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Abstract

Usually duality process keeps energy spectrum invariant. In this paper, we provide a
duality, which keeps entanglement spectrum invariant, in order to diagnose quantum en-
tanglement of non-Hermitian non-interacting fermionic systems. We limit our attention
to non-Hermitian systems with a complete set of biorthonormal eigenvectors and an en-
tirely real energy spectrum. The original system has a reduced density matrix ρo and
the real space is partitioned via a projecting operator Ro. After dualization, we obtain a
new reduced density matrix ρd and a new real space projector Rd. Remarkably, entan-
glement spectrum and entanglement entropy keep invariant. Inspired by the duality, we
defined two types of non-Hermitian models, upon Ro is given. In type-I exemplified by
the “non-reciprocal model”, there exists at least one duality such that ρd is Hermitian. In
other words, entanglement information of type-I non-Hermitian models with a given Ro

is entirely controlled by Hermitian models with Rd. As a result, we are allowed to apply
known results of Hermitian systems to efficiently obtain entanglement properties of type-I
models. On the other hand, the duals of type-II models, exemplified by “non-Hermitian
Su-Schrieffer-Heeger model”, are always non-Hermitian. For the practical purpose, the du-
ality provides a potentially efficient computation route to entanglement of non-Hermitian
systems. Via connecting different models, the duality also sheds lights on either trivial
or nontrivial role of non-Hermiticity played in quantum entanglement, paving the way to
potentially systematic classification and characterization of non-Hermitian systems from
the entanglement perspective.
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1 Introduction

For the past decades, Hermitian quantum matters have been intensively investigated.
Classification and characterization of Hermitian quantum matters are deeply rooted in
many-body treatment on quantum entanglement. Without symmetry, gapped phases are
classified into short-ranged entangled (SRE) and long-range entangled (LRE) phases [1,2].
LRE phases, such as fractional quantum Hall states [3] are physically characterized by the
robust ground state degeneracy on closed manifold and braiding statistics of topological
excitations. Such phases are often called intrinsic topological order [4–8]. LRE phases
cannot be adiabatically connected to a direct product state via a local unitary transfor-
mation (LU) that attempts to disentangle local degrees of freedom. In contrast to LRE,
there exists at least one LU transformation such that SRE states can be connected to the
direct product state without crossing phase transitions. When symmetry is considered,
both LRE and SRE have finer phase structures. Symmetry Protected Topological phases,
e.g., the Haldane phase [9,10], are symmetric SRE states that admit symmetry-protected
boundary anomaly [6, 11–14]. On the other hand, symmetric LRE states are called Sym-
metry Enriched Topological phases [6, 15–17] that admit fractionalized quantum number
carried by topological excitations. Inspired by quantum information, by partitioning the
real-space X into two subregions: Xo = Ao ∪Bo, quantum entanglement between the two
subregions can be quantitatively measured via von Neumann entanglement entropy (EE):

SEE = −Trρ log ρ with ρ =: e−h
E

being a reduced density matrix of the subregion Ao [18].
The full spectrum of the entanglement “Hamiltonian” hE, known as entanglement spec-
trum (ES) [19] encodes more fruitful information about quantum entanglement. In short,
it has been well recognized that EE and ES can help identify and distinguish universal
properties of phases [2, 4, 20–22].

On the other hand, Hermiticity of a Hamiltonian is one of the key postulates of isolated
quantum systems in order to ensure both probability conservation and the real-valuedness
of eigen-energies. Nevertheless, non-Hermiticity is still physically relevant and ubiquitous
in, e.g., open systems. Non-Hermitian physics provides a versatile platform for a variety of
classical and quantum systems with concrete lattice models such as non-reciprocal model,
non-Hermitian SSH model [23–32].

For non-Hermitian systems, while there has been tremendous progress in many aspects,
the entanglement information is far less known, compared to the progress on many-body
entanglement of Hermitian quantum matters such as aforementioned LRE and SRE. One
may ask whether or not the introduction of non-Hermiticity can substantially reshape
universal behaviors of entanglement properties of Hermitian systems [18, 33–35]. One
may alternatively ask whether or not there exist non-Hermitian systems whose ES can
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be computed from well-studied Hermitian systems? In other words, non-Hermiticity in
such systems is irrelevant in the quantum entanglement. Finally, is it possible to unify
non-Hermitian and Hermitian systems from the entanglement perspective?

While general correlated systems are difficult, let us focus on non-Hermitian non-
interacting systems with Hamiltonian Ho

1 [36–42]. Then we can construct a reduced
density matrix ρo by pairs of right and left eigenstates of Ho [43]. More specifically, the
entanglement Hamiltonian of Ho

2, denoted by hEo , is analytically determined by hEo =
log[(RoPoRo)

−1 − I], where two operators Ro and Po (R2
o = Ro ,R†o = Ro ,P2

o = Po,
P†o 6= Po) impose quantum-state projections onto the subregion Ao of Xo and occupied
eigenstates of Ho, respectively. It should be noted that the Fock-space projector Po
is no longer Hermitian, but the real-space projector Ro, by definition, must always be
Hermitian.

