.g Appendix C of [49] for a review).

For odd L, the Spin(L)1 theory has three lines: the identity line 1 with spin 0, the line ε

in vector representation with spin 1
2

and the line σ in spinor representation with spin − L
16

.

They obey the Ising fusion rule:

ε× ε = 1, σ × σ = 1 + ε, σ × ε = σ . (5.14)

The product of ε and ψ is mapped to the Wilson line of (Z2)L, which generates a Z2 one-

form symmetry. This Z2 one-form symmetry is crucial in the later discussion. The only

charged line under this symmetry is σ.

To conclude, we summarize the fusion rule and the one-form symmetry of (Z2)L gauge

theory (omitting the transparent fermion line ψ with ψ2 = 1 from the SO(L)1 factor in

(5.13))

• L = 0 mod 4: the theory has topological lines that obey Z2 × Z2 fusion rule. They

generate a Z2 × Z2 one-form symmetry.

• L = 2 mod 4: the theory has topological lines that obey Z4 fusion rules. They

generate a Z4 one-form symmetry.

• L = 1 mod 2: When L = 1, 7 mod 8, the theory has topological lines that form

a Z2 Tambara-Yamagami category TY+. When L = 3, 5 mod 8, the theory has

topological lines that form another Z2 Tambara-Yamagami category TY−. The two

Tambara-Yamagami categories TY± have the same Ising fusion rule, but different

F -symbols [50]. Among these topological lines, 1, ε generate Z2 one-form symmetry,

while σ is a non-invertible topological line.

5.3 Couple QFT to bosonic one-form gauge theory

Consider a 3d theory with a non-anomalous ZN 0-form symmetry. Gauging the symmetry

with or with adding an SPT phase leads to different theories. Denote the resulting theory

with a Chern-Simons level k for the ZN gauge field by T k. Below we will restrict to bosonic

SPTs i.e. theories with even k.

The theory T k has a ZN one-form symmetry generated by U = exp(2πi
N

∮
a) where a

is the dynamical ZN gauge field. The ZN one-form symmetry can be understood as the
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emergent symmetry dual to the gauged ZN zero-form symmetry. All the gauged theories

are related by

T p+k ←→ T p × (ZN)k

Z(1)
N

, (5.15)

where the quotient means gauging the diagonal ZN one-form symmetry that identifies the

ZN gauge fields in T p and (ZN)k.

The equation (5.15) is compatible with the addition of discrete theta angle. If we apply

(5.15) again with k replaced by k′,

T k+k′ ←→ T k × (ZN)k′

Z(1)
N

←→ T 0 × (ZN)k × (ZN)k′

Z(1)
N × Z(1)

N

←→ T 0 × (ZN)k+k′

Z(1)
N

,

(5.16)

where in the last duality we reparametrized the Z(1)
N × Z(1)

N quotient such that one of them

acts only on (ZN)k × (ZN)k′ and identifies their ZN gauge fields to give (ZN)k+k′ .

Let us compare the symmetries in T 0 and T k. The two theories in general may not

have the same symmetry. This arises if the symmetry in T 0 has a mixed anomaly with the

dual ZN one-form symmetry.

Suppose the theory T 0 has a one-form symmetry A, which is a group extension

1→ ZN → A→ Zr → 1 , (5.17)

specified by a ZN element k′. In terms of the symmetry generators, this means

UN = 1, V r = Uk′ , (5.18)

where U and V are the generator of the ZN and Zr one-form symmetry. The ZN subgroup

one-form symmetry should be identified with the ZN one-form symmetry generated by the

Wilson line U = exp(2πi
N

∮
a). We will refer to this symmetry as the ZN magnetic one-form

symmetry. The background gauge field for the one-form symmetry A can be described by

a Zr cocycle B2 and a ZN cochain Bm
2 with the constraint

δBm
2 = k′Bock(B2) , (5.19)

where Bock is the Bockstein homomorphism for the short exact sequence 1→ Zr → ZNr →
Zr → 1.

We further assume that the symmetry generator U and V has non-trivial mutual braid-

ing, which implies an ’t Hooft anomaly of the one-form symmetry A [13]. The ’t Hooft

anomaly becomes trivial when it is restricted to the ZN subgroup one-form symmetry (gaug-

ing the ZN one-form symmetry recovers the original theory). This implies that V r = Uk′ has
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trivial braiding with U so the braiding between U and V can only be exp (2πiq/ gcd(N, r))

for some integer q. This leads to the mixed anomaly [13]

2πq

gcd(N, r)

∫
4d

B2B
m
2 , (5.20)

which can be accompanied by an anomaly ω(B2) that depends only on B2.

Let us now discuss the symmetry of the theory T k. The theory T k is constructed by

gauging the diagonal ZN one-form symmetry in the theory T 0 × (ZN)k. The gauging sets

the gauge fields for the magnetic one-form symmetries to be bm2 in T 0 and bm2 + Bm
2 in

(ZN)k. Here bm2 is a dynamical gauge field, and Bm
2 is the background gauge field for the

residue magnetic one-form symmetry. The theory has the bulk dependence

2πq

gcd(N, r)

∫
4d

B2b
m
2 +

2π

N

∫
4d

Be
2 (bm2 +Bm

2 )− 2πk

2N2

∫
4d

P(Be
2) + ω(B2) . (5.21)

To cancel the gauge-global anomaly i.e the bulk terms that depend on bm2 , the background

must satisfy

Be
2 = − Nq

gcd(N, r)
B2 . (5.22)

The gauge fields for the magnetic one-form symmetries further obey the constraints (5.11),

(5.19)

δ(bm2 +Bm
2 ) = k′Bock(B2), δbm2 = kBock(Be

2) , (5.23)

Together with (5.22) we find the relation

δBm
2 = k′Bock(B2)− kBock(Be

2) =

(
k′ + k

qr

gcd(r,N)

)
Bock(B2) . (5.24)

It implies that the one-form symmetry of T k is

ZJ × ZNr/J , J = gcd

(
k′ +

qr

gcd(N, r)
k,N, r

)
. (5.25)

The symmetry has an anomaly obtained by substituting (5.22) back to (5.21)

− 2πq

gcd(N, r)

∫
4d

B2B
m
2 −

2πkq2

2 gcd(N, r)2

∫
4d

P(B2) + ω(B2) . (5.26)

As a check, consider gauging a ZN zero-form symmetry in an empty theory with an

additional Chern-Simons term for the ZN gauge field. This leads to a family of theories

T p = (ZN)p. From the symmetry extension (5.11) and ’t Hooft anomaly (5.12), we identified

the theory T p as a special case of the discusssion above with k′ = p, r = N , q = 1. The
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above analysis then implies that the theory T p+k has the symmetry

ZJ × ZN2/J , J = gcd (k + p,N) , (5.27)

which agrees with the one-form symmetry of the theory T p+k = (ZN)p+k.

