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Dear Editor,

With this letter, we resubmit our manuscript “Resolving the nonequilibrium Kondo singlet in energy- and
position-space using quantum measurements” for your consideration as an article in SciPost Physics. We
gratefully acknowledge the insightful reviews by the referees, which have helped us improve the manuscript.
We have carefully considered their comments and revised the text accordingly. Below, you will find our re-
sponses and a description of the changes we made. A document highlighting differences from the previous
version is also included for your convenience. In addition to the points raised in the reviews, we also cor-
rected several minor misprints and updated some references.

Given the reviews and our response below, we hope that the revised manuscript can now be accepted for
publication in SciPost Physics.

Sincerely,

André Erpenbeck and Guy Cohen

Guy Cohen - Tel Aviv University - P.O. Box 39040, Tel Aviv 6997801, Israel



Referee 1

Strengths

1) This paper contains a new twist in the investigation of the Kondo Problem, since perviously typically
the spin correlation function in real space (Refs[8-10]) or the fixed point properties of the total system
(Ref [5]) were addressed.

2) The authors extend their analysis to a two-lead finite bias out of equilibrium steady state situation.

3) Qwerall, I am impressed by the evolution of the singlet projector expectation value as function of
energy. Starting at short times, correlations live in the vicinity of the single occupied excitation
energy ep and evolve towards the chemical potential.

4) The authors excellently present their rather complicated calculation scheme for non-equilibrium sit-
uation, but also use these real-time integral equation to approach the thermal steady state.

5) In non-equilibrium it is nicely demonstrated that the singlet weight is redistributed by temperature
as well as by finite bias voltage but in distinctly different ways. In the real space representation the
authors demonstrate that the singlet expectation value oscillated between even and odd sites typical
for a particle-hole symmetric lead, and the major weight is located around the quantum dot.

We thank the reviewer for this concise summary and positive assessment of our work.

Weaknesses

1) The NCA has a long history, developed independently by Grewe and Kuramoto in their seminal
papers from 1983. Unfortunately, the authors do not really address the shortcomings of SNCA for
finite U in reproducing the proper Kondo temperature. Vertex correction are required for including
the Schrieffer-Wulff limit of the Anderson model, see Z Phys. B Condensed Matter 74, 439 (1989).

This is a great point and we thank the referee for bringing it up. We don’t aim to provide a full review
of the NCA's history, which is indeed long. However, the revised manuscript now includes references to
the NCA's early history (including also the 1981 Grewe—Keiter paper and the 1984 Coleman paper). In the
discussion of its shortcomings and extensions, we now also mention the need for vertex corrections to access
Kondo scaling physics.

Indeed, without appropriate corrections the NCA cannot properly describe the strong coupling limit 7" <
Tk . However, as the referee notes in a later comment below, we are only considering the edge of the Kondo
regime whereT" < T. The reason for this is exactly the limitations of the (simple) NCA, which is not reliable
in the strong coupling regime. In Fig. R3 we show how the NCA behaves compared to two numerically
exact techniques. This is done for an admittedly less-sensitive observable, namely the population on the
dot, at the parameters used in the manuscript that are worst for NCA (lowest temperature). In Phys. Rev.
B 95, 085144, some of us presented such a comparison for currents and local Green’s functions at more
difficult parameters; and in Phys. Rev. B 103, 125431 we did so for counting statistics. It is therefore quite
firmly established by now that the NCA is rarely quantitatively accurate, but does give a good qualitative
description of the parameter region explored here for a variety of local and nonlocal observables.

2) Ido not fully understand how the Kondo temperature was extracted. Either I did not understand
the parameter (using the definition found in Ref [3] I found T K ~ 0.05I) or there is a problem with
the estimated Ty. The differential conductance plotted in Fig 5, however, indicates that T' > T in
the calculations.
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Figure R1: Spectral function for the zero-bias system for the four different temperatures 7" = 0.2I", 0.5, 1.0I"
and 5.0T

We apologize for the confusion, which stems at least partly from a difference in notation between much of
the nonequilibrium literature and the earlier equilibrium literature. The estimate for T comes from section
6.7 in the textbook by Hewson, which provides the following estimate for the Kondo temperature:

T = V2 UsabeaaU
0 = U(5) . ©1)
This assumes particle-hole symmetry, and that U is within a Wilson band generated by the leads. While
our model is a little different, matching the maximum coupling to Hewson’s at U = 8I' and within our
two-lead setup gives A = 2T'. We therefore arrive at T ~ 8T - \/1/8 - e™5™ & 0.87T.

We also offer another, more direct argument that can be used for any lead geometry and at any level of
approximation. A simple and straightforward way to obtain a Kondo temperature is to define it as the max-
imal temperature for which an Abrikosov-Suhl resonance develops in the equilibrium (zero bias voltage)
spectral function. Fig. R1 depicts the latter at the same temperatures found in the paper; also, the I(V)
curves in Fig. 5 can be considered a (linear-response) proxy for the spectral function. While a resonance at
the chemical potential is observed at 7" = 0.2I" and 0.5I', it no longer occurs at higher temperatures 7" = 1.0T’
and 5.0T". This is consistent with 0.5I" < T < 1.0I" and therefore with the Bethe ansatz estimate mentioned
earlier.

Since this is an essential point, we have added a brief discussion of it to the paper.

3) The y-axis in Fig 5 does not have any units.

Indeed, we neglected to mention that throughout the paper we set i = e = 1, such that the quantity in the
y axis of Fig. 5 is a pure number. We apologize for this and have amended it. To make comparison with the
unitary limit more convenient, we have also scaled the aforementioned axis by the conductance quantum
Go = 2¢?/h =1/

4) The plots in Fig 7, however are so small that one cannot see the tails of s(z) at large values of x
Please see our response to this below.

Report
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Much of the report has been included already in the summary above.

In this paper the author address the question of how a singlet in the Kondo problem is distributed in
real-space and in enerqy space at finite temperature. This is a new twist in the investigation of the Kondo
Problem, since perviously typically the spin correlation function in real space (Refs[8-101) or the fixed
point properties of the total system (Ref [5]) were addressed. The authors extend their analysis to a two-
lead finite bias out of equilibrium steady state situation. For that purpose the authors introduce two
composite operators products, P and E, to construct a many-body generalization of a two-particle spin
singlet projector. This operator is correlating the quantum dot spin state with a spin configuration of a
lead orbital in real or energy space.

In order to calculate the expectation values of these projection operator the authors resort to the simple-
NCA (SNCA) in a real-time out-of equilibrium formulation. The authors excellently present their rather
complicated calculation scheme for non-equilibrium situation, but also use these real-time integral equa-
tion to approach the thermal steady state.

The NCA has a very long history which is only presented from a perspective of recent papers. I do not
want to criticise the history part of this methodology section to much since different people have different
personal perspective onto the history of this almost 40 year approach. I just would like to recommend that
the authors briefly addressing the relevant question of the influence of vertex correction onto equilibrium
low energy scale. Maybe I overlooked something in their complicated equations such that vertex corrections
are somewhere hidden in their formulation. Overall, the section 3 is well written and documents nicely
the integral equation used for obtaining the final results.

We thank the referee for this comment. As noted above, we have added a short discussion of (some) histor-
ical background and the importance of vertex corrections. Also as noted—indeed, we do not employ vertex
corrections, and therefore do not (and cannot) investigate the scaling limit. Rather, we examine higher-
energy properties at the upper edge of the Kondo regime.

I mentioned already, that I had a problem understanding the claim of T ~ 0.8 in the paper . Using the
definition found in Ref [3] one finds about T ~ 0.05I for the parameters used by the authors which would
indicate that that all plots are performed in the Kondo limit of the Anderson model hence above Tk and
not in the strong coupling regime of the model. This observation is backed by the differential conductance
depicted in Figure 5: the zero-bias conductance is very low compared to the charge fluctuation peak visible
at about V=U, which is typical in the Kondo regime (I' ~ Ty) of the model. In the strong coupling
limit, however, dI /dV should approach the unitary limit of 2e2/h which will be overshot by any (SINCA
treatment due to its violation of the Fermi liquid properties. Unfortunately, Fig 5 lacks the units on the
y-axis so we cannot judge how far off the calculations are from the unitary conductance limit.

Please see our discussion of the Kondo temperature and improvements to the figure above. Though our
lowest temperature is below the Kondo temperature, we reiterate that we are indeed only at the edge of the
Kondo regime and not in the strong coupling limit. Our conductance is therefore far from unitary, though
it undershoots rather than overshooting it because of the relatively high temperature.

We never claim to consider strong coupling in the manuscript. Nevertheless, we realize from the referee’s
comments that our presentation may still be confusing. This could have been foreseen, since in some fields
Kondo physics is considered to be well-defined only in the very clean case of the deep strong-coupling
regime, where the simple NCA used here is entirely inappropriate. In the present context, we are interested
in higher temperatures and nonlinear response to voltage. We are thankful to the referee for bringing this
to our attention, and have amended the manuscript to avoid any misunderstanding.

I have to conclude that the selected parameter operates the finite U NCA in the crossover regime about
TK where we see already some onset of Kondo correlations but have not reached the strong coupling regime.
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Figure R2: Double logarithmic representation of the top panels in Fig. 7.

The authors can also check their numerics: The propagator spectral functions in equilibrium (not plotted
here) should exhibit a clear x-ray edge threshold behavior which can be fitted to a power law at T' < Tk.
At finite T this power-law is washed out (see Mueller-Hartmann 1984 or the spectra plotted in Z Phys. B
Condensed Matter 74, 439 (1989).

In continuation of our earlier responses, we completely agree and hope that given our clarifications the
manuscript can no longer be interpreted otherwise.

Owerall, I am impressed by the evolution of the singlet projector expectation value as function of energy.
Starting at short times, correlations live in the vicinity of the single occupied excitation energy ep and
evolve towards the chemical potential. The interesting question arises whether there exist a sum rule by
integrating over the spectrum sy, /r(e) or sp () in a similar fashion as for the spatially resolved spin
correlation function as pointed out by Affleck and others, for example Ref [9] for a singlet ground state.
Deviations from such a sum rule could serve as an indicator for the deviations from the ground state by
finite temperature excitation.

We thank the referee for these comments. We have not considered such sum rules, though certainly one
must exist for the strong coupling ground state. A general statement is beyond the present scope, but we
now mention it as an interesting possibility to be considered in future work.

In non-equilibrium it is nicely demonstrated that the singlet weight is redistributed by temperature as
well as by finite bias voltage but in distinctly different ways. In the real space representation the authors
demonstrate that the singlet expectation value oscillated between even and odd sites typical for a particle-
hole symmetric lead, and the major weight is located around the quantum dot. The plots in Fig 7, however
are so small that one cannot see the large x tails of s: it would be useful to provide a double logarithmic
plot of s(z) to check for potential power law decays, change of the exponent once x exceeds the estimated
Kondo cloud size as well as whether the even values change from negative to positive value.

This is a great question. As the referee mentions, log-log plots are often used to identify scaling behaviors
and define the extent of the Kondo cloud. An example for the data depicted in the top panels of Fig. 7 is
shown in Fig. R2. For even sites, we plot the absolute value, since indeed s can change sign.

As anticipated by the referee, the data suggests a power law dependence between the singlet weight
and the lattice site over a certain length scale. This even seems to hold true for non-zero bias voltages.
Investigating this behavior is certainly an interesting endeavor. However, despite the promising appearance
of Fig. R2 as a preliminary result, we reiterate that (a) we are not in the scaling limit and (b) we do not
expect the NCA to correctly capture the scaling behavior. We therefore chose to defer this to future work
with methods more suitable to this task, and did not include Fig. R2 in the revised manuscript.
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Ovwerall the paper is a very solid and excellent piece of work which adds a new twisted to the investigation
of correlations in the Kondo problem. I can highly recommend the paper, after some minor points listed in
the requested change section are addressed.

Again, we thank the reviewer for this detailed and helpful report; as well as for recommending publication
after the points below are addressed.

Requested changes
1) Check Tk

Done, see above.

2) Quote the original finite U ENCA paper Z Phys. B Condensed Matter 74, 439 (1989) which states
the value of TK=I'/10 for U/T'=6. Hence TK should be smaller for the parameters used in this paper. My
guess: TK=0.05T".

Done, see discussion of Kondo temperature above.
3) Discuss the difference between a simple NCA and the ENCA with respect to the low energy scale
Done, see above for some details.

4) Discuss the unitary limit of the differential conduction in the model and provide proper units in Fig
5.

Done, see changes in Fig. 5 and its discussion and more details above.

5) Optional: Optional: provide a log-log plot of the data in Fig 7 top for V=0 for revealing a potential
power-low tails which would be characteristic for the strong coupling regime with T<TK, and an a change
of exponents inside and outside of the Kondo cloud. At high temperature I expect an exponential decay
driven by temperature.

Please see discussion above as to why we did not incorporate this suggestion despite its strong merits. A
figure is provided for the referee, but we believe its promising appearance may be somewhat misleading
and prefer not to include it in the paper.

6) Optional: I am wondering about a spatial or energy sum rule of these projector weights analog to the
sum rule for spin-density correlation function (see Affleck et al or Borda 2007)

Please see our response above.

Guy Cohen - Tel Aviv University - P.O. Box 39040, Tel Aviv 6997801, Israel
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Figure R3: Population on the impurity site for ® = 0 and the lowest temperature used in the manuscript,
using the NCA and two numerically exact methods.

Referee 2

Strengths
(1) Detailed analysis of singlet correlations in the Anderson impurity model out-of-equilibrium

We thank the referee for this comment.

Weaknesses
(1) The authors focus on an Anderson impurity model in a one-dimensional configuration for which more
accurate methods are available.

The referee is alluding to matrix product state (MPS) methods. We agree that it is appealing to treat the one-
dimensional case with such algorithms. In fact, we have some experience with this and are even pursuing
it, but would like to point out that dynamics over long timescales in nonequilibrium situations remain
difficult to resolve (see e.g. Phys. Rev. B 88, 045132 for a good overview; despite this being a 1D system, in
the presence of a voltage we were able to access much longer timescales using Inchworm Monte Carlo in
Phys. Rev. Lett. 122, 186803). While great advance are being made, this is never as easy as the equilibrium
case, and we expect that access to nonlocal observables like the singlet weight will be challenging.

As a concrete demonstration, in Fig. R3 we provide a comparison of the NCA with two numerically exact
methods for population dynamics: time-dependent MPS and Inchworm Monte Carlo. Data on the singlet
weight is not yet available. This is for the equilibrium case V' = 0, and at the lowest temperature used in
the manuscript. The dot population is a relatively easy observable to access in MPS-based methods, and
equilibrium is a relatively easy case; yet we already found it numerically challenging to reach times longer
than 1.2/I". We are certain this can be greatly improved by taking advantage of state-of-the-art advances in
MPS techniques, but believe it will not be trivial to reach the low-order polynomial scaling with time that
allows diagrammatic techniques to access the full dynamics.

We chose to concentrate on the 1D case in order to make the closest possible connection with existing liter-
ature and simplify the analysis. However, our methodology (the NCA used here, as well as its diagrammatic
extensions and numerically exact counterparts) is not at all limited to 1D. In ]J. Chem. Phys. 150, 244107 we
discussed in detail how any (noninteracting) lead can be efficiently treated. Our work therefore enables
studies at higher dimensionality and various geometries, which we actually see as a major strength—not a
weakness—of the manuscript.

Report
The authors analyze singlet correlations in an Anderson impurity model out-of-equilibrium. These non-
local singlets are what is usually called the Kondo screening cloud. Using the NCA, the authors calculate
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the time-evolution of the energy-dependent and position-dependent singlet weights for two different initial
states. Furthermore, they analyze the time-evolution of the singlet correlations formulations a driven sys-
tem, where both leads have different chemical potential. They observe that the singlet weight is enhanced
in this situation due to the bias and give a physical picture.