In this paper, we build a rigorous duality between a non-Hermitian non-interacting
Hamiltonian Ho and its dual Hamiltonian, denoted by Hd. Remarkably, Ho and Hd share
the same ES, i.e., Spec(hEo ) = Spec(hEd ).3 Meanwhile, the dual Hamiltonian Hd and its
reduced density matrix ρd may be either non-Hermitian or Hermitian. By means of this
duality, we establish exotic connections between different models, regardless of Hermiticity.
Before moving to detailed technical discussions to appear in the main text, let us concisely
illustrate the duality here via Fig. 1. In Fig. 1, the duality consists of two key steps. Step-
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original system

Figure 1: Schematic illustration of the duality. The duality between the original system
Ho and the dual system Hd is split into two steps. In the first step 1©, we introduce a
similarity transformation on both Fock-space projector Po and real-space projector Ro.
In the second step 2©, we interchange real space and momentum space. Entanglement
spectrum and entanglement entropy, which can be computed from diagonalizing reduced
density matrices as in Eq. (10), keep invariant. Details can be found in the main text.

1©, a similarity transformation O is applied to not only Po but also Ro. The feature of
‘simultaneously acting on both projectors’ is very crucial and will be elaborated in the
main text. Step- 2©, the real space and Fock-space are exchanged. As a result, two new
projectors Rd and Pd of the dual system are naturally defined. Both projectors enter hEd

1If such non-Hermitian systems are realized as meanfield Hamiltonians of correlated systems, the results
in this paper are also applicable.

2Unless otherwise stated, Hamiltonians of non-Hermitian systems in this paper are assumed to act on
the Hilbert space with a complete set of biorthonormal eigenvectors and possess an entirely real spectrum.

3Here the symbol Spec(O) denotes the spectrum of the operator O.
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in the standard way: hEd = log[(RdPdRd)−1 − I]. Since Rd is interpreted as a real-space

projection in the dual system, its Hermiticity must be guaranteed: Rd = R†d. Therefore,

we require that the equality ΘP†o = PoΘ always holds, where Θ := OO†. Theorem 1 of the
main text will be introduced to guarantee Spec(RoPoRo) = Spec(RdPdRd). Therefore,
the duality in Fig. 1 keeps ES unaffected, i.e., Spec(hEo ) = Spec(hEd ), which completes the
duality process.

The duality has profound consequences. Physically, the duality inspires us to divide
non-Hermitian Hamiltonians into two types, namely, type-I and type-II, when a real-space
partition Ro is given. In each case of type-I, there exists at least one duality process such
that P†d = Pd and thus ρ†d = ρd. Therefore, in type-I, ES can be fully determined by
its Hermitian dual, i.e., Hd. On the contrary, in type-II, it is impossible to compute ES
from known results of Hermitian systems through the present duality, since all Hd’s are
non-Hermitian. Mathematically, whether ρd is Hermitian or not essentially relies on the
commutator [Θ,Ro]. If there exists an O such that [Θ,Ro] = 0, then ρd is Hermitian
and Ho is of type-I. On the one hand, from the definition, non-Hermiticity of type-I
doesn’t play any essential role in EE and ES. But on the other hand, for the practical
purpose, we are allowed to efficiently compute ES and EE of type-I systems by means
of known results of Hermitian systems. To demonstrate it, the non-reciprocal lattice
model is identified as type-I. As a byproduct, we prove that ES and EE of this model are
independent of the parameter α [Eq. (26)] that measures the degree of “non-reciprocality”.
In contrast to type-I, the dual system Hd is always non-Hermitian for type-II systems. It
indicates that entanglement information of type-II system cannot be understood through
any known results of Hermitian systems in the present duality process. The non-Hermitian
Su-Schrieffer-Heeger (SSH) model is one of simplest examples of type-II. In Table 1, we
list the criteria and entanglement properties of the two types of systems.

The remainder of this paper is organized as follows. In Sec. 2, some useful facts on non-
Hermitian quantum physics are reviewed. We explain the duality process by presenting one
theorem and two corollaries in Sec. 3. Two typical examples (nonreciprocal model and non-
Hermitian SSH model) are computed in details in Sec. 4. In Sec. 5, this work is concluded
with several remarks and future directions. Appendices include further supplemental
information on the duality.