5.3.1 Example: gauging ZN zero-form symmetry in ZM gauge theory

A 3d ZM gauge theory with the Lagrangian

M

2π
ûdv̂ , (5.28)

can be coupled to a ZN one-form gauge field â through

1

2π
â(Ndb̂− dv̂) , (5.29)

where b̂ is a dynamical gauge field that constrains â to be a ZN gauge field
∮
â ∈ 2π

N
Z.

Promoting â to a dynamical gauge field gauges a ZN zero-form symmetry. The dynam-

ical gauge field â then becomes a Lagrange multiplier that forces dv̂ = Mdb̂ which gives a

ZNM gauge theory
NM

2π
ûdb̂ . (5.30)

The theory has a ZN one-form symmetry generated by exp(i
∮
â) = exp(iM

∮
û) (which is

the ZN subgroup of a larger ZNM one-form symmetry generated by exp(i
∮
û)), and a ZNM

one-form symmetry generated by exp(i
∮
b̂). These two symmetries have a mixed anomaly

due to the non-trivial braiding phase exp(2πi/N) between their generators. Denote their

background gauge field by Bm
2 and B2 respectively. The anomaly is characterized by [13]

2π

N

∫
4d

Bm
2 B2 . (5.31)

Comparing with the discussion above, we identify r = MN and q = 1, k′ = 0.

We can add a Chern-Simons term with level k for the ZN gauge field. Applying the

analysis above, we find that the resulting theory has the following one-form symmetry

ZJ × ZN2M/J , J = gcd (kM,N) . (5.32)

The one-form symmetry has an ’t Hooft anomaly

2π

N

∫
4d

B2B
m
2 −

2πk

2N2

∫
4d

P(B2) . (5.33)
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As a consistent check, we can examine the one-form symmetry of the resulting theory

directly. It has Lagrangian

M

2π
ûdv̂ +

1

2π
â(Ndb̂− dv̂) +

k

4π
âdâ . (5.34)

Integrating out the gauge field v̂ simplifies the theory to

NM

2π
ûdb̂+

kM2

4π
ûdû . (5.35)

The theory has a ZJ×ZN2M/J subgroup symmetry generated by exp(iM
∮
û) and exp(i

∮
b̂)

whose spins are consistent with the ’t Hooft anomaly (5.33).

5.4 Couple QFT to fermionic Z2 gauge theory

Consider gauging a non-anomalous Z2 zero-form symmetry in a 3d system. We can add an

additional fermionic SPT phase for the Z2 symmetry classified by Ω3
Spin(BZ2) = Z8. Denote

the theory with discrete theta angle k by T k. All these theories are related by

T k ←→ T 0 × (Z2)k

Z(1)
2

←→ T 0 × Spin(k)−1 × SO(k)1

Z(1)
2

, (5.36)

where the quotient means gauging the diagonal Z2 one-form symmetry generated by the

product of exp(iπ
∮
a) in T 0, ε in Spin(k)−1 and ψ in SO(k)1.

5.4.1 Non-invertible topological lines

As discussed in the previous subsection, the theory T 0 and T k with even k can have different

symmetry. This occurs when T 0 has another Z2 one-form symmetry whose generator

carries charge 1 under the emergent Z2 one-form symmetry generated by exp(iπ
∮
a). In

the theory T k, the generator of the Z2 one-form symmetry is paired with the lines in the

spinor representation of Spin(k)−1 that are also odd under the Z2 one-form symmetry due

to the gauging in (5.36). This leads to the following fusion category in the theory T k:

• k = 0 mod 4: the theory has topological lines that obey Z2 × Z2 fusion rule. They

generate a Z2 × Z2 one-form symmetry.

• k = 2 mod 4: the theory has topological lines that obey Z4 fusion rules. They generate

a Z4 one-form symmetry.

• k = 1 mod 2: When k = 1, 7 mod 8, the theory has topological lines that form

a Z2 Tambara-Yamagami category TY+. When k = 3, 5 mod 8, the theory has
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topological lines that form another Z2 Tambara-Yamagami category TY−. The two

Tambara-Yamagami categories TY± have the same Ising fusion rule, but different

F -symbols [50]. Among these topological lines, 1, ε generate Z2 one-form symmetry,

while σ is a non-invertible topological line.

We remark that the above discussion can be compared with the discussion in Section

6 of [51] for 2d fermionic CFT equipped with an anomalous Z2 symmetry (classified by

Z8 [43–46,17,47]) that has a mixed anomaly with the total fermion parity. It was shown that

after gauging the total fermion parity the Z2 symmetry gets extended, with the symmetry

line defect turned into one of the line in the above fusion categories with k identified with

the Z8 anomaly coefficient in 2d. This can be understood from gauging the total fermion

parity in a 2d/3d boundary/bulk system, with the 3d system given by product of a spin

theory and the fermionic SPT phase for the Z2 symmetry. The line in the 3d can move to

the 2d boundary.20

6 3d gauge theories with discrete theta angles

In this section we discuss concrete examples of gauging a non-anomalous ZN zero-form

symmetry in 3d theories with an additional SPT phase that becomes a discrete theta angle.

We also discuss the symmetry in O(N) Chern-Simons theory with discrete theta angle

denoted by O(N)1 in the notation of [3].