We thank the referee for this summary and are glad to see that they find the connection between singlet
weights and the Kondo cloud to be convincing. We would like to draw attention to the fact that—to the best
of our knowledge, and as the first referee also noted—the singlet weights, as an observable for studying
Kondo physics, are a “new twist” that is actually introduced here.

I think the paper is interesting and well written, presenting some novel results about the Kondo effect
out-of-equilibrium. I will recommend publication after the authors have addressed the following questions
and comments. However, after having read the acceptance criteria and expectations for SciPost, I have the
feeling that this paper is more suited for SciPost Physics Core than SciPost Physics, particularly when
comparing with references 29 and 30 in the current manuscript.

We are thankful for this comment and for the recommendation to publish after the issues below are ad-
dressed. However, we are forced to strongly disagree with the referee’s feeling regarding the suitability to
SciPost’s acceptance criteria and expectations. Admittedly, our results are approximate while refs. [29-30]
provide numerically exact data. As we note in the manuscript itself, our study of equilibration dynamics,
covered in Sec. 4.1 of the manuscript, indeed finds no new physics with respect to Refs. [29-30], despite our
use of singlet weights to extract more specific information. Agreement with these earlier works therefore
serves chiefly to corroborate the reliability of our approximation, and establishes the singlet weights as a
diagnostic of Kondo physics.

On the other hand, in Sec. 4.2 we consider systems relaxing to nonequilibrium steady states due to the
presence of a bias voltage. Refs. [29-30] consider only relaxation to equilibrium, which is substantially easier
to access by the methodologies used therein. They therefore could not observe the interesting new nonequi-
librium mechanism that the present manuscript reveals, and which is also difficult to pin down without
considering singlet weights. Furthermore, we reiterate that our observables are new and our methodology
isnot limited to 1D leads or Wilson chains. Given recent advances in diagrammatic Monte Carlo techniques,
the NCA used here can be seen as a first step towards numerically exact simulations including nonequilib-
rium driving and generic leads. Additionally, we expect our work to initiate a fruitful exploration of singlet
weights (and other projective weights) within various theoretical methodologies and models, as well as ex-
periments. The manuscript is therefore a very clear-cut example of expectation 3, to “Open a new pathway
in an existing or a new research direction, with clear potential for multipronged follow-up work”.

Furthermore, I have the following comments and questions:

Concerning the method:
In equation 12, why is the operator on the right-hand side time-dependent, although there is the time
evolution operator. If this equation is in the interaction picture, the authors should define this.

We thank the referee for pointing out this typo: the operator A on the right hand side of Eq. (12) should not
depend on time, and we have corrected the equation.

Below equation 8, the projector P™" selects op o, seems to be the opposite. Should it say select 0,0, ?

Good catch! We have corrected this mistake.

Guy Cohen - Tel Aviv University - P.O. Box 39040, Tel Aviv 6997801, Israel



I think it would be helpful if the authors can give a short derivation of equation 24.

This is a good point, and we have added an overview of the derivation to the manuscript. The full derivation
is rather lengthy, but given this description—and once refs. [59-60] are followed—it is straightforward to
reproduce.

The authors use the NCA to calculate nonlocal singlet correlations. As in this case, the operator de-
scribing the singlet includes a hybridization, I think that the NCA is a severe approximation. Is there a
way to justify or confirm their results? Can the authors compare their results to existing studies about the
Kondo effect out-of-equilibrium?

We thank the reviewer for this comment, and we agree that the NCA is indeed a simple method that has
its shortcomings (please see the discussion above and our reply to the first referee). Presently, we do not
have a more accurate method at our disposal, but we plan to develop such methods. What we have is (a)
comparisons with numerically exact results for other observables (see for example Phys. Rev. B 103, 125431
(2021) and the benchmark in Fig. R3) and the fact that we are working in parameter regimes where the NCA
was proven reliable; and (b) the qualitative agreement of our equilibrium results with previous MPS-based
works, which used related (though not identical) observables.

We employ the NCA here chiefly due to its numerical inexpensiveness, which allows a first, exploratory
overview of singlet weight behavior at a wide parameter range. In the revised version, we have added a
statement clarifying this, which hopefully makes it easier for potential readers to assess the significance of
the data presented in the manuscript.

Concerning the results:
What sets the time scale for the relaxation to the equilibrium? The Kondo temperature is set to 0.8 Gamma,
nearly Gamma. So naively, I would have expected that this energy (or better its inverse) also sets the
relaxation time. But it seems to be much longer.

We thank the referee for bringing up this interesting question. At equilibrium and in the scaling limit, we
typically expect all time and energy scales to be universally determined by 7. However, unlike the low-
energy features, the transient peak in the energy-resolved singlet weight when starting from an empty dot
clearly decays much more slowly (Fig. 3(a)). As discussed in the paper, this strong singlet peak does eventu-
ally decohere as electrons diffuse through the system, though it can be stabilized by a small nonequilibrium
drive (Fig. 6). By fitting an exponent to the maximum of the peak (not shown), one can extract a timescale
of ~ 25I" that does not appear directly linked to any of the known bare or dressed energy scales in the prob-
lem. While this is certainly surprising and invites further study, it would be prudent to first check whether
this timescale survives a numerically exact treatment: a relevant dissipation mechanism may be missing in
the NCA. Obtaining a fully reliable estimate for this relaxation timescale and understanding its origin will
therefore certainly be the objective of a future study.

How do the correlations look for an uncorrelated quantum dot (U=0)? Does it look like the results at
high temperatures?

Performing the same NCA calculation with U = 0 and no other changes causes the Kondo features in the
singlet weights to disappear, similarly to the high-temperature scenario. However, unless we also setep = 0
this is misleading, because it also breaks particle-hole symmetry and moves us to a different regime. If we
set both parameters to zero, there will of course be no singlet correlations in an exact evaluation of the
noninteracting dynamics; but the NCA, which is designed for the large U — oo limit, actually produces
a spurious singlet peak with a width corresponding to the temperature. As such, the U = 0 limit—while
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treatable by either a specialized noninteracting calculation or by numerically exact methods—is not a good
application for the NCA method used here.

X 3k 3k

With this, we believe the referees” concerns have been met. Given our reponses above and the overall
positive response to our manuscript, we hope that it can now be accepted to SciPost Physics.
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Abstract

The Kondo effect, a hallmark of strong correlation physics, is characterized
by the formation of an extended cloud of singlet states around magnetic im-
purities at low temperatures. While many implications of the Kondo cloud’s
existence have been verified, the existence of the singlet cloud itself has not
been directly demonstrated. We suggest a route for such a demonstration by
considering an observable that has no classical analog, but is still experimen-
tally measurable: “singlet weights”, or projections onto particular entangled
two-particle states. Using approximate theoretical arguments, we show that it
is possible to construct highly specific energy- and position-resolved probes of
Kondo correlations. Furthermore, we consider a quantum transport setup that
can be driven away from equilibrium by a bias voltage. There, we show that
singlet weights are enhanced by voltage even as the Kondo effect is weakened
by it. This exposes a patently nonequilibrium mechanism for the generation
of Kondo-like entanglement that is inherently different from its equilibrium
counterpart.
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1 Introduction

Strongly correlated quantum systems are a central paradigm in condensed matter physics.
A pivotal role in this field is played by the Kondo effect [1,2], where the resistance of
metals with a small concentration of magnetic impurities increases at low temperatures.
This is due to electrons within the impurities becoming intricately entangled with those
in the surrounding bulk material [3]. The resulting low energy state is characterized by a
narrow resonance in the spectral function [4], and by singlet correlations that extend far
beyond the impurity [5]. The latter are believed to cause enhanced scattering in a volume
that may be orders of magnitude larger than that of the impurity atom [2-6].

The correlated singlet is known in the literature as the Kondo screening cloud, and
its equilibrium properties are well understood in a wide variety of circumstances. The
length scale characterizing this cloud can be estimated from scaling or perturbative ar-
guments [7,8] and explicitly calculated numerically [9,10]. Predictions can then be made
about the experimentally observable implications of the existence of the Kondo cloud [11].
Important examples include oscillations in density and spin correlations [10,12-19]; depen-
dence on finite size effects or boundary conditions in the metallic environment [20-26]; and
entanglement between the dot and conduction electrons [27,28]. The dynamical formation
of equilibrium density oscillations and spin correlations after a quantum quench has also
been explored [29, 30].

Experimental studies have confirmed many of the predicted microscopic consequences
of the existence of the Kondo cloud, beyond its macroscopic effect on conductance. To
give a few examples, the cloud’s effect on electronic spin polarizability could in principle
be measured by nuclear magnetic resonance (NMR) experiments, though this is difficult
[31]. Size dependent effects in nanoscale systems were detected [32-39]. Perhaps the
most direct observations come from studies combining scanning tunneling microscopy and
spectroscopy [40], which have generated evidence that electrons scatter off the cloud [41].

Some of the clearest and most controlled spectroscopic observations of the Kondo
effect [42,43], as well as demonstrations of the size of the associated cloud [44], are obtained
in mesoscopic transport experiments. Here, the impurity embedded in a metallic host is
replaced by a quantum dot spanning two noninteracting leads. Within linear response, the
conductance across this junction provides access to the spectral function of the dot; and can
also probe its nonequilibrium properties. An important example is the prediction that the
Kondo resonance can be split by a bias voltage before being destroyed by nonequilibrium
dissipation [45-49]. A different resonance then resides (approximately, see Ref. [49]) at
the chemical potential of each lead. However, it remains unknown to what degree these
split resonances correspond to the equilibrium Kondo resonance and whether they share
its singlet-like nature. It is also largely unknown whether nonequilibrium currents are
capable of suppressing, enhancing or distorting the Kondo cloud.

Despite all this progress, the Kondo cloud itself—in the sense of an extended singlet—
has yet to be directly observed in either equilibrium or nonequilibrium situations. Even
though the extended singlet is arguably the defining quality of the Kondo cloud, there
has been virtually no direct study of its structure in either theory or experiment. This
is understandable, because the degree to which a system exhibits singlet correlations is
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Figure 1: Schematic representation of the system under investigation. The quantum
impurity (bronze circle) is coupled to semi-infinite chains of identical atoms (gold circles).
A simultaneous quantum measurements on the impurity and on the chains can quantify
the Kondo phenomenon.

difficult to measure compared with the observables on which most work has been focused.
It is nevertheless important to realize that while the existence of a Kondo singlet implies,
e.g., oscillatory response in spin—spin correlations [9], the converse is not necessarily true.

On the other hand, singlet correlations not related to Kondo physics have been experi-
mentally measured in several types of very different experimental protocols. For example,
in optics experiments, knowledge about singlets between entangled pairs of photons can
be extracted [50-52]. Furthermore, in NMR experiments singlets between nuclear spins
can be observed by way of specialized pulse sequences [53,54]. As a third example, in
ultracold atomic systems, singlet and triplet states can be artificially manufactured and
controlled [55].

From the quantum information point of view, measuring the projection on a singlet
state could be considered a specialized kind of “quantum measurement”. It requires a
transformation from the Bell (i.e. singlet—triplet) basis to a so-called computational basis,
where measurements of normal correlation functions are carried out. This is accomplished
by a simple quantum circuit (an inverse Bell circuit, see top part of Fig. 1), which may
be implemented in different ways within different experiments. Therefore, in a system en-
abling implementation of generic two-qubit quantum gates—e.g., as was recently suggested
for ultracold fermionic gases [56]-a singlet projection measurement would be relatively
straightforward. Quantum tomography is another potentially viable route to accessing
such quantum observables in correlated electron systems [57].

Experiments of this sort on Kondo systems have yet to be performed, and clearly
represent a significant technical challenge. Nevertheless, it is important to distinguish
between observables that are theoretically interesting, but not generally measurable; and
observables that may be difficult to access in experiment, but are measurable in principle.
Bipartite entanglement entropy is one example of an observable that is often discussed in
the literature [27], but generally belongs to the first class. The projection onto a (two-
particle) singlet state, our main focus in the rest of this manuscript, is of the latter variety.

In the following, we present a study of singlet correlations in the nonequilibrium (and
equilibrium) Anderson impurity model, where the impurity is modeled by a single, spin
degenerate electronic orbital. Complementary representations of singlet correlations in
energy- and position-space are considered, allowing us to construct a detailed picture of
the Kondo cloud in several regimes. In particular, we establish that singlet correlations
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are an excellent and intuitive observable for examining the well-understood equilibrium
physics of the Kondo cloud. Then, we show that they can provide new insight about the
nonequilibrium physics.

To solve the nonequilibrium impurity problem, we use the propagator flavor of the
noncrossing approximation (NCA) [58-60]. Since its introduction to the field [61-64],
variants of the NCA and its extensions have been used to study various aspects of the
nonequilibrium Kondo effect [45, 46, 58,59, 65-67]. The method provides qualitatively,
though not quantitatively, accurate results at higher temperatures in the Kondo regime,
and its regions of applicability have often been explored [59,60,67—70]. However, it cannot
be used to systematically examine, e.g., the scaling limit that emerges at low energies,
where at least vertex corrections are needed [71-74] and numerically exact methods are
desirable. The NCA used here is the lowest order precursor of the numerically exact
bold-line Monte Carlo [48, 60,68, 75,76] and Inchworm Monte Carlo [49, 77-84] methods.
Other recent approaches to the impurity problem may also be applicable to the same
problem [85-89], and revisiting this work within a controlled numerical scheme will be a
goal for future studies.

The outline of the paper is as follows: In Sec. 2, we introduce the model and provide
general definitions of singlet observables. Sec. 3 is dedicated to the NCA method and
its application to such observables. Our results, first in equilibrium and then with a
nonequilibrium bias, are presented in Sec. 4. Finally, in Sec. 5, we discuss our conclusions.

2 Hamiltonian and Observables

2.1 Anderson impurity model

We consider the Anderson impurity model, which is often used to describe a quantum
dot with electron—electron interactions coupled to noninteracting leads. The system is
described by the Hamiltonian

H = Hp-+Hp+ Hpp. (1)
Here, the internal dot Hamiltonian Hp, in units where h = e =1, is

Hp = Y epdid, +Udldydld,, (2)

(e

where the di annihilate(create) a spin o € {1,]} electron on the dot. ep is the single-
particle occupation energy, and U is the energetic cost of Coulomb charging when the dot
is doubly occupied. The lead Hamiltonian Hp represents a continuum of noninteracting

electrons,
Hp = ZZZ%@LU%J. (3)

{ kel o

The lead index ¢ € {L, R} stands for the “left” and “right” lead, respectively. The a,S[T)
annihilate(create) an electron with spin o and energy € on lead orbital k in either lead.
Finally, the dot—-lead coupling is

Hpp = 33" (Veal,ds +1he.) (4)
{ ket o
The coupling constants Vj, are determined by the lead coupling density

Te(e) = 7> [Vil’d(e — ex). (5)

ket

4
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2.2 Singlet weights and projectors

Our next task is to construct a set of observables that directly relate to Kondo correlations
between the dot and specific bath orbitals. We will do this in two steps. First, we will
consider projections onto specific dot—bath singlet-states and construct second-quantized
operators associated with them. Then, we will argue that these operators still contain
some non-Kondo contributions, and discuss how they can be removed.

Let x be an index characterizing a lead orbital. The exact meaning of x will not yet
be further specified, so that it can denote either a single particle eigenfunction of the lead
Hamiltonian or a local lead orbital. In general, however, agj; is a linear combination of

the a,(;). These operators generate a local subspace on orbital y that contains the zero
electron state |0y ), the one electron states [1,) and ||,) and the two electron state |1],).