6.1 Gauging ZN ⊂ G subgroup zero-form symmetry

We start with a system in 3d with a 0-form symmetry G̃ which is an extension of G by ZN

1→ ZN → G̃→ G→ 1 . (6.1)

We assume the ZN subgroup symmetry is non-anomalous and there is no mixed anomaly

between ZN and G̃. Then we gauge the ZN subgroup symmetry with an additional SPT

phase given by a level k Chern-Simons term. What’s the symmetry of the new system?

For k = 0 the new system has an emergent ZN dual one-form symmetry generated

by the ZN Wilson line. The extension G̃ implies that this emergent one-form symmetry

has a mixed anomaly with the remaining G 0-form symmetry. To see this, we can turn

on background gauge field B1 for G, and and background gauge field B2 for the ZN one-

form symmetry. Denote the (dynamical) ZN one-form gauge field by a, then the symmetry

extension G̃ implies that

δa = B∗1η2 , (6.2)

20We thank Shu-Heng Shao for pointing this out to us.
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where η2 ∈ H2(G,ZN) describes the group extension G̃. The background B2 couples as

2π

N

∫
aB2 . (6.3)

Thus the coupling has a mixed anomaly described by the bulk term

2π

N

∫
B∗1η2B2 . (6.4)

Now, let us consider theories with nonzero Chern-Simons term k. Comparing (6.2), (6.3)

with (5.5),(5.7), we identify Be
2 = B∗1η2 and Bm

2 = B2. Thus these backgrounds satisfy

δB2 = kB∗1Bock(η2) , (6.5)

which represents a two-group symmetry that combines the ZN one-form symmetry and G

0-form symmetry, with Postnikov class

Θ = kBock(η2) . (6.6)

The ’t Hooft anomaly for the two-group symmetry is described by the bulk term

2π

N

∫
B∗1η2B2 −

2πk

2N2

∫
B∗1P(η2) . (6.7)

6.1.1 Example: Z2 gauge theory with two complex scalars

As an example, we consider gauging a Z2 zero-form symmetry (without Dijkgraaf-Witten

action) in a theory with two complex scalars that are Z2 odd. The resulting theory T 0 is

a Z2 gauge theory with two charged complex scalars.

The theory has a magnetic Z2 one-form symmetry generated by the Z2 Wilson line,

whose background is denoted by B2. It also has an SO(3) flavor symmetry that transforms

the two complex scalars, whose background is denoted by B1. The transformation that

flips the signs of both scalars is identified with a gauge rotation. Thus if we turn on SO(3)

background gauge field that is not an SU(2) background gauge field, whose obstruction is

described by a non-trivial wf2 , the Z2 gauge bundle will be twisted:

δa = B∗1w
f
2 . (6.8)

Now, let us introduce a discrete theta angle for the Z2 bundle as described by Chern-

Simons level k. We find that the background for the magnetic one-form symmetry (gener-
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ated by the Z2 Wilson line) now satisfies

δB2 = kB∗1Bock(wf2 ) . (6.9)

The relation describes a 2-group symmetry that combines the Z2 magnetic one-form sym-

metry and the SO(3) flavor symmetry, with Postnikov class Θ = kBock(wf2 ) that depends

on the discrete theta angle k. For even k, the Postnikov class is trivial so the symme-

tries do not combine into a two-group symmetry. The symmetry has an ’t Hooft anomaly

determined by (6.7):

π

∫
B∗1w

f
2B2 −

kπ

4

∫
B∗1P(wf2 ) . (6.10)

If the scalars are massive with equal mass, the theory flows to a pure Z2 gauge theory

(Z2)k in the infrared. The infrared theory has an accidental electric one-form symmetry.

To match the ultraviolet symmetry and anomaly, the SO(3) gauge field B1 couples to the

infrared theory by a symmetry enrichment

Be
2 = B∗1w

f
2 , (6.11)

using the background gauge field Be
2 for the accidental electric one-form symmetry.

6.2 O(N) Chern-Simons theory with discrete theta angle

Here we present an example with discrete theta angle associated to mixed topological terms

that arise from gauging a Z2 one-form and a Z2 0-form symmetry.

We start with a Spin(N)K Chern-Simons theory, and gauge the Z2 zero-form charge

conjugate symmetry and the Z2 one-form symmetry that does not transform the Wilson

lines in vector representation. The resulting theory is a O(N)K Chern-Simons theory. We

can add to the theory a discrete theta angle

p

∫
w1 ∪ w(1)

2 , (6.12)

where p is a Z2 coefficient. The characteristic classes w1, w
(1)
2 are defined in section 4. They

are controlled by the dynamical gauge fields for the zero-form charge conjugation symmetry

and the one-form symmetry, respectively. We will focus on theories with even N,K.

The theory O(N)K with p = 0 has one-form symmetry [3]

A =

{
Z2 × Z2 K = 0 mod 4

Z4 K = 2 mod 4
. (6.13)
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The Z2 subgroup of the one-form symmetry is generated by the symmetry line operator

exp(iπ
∮
w1), with background denoted by B

(3)
2 . There is also center one-form symmetry,

with background denoted by B
(2)
2 . The one-form symmetry is the extension of these two

symmetries. It is reflected in the constraint of the backgrounds

δB
(3)
2 =

K

2
Bock(B

(2)
2 ) , (6.14)

where Bock is the Bockstein homomorphism for the exact sequence 1→ Z2 → Z4 → Z2 →
1. The symmetry extension implies that if the constraint were not satisfied, rather δB3 = 0,

the theory has a mixed gauge-global anomaly given by the bulk term

K

2
π

∫
w1 ∪ Bock(B

(2)
2 ) . (6.15)

What’s the symmetry in the theory with p = 1? As explained in section 4, the back-

ground B
(2)
2 modifies the cocycle condition of w

(1)
2 such that

δw
(1)
2 =

N

2
Bock(B

(2)
2 ) +B

(2)
2 w1 . (6.16)

Thus the discrete theta angle (6.12) with p = 1 has the bulk dependence

π

∫
δ
(
w1 ∪ w(2)

2

)
= π

∫
w1 ∪

(
N

2
Bock(B

(2)
2 ) +B

(2)
2 w1

)
=
N + 2

2
π

∫
w1 ∪ Bock(B

(2)
2 ) , (6.17)

where we used the property w1∪w1 = Bock(w1) and π
∫

Bock(B
(2)
2 w1) is trivial on orientable

manifolds. Thus in order to cancel the gauge-global anomaly, the background field B
(3)
2 must

obey the new condition

δB
(3)
2 =

K +N + 2

2
Bock(B

(2)
2 ) , (6.18)

which implies that the one-form symmetry in the theory with p = 1 is

A =

{
Z2 × Z2 K +N + 2 = 0 mod 4

Z4 K +N + 2 = 2 mod 4
(6.19)

in agreement with [3] and consistent with the level-rank dualities [3].

This example can also be understood as follows. Consider the 3d TQFT (C.1) with
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N = 2, q = 0 and p = 1. The theory can be expressed as

T 1 ←→ T 0 × TQFT

Z(0)
2 × Z(1)

2

, (6.20)

where the quotient Z(0)
2 means gauging the diagonal 0-form symmetry that identifies w

(1)
2

with b in the TQFT, and Z(1)
2 means gauging the diagonal one-form symmetry that identifies

w1 with a in the TQFT. The condition (6.16) implies that the TQFT is coupled to the gauge

field Y3 = Bock(B
(2)
2 ) + B

(2)
2 a. Then a similar computation in the TQFT shows that the

symmetry is deformed as we discussed above.

7 2d Z2 one-form gauge theory

2d Z2 fermionic gauge theory can be constructed by gauging Z2 symmetry in 2d fermionic

SPT phase with unitary Z2 symmetry (in addition to the fermion parity). The latter admits

Z2 × Z2 classification [17], while one of the Z2 is generated by the fermionic SPT phase

without the Z2 symmetry [18, 19, 17] (given by the Arf invariant [15, 16]). Thus there are

two fermionic Z2 gauge theories in 2d, labelled by discrete theta angle p = 0, 1.

The action for the Z2 gauge theory can be constructed from the Arf invariant Arf(ρ),

which is a Z2 function of the spin structure ρ. The spin structure ρ is a Z2 one-cochain that

trivializes the second Siefel-Whitney class of the tangent bundle w2(TM) = δρ. Denote the

Z2 gauge field by a which is a Z2 one-cocycle. Define

q(a) = Arf(a+ ρ)− Arf(ρ) . (7.1)

The action of the Z2 gauge theory with gauge field a is

pπ q(a), p = 0, 1 . (7.2)

We remark that q is the quadratic refinement of the cup product [15, 16]: for any Z2 one-

cocycles a, b,

q(a+ b) = q(a) + q(b) +

∫
a ∪ b mod 2 . (7.3)

Let us begin with p = 0. The theory has an emergent Z2 zero-form symmetry generated

by the Z2 line operator exp(iπ
∮
a), whose background is denoted by B1. The theory also

has a Z2 one-form symmetry with background B2, which modifies the cocycle condition for

a to be

δa = B2 . (7.4)
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The coupling to B1 is

π

∫
a ∪B1 . (7.5)

In the presence of B2 the coupling depends on the bulk and it results a mixed anomaly

between the zero-form and the one-form symmetries:

π

∫
δa ∪B1 = π

∫
B2 ∪B1 . (7.6)

Now let us discuss the case p = 1. In the presence of B2, a is no longer a Z2 cocycle

and thus the action πq(a) is not well-defined. However, the total action (7.2) and (7.5) can

be made well-defined if the backgrounds obey

B2 = pδB1 . (7.7)

The total action together with an additional classical local counterterm πq(B1) combines

into

πq(a+B1) , (7.8)

which is well-defined since a + B1 is a Z2 cocycle. The constraint (7.7) implies that the

background of the Z2 one-form symmetry is trivial for p = 1, and thus the one-form

symmetry is explicitly broken in this case.

We remark that for p = 1 there is no ’t Hooft anomaly for the above symmetries since

the action (7.8) is well-defined in the presence of the background gauge fields. This is

consistent with the fact that the theory with p = 1 is an invertible (spin-)TQFT [52] (it

describes the Kitaev chain [18] as discussed in [17]), and thus all anomalies must be trivial

by the ’t Hooft anomaly matching condition.

7.1 Couple QFT to Z2 one-form gauge theory

Consider a 2d system with ordinary symmetry G̃ that is the extension of G by Z2,

1→ Z2 → G̃→ G→ 1 . (7.9)

The background gauge field for the G̃ symmetry can be described by a Z2 cochain a and

background B′1 for the G symmetry, with the constraint

δa = (B′1)
∗η2 , (7.10)

where η2 ∈ H2(G,Z2) specifies the group extension G̃.

In the following we assume the Z2 normal subgroup is non-anomalous and we will gauge
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this symmetry. We will also assume there is no mixed anomaly between the Z2 symmetry

and G. We can include the discrete theta angle p = 0, 1 for the Z2 gauge field a given by

(7.2). The resulting system has a new Z2 0-form symmetry generated by exp(iπ
∮
a) with

background identified with B1. The condition (7.10) identifies the background B2 with

B2 = (B′1)
∗η2 . (7.11)

For p = 0, the resulting system has Z2 × G symmetry. From (7.6) and (7.11), the two

symmetries have a mixed anomaly

π

∫
(B′1)

∗η2 ∪B1 . (7.12)

For p = 1, from (7.7) and (7.11) we find the backgrounds satisfy

B′∗1 η2 = δB1 , (7.13)

which describes the background for the symmetry extension G̃. Thus the resulting system

has G̃ symmetry, in contrast to the symmetry Z2 × G for p = 0. Moreover, there is no

mixed anomaly between the Z2 subgroup symmetry and G̃.21
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gauging a Z2 ordinary symmetry) reproduces the relation between (3.11) and (3.12) in [51] when the theories
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A Steenrod square and higher cup product

In this appendix we summarize some facts about cochains and higher cup products. For

more details, see e.g. [53] and the appendix A of [10].