The dot operators d5 similarly generate the states 0p), [Tp), 4p) and [tip).

Consider, then, a two particle singlet-state formed between the dot orbital D and the
lead orbital x. The wavefunction of this state can be written as follows:
1
5 = 5 (Itoba) = Lot ). (6)

If we define the operators

/
P;;/X//X/// = <a;r(0axxgdl,dg/) . (GX/IOJG/L//IO./dO'dT;) ’

/
E;;/ = a;fcgaxzal di_, do-,

the projector onto |s,) can be expressed as

1
[5x) (sxl = 5 (chxx + P

— Bl - Eg(). (8)

Here, P;cf;)l(x selects the state |o,0,), and E;;/ exchanges a spin between the dot orbital

and the lead orbital xy. We remark in passing that it is similarly possible to express
projectors onto other states, such as the triplet states

‘t1x> = ‘TDTX> )
1
2 =75 (Itobd + ot ) (9)
‘t?:x) = ‘¢D¢x> )
in terms of PYY,  and ETY . This enables the application of our methodology to a variety

of physical questions beyond those to be considered here. Analogous expressions for multi-
orbital impurities can be devised accordingly.

The operator |s,) (sy| was designed specifically to extract singlet correlations, but still
admits contributions that might be considered trivial. For example, P)?;;c’x’ does not
eliminate the product state |0},0,), which can occur even in a system where the dot and
leads are neither coupled nor entangled. While this state is characterized by (“classical”,
or population-based) spin—spin correlations, it is not necessarily indicative of quantum
correlations, and we discard it in the remainder of this work. To do this in practice,

wherever <P>(<T>C<r’lx”x’”> might appear we replace it with the quantity

<P§§/X”X”/>correl = <P§;—,X”XW> - 5XX/5X”XH/ <djr’d0'/d‘7d3;> fo_X”' (10)

Here, f, is the Fermi function (or initial occupation probability) associated with lead
orbital x, and f, = 1 — f,. It is important to note that for the sake of simplicity, this

definition neglects nonequilibrium corrections to the lead occupancy <ai<gaxa>.
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The expectation value of the correlated singlet weight operator is given by

1
== T It _ (N it

S(X) = 2 ( <PXXXX>correl + <PXXXX>c0rrel <EXX> <EXX> )’ (11)
whereby we emphasize that all operators are evaluated at the same time. To simplify the
notation, the “correl” subscript will be dropped from now on where no confusion can occur.
The significance of s(y) is self evident in light of the singlet nature of Kondo physics, and
will be demonstrated with several examples in Sec. 4.

3 Methodology

The singlet weight s(x) is a well-defined quantity, and in principle a variety of numerically
exact methods could be adapted to evaluating the corresponding expectation values it in a
controlled manner. However, in the present context we plan to explore general qualitative
aspects, such that an approximate treatment suffices. In this section, we discuss the ap-
proximation scheme that will be used to evaluate s(x) in the present work, the noncrossing
approximation (NCA). Sec. 3.1 explains how the operators chy’lx”x”’ and E;;: are treated
and how s(x) is obtained for a general orbital index y. Given this, Sec. 3.3 specializes the
discussion to the energy representation y = k, while Sec. 3.4 specializes it to the position
representation y = x.

3.1 Noncrossing approximation and the vertex function

Our treatment of the model will be based on the NCA, a self-consistent, lowest order per-
turbative expansion in the dot—lead coupling/hybridization [46,58-60,65-67,69,76,90-92].
Generally, the name NCA refers to a class of hybridization expansions which only account
for contributions that have a diagrammatic representation in which the hybridization lines
do not cross. NCA methods are rooted in seminal work by Grewe and Kuramoto [61,62],
which forms the basis for various extensions that account for finite electron—electron in-
teraction strengths [71,93] and nonequilibrium conditions [46]. In its basic formulation,
the NCA successfully captures the physics at temperatures that are not far below the
Kondo temperature, as well as in the large U limit and for small bias voltages. However,
it does not correctly reproduce the Kondo behavior in the scaling regime. For this regime,
vertex corrections have proven to be essential [59,72-74]. These extensions of the NCA,
which are also numerically more demanding, have been successful in recovering the tem-
perature scaling behavior characterizing Kondo phenomena in agreement with numerical
renormalization group calculations [94,95].

Here, we provide a brief overview of the method focusing on the details needed to
discuss the evaluation of singlet weights in the next subsection. For a more systematic
introduction to the propagator NCA, we refer the reader to the literature [60].

The expectation value of a dot operator A at time t is given by:

(A(t)) = Tr (pUT(t)AU(t)) . (12)

Here, p = pp ® pp is the initial density matrix, which we assume to be a product of
an initial dot state pp and an initial lead state pp; and U(t) = T exp(—i fg H(t)dr) is
the time evolution operator, with T the time ordering operator. Let us define the vertex
function,

K1) = Tog { o (ol U()18) (BIU() |0} } (13)

6
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Flgure 2: (a) Diagrammatic representation of the Dyson equation for the vertex function,
q- (15). (b) Diagrammatic representation of the Dyson equation for the propagator,
)

q. (20). (c) Examples of contributions to <P;;/IX//X///> and <E§;,/ ) in Egs. (24) and (25).

The curled (“gluon”) lines denote bath correlation functions connected to the observable
at the measurement time ¢.

such that the expectation value from Eq. (12) can be expressed as

(A@) = Y KLt (BlAIB). (14)
E

Here, the o and S indices enumerate a basis of many-particle states in the dot subspace,
and we assume that the initial state of the isolated dot can be written in the form pp =

) {al.
The hybridization expansion finds ¢4 (t,t") by perturbatively expanding in the dot—
lead coupling Hpp. As such, K5 (t,t") is given by the Dyson equation
t
Ki(t,t) =k§(t,t’)+2//dﬁdﬁ — 7t =) &(n — ) Kl(n, 7).  (15)
0 0

7

A diagrammatic representation of this equation is shown in Fig. 2(a). The quantity K2 (t,t)
will be defined later. Within the NCA, the exact cross-branch self-energy fg(t) is replaced
with an approximate form that only takes into account the lowest nonvanishing order in
the expansion,

G = Y (A5 (@lde]8) (Bldla) + A7 (1) (aldh|8) (Bldole) ). (4

o0e{L,R}

Here, the lesser and greater hybridization functions, A (t) and A; (), are determined by
the lead coupling density I'y(e) and the initial equilibrium distributions in the leads, fy(€):

AR = / de e+ Ty(e) (o), (17)
AZ(t) = % / de e~ Ty(e) Fo(e). (18)

When the Dyson equation is solved self-consistently, the NCA effectively incorporates an
infinite subset of all possible perturbative contributions. In this context, the name NCA
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refers to the fact that the methodology only includes contributions with a diagrammatic
representation where the hybridization lines do not cross [60].
We now return to the remaining undefined quantity in Eq. (15),

ka(t,1) = 6asGh(H)Ga(t'), (19)

which contains all contributions to the vertex function with hybridization events limited
to a single branch of the Keldysh contour, and which is given in terms of the single-branch
propagator G, (t) = (a|Trg (ppU(t)) |a). Note that we have taken G,(t) to be diagonal
in the dot state basis, which is possible for the model used here but not in general. Like
the vertex function, the propagator can be written as the solution of a Dyson equation,

t T

Ga(t) = ga(t) - / dridry ga(t - 7_1)204(7—1 - TQ)Ga(7_2)7 (20)
00

a diagrammatic representation of which is provided in Fig. 2(b). In the NCA, we consider
only the lowest-order contribution to the single-branch self-energy:

Sat)= Y. (A7) (alde|8) (Bldtla) + A7 (1) (ald)[8) (Bldala) ) Ga(t). (99

B,oLe{L,R}

Finally, g.(t) = e"*Fa? is the atomic propagator obtained in the absence of a coupling

between the dot and the leads. This can be obtained directly from the state energies F,,
of the isolated dot, which can in turn be found analytically in the present model.

To this point, we have described how to calculate the expectation value of an observable
as it evolves in time ¢ from the moment where the dot and leads are connected. It is also
possible, and in fact substantially easier, to directly calculate steady state expectation
values using the NCA framework. This is because at steady state, the vertex function
depends only on the difference between its two time arguments:

K7 (t,t) -l KP(t—1). (22)

This is equivalent to requiring that any dependence on the initial condition has faded
away with time, and that time-local observables have become independent of time. By
definition, the NCA propagator G, (t) already depends only on a single time argument.
Consequently, the vertex function at steady state must obey

KP (1) = / dn / T AT Gy (1 - ) Gy (A — 1) S €8 (A) K7 (A7), (23)
) T1 v

which directly follows from Eq. (15) upon neglecting the initial condition and propagating
from the infinite past. Eq. (23) is therefore iterated until self-consistency is established.
However, Eq. (23) has no inhomogeneous initial condition term, and is linear in the vertex
function. Its solutions are therefore unbound with respect to multiplication by a constant,
and it is necessary to impose the normalization condition > K7(0) = 1 at every iteration.
This corresponds to imposing the conservation of probability. With this, it is possible to
directly access steady state observables.

In practice, Eq. (23) is solved over a finite time interval. The length of this interval
therefore becomes a numerical parameter with respect to which the calculation needs to
be converged. However, the computational cost scales just linearly in the interval length,
such that obtaining convergence is usually inexpensive compared to performing the full
time propagation.
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3.2 Adapting the noncrossing approximation to singlet weight observ-
ables

The vertex function K2 (t,t") can be used to obtain the expectation value of any single-time
dot operator according to Eq. (14), either exactly or within the NCA. However, nonlocal
observables comprising operators from the leads—or both the dot and leads—cannot be
immediately expressed in terms of the vertex function. In this subsection, we will develop
an NCA approach to the nonlocal observables needed to obtain the singlet weight: (E;;»

and <P;<’>‘<’,IX,,XW>. The technique is similar to that used to obtain Green’s functions from
the NCA [59,60].

The main issue with the appearance of lead operators in the observable is that dur-
ing the application of Wick’s theorem, these can be paired with lead operators from the
perturbation. Diagrammatically, this results in “hybridization lines” going from the ob-
servable at the tip of the contour to all other contour times, which, in turn, breaks up the
propagators and vertex functions into smaller segments. This is schematically depicted in
Fig. 2(c).

In general, an exact calculation requires that all hybridization lines between these
segments and the vertex function be evaluated [78]. Because these higher-order corrections
invariably involve hybridization events between propagator segments already divided by
a hybridization line, they can be neglected at the NCA level A formal derivation of this
approximation proceeds by setting of A = E";, or A= Py N in Eq. (12), and working
out the lowest non-vanishing order of the perturbative expansmn of the time-evolution
operators U(t) in the system—bath hybridization. The atomic propagators g, are then
replaced by their NCA counterparts G, and propagation from the initial state is replaced
by Kg as in Fig. 2c. This leads to relatively straightforward, if unwieldy, expressions (with
the dependence on time ¢ suppressed on the left hand side):

<Pxxx o) = / d’Tl/ dry A3, X/// (t,71,73) / dTQ/ dm BXXX iy (t, 71, T2)

/ / oo’ /
/ dTl/ dTl XX XX (t,Tl,Tl) — A dTl/O dTl DXX/X//X/// (t,Tl,'Tl) s

(24)
and

EM = /dTl/ dryGo(t — 71 )X (71772) (taTé)

_ / dry / Ar G (= 7)K% (9. 71) - KO (71,1)
0 0 (25)

71)Go(t = )0 (11, 7) KO (71, 7])

7)Go(t — 71)OX (11, 71) K3 (71, 7).

+/ dﬁ/ dr G (t
0 0

t t
+/ dﬁ/ dr G

0 0
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Here, the following set of auxiliary definitions has been used:

A;‘(X X! =G /(t - T{)Kg (ta Té) (26)
X (5x”x’” Frr “Tf (715 75) + Oy f - :g (1, 7'2))

B;X X! —G:./ (t - TQ)Ka (T17 t) (27)
X ((5X//X///fxll . (E¥$X)*(TQ7 Tl) + 5XX,fX (:g X ) (T27 Tl))a

C;-;X N EG;,(t—Tl)Gol(t—TDKg(TI,T{) X(SXX/fX@?)( X (7'1,7'{), (28)

D;; NN EG;/(t — Tl)Ga’(t — T{)KJ;L(TM T{) X 5XIIX///fX/l@¥j< (7’1, T{) (29)

Finally, setting 7,,» = V'V, (with V} the coupling between the dot and lead orbital x),
this relies on the quantities:

XX (11, m0) = Ny - fyfy - €T LG (1 — 1), (30)
EXX (11, m) = Ny - fufy - €T )L G (1 — ) (31)
X’ (Tl,TQ)Z_UXX,.<a0 Fuf - @t gie (=)
I . (32)
¥ oy - fufyeixtmmeion <H?>),
X (11, ) = = (2 (1, 7) + 2 (1, 7m)) (33)

We note that these expressions have relatively simple diagrammatic interpretations, which
are shown in Fig. 2(c).

Given the results of this subsection, the energy-resolved and position-resolved repre-
sentation of the singlet weight within the NCA approach can now be obtained. These
physically motivated definitions of y will now be discussed in Secs. 3.3 and 3.4.

3.3 Energy-resolved singlet weights

In the energy representation of the singlet weight, the index x represents a single-particle
energy € in one of the leads, L or R. The observable isolates all contributions to s(e) from
a narrow range of lead energies surrounding €. The quantities to be evaluated are then

(PP7R) (e, t) = D d(e (P (1),

keL/R

(EZ7R) (e1) = Y dle—e) - (BF) ().

keL/R

(34)

Expressions for the expectation values appearing here within the NCA were given in
Sec. 3.2. To change the generic  indices to lead level indices k, it is sufficient replace 7,/
by I'r/r(€)dkr in Egs. (30)—(33). Given this, it is only necessary to evaluate Egs. (24)
and (25) for k = kK = k" = k’”, and the calculation scales linearly with the number of
single-particle energies used to describe the lead. Using the definition in Eq. (11), it is
now straightforward to write the energy-resolved singlet weight in each lead in the form

suyr(ert) = 5 (L) (60) + (P (66) — (BJp) () — (BY ) (1) (39)

In the case of the energy-resolved singlet weight, Eqgs. (30)—(33) only depend on the
difference between the two time arguments, such that a steady state formulation for the

10
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energy-resolved singlet weight becomes straightforward. In the steady state, Eqs. (24) and
(25) can be rewritten as follows:

(PE7 ) (€) = —/OOOdT/OOOdAT{
Gor(7) (F1/m(€) - Eryle; A7) + fr/n(€) - Sole, A7) ) K (7 + A7)
+ G () (Frymle) - (e AT) + fiyr(e) - Ele, A) ) K7 (=7 — An) |
_ /0 S / OO AT G (r)Go (v + A7) - f11(0)O0 (e, A7) - K(A7)

+ Gy (T)Gor (7 + AT) - Jrym()Ory (e, A7) - KTH(AT) |,
(36)

(B ) (e) = — /000 dr /OOO dAT {GG(T) -Q(e, A7) - K (1 + A7)
LG () Q (e, AT) - KO (—7 — AT)}
+ /000 dr /_OO dAT {G:/<T)GU(T + A7) - O(e, AT)K°(AT)

+ G (T)Go(7 + AT) - Oy (e, AT)KN(AT)}.

This enables the direct evaluation of the energy-resolved, steady state singlet weight in
the left or right lead, sz p(€,t — o0).