We triangulate the spacetime manifold M with simplicies, where a p-simplex is the p-

dimensional analogue of a triangle or tetrahedron (for p = 0 it is a point, p = 1 it is an

edge, etc). The p-simplices can be described by its vertices (i0, i1, · · · ip) where we pick an

ordering i0 < i1 < · · · ip.
A simplicial p-cochain f ∈ Cp(G,A) is a function on p-simplices taking values in an

Abelian group A (we use additive notation for Abelian groups). For simplicity, we will take

A to be a field (an Abelian group endowed with two products: addition and multiplication).

The coboundary operation on the cochains δ : Cp(M,A)→ Cp+1(M,A) is defined by

(δf)(i0, i1, · · · ip+1) =

p+1∑
j=0

(−1)jf(i0, · · · îj, · · · ip+1) (A.1)

where the hatted vertices are omitted. The coboundary operation is nilpotent δ2 = 0.

When a cochain x satisfies δx = 0, it is called a cocycle.

The cup product ∪ for p-cochain f and q-cochain g gives a (p+ q)-cochain defined by

(f ∪ g)(i0 · · · ip+q) = f(i0, · · · ip)g(ip · · · ip+q) . (A.2)

It is associative but not commutative. In this note we will omit writing the cup products.

The higher cup product f ∪1 g is a (p+ q − 1) cochain, defined by

(f ∪1 g)(i0 · · · ip+q−1) =

p−1∑
j=0

(−1)(p−j)(q+1)f(i0, · · · ijij+q, · · · ip+q−1)g(ij, · · · ij+q) . (A.3)

It is not associative and not commutative.

We have the following relations for a p cochain f and q cochain g:

f ∪ g = (−1)pqg ∪ f + (−1)p+q+1 [δ(f ∪1 g)− δf ∪1 g − (−1)pf ∪1 δg]

δ(f ∪ g) = δf ∪ g + (−1)pf ∪ δg
δ (f ∪1 g) = δf ∪1 g + (−1)pf ∪1 δg + (−1)p+q+1f ∪ g + (−1)pq+p+qg ∪ f . (A.4)

More generally,

f ∪i g = (−1)pq−ig ∪i f + (−1)p+q−i−1 (δ(f ∪i+1 g)− δf ∪i+1 g − (−1)pf ∪i+1 δg)

δ(f ∪i g) = δf ∪i g + (−1)pf ∪i δg + (−1)p+q−if ∪i−1 g + (−1)pq+p+qg ∪i−1 f . (A.5)
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Similarly, if there is G action on A given by ρ : G→ Aut(A), one can define a twisted

coboundary operation that is nilpotent. Similarly the cup products ∪,∪1 can be modified.

The rules (A.4) are still true (with δ meaning the twisted coboundary operation).

When the coefficient group is A = Z2, there are additional operations in the cohomology

called the Steenrod squares. For the purpose of this note we only need the operations Sq1

and Sq2. Sqi maps a Z2 p-cocycle to a Z2 (p + i)-cocycle. The definitions of Sq1 and Sq2

acting on Z2 i-cocycle xi are

Sq1(x1) = x1∪x1, Sq1(x2) = x2∪1x2, Sq2(x1) = 0, Sq2(x2) = x2∪x2, Sq2(x3) = x3∪1x3 .
(A.6)

In particular, Sq1 acts on the cohomology the same way as the Bockstein homomorphism

for the short exact sequence 1→ Z2 → Z4 → Z2 → 1.

B Extension of symmetries in discrete notation

In this appendix, we repeat the calculation in the main text using discrete notation.

B.1 4d ZN two-form gauge theory

In discrete notation, the ZN two-form gauge field (denoted by b2) is a ZN two-cocycle. The

action is

2π
p

2N

∫
P(b2) . (B.1)

where pN is an even integer and P(b2) is the generalized Pontryagin square operation. The

operation is constructed as follows [14]

P(b2) = b2 ∪ b2 ∈ H4(M,ZN) for odd N , (B.2)

P(b2) = b̃2 ∪ b̃2 − δb̃2 ∪1 b̃2 ∈ H4(M,Z2N) for even N , (B.3)

where b̃2 is an integer lift of b2 and M is the spacetime manifold.

The theory has a ZN one-form and a ZN two-form symmetry, with backgrounds B2, Y3.

Y3 modifies the cocycle condition for the two-form gauge field

δb2 = Y3 , (B.4)

such that it becomes a two-cochain while B2 couples to the theory as

2π

N

∫
b2B2 . (B.5)
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B.1.1 Even N

In the presence of the background field, the action (B.1) is no longer well-defined for even

N . Suppose we change the lift b̃2 → b̃2 + Nu2 for some integral 2-cochain u2. The action

is shifted by

2π
p

2

∫ (
u2 ∪1 δb̃2 − δb̃2 ∪1 u2

)
mod 2π , (B.6)

where we used δu2 ∪1 b2 = δ(u2 ∪1 b2)− u2 ∪1 δb2 + u2 ∪ b2− b2 ∪ u2. Since b2 is no longer a

two-cocycle, the shift does not vanish, instead, it gives

2π
p

2

∫
Y3 ∪2 δu2 mod 2π , (B.7)

where we used Y3 ∪1 u2 + u2 ∪1 Y3 = δ(Y3 ∪2 u2)− δY3 ∪2 u2 + Y3 ∪2 δu2 and δY3 = 0. We

can compensate the shift by adding the following coupling to the background Y3

− 2π
p

2N

∫
Y3 ∪2 δb2 . (B.8)

The term is non-trivial since b2 is a ZN cochain in general.

To see whether the action is anomalous under gauge transformation, we can extend

the fields to the bulk and study how the theory depends on the bulk. A consistent theory

requires the bulk term to be independent of the dynamical field b2, and that will give a

constraint on the consistent background fields. The total theory depends on the bulk as

follows. The action (B.1) contributes the bulk dependence

2π
p

2N

∫
(2b2δb2 + δb2 ∪1 δb2) . (B.9)

The additional term (B.8) contributes the bulk dependence

− 2π
p

2N

∫
(δY3 ∪2 δb2 − Y3 ∪1 δb2 − δb2 ∪1 Y3) . (B.10)

Combining the two contributions and simplify using δb2 − Y3 = 0 mod N we find the bulk

dependence

2π
p

N

∫
b2 ∪ Y3 + 2π

p

2N

∫
(Y3 ∪1 Y3 − δY3 ∪2 Y3) . (B.11)

The first term can be cancelled by demanding B2 to satisfy

δB2 + pY3 = 0 . (B.12)

The remaining bulk dependence together with the contribution from the coupling (B.5)
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gives the ’t Hooft anomaly

2π

N

∫
Y3 ∪B2 + 2π

p

2N

∫
(Y3 ∪1 Y3 − δY3 ∪2 Y3) . (B.13)

The anomaly is defined up to local counterterm. For gcd(p,N) = 1 there are integers

α, β such that αp = 1 + Nβ. Then the bulk dependence can be cancelled by the local

counterterm

α
2π

2N

∫
(P(B′2) + pY3 ∪2 δB′2) , B′2 = B2 + β(Np/2)w2(TM) , (B.14)

where w2(TM) is the second Stiefel-Whitney class of the tangent bundle. δB′2 = −pY3.
The local counterterm gives a bulk dependence that cancels the putative ’t Hooft anomaly

(B.13)

− 2π
αp

N

∫
B′2 ∪ Y3 + 2π

αp2

2N

∫
(Y3 ∪1 Y3 − δY3 ∪2 Y3)

= −2π

N

∫
B′2 ∪ Y3 + 2π

p(1 + βN)

2N

∫
(Y3 ∪1 Y3 − δY3 ∪2 Y3)

= −2π

N

∫
Y3 ∪B2 − 2π

p

2N

∫
(Y3 ∪1 Y3 − δY3 ∪2 Y3) , (B.15)

where we used πpβ
∫
Y3 ∪1 Y3 = πpβ

∫
w2Y3, B2Y3 = Y3B2 + δ(B2 ∪1 Y3)− δB2 ∪1 Y3, and

πp
∫

(δY3/N) ∪2 Y3 = −πp
∫

(δY3/N) ∪2 Y3 mod 2πZ.

B.1.2 Odd N

For odd N , p is even, and the action (B.1) is independent of the lift of b2 to integral cochain

even in the presence of background fields. The action depends on the bulk as

2πp

2N

∫
(δb2b2 + b2δb2) =

2πp

2N

∫
(2b2Y3 + Y3 ∪1 Y3) , (B.16)

where we used δb2b2 = b2δb2 + δ(δb2 ∪1 b2) + δb2 ∪1 δb2 and δb2 = Y3, and we add the 4d

local counterterm −(2πp/2N)
∫
δb2 ∪1 b2 = −(2πp/2N)

∫
Y3 ∪1 b2 for nonzero background

Y3. A consistent theory requires the dynamical field b2 to be independent of the bulk, and

thus the background B2 obeys

δB2 + pY3 = 0 . (B.17)

The ’t Hooft anomaly is given by

2π

N

∫
Y3 ∪B2 +

2πp

2N

∫
Y3 ∪1 Y3 . (B.18)
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Similarly, for gcd(p,N) = 1 the above bulk dependence can be cancelled by a local coun-

terterm and there is no anomaly.

B.2 3d ZN one-form gauge theory

Consider ZN gauge theory with the action

2π(k/2)

N2

∫
b1δb1 , (B.19)

where we will take k to be even and b1 is a ZN cocycle.

The theory has one-form symmetries with ZN backgrounds Be, Bm. Be modifies the

cocycle condition for b1
δb1 = Be , (B.20)

while Bm couples as
2π

N

∫
b1B

m . (B.21)

In the presence of background Be, since b1 is no longer a ZN cocycle, the action (B.19) may

not be well-defined. Changing the lift b1 → b1 + Nu1 with integral 1-cochain u1 changes

the action by
2π(k/2)

N

∫
(u1B

e +Beu1) , (B.22)

which can be compensated by adding the following coupling

− 2π(k/2)

N2

∫
(b1B

e +Beb1) . (B.23)

To examine whether the total action is consistent, we extend the fields to the bulk. The

theory is consistent only if the dynamical field b1 is independent of the bulk, and for this

to be true the backgrounds are required to obey constraint. The total bulk dependence is

2π
(k/2)

N2

∫
(δb1δb1 − δb1Be −Beδb1 + b1δB

e − δBeb1)

= 2π
(k/2)

N2

∫
(−BeBe + 2b1δB

e + δBe ∪1 Be) .

(B.24)

where we used δb1 = Be mod N , δBe = 0 mod N , and δBeb1 = −b1δBe − δ(δBe ∪1 b1) −
δBe ∪1 δb1. The dependence on b1 can be cancelled by demanding Bm to satisfy

δBm + kBock(Be) = 0 , (B.25)
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where Bock(Be) = δBe/N mod N is the Bockstein homomorphism for the short exact

sequence 1 → ZN → ZN2 → ZN → 1. The backgrounds Be, Bm with such constraint

describes the one-form symmetry

Zgcd(k,N) × ZN2/ gcd(k,N) . (B.26)

The ’t Hooft anomaly is given by the remaining bulk dependence, including that contributed

from (2π/N)
∫
b1B

m

2π

N

∫
BeBm − 2πk

2N2

∫
P(Be) , (B.27)

where P(Be) = Be ∪Be − δBe ∪1 Be is the generalized Pontryagin square of Be.