3.4 Position-resolved singlet weights

We now continue to the position representation of the singlet weight. The general state x
entering Eq. (6) is now identified with a local lattice orbital z, such that

st t) = 5 (P10 @, 0) + (P 0,) = (B (,0) = (B¥) (2,0). (39)

Here, the position x is assumed to be specific to one of the leads, such that the subscript
L/R can be dropped. A position-resolved representation of the singlet weight is then
encoded in the observables

(P77} (,1) = (Pgfa) (8), (39)
(B7) (x,1) = (EgZ) (1) (40)

We will now discuss their evaluation.
The expectation values (P°%") (x,t) and (E°?') (x,t) can be written in terms of the
previously discussed quantities (P73, ) (t) and (E77)) (t). Consider the wavefunction

ok () associated with lead mode k at position . The annihilation operator in the position
representation then takes the form

> o)k (41)
P

Using this transformation, the position-resolved singlet weight components in Eqgs. (39)
and (40) are given by

(P77) (@)= D @) @)pr (@)im (@) - (PG (1), (42)
kk/k//k///

(E) (a,0) = Y pil(@)ow (@) - (EFT) (8). (43)
kk'

11
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Within the NCA approximation used here, only terms where at least two of the four energy
indices k are identical contribute to Eq. (42). The naive calculation of position-resolved
singlet weights in this manner therefore scales cubically with the number of lead orbitals
in the NCA, and quartically in general. It is, however, possible to perform the sums over
the lead eigenstates k semi-analytically before the NCA calculation, essentially carrying
out the evaluation of Egs. (39) and (40) directly in the position space. To this end, we
introduce the quantities

ot —7) Z x) fp =T, (44)
ot —7) Z Vieor(z) fr e 7)), (45)
Ay = g |ox (@) fi (46)
Ay = Zk: |ox(@)* fr- (47)

With their help, we can rewrite Eqs. (30)-(33) specific for the position representation,
including the sum over the lead energy states, as

o (@,71,72) =&t — 1)t —T2)  Ga (11 — 72),

o (@,71,72) = Gt —1)&({E—T2) Ga (11 — 72),

o (@,71,72) = =000 Gt = T1)G(t = 72) = dagpy - &t — 11)&(t — 72),
Qz,1,72) = — <EN (x,71,72) + =0 (1:,7'1,72)) .

[11x [1]

@

Similarly, we express Eqgs. (26)—(29) as

A%° EGgr(t—T{)K (t, ( 221 (2, 71, 79) —i—Axéo((IZ,T{,Té)), (52)
B9 =G (t — 1) KS (71, 1) <A Ef (w12, m1) + A= (, ’7'2,7'1)) (53)
Co% =G (t— 1) Gor (t — 7)) KO (11, 7]) X Ap®o(z, 71,7]), (54)

99" =Gt — 1) G (t — 1) K11, 7)) X Ap®y (2,71, 71). (55)

As only quantities incorporating the sum over the different lead eigenstates contribute, it
is numerically feasible to treat extended systems comprising tenths of thousands of lead
sites and beyond (cf. Sec. 4). Still, evaluation in the position space requires the calculation
of the eigenfunctions ¢g(x) of the nointeracting lead Hamiltonian. This is essentially a
tight-binding calculation, a computational task that scales cubically with the number of
lead orbitals when done numerically. For periodic leads, however, it is possible to obtain
converged results directly at the thermodynamic limit, and for simple systems like the 1D
chains used here analytical expressions are readily available.

Finally, we remark that it is also possible to solve directly for the steady state in
position space. Here, we exploit the fact that the quantities introduced in Eqgs. (48)—(51)
factorize into parts that depend on t — 71, t — 79, and 7, — 9. Using this structure, we can

12
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express the position-resolved singlet in steady state as
(P ( / dr / anr|
Gm)( xsmeN(Ar)cx(T )+ Aua(T)Go(AT)E(T) ) K7/ (T)
+ Gy (1) (Ras (NG AT (-T) + MG (1) GHATIE(-T) ) K7/ (= T) }
+ [Car [T aar{Gu GG TIGT) - As- KOA7)
G (T)ET)Gor (TI(T) - A+ KT (AT |,

Efjoo / dT/ dAT
Go(r) (éx(T)Gu(AT)Cx(T) + G (T)Go(AT)E(T) ) K7'(T)
+ G(n) (&G ATICH=T) + G (7) - Ga(AT) - £(=T) ) K (=T) } (57)
- [Tar [ asr {6 G T (T) - KA

+ G(nEH (TG (TE(T) - KM (AT |,

where T =7+ AT.

We note that in order to obtain accurate steady state results at the thermodynamic
limit, the underlying microscopic model for the leads needs to be large compared to the
decoherence time multiplied by the Fermi velocity. In the Kondo regime in particular,
systems must be considered that are large compared to the size of the Kondo cloud. In is
then possible to directly calculate the position-resolved representation of the steady state
singlet weight s(x,t — 00).

4 Results

In this section, we present the energy- and position-resolved dynamics and steady state
of the singlet weight in the nonequilibrium Anderson impurity model, within the NCA
framework. To simplify the discussion, we will model the leads as two semi-infinite 1D
chains (see Fig. 1). This is by no means required by either the definition of the singlet
weight or the NCA formalism, though it could be advantageous within matrix product
state methods. Each lead site will be assumed to comprise a single orbital with on-site
energy €, coupled with strength ¢, to its nearest neighbors. We will assume that in each
lead, ¢, is pinned to the chemical potential in that lead, such that the isolated lead is
always half occupied. In the limit of an infinitely long chain, the coupling density can be
evaluated analytically [96-98] and assumes the form

VAl = (e=pe)? .
FZ(E) 4ty I for |€ H€| < 2|tb‘7 (58)
0 otherwise.

The maximum coupling strength to each of the two leads is therefore I'/2. This determines
the coupling between the dot and the lead site adjacent to it, tg = /&, I'. We employ T’
as our energy scale. We set ¢, = 10I" such that the lead bandwidth is 40I". The on-site
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energy at the dot is ep = —4I' and the Coulomb interaction U = 8I', such that we are
investigating the particle-hole symmetric scenario. We also apply a symmetric bias across
the junction by setting uy,p = /2, where ® is the bias voltage. At equilibrium, these
parameters suggest a Kondo temperature Tx ~ 0.8 [3].

We stress once again that the NCA does not generally produce the exact Kondo tem-
perature and demonstrates other failures [59,67,72,94,95]. However, it does provide a
qualitative picture. A systematic validation of the results upon comparison with more
refined methods is left for future work.

Equilibrium Kondo correlations are expected to be characterized by a length scale
¢ = vy /Ty, where vy is the Fermi velocity in the noninteracting Fermionic leads [7,21].
If we assume that the spacing between sites is a, the Fermi velocity can be written as
vf = 2tpa, such that at the parameters above one expects £/a =~ 25. In the finite time
calculations finite leads were used. Simulation were run for several chains lengths at the
timescale shown, and we found the data to be converged with ~ 350 sites on each side.
At any finite chain lengths, reflections from the ends of the chain eventually develop (not
shown); the effect of such reflections on charge density has previously been studied [99,100].
For position-resolved calculations in the steady state, we found that convergence requires
simulating chains with ~ 12,000 sites. The energy-resolved singlet weights shown, on the
other hand, are always calculated directly in the thermodynamic limit.

We will study the system at four representative lead temperatures, T' = 0.2I", 0.5,
1.0T", and 5.0T". Respectively, these temperatures are well below the Kondo crossover scale;
close to but still below Kondo; slightly above Kondo; and well above Kondo. In Sec. 4.1
we will consider relaxation to equilibrium from an initially factorized state. In Sec. 4.2 we
will apply a voltage bias between the leads to drive the system to a nonequilibrium steady
state.

4.1 Relaxation to Equilibrium

We begin by examining the energy-resolved singlet weight s, r(€,t) without a bias voltage,
Le. for ur/p = ® = 0. This obviates the distinction between the left and right leads, and
we therefore drop the corresponding index for the remainder of this section and write the
observable as s(e, t).

In the top panels of Fig. 3(a) and (b), the time and frequency dependence of s(e, t) is
plotted at T' = 0.2I", well below the Kondo temperature. Two different initial states are
shown: the dot is initially empty in (a), and fully magnetized in (b). The lower panels
present cuts at constant time across the same data. Additionally, the equilibrium steady
state that eventually develops at the long time limit is shown.

The most prominent feature at long times (dashed lines), where the result is inde-
pendent of the initial conditions, is the central peak at e = 0. We associate this peak
with singlet correlations driven by the Kondo effect. The dip at its center, which is more
prominent at shorter times, is due to the classical correlations subtracted in Eq. (10). Due
to the factor f(e)f(e) in our definition of the classical part, the width of the dip is deter-
mined by the temperature 7. While classical correlations dominate s(e, t) at short times,
they eventually mostly fade away, leaving behind an almost pure peak representing non-
classical singlet correlations. Notice, however, that the NCA is prone to overestimating
relaxation time of the system [77].

When the dot is initially unoccupied, a large feature appears after a timescale ¢t ~ 1/I"
around ¢ = ep. This feature decreases with time, and does not appear at all in the
initially magnetized state. This phenomenon is easy to understand. Consider the two
electrons initially incoherently occupying the lead orbital with single-particle energy e.
These electrons are of opposite spins. At short times, before interactions take effect, both
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Figure 3: Formation of equilibrium (® = 0) energy-resolved singlet weight. (a) Top:
Dynamics with an initially unpopulated dot at temperature T' = 0.2I' < Tx. Bottom:
Cuts across the data at several representative finite times, with the dashed black line
corresponding to steady state. (b) Same as (a), but with an initially magnetized dot. (c)
Singlet weight at different times and temperature. Time increases towards lower panels,
with the bottom panel at steady state.
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Figure 4:  Formation of equilibrium (® = 0) position-resolved singlet weight s(z,?),
with parameters as in Fig. 3, at two initial dot conditions: unoccupied (middle row) and
magnetized (bottom row). The steady state is depicted in the top row, separated into even
and odd sites. A series of temperatures is shown, increasing from left to right. The dot
is located at x = 0. The black dotted lines in the middle and bottom row panels indicate
the location vyt.

electrons can resonantly enter the unoccupied dot. For some timescale, until decoherence
takes place, these electrons can be expected to maintain their original singlet correlations
while being split between the dot and lead orbitals. When the dot eventually stabilizes
in the half-occupied singlet-state, this effect is suppressed because the dot and lead share
the same occupancy. From an analogous argument, it is easy to see that a corresponding
transient effect must appear at € = —ep for the initially doubly-occupied state (not shown
here).

An essential facet of Kondo physics is its dependence on temperature. In Fig. 3(c),
we present a series of plots at different lead temperatures for the initially empty dot.
These are shown at constant times, increasing towards equilibrium at progressively lower
panels. Higher temperatures suppress singlet correlations in essentially all cases. While at
the short times, noninteracting contributions to s(e) at € ~ ep form at all temperatures,
the Kondo correlations at € &~ 0 form only below the Kondo temperature at both short
and long timescales. The dip due to classical spin—spin correlations that appears at low
frequencies is only visible when the temperature 7' is substantially smaller than the Kondo
temperature Ty, such that the dip is narrower than the Kondo peak. If the temperature
were even lower, the dip would eventually become too narrow to be distinguished.

A final interesting feature should be noted. Surrounding the main Kondo peak is
a weaker, wider feature extending from ¢ ~ —U/2 to ¢ ~ U/2. This implies that, at
least within the NCA and at finite temperature, a remnant of singlet correlations exists
throughout the range of energies accessible by dot excitations, and not just within the
Kondo peak. Nevertheless, the specificity with which s(e,t — oo) corresponds to our
intuitive picture of Kondo physics is striking: for example, there are no side bands, as one
would observe in a spectral function. The energy-resolved singlet weight therefore remains
an excellent diagnostic for the Kondo effect.
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We now continue to the position-resolved singlet weight s(x,t). In the 1D case con-
sidered here, we denote with € Z/0 the displacement of a site in lead L/R for nega-
tive/positive sign from the impurity, and use x = 0 to refer to the impurity site itself.
Fig. 4 shows the corresponding dynamics and the steady state. We once again focus on
dynamics up to time ¢ = 15/T"; this should be compared with Fig. 3, which shows the same
time scale. The results are characterized by an even—odd structure that has previously
been discussed in the literature [7,9,14,27,29,30,101,102].

Perhaps the easiest feature to understand is the light cone, which appears at all pa-
rameters. It corresponds to a wavefront of singlet correlations propagating into the leads
at the Fermi velocity after the coupling is activated. The magnitude of the cone structure
fades with increased temperature, but, in the 1D leads discussed here, it does not rapidly
decay with time and distance from the impurity. Moreover, the light cone is sensitive
to the initial dot state. The wavefront’s propagation obeys the Lieb—Robinson bounds,
and is directly related to the spreading of spin—spin correlations that has been previously
described in the literature for the single lead case [29,30,103-106]. Outside the light cone,
one can note the formation of minor correlations due to the initial spatial entanglement
within the noninteracting baths. For spin—spin correlations, this has been previously ob-
served and analyzed [29,30,106]. It is interesting to note, though perhaps not particularly
surprising, that the same physical picture emerges from singlet correlations.

Another conspicuous feature is the correlations that form near the impurity, at z <
25 =~ {k/a, and which quickly establish after the light cone has reached the respective
lead sites. Previous work has associated similar structures in the spin—spin correlations
with the Kondo cloud [29,30,100,106,107]. Also, the dynamical generation of short-time
nonequilibrium density oscillations and spin correlations after a quench has been explored,
showing some evidence of cloud formation [99,100]. The structure of the this central fea-
ture and its dependence on temperate is most easily studied based on the steady state
results in the top row of Fig. 4, which are separated into the individual contributions from
even and odd chain sites. We observe that the magnitude and the extent of the central
feature decreases with increasing temperature, and that this feature essentially disappears
at higher temperatures. In particular, for the highest temperate considered here, all that
remains is a minor contribution from the terminal sites immediately adjacent to the im-
purity. Contributions from even chain sites are completely absent. This is remarkable,
because the energy-resolved representation of the singlet weight at high temperatures is
essentially zero, which indicates that the energy- and the position-resolved representa-
tions provide complementary information and are not straightforwardly mapped onto one
another.

4.2 Nonequilibrium Driving

Next, we investigate the influence of a nonzero bias voltage ® on the singlet weight.
The span of voltages we discuss corresponds to typical regimes in quantum transport
scenarios, where biases ranging from linear response to Coulomb blockade can be applied
to the system. To identify these relevant parameter regimes, it is useful to consider the
conductance as a function of bias voltage, as shown in Fig. 5. The peak at & = 8I
that appears at all temperatures below 7" = 5.0I' corresponds to the onset of resonant
transport. When T' = 5.0I', essentially all features are washed out by thermal broadening.
At the two temperatures below Kondo, T" = 0.5I' and more noticeably T" = 0.2I", low
bias conductance is enhanced. The enhanced conductance is due to the emergence of the
Kondo resonance for temperatures below the Kondo temperature. In the low temperature
limit, the Kondo resonance leads to a unitary conductance [108,109] Go = 1/27. Here, the
conductance is substantially smaller because we are only at the edge of the Kondo regime,
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Figure 5: Steady state conductance as a function of bias voltage ® within the NCA at a
series of temperatures.

where the NCA method is still expected to be reliable. We will therefore focus most of our
analysis on a low voltage within the Kondo feature, ® = 1I'; an intermediate voltage in the
nonresonant transport regime beyond it, & = 5I'; and a large voltage resulting in resonant
transport, & = 10I". As will be shown below, each of these regimes is characterized by
a different dependence of the singlet weight on the bias voltage. For reference, we will
compare all findings to the equilibrium case, & = 0.
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Figure 6: Nonequilibrium (® # 0) energy-resolved singlet weight. (a) Steady state singlet
weight of the left lead as a function of bias voltage and lead energy level for T'= 0.2I". The
top panel depicts a set of representative bias voltages, the bottom panel a comprehensive
contour plot of the same data. (b) Steady state singlet weight of the left lead at a series of
temperature, with bias voltage ® = I' (top panel), ® = 5I" (middle panel), and & = 10"
(bottom panel). (c) Singlet weight in the left lead at a series of times, at temperature
T = 0.2I" and bias voltage & = I' (top panel), & = 5I"' (middle panel), and & = 10’
(bottom panel). The dot is initially empty, and the dashed black lines indicate the steady
state.
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Fig. 6(a) presents sr,(¢) in the steady state at low temperature (7' = 0.2I"). The top
panel show the dependency on the bias voltage for several representative values of ®. For
comparison, the equilibrium result at ® = 0 is shown in black. The bottom panel shows a
contour plot of the bias dependence at the entire range of voltages. Due to particle-hole
symmetry in our choice of parameters, the results for the two leads can be related to each
other by the transformation ¢ — —e. The discussion can therefore be restricted to sy (€)
with no loss of generality.