B.3 Two-form and one-form coupled gauge theory

Consider

2π
p

2N

∫
P(b2) +

2π

N

∫
b2
δb1
N

, (B.28)

where b2, b1 are ZN cocycles. We turn on backgrounds Y2, Y3, X2, X3, where Xi coupled as

2π

N

∫
(b2X2 + b1X3) , (B.29)

while Y2, Y3 modifies b1, b2 to satisfy

δb1 = Y2, δb2 = Y3 . (B.30)

In the presence of Y2, Y3 the second term in (B.28) is no longer well-defined. Consider

b2 → b2 +Nh2, b1 → b1 +Nh1 for some integral cochains h1, h2. This terms shifts by

2π

N

∫
(h2δb1 + b2δh1) =

2π

N

∫
(h2δb1 − δb2h1) =

2π

N

∫
(h2Y2 − Y3h1) . (B.31)

Thus we need to supplement the action with the following coupling to cancel the shift

− 2π

N2

∫
(b2Y2 − Y3b1) . (B.32)

Next we study the bulk dependence of the action coupled to the backgrounds. We find

that in order for the dynamical fields b1, b2 to be independent of the bulk extension, the

backgrounds must satisfy

δX2 + pY3 + Bock(Y2) = 0, δX3 + Bock(Y3) = 0 , (B.33)
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where Bock is the Bockstein homomorphism for 1→ ZN → ZN2 → ZN → 1.

C More general topological field theories

In this appendix, we consider a class of topological field theories that can be defined in any

dimension D. The degrees of freedom includes a ZN (q + 1)-form gauge field â and a ZN
(D − q − 1)-form gauge field b̂. We will use continuous notation that embeds the discrete

ZN gauge fields in U(1) gauge fields â and b̂. This means that the holonomy
∮
â,
∮
b̂ ∈ 2π

N
Z.

The action of the theory is

S =

∫
pN

2π
â ∧ b̂ . (C.1)

The parameter p has an identification p ∼ p + N . When D = 2, q = 0, the theory is

equivalent to a 2d ZN × ZN Dijkgraaf-Witten theory [54].

When p = 0, the theory has a ZN (D−q−2)-form symmetry generated by exp(i
∮
â) and

a ZN q-form symmetry generated by exp(i
∮
b̂). We denote their backgrounds by ÂD−q−1

and B̂q+1. The coupling to these backgrounds adds to the action the following term

N

2π

∫
(â ∧ ÂD−q−1 + B̂q+1 ∧ b̂) . (C.2)

The theory also has a ZN (q + 1)-form symmetry and a ZN (D − q − 1)-form symmetry

whose background X̂q+1 and ŶD−q modifies the quantization of â and b̂, respectively

dâ = X̂q+2, db̂ = ŶD−q . (C.3)

This implies a mixed anomaly: the coupling to ÂD−q−1 and B̂q+1 is no longer well-defined

in the presence of X̂q+2 and ŶD−q, but depends on the extension to the bulk by

N

2π

∫
D+1

d
(
â ∧ ÂD−q−1 + B̂q+1 ∧ b̂

)
=
N

2π

∫
D+1

(
X̂q+2ÂD−q−1 + (−1)q+1B̂q+1ŶD−q

)
.

(C.4)

The anomaly has order N i.e. this many copies of the systems has trivial anomaly. To

conclude, the theory has a Z(D−q−2)
N ×Z(q)

N ×Z(q+1)
N ×Z(D−q−1)

N symmetry with a Z(D−q−2)
N ×

Z(q+1)
N mixed anomaly and a Z(q)

N ×Z(D−q−1)
N mixed anomaly. Here Z(q)

N denotes a ZN q-form

symmetry.

When p is non-trivial, the topological action (C.1) is not well-defined in the prescence

of the background X̂q+2 and ŶD−q. The action has a bulk dependence

pN

2π

∫
D+1

d(â ∧ b̂) =
pN

2π

∫
D+1

(
X̂q+2 ∧ b̂+ (−1)q+1â ∧ ŶD−q

)
. (C.5)
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We can cancel the bulk dependence by modifying the quantization for ÂD−q−1 and B̂q+1 in

the coupling (C.2) to be

dÂD−q−1 + pŶD−q = 0, dB̂q+1 + pX̂q+2 = 0 . (C.6)

For p 6= 1, this means that X̂q+2, ŶD−q are non-trivial background fields for the higher-form

symmetries, but pX̂q+2, pŶD−q are trivial background gauge fields with holonomy in 2πZ.

Thus the (q + 1)-form and the (D − q − 1)-form symmetries are broken explicitly to a

subgroup by the discrete theta angle.

Another way to see this is that the higher-form symmetry

â→ â+ λ̂X , b̂→ b̂+ λ̂Y (C.7)

changes the topological action (C.1) by

Np

2π

∫ (
λ̂Xb+ âλ̂Y + λ̂X λ̂Y

)
(C.8)

where Nλ̂X = qXdφ̂X , Nλ̂Y = qY dφ̂Y with qX , qY = 0, · · ·N − 1. The action is invariant

only for qX , qY ∈ NZ/ gcd(N, p) and thus the higher-form symmetries are broken to the

subgroup Zgcd(N,p).

The theory has a putative bulk dependence (C.4). We can reduce it by adding a classical

counterterm which shifts the bulk dependence by

Nk

2π

∫
D+1

d(B̂q+1ÂD−q−1) = −Nkp
2π

∫
D+1

(X̂q+1ÂD−q−1 + (−1)q+1B̂q+1ŶD−q) . (C.9)

Here k is an arbitrary integer. This reduces the order of the anomaly to gcd(N, p) i.e. this

many copies of the systems has trivial anomaly. In particular, when gcd(N, p) = 1, the

theory has no anomaly.

To conclude, the theory has an anomaly of order gcd(N, p), and its backgrounds obey

the constraint (C.6).

D Gauging Z2×Z2 symmetry in 2d Ising × Ising CFT

Orbifold by Z2×Z2 symmetry can have discrete torsion since H2(Z2×Z2, U(1)) = Z2 [55].

The non-trivial element corresponds to the Z2×Z2 Dijkgraaf-Witten theory [54]. Explicitly,
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denote the two Z2 gauge fields by a, a′ the action is

π

∫
a ∪ a′ . (D.1)

The Z2×Z2 gauge theory with the Dijkgraaf-Witten action is an invertible bosonic TQFT:

the equations of motion for a, a′ imply the gauge fields have trivial holonomy.