When a small bias voltage ® < T" in the Kondo-enhanced conductance regime is applied
to the system, the symmetry of sy (¢) is immediately broken. A sharp and pronounced
positive peak appears at small negative frequencies, and a sharper but smaller negative
peak appears at small positive frequencies. The intensity of both peaks rapidly increases
with the bias voltage in this regime. Interestingly, the large positive peak corresponding
to strong singlet correlation in the left lead is pinned to the chemical potential of the right
lead, and vice versa (the bottom panel of Fig. 6(a) shows the two chemical potentials as
dotted lines). This positive peak corresponds to strong, non-classical Kondo-like singlet
correlations. The negative peak, which—as in equilibrium—is due to the classical spin—
spin correlations, corresponds to the dip at ¢ = 0 in the equilibrium curve and is pinned to
the left chemical potential. Its width and location continue to essentially be determined
by the lead temperature and chemical potential, as they appear within the factor fr fr, in
the classical correlation term.

The pinning of non-classical singlet correlations in each lead to the chemical poten-
tial within the other lead may be surprising, but can be justified by simple arguments.
Interestingly, the mechanism for this is more closely related to the large evanescent peak
at the unoccupied initial condition in Fig. 3(a) than to the equilibrium Kondo effect. In
the equilibrium case, when the dot eventually becomes singly occupied the chemical po-
tentials throughout the system are equalized and electrons are exchanged only as a result
of undriven diffusion. In the nonequilibrium scenario, the left lead is fully occupied at
the chemical potential of the right lead, while the right lead is half occupied at the same
energy. The dot is half occupied at steady state, and can rapidly eject electrons into empty
orbitals in the right lead through the remnants of the Kondo transmission peak. Electrons
from the left lead are therefore driven to resonantly enter the dot in a process that entails
transport of another electron of the same spin from the dot to the right lead, such that the
dot remains singly occupied. Each such event generates a singlet between the left orbital
and the dot, but no singlet between the right orbital and the dot.

The rate controlling this nonequilibrium mechanism for the formation of singlet corre-
lations is substantially higher than that characterizing the formation of equilibrium Kondo
correlations, because it is driven by the difference in occupancy between the left lead and
the rest of the system at that energy, rather than just by diffusive fluctuations. This mech-
anism can therefore generate a large contribution to the singlet weight in the left lead at
the chemical potential of the right lead, at the nonequilibrium steady state. Naturally, an
analogous process in the opposite direction happens at the left lead’s chemical potential,
resulting in enhanced singlet correlations in the right lead.

The two singlet features remain pinned to the lead chemical potentials at larger biases
1" < @ < 5I0 that are still below resonant transport. However, their intensity decays with
voltage and the larger peak broadens. A wider but less intense positive peak develops near
the negative feature, most likely corresponding to the normal Kondo effect. For yet higher
bias voltages ® = 8I', once the resonant regime has been reached, the larger positive
peak becomes pinned to the resonance energy e¢p and stops moving with voltage. The
eventual decay and broadening of all features with increased voltage are consistent with
the commonly accepted consensus that Kondo correlations cannot survive in the presence
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Figure 7: Formation of nonequilibrium position-resolved singlet weight s(z,t), with pa-
rameters as in Fig. 6, at two initial dot conditions: unoccupied (middle row) and magne-
tized (bottom row). The steady state is depicted in the top row, separated into even and
odd sites. A series of bias voltages is shown, increasing from left to right. The temperature
isT'= 0.2I". The dot is located at x = 0. The black dotted lines in the middle and bottom
row panels indicate the location v t.

of larger voltages.

The temperature dependence of the singlet weight in the three transport regimes is ex-
plored in Fig. 6(b). In the Kondo-enhanced transport regime, the singlet weight is strongly
suppressed and eventually eliminated by higher temperatures. The nonresonant transport
regime at intermediate bias still shows a temperature suppression, but the nonequilibrium
singlet weights, presumably associated more strongly with the nonequilibrium mechanism
discussed above than with the equilibrium Kondo effect, appear to be robust at somewhat
higher temperatures. In the resonant transport regime, response to small temperatures
is weak, and strong suppression of singlet weights only occurs at T = 5.0I". This sug-
gests (at least within the NCA) that the robustness of singlet correlations with respect to
temperature may be enhanced by nonequilibrium driving.

Next, in Fig. 6(c), the quench dynamics when starting from an empty dot are presented.
We observe that the relaxation timescale needed to reach the steady state is substantially
decreased with increasing bias voltage. In the resonant transport regime at & = 10I', the
system already assumes its steady state by ¢t = 5/I". Comparing the dynamics in Fig. 3(c)
to those in Fig. 6(c) suggests that bias voltages have a substantially stronger effect on the
relaxation dynamics than temperatures of similar magnitude.

The last set of results to be presented here, in Fig. 7, pertains to the spatially-resolved
singlet weight s(z,t). The light cone and central feature seen in subsection 4.1 are once
again visible. As in the energy-resolved singlet weight, the dependence on the initial
condition, which is imprinted onto the light cone in the position-resolved representation,
fades more rapidly as the bias voltage is increased. The most clearly visible transient
signature of nonequilibrium driving, however, is the breaking of symmetry between the
left and right leads visible for the initially unoccupied state. At short times, an initially
empty dot is more likely to be populated by electrons from the lead with larger chemical
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potential, i.e. the left lead.

The dependence of the central feature on bias voltage is most clearly visible in the
steady state data in the upper panels. Here, where contributions from even and odd lead
sites are shown separately, the dependence on bias voltage differs qualitatively from that
on temperature (see Fig. 4). For low bias voltages, the central feature is mostly unaffected
by the bias voltage. This is remarkable, since the energy-resolved singlet weight is very
sensitive to a similar change in temperature within this regime. Again, this highlights
the complementary information provided by the two different representations. For inter-
mediate bias voltages still in the nonresonant transport regime, the central peak begins
to extend over larger distances from the dot. This is in line with the previous argument
that electrons contributing to transport form correlated singlets. This trend is eventually
reversed at higher bias voltages in the resonant bias regime, presumably due to increased
decoherence. For high bias voltages in the resonant transport regime, we observe that the
even—odd structure breaks down, starting from higher energies. The central feature at
high voltage is reminiscent of the Kondo feature at low temperatures and equilibrium, but
with a different characteristic length scale, and with both even and odd sites exhibiting a
positive singlet weight.

We note that the particular way in which we have applied bias voltages—by shifting
the lead density of states along with the chemical potential, rather than changing the
filling factor—entails that the Fermi velocity in the two noninteracting leads is unmodified.
Therefore, only one correlation length is expected to remain present. This indeed appears
to be the case, though a more systematic examination of this correlation length and its
dependence on voltage would be interesting given a more reliable method. The question of
whether multiple correlation lengths can appear when the lead filling factors are modified
will be left to future work.

5 Conclusion

We investigated the formation of singlet correlations between electrons in an interacting
Anderson impurity, and orbitals in a pair of noninteracting 1D leads coupled to it. In order
to quantify this, we devised singlet weight observables comprising dot and lead degrees
of freedom. Measuring these weights experimentally requires a “quantum measurement”
scheme, because it contains operators that cannot be expressed as a simple correlation
function. Focusing on regimes where the Kondo effect is expected to generate singlet cor-
relations, we identified the lead orbitals that most significantly contribute to the formation
of the Kondo effect, in both the energy and position representations. We presented results
for the evolution of singlet weights after an impurity—lead coupling quench, and for their
final steady state (or equilibrium) values in the thermodynamic limit.

In equilibrium, we showed that the energy-resolved singlet weight vanishes at high
temperature, while manifesting only a single sharp peak at the chemical potential below
the Kondo temperature. This allows for cleanly and precisely separating the Kondo-
induced singlet correlations from other phenomena, without relying on differences between
energy scales as one would in considering the spectral function. Classical correlations are
also easy to quantify and remove within this scheme.

The position-resolved equilibrium singlet weight is concentrated in a well-defined region
centered around the quantum dot, which forms within the light cone after a quench. The
size of the region is consistent with the Kondo correlation scale, supporting the notion of
a Kondo cloud. As an aim for future work, it will be of some interest to see whether sum
rules for the ground state [7,8] can be extended to finite temperatures and voltages.
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We noted that corresponding equilibrium scenarios have been studied extensively in
the literature using a variety of measures other than the singlet weight, often with more
reliable numerical techniques. The equilibrium results presented here therefore serve only
to corroborate these existing results, and do not reveal new physics. Nevertheless, they
confirm that the secondary observables studied by previous authors truly correspond to
quantum singlet correlations rather than classical ones.

We then investigated the effect of a nonequilibrium bias in several regimes. At low
voltages, where conductance is enhanced by the bias, the steady state singlet weights
are significantly enhanced compared to the equilibrium Kondo weights. Most notably,
we identify an enhancement of singlet correlations in each lead, which is located at the
chemical potential of the other lead. Moreover, we observe a change in the oscillatory
behavior of the position resolved Kondo cloud with bias voltage. The mechanism for this
is driven by transport, but is eventually overtaken by dissipation at higher voltages where
resonant transport occurs.

Our work is based on a noncrossing approximation (NCA), and can therefore be ex-
pected to be only qualitatively accurate [59,60,67—-70]. However, the model can be solved
to a numerically exact level of accuracy within Inchworm Monte Carlo methods, and
several other methodologies may also be applicable.

We believe this work constitutes a first step towards a deeper understanding of quan-
tum correlation effects and their impact on impurity physics and transport, in general.
This is because a wide variety of “quantum measurements” like the singlet weight can be
constructed, allowing for the extraction of highly specific couplings and order parameters
from either simulations or experiments. In particular, within the diagrammatic method-
ology used here and its numerically exact counterparts [77,110,111], studies of this nature
are not limited to low energies, weak bias voltages or special lead geometries (like the
1D case considered here). Projective observables will therefore improve our ability to tie
together intuitive insights from variational ansatzes and low energy physics to numerical
simulations at finite temperatures and in nonequilibrium situations.
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Abstract

The Kondo effect, a hallmark of strong correlation physics, is characterized
by the formation of an extended cloud of singlet states around magnetic im-
purities at low temperatures. While many implications of the Kondo cloud’s
existence have been verified, the existence of the singlet cloud itself has not
been directly demonstrated. We suggest a route for such a demonstration by
considering an observable that has no classical analog, but is still experimen-
tally measurable: “singlet weights”, or projections onto particular entangled
two-particle states. Using approximate theoretical arguments, we show that it
is possible to construct highly specific energy- and position-resolved probes of
Kondo correlations. Furthermore, we consider a quantum transport setup that
can be driven away from equilibrium by a bias voltage. There, we show that
singlet weights are enhanced by voltage even as the Kondo effect is weakened
by it. This exposes a patently nonequilibrium mechanism for the generation
of Kondo-like entanglement that is inherently different from its equilibrium
counterpart.
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1 Introduction

Strongly correlated quantum systems are a central paradigm in condensed matter physics.
A pivotal role in this field is played by the Kondo effect [1,2], where the resistance of
metals with a small concentration of magnetic impurities increases at low temperatures.
This is due to electrons within the impurities becoming intricately entangled with those
in the surrounding bulk material [3]. The resulting low energy state is characterized by a
narrow resonance in the spectral function [4], and by singlet correlations that extend far
beyond the impurity [5]. The latter are believed to cause enhanced scattering in a volume
that may be orders of magnitude larger than that of the impurity atom [2-6].

The correlated singlet is known in the literature as the Kondo screening cloud, and
its equilibrium properties are well understood in a wide variety of circumstances. The
length scale characterizing this cloud can be estimated from scaling or perturbative ar-
guments [7,8] and explicitly calculated numerically [9,10]. Predictions can then be made
about the experimentally observable implications of the existence of the Kondo cloud [11].
Important examples include oscillations in density and spin correlations [10,12-19]; depen-
dence on finite size effects or boundary conditions in the metallic environment [20-26]; and
entanglement between the dot and conduction electrons [27,28]. The dynamical formation
of equilibrium density oscillations and spin correlations after a quantum quench has also
been explored [29, 30].

Experimental studies have confirmed many of the predicted microscopic consequences
of the existence of the Kondo cloud, beyond its macroscopic effect on conductance. To
give a few examples, the cloud’s effect on electronic spin polarizability could in principle
be measured by nuclear magnetic resonance (NMR) experiments, though this is difficult
[31]. Size dependent effects in nanoscale systems were detected [32-39]. Perhaps the
most direct observations come from studies combining scanning tunneling microscopy and
spectroscopy [40], which have generated evidence that electrons scatter off the cloud [41].

Some of the clearest and most controlled spectroscopic observations of the Kondo
effect [42,43], as well as demonstrations of the size of the associated cloud [44], are obtained
in mesoscopic transport experiments. Here, the impurity embedded in a metallic host is
replaced by a quantum dot spanning two noninteracting leads. Within linear response, the
conductance across this junction provides access to the spectral function of the dot; and can
also probe its nonequilibrium properties. An important example is the prediction that the
Kondo resonance can be split by a bias voltage before being destroyed by nonequilibrium
dissipation [45-49]. A different resonance then resides (approximately, see Ref. [49]) at
the chemical potential of each lead. However, it remains unknown to what degree these
split resonances correspond to the equilibrium Kondo resonance and whether they share
its singlet-like nature. It is also largely unknown whether nonequilibrium currents are
capable of suppressing, enhancing or distorting the Kondo cloud.

Despite all this progress, the Kondo cloud itself—in the sense of an extended singlet—
has yet to be directly observed in either equilibrium or nonequilibrium situations. Even
though the extended singlet is arguably the defining quality of the Kondo cloud, there
has been virtually no direct study of its structure in either theory or experiment. This
is understandable, because the degree to which a system exhibits singlet correlations is
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Figure 1: Schematic representation of the system under investigation. The quantum
impurity (bronze circle) is coupled to semi-infinite chains of identical atoms (gold circles).
A simultaneous quantum measurements on the impurity and on the chains can quantify
the Kondo phenomenon.

difficult to measure compared with the observables on which most work has been focused.
It is nevertheless important to realize that while the existence of a Kondo singlet implies,
e.g., oscillatory response in spin—spin correlations [9], the converse is not necessarily true.

On the other hand, singlet correlations not related to Kondo physics have been experi-
mentally measured in several types of very different experimental protocols. For example,
in optics experiments, knowledge about singlets between entangled pairs of photons can
be extracted [50-52]. Furthermore, in NMR experiments singlets between nuclear spins
can be observed by way of specialized pulse sequences [53,54]. As a third example, in
ultracold atomic systems, singlet and triplet states can be artificially manufactured and
controlled [55].