D.1 Symmetry in TQFT

Let us study the symmetry of the Z2×Z2 Dijkgraaf-Witten theory. The backgrounds B2, B
′
2

for the one-form symmetry modify the fluxes of the gauge fields

δa = B2, δa′ = B′2 . (D.2)

Let B1, B
′
1 denote the backgrounds for the 0-form symmetries generated by

∮
a,
∮
a′. They

couple to the theory through

π

∫
a ∪B1 + π

∫
B′1 ∪ a′ . (D.3)

The coupling π
∫
a∪a′ are not well-defined in the presence of B2, B

′
2, but it can be cancelled

by an analogue of the Green-Schwarz mechanism

δB1 = B′2, δB′1 = B2 . (D.4)

The coupling (D.3) has a bulk dependence for the background fields, but it can be cancelled

by the local counterterm of backgrounds π
∫
B1 ∪B′1:

π

∫
δa ∪B1 +B′1 ∪ δa′ = π

∫
δ(B′1 ∪B1) . (D.5)

D.2 Coupling CFT to TQFT

An an example, consider Ising ×Ising conformal field theory (CFT) in (1 + 1)d. The

theory has a D8 0-form symmetry that includes a Z2 × Z2 non-anomalous subgroup. In

the following, we will discuss gauging the symmetry with or without discrete torsion i.e. a

Z2 × Z2 Dijkgraaf-Witten theory.

An Ising CFT has three Virasoro primaries including the vacuum operator 1 with h =

h = 0, the energy operator ε with h = h = 1
2

and a spin field σ with h = h = 1
16

. The
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theory has a Z2 symmetry that flips the spin fields:

Z2 : 1→ 1, ε→ ε, σ → −σ . (D.6)

The torus partition function of the Ising model is the sum of the characters of the three

parimaries

ZIsing(τ, τ) = |χ0(τ)|2 + |χ 1
2
(τ)|2 + |χ 1

16
(τ)|2 . (D.7)

The characters are

χ0(τ) =
1

2

(√
θ3(τ)

η(τ)
+

√
θ4(τ)

η(τ)

)
, χ 1

2
(τ) =

1

2

(√
θ3(τ)

η(τ)
−

√
θ4(τ)

η(τ)

)
, χ 1

16
(τ) =

√
θ2(τ)

2η(τ)
,

(D.8)

where the θi are the Jacobi theta function, defined as

θ2(τ) = 2
∞∑
n=1

q
1
2
(n− 1

2
)2 ,

θ3(τ) = 1 + 2
∞∑
n=1

qn
2/2 ,

θ4(τ) = 1 + 2
∞∑
n=1

(−1)nqn
2/2 ,

(D.9)

and η is the Dedekind eta function defined as

η(τ) = q1/24
∞∏
n=1

(1− qn) . (D.10)

Here q = e2πiτ . Inserting the Z2 symmetry lines along the temporal and the spatial direc-

tions leads to another three torus partition functions

ZH
Ising(τ, τ) = |χ0(τ)|2 + |χ 1

2
(τ)|2 − |χ 1

16
(τ)|2

ZV
Ising(τ, τ) = χ0(τ)χ 1

2
(τ) + χ 1

2
(τ)χ0(τ) + |χ 1

16
(τ)|2

ZHV
Ising(τ, τ) = −χ0(τ)χ 1

2
(τ)− χ 1

2
(τ)χ0(τ) + |χ 1

16
(τ)|2

(D.11)

Let us gauge the Z2 symmetry of the Ising CFT. The torus partition function of the orbifold

theory

Zgauged Ising(τ, τ) =
1

2

(
ZIsing + ZH

Ising + ZV
Ising + ZHV

Ising

)
= ZIsing(τ, τ) , (D.12)

is the same as the torus partition function of an Ising CFT. This implies that the Z2 orbifold

52



of an Ising CFT is again an Ising CFT. The orbifold theory has a Z2 symmetry which can

be viewed as the emergence dual Z2 symmetry of the gauged Z2 symmetry.

Now consider two copies of Ising CFTs. The theory has a Z2 × Z2 symmetry that flips

the spin fields σ in one of the two copies. It also has a Z2 symmetry that swaps the two

copies. These two symmetries combine into a D8 symmetry.

The Z2×Z2 orbifold of the theory is also an Ising×Ising CFT. The orbifold theory has

a D8 symmetry whose Z2 × Z2 subgroup are the emergent dual symmetry of the gauged

Z2 × Z2 symmetry while the Z2 symmetry that exchanges the two copies remains intact.

The Z2 × Z2 orbifold theory can include a discrete torsion. This modifies the torus

partition function into

Ztorsion
gauged Ising2(τ, τ) =

1

4
ZIsing

(
ZIsing + ZH

Ising + ZV
Ising + ZHV

Ising

)
+

1

4
ZH

Ising

(
ZIsing + ZH

Ising − ZV
Ising − ZHV

Ising

)
+

1

4
ZV

Ising

(
ZIsing − ZH

Ising + ZV
Ising − ZHV

Ising

)
+

1

4
ZHV

Ising

(
ZIsing − ZH

Ising − ZV
Ising + ZHV

Ising

)
=Zr=1

compact boson(τ, τ) ,

(D.13)

which is the same as the torus partition function of a compact boson with radius r = 1 i.e.

U(1)4. We choose the convention that the self-dual radius is r = 1/
√

2.

To summarize,

• Ising × Ising gauging Z2 × Z2 without discrete torsion: Ising × Ising.

• Ising × Ising gauging Z2 × Z2 with discrete torsion: compact boson U(1)4.

We remark that orbifold with discrete torsion can also be understood as a two step

gauging process. First we gauge the Z2 symmetries in the first Ising CFT. Second we gauge

the diagonal Z2 symmetry of the second Ising CFT and the orbifold theory of the first Ising

CFT.

Ztorsion
gauged Ising2 =

∑
a,b

ZIsing[a]ZIsing[b] exp

(
iπ

∫
a ∪ b

)
=
∑
b

ZIsing[b]Zgauged Ising[b] (D.14)

Since the orbifold of an Ising CFT is itself, this amounts to gauging the diagonal Z2 sym-

metry of two copies of Ising CFTs. The resulting theory is U(1)4 [56].22

22See Appendix D of [57] for a discussion of a generalization of such discrete theta angles.
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