From the quantum information point of view, measuring the projection on a singlet
state could be considered a specialized kind of “quantum measurement”. It requires a
transformation from the Bell (i.e. singlet—triplet) basis to a so-called computational basis,
where measurements of normal correlation functions are carried out. This is accomplished
by a simple quantum circuit (an inverse Bell circuit, see top part of Fig. 1), which may
be implemented in different ways within different experiments. Therefore, in a system en-
abling implementation of generic two-qubit quantum gates—e.g., as was recently suggested
for ultracold fermionic gases [56]-a singlet projection measurement would be relatively
straightforward. Quantum tomography is another potentially viable route to accessing
such quantum observables in correlated electron systems [57].

Experiments of this sort on Kondo systems have yet to be performed, and clearly
represent a significant technical challenge. Nevertheless, it is important to distinguish
between observables that are theoretically interesting, but not generally measurable; and
observables that may be difficult to access in experiment, but are measurable in principle.
Bipartite entanglement entropy is one example of an observable that is often discussed in
the literature [27], but generally belongs to the first class. The projection onto a (two-
particle) singlet state, our main focus in the rest of this manuscript, is of the latter variety.

In the following, we present a study of singlet correlations in the nonequilibrium (and
equilibrium) Anderson impurity model, where the impurity is modeled by a single, spin
degenerate electronic orbital. Complementary representations of singlet correlations in
energy- and position-space are considered, allowing us to construct a detailed picture of
the Kondo cloud in several regimes. In particular, we establish that singlet correlations
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are an excellent and intuitive observable for examining the well-understood equilibrium
physics of the Kondo cloud. Then, we show that they can provide new insight about the
nonequilibrium physics.

To solve the nonequilibrium impurity problem, we use the propagator flavor of the
noncrossing approximation (NCA) [58-60]. Variants—Since its introduction to the field
[61-64], variants of the NCA and its extensions have been used to study various aspects of
the nonequilibrium Kondo effect [45,46,58,59,65-67]. The method provides qualitatively,
though not quantitatively, accurate results at higher temperatures in the Kondo regime,
and its regions of applicability have often been explored [59,60,67—70]. However, it cannot
be used to systematlcally examine, e.g., the scahng limit that emerges at low energies,
where e : —are : at_least vertex corrections are
WM%M The NCA used here is the
lowest order precursor of the numerically exact bold-line Monte Carlo [48, 60, 68, 75, 76]
and Inchworm Monte Carlo [49,77-84] methods. Other recent approaches to the impurity
problem may also be applicable to the same problem [85-89], and revisiting this work
within a controlled numerical scheme will be a goal for future studies.

The outline of the paper is as follows: In Sec. 2, we introduce the model and provide
general definitions of singlet observables. Sec. 3 is dedicated to the NCA method and
its application to such observables. Our results, first in equilibrium and then with a
nonequilibrium bias, are presented in Sec. 4. Finally, in Sec. 5, we discuss our conclusions.

2 Hamiltonian and Observables

2.1 Anderson impurity model

We consider the Anderson impurity model, which is often used to describe a quantum
dot with electron—electron interactions coupled to noninteracting leads. The system is
described by the Hamiltonian

H = Hp+ Hp+ Hpp. (1)

Here, the internal dot Hamiltonian Hp, in units where h = e =1, is

Hp = Y epdid, +Udldydld,, (2)

where the di annihilate(create) a spin o € {1,]} electron on the dot. €p is the single-
particle occupation energy, and U is the energetic cost of Coulomb charging when the dot
is doubly occupied. The lead Hamiltonian Hp represents a continuum of noninteracting

electrons,
Z Z Z €ka20ak0. (3)

{ kel o

The lead index ¢ € {L, R} stands for the “left” and “right” lead, respectively. The a,(i‘)
annihilate(create) an electron with spin o and energy € on lead orbital k in either lead.
Finally, the dot-lead coupling is

Hpp = >33 (Vial,ds +hic.). (4)

{ ket o

The coupling constants V; are determined by the lead coupling density

Te(e) = > [Vil?d(e — e). (5)
ket

4
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2.2 Singlet weights and projectors

Our next task is to construct a set of observables that directly relate to Kondo correlations
between the dot and specific bath orbitals. We will do this in two steps. First, we will
consider projections onto specific dot—bath singlet-states and construct second-quantized
operators associated with them. Then, we will argue that these operators still contain
some non-Kondo contributions, and discuss how they can be removed.

Let x be an index characterizing a lead orbital. The exact meaning of x will not yet
be further specified, so that it can denote either a single particle eigenfunction of the lead
Hamiltonian or a local lead orbital. In general, however, agj; is a linear combination of

the a,(;). These operators generate a local subspace on orbital y that contains the zero
electron state |0y ), the one electron states [1,) and ||,) and the two electron state |1],).

The dot operators d5 similarly generate the states 0p), [Tp), 4p) and [tip).

Consider, then, a two particle singlet-state formed between the dot orbital D and the
lead orbital x. The wavefunction of this state can be written as follows:
1
5 = 5 (Itoba) = Lot ). (6)

If we define the operators

/
P;;/X//X/// = <a;r(0axxgdl,dg/) . (GX/IOJG/L//IO./dO'dT;) ’

/
E;;/ = a;fcgaxzal di_, do-,

the projector onto |s,) can be expressed as

1
[5x) (sxl = 5 (chxx + P

— Bl - Eg(). (8)

Here, P)?;;(x selects the state {epei)|apay), and E;';/ exchanges a spin between the dot

orbital and the lead orbital y. We remark in passing that it is similarly possible to express
projectors onto other states, such as the triplet states

‘t1x> = ‘TDTX> )
1
2 =75 (Itobd + ot ) (9)
‘t?:x) = ‘¢D¢x> )
in terms of PYY,  and ETY . This enables the application of our methodology to a variety

of physical questions beyond those to be considered here. Analogous expressions for multi-
orbital impurities can be devised accordingly.

The operator |s,) (sy| was designed specifically to extract singlet correlations, but still
admits contributions that might be considered trivial. For example, P)?;;c’x’ does not
eliminate the product state |0},0,), which can occur even in a system where the dot and
leads are neither coupled nor entangled. While this state is characterized by (“classical”,
or population-based) spin—spin correlations, it is not necessarily indicative of quantum
correlations, and we discard it in the remainder of this work. To do this in practice,

wherever <P>(<T>C<r’lx”x’”> might appear we replace it with the quantity

<P§§/X”X”/>correl = <P§;—,X”XW> - 5XX/5X”XH/ <djr’d0'/d‘7d3;> fo_X”' (10)

Here, f, is the Fermi function (or initial occupation probability) associated with lead
orbital x, and f, = 1 — f,. It is important to note that for the sake of simplicity, this

definition neglects nonequilibrium corrections to the lead occupancy <ai<gaxa>.
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The expectation value of the correlated singlet weight operator is given by

1
= T T Tt 1T
s(x) = B} ( {(Prvxd corret T Fxod) comer — Exxd = <Exx>>’ (11)

whereby we emphasize that all operators are evaluated at the same time. To simplify the
notation, the “correl” subscript will be dropped from now on where no confusion can occur.
The significance of s(x) is self evident in light of the singlet nature of Kondo physics, and
will be demonstrated with several examples in Sec. 4.

3 Methodology

The singlet weight s(x) is a well-defined quantity, and in principle a variety of numerically
exact methods could be adapted to evaluating the corresponding expectation values it in a
controlled manner. However, in the present context we plan to explore general qualitative
aspects, such that an approximate treatment suffices. In this section, we discuss the ap-
proximation scheme that will be used to evaluate s(x) in the present work, the noncrossing
approximation (NCA). Sec. 3.1 explains how the operators P;;,IX,,XW and E;;// are treated
and how s(x) is obtained for a general orbital index y. Given this, Sec. 3.3 specializes the
discussion to the energy representation y = k, while Sec. 3.4 specializes it to the position
representation y = x.

3.1 Noncrossing approximation and the vertex function

Our treatment of the model will be based on the NCA, a self-consistent, lowest order per-
turbative expansion in the dot—lead coupling/hybridization [46,58-60,65-67,69,76,90-92].
Generally, the name NCA refers to a class of hybridization expansions which only account
for contributions that have a diagrammatic representation in which the hybridization lines
do not cross. NCA methods are rooted in seminal work by Grewe and Kuramoto [61,62]

which forms the basis for various extensions that account for finite electron—electron
interaction strengths [71, 93] and nonequilibrium conditions_[46]. In its basic formulation,
the NCA successfully captures the physics at_temperatures that are not far below the
Kondo temperature, as well as in the large U limit and for small bias voltages. However,
it_does not correctly reproduce the Kondo behavior in the scaling regime. For this
regime, vertex corrections have proven to be essential [59,72-74]. These extensions of
the NCA, which are also numerically more demanding, have been successful in recovering
the temperature scaling behavior characterizing Kondo phenomena in agreement with

numerical renormalization group calculations [94,95].

Here, we provide a brief overview of the method focusing on the details needed to
discuss the evaluation of singlet weights in the next subsection. For a more systematic
introduction to the propagator NCA, we refer the reader to the literature [60].

The expectation value of a dot operator A at time t is given by:

(A(t)) = Tr <pUT(t)A(t)U(t)> . (12)

Here, p = pp ® pp is the initial density matrix, which we assume to be a product of
an initial dot state pp and an initial lead state pp; and U(t) = T exp(—i fg H(T)dr) is
the time evolution operator, with T the time ordering operator. Let us define the vertex
function,

K1) = Tog { o (ol U(1)18) (BIU() |0)} (13)

6
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Flgure 2: (a) Diagrammatic representation of the Dyson equation for the vertex function,
q- (15). (b) Diagrammatic representation of the Dyson equation for the propagator,
)

q. (20). (c) Examples of contributions to <P;;/IX//X///> and <E§;,/ ) in Egs. (24) and (25).

The curled (“gluon”) lines denote bath correlation functions connected to the observable
at the measurement time ¢.

such that the expectation value from Eq. (12) can be expressed as

(A@) = Y KLt (BlAIB). (14)
E

Here, the o and S indices enumerate a basis of many-particle states in the dot subspace,
and we assume that the initial state of the isolated dot can be written in the form pp =

) {al.
The hybridization expansion finds ¢4 (t,t") by perturbatively expanding in the dot—
lead coupling Hpp. As such, K5 (t,t") is given by the Dyson equation
t
Ki(t,t) =k§(t,t’)+2//dﬁdﬁ — 7t =) &(n — ) Kl(n, 7).  (15)
0 0

7

A diagrammatic representation of this equation is shown in Fig. 2(a). The quantity K2 (t,t)
will be defined later. Within the NCA, the exact cross-branch self-energy fg(t) is replaced
with an approximate form that only takes into account the lowest nonvanishing order in
the expansion,

G = Y (A5 (@lde]8) (Bldla) + A7 (1) (aldh|8) (Bldole) ). (4

o0e{L,R}

Here, the lesser and greater hybridization functions, A (t) and A; (), are determined by
the lead coupling density I'y(e) and the initial equilibrium distributions in the leads, fy(€):

AR = / de e+ Ty(e) (o), (17)
AZ(t) = % / de e~ Ty(e) Fo(e). (18)

When the Dyson equation is solved self-consistently, the NCA effectively incorporates an
infinite subset of all possible perturbative contributions. In this context, the name NCA
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refers to the fact that the methodology only includes contributions with a diagrammatic
representation where the hybridization lines do not cross [60].
We now return to the remaining undefined quantity in Eq. (15),

ka(t,1) = 6asGh(H)Ga(t'), (19)

which contains all contributions to the vertex function with hybridization events limited
to a single branch of the Keldysh contour, and which is given in terms of the single-branch
propagator G, (t) = (a|Trg (ppU(t)) |a). Note that we have taken G,(t) to be diagonal
in the dot state basis, which is possible for the model used here but not in general. Like
the vertex function, the propagator can be written as the solution of a Dyson equation,

t T

Ga(t) = ga(t) - / dridry ga(t - 7_1)204(7—1 - TQ)Ga(7_2)7 (20)
00

a diagrammatic representation of which is provided in Fig. 2(b). In the NCA, we consider
only the lowest-order contribution to the single-branch self-energy:

Sat)= Y. (A7) (alde|8) (Bldtla) + A7 (1) (ald)[8) (Bldala) ) Ga(t). (99

B,oLe{L,R}

Finally, g.(t) = e"*Fa? is the atomic propagator obtained in the absence of a coupling

between the dot and the leads. This can be obtained directly from the state energies F,,
of the isolated dot, which can in turn be found analytically in the present model.

To this point, we have described how to calculate the expectation value of an observable
as it evolves in time ¢ from the moment where the dot and leads are connected. It is also
possible, and in fact substantially easier, to directly calculate steady state expectation
values using the NCA framework. This is because at steady state, the vertex function
depends only on the difference between its two time arguments:

K7 (t,t) -l KP(t—1). (22)

This is equivalent to requiring that any dependence on the initial condition has faded
away with time, and that time-local observables have become independent of time. By
definition, the NCA propagator G, (t) already depends only on a single time argument.
Consequently, the vertex function at steady state must obey

KP (1) = / dn / T AT Gy (1 - ) Gy (A — 1) S €8 (A) K7 (A7), (23)
) T1 v

which directly follows from Eq. (15) upon neglecting the initial condition and propagating
from the infinite past. Eq. (23) is therefore iterated until self-consistency is established.
However, Eq. (23) has no inhomogeneous initial condition term, and is linear in the vertex
function. Its solutions are therefore unbound with respect to multiplication by a constant,
and it is necessary to impose the normalization condition > K7(0) = 1 at every iteration.
This corresponds to imposing the conservation of probability. With this, it is possible to
directly access steady state observables.

In practice, Eq. (23) is solved over a finite time interval. The length of this interval
therefore becomes a numerical parameter with respect to which the calculation needs to
be converged. However, the computational cost scales just linearly in the interval length,
such that obtaining convergence is usually inexpensive compared to performing the full
time propagation.
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3.2 Adapting the noncrossing approximation to singlet weight observ-
ables

The vertex function K2 (t,t") can be used to obtain the expectation value of any single-time
dot operator according to Eq. (14), either exactly or within the NCA. However, nonlocal
observables comprising operators from the leads—or both the dot and leads—cannot be
immediately expressed in terms of the vertex function. In this subsection, we will develop
an NCA approach to the nonlocal observables needed to obtain the singlet weight: (E;;»

and <P;(’>‘<’,IX,,XW>. The technique is similar to that used to obtain Green’s functions from
the NCA [59,60].

The main issue with the appearance of lead operators in the observable is that dur-
ing the application of Wick’s theorem, these can be paired with lead operators from the
perturbation. Diagrammatically, this results in “hybridization lines” going from the ob-
servable at the tip of the contour to all other contour times, which, in turn, breaks up the
propagators and vertex functions into smaller segments. This is schematically depicted in
Fig. 2(c).

In general, an exact calculation requires that all hybridization lines between these
segments and the vertex function be evaluated [78].

Because these higher-order corrections invariably involve hybridization events between
propagator segments already divided by a hybridization line, they can be neglected at the

NCA level. A formal derivation of this approximation proceeds by setting of A = F7°,

W@&Jl%, and working out the lowest non-vanishing order of the
erturbative expansion of the time-evolution operators U (%) in the system—bath hybridization.
The atomic propagators g, are then replaced by their NCA counterparts G, and propagation

from the initial state is replaced by K2 as in Fig. 2c. This leads to relatively straightfor-
ward, if unwieldy, expressions (with the dependence on time ¢ suppressed on the left hand

side):

<PXXX X/// = / dTl/ d7'2 XX/X (N (t 7'1,7'2 / dTQ/ dTl BXXX 1! (t,7'1,’7'2)

oo’ /
/ dTl/ dTl XXX M (t 7'1,7'1 / dTl/ dTl XXX (t,Tl,Tl),

(24)
and

EUU /dﬁ/ dryGo t—Tl)QXX (t1,73) - K, (tﬁé)
_ / dry / Ar G (= 7)K% (9. 71) - KO (71,1)
0 0

. . / (25)
+/ dﬁ/ dT{G;/(t—Tl)Gg(t—T{)@gx (Tl,T{)Kg(Tl,T{)
0 0
¢ t
/ dm / dry

71)Go(t — T{)@%(j( (r1, 7)) KM (11, 7)),
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Here, the following set of auxiliary definitions has been used:

A;‘(X X! =G /(t - T{)Kg (ta Té) (26)
X (5x”x’” Frr “Tf (715 75) + Oy f - :g (1, 7'2))

B;X X! —G:./ (t - TQ)Ka (T17 t) (27)
X ((5X//X///fxll . (E¥$X)*(TQ7 Tl) + 5XX,fX (:g X ) (T27 Tl))a

C;-;X N EG;,(t—Tl)Gol(t—TDKg(TI,T{) X(SXX/fX@?)( X (7'1,7'{), (28)

D;; NN EG;/(t — Tl)Ga’(t — T{)KJ;L(TM T{) X 5XIIX///fX/l@¥j< (7’1, T{) (29)

Finally, setting 7,,» = V'V, (with V} the coupling between the dot and lead orbital x),
this relies on the quantities:

XX (11, m0) = Ny - fyfy - €T LG (1 — 1), (30)
EXX (11, m) = Ny - fufy - €T )L G (1 — ) (31)
X’ (Tl,TQ)Z_UXX,.<a0 Fuf - @t gie (=)
I . (32)
¥ oy - fufyeixtmmeion <H?>),
X (11, ) = = (2 (1, 7) + 2 (1, 7m)) (33)

We note that these expressions have relatively simple diagrammatic interpretations, which
are shown in Fig. 2(c).

Given the results of this subsection, the energy-resolved and position-resolved repre-
sentation of the singlet weight within the NCA approach can now be obtained. These
physically motivated definitions of y will now be discussed in Secs. 3.3 and 3.4.

3.3 Energy-resolved singlet weights

In the energy representation of the singlet weight, the index x represents a single-particle
energy € in one of the leads, L or R. The observable isolates all contributions to s(e) from
a narrow range of lead energies surrounding €. The quantities to be evaluated are then

(PP7R) (e, t) = D d(e (P (1),

keL/R

(EZ7R) (e1) = Y dle—e) - (BF) ().

keL/R

(34)

Expressions for the expectation values appearing here within the NCA were given in
Sec. 3.2. To change the generic  indices to lead level indices k, it is sufficient replace 7,/
by I'r/r(€)dkr in Egs. (30)—(33). Given this, it is only necessary to evaluate Egs. (24)
and (25) for k = kK = k" = k’”, and the calculation scales linearly with the number of
single-particle energies used to describe the lead. Using the definition in Eq. (11), it is
now straightforward to write the energy-resolved singlet weight in each lead in the form

suyr(ert) = 5 (L) (60) + (P (66) — (BJp) () — (BY ) (1) (39)

In the case of the energy-resolved singlet weight, Eqgs. (30)—(33) only depend on the
difference between the two time arguments, such that a steady state formulation for the

10
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energy-resolved singlet weight becomes straightforward. In the steady state, Eqs. (24) and
(25) can be rewritten as follows:

(PE7 ) (€) = —/OOOdT/OOOdAT{
Gor(7) (F1/m(€) - Eryle; A7) + fr/n(€) - Sole, A7) ) K (7 + A7)
+ G () (Frymle) - (e AT) + fiyr(e) - Ele, A) ) K7 (=7 — An) |
_ /0 S / OO AT G (r)Go (v + A7) - f11(0)O0 (e, A7) - K(A7)

+ Gy (T)Gor (7 + AT) - Jrym()Ory (e, A7) - KTH(AT) |,
(36)

(B ) (e) = — /000 dr /OOO dAT {GG(T) -Q(e, A7) - K (1 + A7)
LG () Q (e, AT) - KO (—7 — AT)}
+ /000 dr /_OO dAT {G:/<T)GU(T + A7) - O(e, AT)K°(AT)

+ G (T)Go(7 + AT) - Oy (e, AT)KN(AT)}.

This enables the direct evaluation of the energy-resolved, steady state singlet weight in
the left or right lead, sz p(€,t — o0).

3.4 Position-resolved singlet weights

We now continue to the position representation of the singlet weight. The general state x
entering Eq. (6) is now identified with a local lattice orbital z, such that

st t) = 5 (P10 @, 0) + (P 0,) = (B (,0) = (B¥) (2,0). (39)

Here, the position x is assumed to be specific to one of the leads, such that the subscript
L/R can be dropped. A position-resolved representation of the singlet weight is then
encoded in the observables

(P77} (,1) = (Pgfa) (8), (39)
(B7) (x,1) = (EgZ) (1) (40)

We will now discuss their evaluation.
The expectation values (P°%") (x,t) and (E°?') (x,t) can be written in terms of the
previously discussed quantities (P73, ) (t) and (E77)) (t). Consider the wavefunction

ok () associated with lead mode k at position . The annihilation operator in the position
representation then takes the form

> o)k (41)
P

Using this transformation, the position-resolved singlet weight components in Eqgs. (39)
and (40) are given by

(P77) (@)= D @) @)pr (@)im (@) - (PG (1), (42)
kk/k//k///

(E) (a,0) = Y pil(@)ow (@) - (EFT) (8). (43)
kk'

11
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Within the NCA approximation used here, only terms where at least two of the four energy
indices k are identical contribute to Eq. (42). The naive calculation of position-resolved
singlet weights in this manner therefore scales cubically with the number of lead orbitals
in the NCA, and quartically in general. It is, however, possible to perform the sums over
the lead eigenstates k semi-analytically before the NCA calculation, essentially carrying
out the evaluation of Egs. (39) and (40) directly in the position space. To this end, we
introduce the quantities

ot —7) Z x) fp =T, (44)
ot —7) Z Vieor(z) fr e 7)), (45)
Ay = g |ox (@) fi (46)
Ay = Zk: |ox(@)* fr- (47)

With their help, we can rewrite Eqs. (30)-(33) specific for the position representation,
including the sum over the lead energy states, as

o (@,71,72) =&t — 1)t —T2)  Ga (11 — 72),

o (@,71,72) = Gt —1)&({E—T2) Ga (11 — 72),

o (@,71,72) = =000 Gt = T1)G(t = 72) = dagpy - &t — 11)&(t — 72),
Qz,1,72) = — <EN (x,71,72) + =0 (1:,7'1,72)) .

[11x [1]

@

Similarly, we express Eqgs. (26)—(29) as

A%° EGgr(t—T{)K (t, ( 221 (2, 71, 79) —i—Axéo((IZ,T{,Té)), (52)
B9 =G (t — 1) KS (71, 1) <A Ef (w12, m1) + A= (, ’7'2,7'1)) (53)
Co% =G (t— 1) Gor (t — 7)) KO (11, 7]) X Ap®o(z, 71,7]), (54)

99" =Gt — 1) G (t — 1) K11, 7)) X Ap®y (2,71, 71). (55)

As only quantities incorporating the sum over the different lead eigenstates contribute, it
is numerically feasible to treat extended systems comprising tenths of thousands of lead
sites and beyond (cf. Sec. 4). Still, evaluation in the position space requires the calculation
of the eigenfunctions ¢g(x) of the nointeracting lead Hamiltonian. This is essentially a
tight-binding calculation, a computational task that scales cubically with the number of
lead orbitals when done numerically. For periodic leads, however, it is possible to obtain
converged results directly at the thermodynamic limit, and for simple systems like the 1D
chains used here analytical expressions are readily available.

Finally, we remark that it is also possible to solve directly for the steady state in
position space. Here, we exploit the fact that the quantities introduced in Eqgs. (48)—(51)
factorize into parts that depend on t — 71, t — 79, and 7, — 9. Using this structure, we can

12
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express the position-resolved singlet in steady state as
(P ( / dr / anr|
Gm)( xsmeN(Ar)cx(T )+ Aua(T)Go(AT)E(T) ) K7/ (T)
+ Gy (1) (Ras (NG AT (-T) + MG (1) GHATIE(-T) ) K7/ (= T) }
+ [Car [T aar{Gu GG TIGT) - As- KOA7)
G (T)ET)Gor (TI(T) - A+ KT (AT |,

Efjoo / dT/ dAT
Go(r) (éx(T)Gu(AT)Cx(T) + G (T)Go(AT)E(T) ) K7'(T)
+ G(n) (&G ATICH=T) + G (7) - Ga(AT) - £(=T) ) K (=T) } (57)
- [Tar [ asr {6 G T (T) - KA

+ G(nEH (TG (TE(T) - KM (AT |,

where T =7+ AT.

We note that in order to obtain accurate steady state results at the thermodynamic
limit, the underlying microscopic model for the leads needs to be large compared to the
decoherence time multiplied by the Fermi velocity. In the Kondo regime in particular,
systems must be considered that are large compared to the size of the Kondo cloud. In is
then possible to directly calculate the position-resolved representation of the steady state
singlet weight s(x,t — 00).

4 Results

In this section, we present the energy- and position-resolved dynamics and steady state
of the singlet weight in the nonequilibrium Anderson impurity model, within the NCA
framework. To simplify the discussion, we will model the leads as two semi-infinite 1D
chains (see Fig. 1). This is by no means required by either the definition of the singlet
weight or the NCA formalism, though it could be advantageous within matrix product
state methods. Each lead site will be assumed to comprise a single orbital with on-site
energy €, coupled with strength ¢, to its nearest neighbors. We will assume that in each
lead, ¢, is pinned to the chemical potential in that lead, such that the isolated lead is
always half occupied. In the limit of an infinitely long chain, the coupling density can be
evaluated analytically [96-98] and assumes the form

VAl = (e=pe)? .
FZ(E) 4ty I for |€ H€| < 2|tb‘7 (58)
0 otherwise.

The maximum coupling strength to each of the two leads is therefore I'/2. This determines
the coupling between the dot and the lead site adjacent to it, tg = /&, I'. We employ T’
as our energy scale. We set ¢, = 10I" such that the lead bandwidth is 40I". The on-site

13
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energy at the dot is ep = —4I' and the Coulomb interaction U = 8I', such that we are
investigating the particle-hole symmetric scenario. We also apply a symmetric bias across
the junction by setting uy,p = /2, where ® is the bias voltage. At equilibrium, these
parameters suggest a Kondo temperature Tx ~ 0.8 [3].

We stress once again that the NCA does not generally produce the exact Kondo
temperature and demonstrates other failures [59,67,72,94,95]. However, it does provide
a _qualitative picture. A systematic validation of the results upon comparison with more
refined methods is left for future work.

Equilibrium Kondo correlations are expected to be characterized by a length scale
¢ = vy /Ty, where vy is the Fermi velocity in the noninteracting Fermionic leads [7,21].
If we assume that the spacing between sites is a, the Fermi velocity can be written as
vf = 2tpa, such that at the parameters above one expects £/a =~ 25. In the finite time
calculations finite leads were used. Simulation were run for several chains lengths at the
timescale shown, and we found the data to be converged with ~ 350 sites on each side.
At any finite chain lengths, reflections from the ends of the chain eventually develop (not
shown); the effect of such reflections on charge density has previously been studied [99,100].
For position-resolved calculations in the steady state, we found that convergence requires
simulating chains with ~ 12,000 sites. The energy-resolved singlet weights shown, on the
other hand, are always calculated directly in the thermodynamic limit.

We will study the system at four representative lead temperatures, T' = 0.2I", 0.5,
1.0T", and 5.0T". Respectively, these temperatures are well below the Kondo crossover scale;
close to but still below Kondo; slightly above Kondo; and well above Kondo. In Sec. 4.1
we will consider relaxation to equilibrium from an initially factorized state. In Sec. 4.2 we
will apply a voltage bias between the leads to drive the system to a nonequilibrium steady
state.

4.1 Relaxation to Equilibrium

We begin by examining the energy-resolved singlet weight s, r(€,t) without a bias voltage,
Le. for ur/p = ® = 0. This obviates the distinction between the left and right leads, and
we therefore drop the corresponding index for the remainder of this section and write the
observable as s(e, t).

In the top panels of Fig. 3(a) and (b), the time and frequency dependence of s(e, t) is
plotted at T' = 0.2I", well below the Kondo temperature. Two different initial states are
shown: the dot is initially empty in (a), and fully magnetized in (b). The lower panels
present cuts at constant time across the same data. Additionally, the equilibrium steady
state that eventually develops at the long time limit is shown.

The most prominent feature at long times (dashed lines), where the result is inde-
pendent of the initial conditions, is the central peak at e = 0. We associate this peak
with singlet correlations driven by the Kondo effect. The dip at its center, which is more
prominent at shorter times, is due to the classical correlations subtracted in Eq. (10). Due
to the factor f(e)f(e) in our definition of the classical part, the width of the dip is deter-
mined by the temperature 7. While classical correlations dominate s(e, t) at short times,
they eventually mostly fade away, leaving behind an almost pure peak representing non-

classical singlet correlations. Notice, however, that the NCA is prone to overestimatin
relaxation time of the system [77].

When the dot is initially unoccupied, a large feature appears after a timescale ¢t ~ 1/I"
around ¢ = ep. This feature decreases with time, and does not appear at all in the
initially magnetized state. This phenomenon is easy to understand. Consider the two
electrons initially incoherently occupying the lead orbital with single-particle energy e.
These electrons are of opposite spins. At short times, before interactions take effect, both
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Figure 3: Formation of equilibrium (® = 0) energy-resolved singlet weight. (a) Top:
Dynamics with an initially unpopulated dot at temperature T' = 0.2I' < Tx. Bottom:
Cuts across the data at several representative finite times, with the dashed black line
corresponding to steady state. (b) Same as (a), but with an initially magnetized dot. (c)
Singlet weight at different times and temperature. Time increases towards lower panels,
with the bottom panel at steady state.
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Figure 4:  Formation of equilibrium (® = 0) position-resolved singlet weight s(z,?),
with parameters as in Fig. 3, at two initial dot conditions: unoccupied (middle row) and
magnetized (bottom row). The steady state is depicted in the top row, separated into even
and odd sites. A series of temperatures is shown, increasing from left to right. The dot
is located at x = 0. The black dotted lines in the middle and bottom row panels indicate
the location vyt.

electrons can resonantly enter the unoccupied dot. For some timescale, until decoherence
takes place, these electrons can be expected to maintain their original singlet correlations
while being split between the dot and lead orbitals. When the dot eventually stabilizes
in the half-occupied singlet-state, this effect is suppressed because the dot and lead share
the same occupancy. From an analogous argument, it is easy to see that a corresponding
transient effect must appear at € = —ep for the initially doubly-occupied state (not shown
here).

An essential facet of Kondo physics is its dependence on temperature. In Fig. 3(c),
we present a series of plots at different lead temperatures for the initially empty dot.
These are shown at constant times, increasing towards equilibrium at progressively lower
panels. Higher temperatures suppress singlet correlations in essentially all cases. While at
the short times, noninteracting contributions to s(e) at € ~ ep form at all temperatures,
the Kondo correlations at € &~ 0 form only below the Kondo temperature at both short
and long timescales. The dip due to classical spin—spin correlations that appears at low
frequencies is only visible when the temperature 7' is substantially smaller than the Kondo
temperature Ty, such that the dip is narrower than the Kondo peak. If the temperature
were even lower, the dip would eventually become too narrow to be distinguished.

A final interesting feature should be noted. Surrounding the main Kondo peak is
a weaker, wider feature extending from ¢ ~ —U/2 to ¢ ~ U/2. This implies that, at
least within the NCA and at finite temperature, a remnant of singlet correlations exists
throughout the range of energies accessible by dot excitations, and not just within the
Kondo peak. Nevertheless, the specificity with which s(e,t — oo) corresponds to our
intuitive picture of Kondo physics is striking: for example, there are no side bands, as one
would observe in a spectral function. The energy-resolved singlet weight therefore remains
an excellent diagnostic for the Kondo effect.
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We now continue to the position-resolved singlet weight s(x,t). In the 1D case con-
sidered here, we denote with € Z/0 the displacement of a site in lead L/R for nega-
tive/positive sign from the impurity, and use x = 0 to refer to the impurity site itself.
Fig. 4 shows the corresponding dynamics and the steady state. We once again focus on
dynamics up to time ¢ = 15/T"; this should be compared with Fig. 3, which shows the same
time scale. The results are characterized by an even—odd structure that has previously
been discussed in the literature [7,9,14,27,29,30,101,102].

Perhaps the easiest feature to understand is the light cone, which appears at all pa-
rameters. It corresponds to a wavefront of singlet correlations propagating into the leads
at the Fermi velocity after the coupling is activated. The magnitude of the cone structure
fades with increased temperature, but, in the 1D leads discussed here, it does not rapidly
decay with time and distance from the impurity. Moreover, the light cone is sensitive
to the initial dot state. The wavefront’s propagation obeys the Lieb—Robinson bounds,
and is directly related to the spreading of spin—spin correlations that has been previously
described in the literature for the single lead case [29,30,103-106]. Outside the light cone,
one can note the formation of minor correlations due to the initial spatial entanglement
within the noninteracting baths. For spin—spin correlations, this has been previously ob-
served and analyzed [29,30,106]. It is interesting to note, though perhaps not particularly
surprising, that the same physical picture emerges from singlet correlations.

Another conspicuous feature is the correlations that form near the impurity, at z <
25 =~ {k/a, and which quickly establish after the light cone has reached the respective
lead sites. Previous work has associated similar structures in the spin—spin correlations
with the Kondo cloud [29,30,100,106,107]. Also, the dynamical generation of short-time
nonequilibrium density oscillations and spin correlations after a quench has been explored,
showing some evidence of cloud formation [99,100]. The structure of the this central fea-
ture and its dependence on temperate is most easily studied based on the steady state
results in the top row of Fig. 4, which are separated into the individual contributions from
even and odd chain sites. We observe that the magnitude and the extent of the central
feature decreases with increasing temperature, and that this feature essentially disappears
at higher temperatures. In particular, for the highest temperate considered here, all that
remains is a minor contribution from the terminal sites immediately adjacent to the im-
purity. Contributions from even chain sites are completely absent. This is remarkable,
because the energy-resolved representation of the singlet weight at high temperatures is
essentially zero, which indicates that the energy- and the position-resolved representa-
tions provide complementary information and are not straightforwardly mapped onto one
another.

4.2 Nonequilibrium Driving

Next, we investigate the influence of a nonzero bias voltage ® on the singlet weight.
The span of voltages we discuss corresponds to typical regimes in quantum transport
scenarios, where biases ranging from linear response to Coulomb blockade can be applied
to the system. To identify these relevant parameter regimes, it is useful to consider the
conductance as a function of bias voltage, as shown in Fig. 5. The peak at & = 8I
that appears at all temperatures below 7" = 5.0I' corresponds to the onset of resonant
transport. When T' = 5.0I', essentially all features are washed out by thermal broadening.
At the two temperatures below Kondo, T" = 0.5I' and more noticeably T" = 0.2I", low
bias conductance is enhanced. The enhanced conductance is due to the emergence of the
Kondo resonance for temperatures below the Kondo temperature. In the low temperature
limit, the Kondo resonance leads to a unitary conductance [108,109] Go = 1/27. Here, the
conductance is substantially smaller because we are only at the edge of the Kondo regime,
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Figure 5: Steady state conductance as a function of bias voltage ® within the NCA at a
series of temperatures.

where the NCA method is still expected to be reliable. We will therefore focus most of our

analysis on a low voltage within the Kondo feature, ® = 1I'; an intermediate voltage in the
nonresonant transport regime beyond it, & = 5I'; and a large voltage resulting in resonant
transport, & = 10I". As will be shown below, each of these regimes is characterized by
a different dependence of the singlet weight on the bias voltage. For reference, we will
compare all findings to the equilibrium case, & = 0.
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Figure 6: Nonequilibrium (® # 0) energy-resolved singlet weight. (a) Steady state singlet
weight of the left lead as a function of bias voltage and lead energy level for T'= 0.2I". The
top panel depicts a set of representative bias voltages, the bottom panel a comprehensive
contour plot of the same data. (b) Steady state singlet weight of the left lead at a series of
temperature, with bias voltage ® = I' (top panel), ® = 5I" (middle panel), and & = 10"
(bottom panel). (c) Singlet weight in the left lead at a series of times, at temperature
T = 0.2I" and bias voltage & = I' (top panel), & = 5I"' (middle panel), and & = 10’
(bottom panel). The dot is initially empty, and the dashed black lines indicate the steady
state.
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Fig. 6(a) presents sr,(¢) in the steady state at low temperature (7' = 0.2I"). The top
panel show the dependency on the bias voltage for several representative values of ®. For
comparison, the equilibrium result at ® = 0 is shown in black. The bottom panel shows a
contour plot of the bias dependence at the entire range of voltages. Due to particle-hole
symmetry in our choice of parameters, the results for the two leads can be related to each
other by the transformation ¢ — —e. The discussion can therefore be restricted to sy (€)
with no loss of generality.

When a small bias voltage ® < T" in the Kondo-enhanced conductance regime is applied
to the system, the symmetry of sy (¢) is immediately broken. A sharp and pronounced
positive peak appears at small negative frequencies, and a sharper but smaller negative
peak appears at small positive frequencies. The intensity of both peaks rapidly increases
with the bias voltage in this regime. Interestingly, the large positive peak corresponding
to strong singlet correlation in the left lead is pinned to the chemical potential of the right
lead, and vice versa (the bottom panel of Fig. 6(a) shows the two chemical potentials as
dotted lines). This positive peak corresponds to strong, non-classical Kondo-like singlet
correlations. The negative peak, which—as in equilibrium—is due to the classical spin—
spin correlations, corresponds to the dip at ¢ = 0 in the equilibrium curve and is pinned to
the left chemical potential. Its width and location continue to essentially be determined
by the lead temperature and chemical potential, as they appear within the factor fr fr, in
the classical correlation term.

The pinning of non-classical singlet correlations in each lead to the chemical poten-
tial within the other lead may be surprising, but can be justified by simple arguments.
Interestingly, the mechanism for this is more closely related to the large evanescent peak
at the unoccupied initial condition in Fig. 3(a) than to the equilibrium Kondo effect. In
the equilibrium case, when the dot eventually becomes singly occupied the chemical po-
tentials throughout the system are equalized and electrons are exchanged only as a result
of undriven diffusion. In the nonequilibrium scenario, the left lead is fully occupied at
the chemical potential of the right lead, while the right lead is half occupied at the same
energy. The dot is half occupied at steady state, and can rapidly eject electrons into empty
orbitals in the right lead through the remnants of the Kondo transmission peak. Electrons
from the left lead are therefore driven to resonantly enter the dot in a process that entails
transport of another electron of the same spin from the dot to the right lead, such that the
dot remains singly occupied. Each such event generates a singlet between the left orbital
and the dot, but no singlet between the right orbital and the dot.

The rate controlling this nonequilibrium mechanism for the formation of singlet corre-
lations is substantially higher than that characterizing the formation of equilibrium Kondo
correlations, because it is driven by the difference in occupancy between the left lead and
the rest of the system at that energy, rather than just by diffusive fluctuations. This mech-
anism can therefore generate a large contribution to the singlet weight in the left lead at
the chemical potential of the right lead, at the nonequilibrium steady state. Naturally, an
analogous process in the opposite direction happens at the left lead’s chemical potential,
resulting in enhanced singlet correlations in the right lead.

The two singlet features remain pinned to the lead chemical potentials at larger biases
1" < @ < 5I0 that are still below resonant transport. However, their intensity decays with
voltage and the larger peak broadens. A wider but less intense positive peak develops near
the negative feature, most likely corresponding to the normal Kondo effect. For yet higher
bias voltages ® = 8I', once the resonant regime has been reached, the larger positive
peak becomes pinned to the resonance energy e¢p and stops moving with voltage. The
eventual decay and broadening of all features with increased voltage are consistent with
the commonly accepted consensus that Kondo correlations cannot survive in the presence
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Figure 7: Formation of nonequilibrium position-resolved singlet weight s(z,t), with pa-
rameters as in Fig. 6, at two initial dot conditions: unoccupied (middle row) and magne-
tized (bottom row). The steady state is depicted in the top row, separated into even and
odd sites. A series of bias voltages is shown, increasing from left to right. The temperature
isT'= 0.2I". The dot is located at x = 0. The black dotted lines in the middle and bottom
row panels indicate the location v t.

of larger voltages.

The temperature dependence of the singlet weight in the three transport regimes is ex-
plored in Fig. 6(b). In the Kondo-enhanced transport regime, the singlet weight is strongly
suppressed and eventually eliminated by higher temperatures. The nonresonant transport
regime at intermediate bias still shows a temperature suppression, but the nonequilibrium
singlet weights, presumably associated more strongly with the nonequilibrium mechanism
discussed above than with the equilibrium Kondo effect, appear to be robust at somewhat
higher temperatures. In the resonant transport regime, response to small temperatures
is weak, and strong suppression of singlet weights only occurs at T = 5.0I". This sug-
gests (at least within the NCA) that the robustness of singlet correlations with respect to
temperature may be enhanced by nonequilibrium driving.

Next, in Fig. 6(c), the quench dynamics when starting from an empty dot are presented.
We observe that the relaxation timescale needed to reach the steady state is substantially
decreased with increasing bias voltage. In the resonant transport regime at & = 10I', the
system already assumes its steady state by ¢t = 5/I". Comparing the dynamics in Fig. 3(c)
to those in Fig. 6(c) suggests that bias voltages have a substantially stronger effect on the
relaxation dynamics than temperatures of similar magnitude.

The last set of results to be presented here, in Fig. 7, pertains to the spatially-resolved
singlet weight s(z,t). The light cone and central feature seen in subsection 4.1 are once
again visible. As in the energy-resolved singlet weight, the dependence on the initial
condition, which is imprinted onto the light cone in the position-resolved representation,
fades more rapidly as the bias voltage is increased. The most clearly visible transient
signature of nonequilibrium driving, however, is the breaking of symmetry between the
left and right leads visible for the initially unoccupied state. At short times, an initially
empty dot is more likely to be populated by electrons from the lead with larger chemical
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potential, i.e. the left lead.

The dependence of the central feature on bias voltage is most clearly visible in the
steady state data in the upper panels. Here, where contributions from even and odd lead
sites are shown separately, the dependence on bias voltage differs qualitatively from that
on temperature (see Fig. 4). For low bias voltages, the central feature is mostly unaffected
by the bias voltage. This is remarkable, since the energy-resolved singlet weight is very
sensitive to a similar change in temperature within this regime. Again, this highlights
the complementary information provided by the two different representations. For inter-
mediate bias voltages still in the nonresonant transport regime, the central peak begins
to extend over larger distances from the dot. This is in line with the previous argument
that electrons contributing to transport form correlated singlets. This trend is eventually
reversed at higher bias voltages in the resonant bias regime, presumably due to increased
decoherence. For high bias voltages in the resonant transport regime, we observe that the
even—odd structure breaks down, starting from higher energies. The central feature at
high voltage is reminiscent of the Kondo feature at low temperatures and equilibrium, but
with a different characteristic length scale, and with both even and odd sites exhibiting a
positive singlet weight.

We note that the particular way in which we have applied bias voltages—by shifting
the lead density of states along with the chemical potential, rather than changing the
filling factor—entails that the Fermi velocity in the two noninteracting leads is unmodified.
Therefore, only one correlation length is expected to remain present. This indeed appears
to be the case, though a more systematic examination of this correlation length and its
dependence on voltage would be interesting given a more reliable method. The question of
whether multiple correlation lengths can appear when the lead filling factors are modified
will be left to future work.

5 Conclusion

We investigated the formation of singlet correlations between electrons in an interacting
Anderson impurity, and orbitals in a pair of noninteracting 1D leads coupled to it. In order
to quantify this, we devised singlet weight observables comprising dot and lead degrees
of freedom. Measuring these weights experimentally requires a “quantum measurement”
scheme, because it contains operators that cannot be expressed as a simple correlation
function. Focusing on regimes where the Kondo effect is expected to generate singlet cor-
relations, we identified the lead orbitals that most significantly contribute to the formation
of the Kondo effect, in both the energy and position representations. We presented results
for the evolution of singlet weights after an impurity—lead coupling quench, and for their
final steady state (or equilibrium) values in the thermodynamic limit.

In equilibrium, we showed that the energy-resolved singlet weight vanishes at high
temperature, while manifesting only a single sharp peak at the chemical potential below
the Kondo temperature. This allows for cleanly and precisely separating the Kondo-
induced singlet correlations from other phenomena, without relying on differences between
energy scales as one would in considering the spectral function. Classical correlations are
also easy to quantify and remove within this scheme.

The position-resolved equilibrium singlet weight is concentrated in a well-defined region
centered around the quantum dot, which forms within the light cone after a quench. The
size of the region is consistent with the Kondo correlation scale, supporting the notion of
a Kondo cloud. As an aim for future work, it will be of some interest to see whether sum

rules for the ground state [7.8] can be extended to finite temperatures and voltages.
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We noted that corresponding equilibrium scenarios have been studied extensively in
the literature using a variety of measures other than the singlet weight, often with more
reliable numerical techniques. The equilibrium results presented here therefore serve only
to corroborate these existing results, and do not reveal new physics. Nevertheless, they
confirm that the secondary observables studied by previous authors truly correspond to
quantum singlet correlations rather than classical ones.

We then investigated the effect of a nonequilibrium bias in several regimes. At low
voltages, where conductance is enhanced by the bias, the steady state singlet weights
are significantly enhanced compared to the equilibrium Kondo weights. Most notably,
we identify an enhancement of singlet correlations in each lead, which is located at the
chemical potential of the other lead. Moreover, we observe a change in the oscillatory
behavior of the position resolved Kondo cloud with bias voltage. The mechanism for this
is driven by transport, but is eventually overtaken by dissipation at higher voltages where
resonant transport occurs.

Our work is based on a noncrossing approximation (NCA), and can therefore be ex-
pected to be only qualitatively accurate [59,60,67—-70]. However, the model can be solved
to a numerically exact level of accuracy within Inchworm Monte Carlo methods, and
several other methodologies may also be applicable.

We believe this work constitutes a first step towards a deeper understanding of quan-
tum correlation effects and their impact on impurity physics and transport, in general.
This is because a wide variety of “quantum measurements” like the singlet weight can be
constructed, allowing for the extraction of highly specific couplings and order parameters
from either simulations or experiments. In particular, within the diagrammatic method-
ology used here and its numerically exact counterparts [77,110,111], studies of this nature
are not limited to low energies, weak bias voltages or special lead geometries (like the
1D case considered here). Projective observables will therefore improve our ability to tie
together intuitive insights from variational ansatzes and low energy physics to numerical
simulations at finite temperatures and in nonequilibrium situations.
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