2 Preliminaries

For a non-Hermitian system of free fermions, its second-quantized Hamiltonian can be
written as

Ho =
∑
αβ

c†αHαβcβ , (1)

where Ho 6= H†o and fermionic operators c†α and cα satisfy the standard anticommunication
relations {c†α, cβ} = δαβ. Suppose Ho admits a complete set of biorthonormal eigenvectors
{|r, α〉, |l, α〉} that satisfy

〈l, α|r, β〉 = δαβ ,
∑
α

|l, α〉〈r, α| = I (2)

with |r, α〉 and |l, α〉 being the right and left eigenvectors,

Ho|r, α〉 = εα|r, α〉 , H†o |l, α〉 = ε∗α|l, α〉 . (3)
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Here α is the spectral label, δαβ denotes the Kronecker delta function and I is the identity
matrix. Therefore, we have a spectral decomposition

Ho =
∑
α

εα|r, α〉〈l, α| . (4)

By introducing bifermionic operators

ψ†rα|0〉 ≡ |r, α〉 , ψ†lα|0〉 ≡ |l, α〉 , (5)

with the anti-commutation relations {ψlα, ψ
†
rβ} = δαβ, we can straightforwardly construct

a many-body state,

|Gr〉 =
∏
α∈occ

ψ†rα|0〉 , |Gl〉 =
∏
α∈occ

ψ†lα|0〉 , (6)

where occ denotes a set of the occupied states. Hereafter, in the rest of the paper, unless
otherwise stated, a non-Hermitian Hamiltonian is assumed to act on the Hilbert space with
a complete set of biorthonormal eigenvectors and possess an entire real energy spectrum.
Mathematically, it is equivalent to the condition that [38,39] there is an invertible operator
O such that

HoΘ = ΘH†o , (7)

with
Θ := OO† . (8)

From the right and left states, a density matrix can be constructed [43] as

ρ = |Gr〉〈Gl| (9)

such that ρ2 = ρ and ρ† 6= ρ. With this generalized notation, provided a partition on
the real-space into subregions Xo = Ao ∪ Bo, we realize measurement of entanglement
SEE = −Trρo ln ρo, where the reduced density matrix ρo is defined by taking partial trace
of subsystem Bo,

ρo = TrBoρ =: e−h
E
o , hEo =

∑
i,j∈Ao

c†i (hE)ijcj . (10)

The entanglement Hamiltonian hEo is introduced [19] in Eq. (10) whose spectrum Spec(hEo )
encodes more fruitful information on quantum entanglement. For a non-interacting sys-
tem, entanglement Hamiltonian hEo is uniquely determined by a two-point correlation
matrix Co with elements (Co)ij = 〈Gl|c†icj |Gr〉, i, j ∈ Ao via a relation

hEo = log
(
C−1o − I

)
(11)

with I being an identity matrix [44,45]. Furthermore, we can reformulate Co as

Co = RoPoRo , (12)

in terms of the real-space projector

Ro =
∑
i∈Ao

|i〉〈i| (13)

onto region Ao and Fock-space projector

Po =
∑
α∈occ

|r, α〉〈l, α| (14)
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onto occupied states [43, 46]. One significant feature is that Po is no longer Hermitian,

namely, Po 6= P†o , while the real-space projector Ro is, by definition, Hermitian Ro = R†o.
In our duality [see Fig. 1], the basic notations for the dual system can be obtained by
replacing the subscript index o with d. For example, the reduced density matrix ρd for the
dual system defines its entanglement Hamiltonian hEd via ρd =: e−h

E
d and other formula

work in the same way.

3 Duality

When entanglement meets non-Hermiticity, how are the universal behaviours of entan-
glement reshaped? Alternatively, is it possible that we can comprehend entanglement of
non-Hermitian systems based on the knowledge of Hermitian systems? For this purpose,
we propose a duality, which is depicted in Fig. 1. This duality process keeps ES and EE
unaffected and leads to two different types of non-Hermitian models.

3.1 Duality process

As schematically illustrated in Fig. 1, our duality is conducted by two steps. In the
first step, under a similarity transformation, Po is mapped to a Hermitian operator, and,
simultaneously Ro is mapped to an operator that may or may not be Hermitian. We
exchange the roles of momenta and positions in the second step and obtain projectors
Pd and Rd in a dual system. Since a projector Rd must be Hermitian R†d = Rd in
order to depict a real-space partition, we have to impose an requirement on the similarity
transformation O in the first step,

ΘP†o = PoΘ (15)

with Θ = OO† defined in Eq. (8). Besides, invariance of ES and EE requires a condition

Spec(RoPoRo) = Spec(RdPdRd) , (16)

as indicated by Eq. (11). The two conditions in Eqs. (15) and (16) can be satisfied as
indicated by Theorem 1.

Theorem 1 Given a Hamiltonian Ho acting on the Hilbert space with a complete set
of biorthonormal eigenvectors with an entirely real spectrum, there exists an invertible
similarity transformation A = O−1PoO and B = O−1RoO such that

Spec (RoPoRo) = Spec(ABA) (17)

with A = A†. Here the symbol Spec(O) in Eq. (17) denotes spectrum of O.

Theorem 1 states that there is always an invertible similarity transformation such that
a rearrangement on projectors keep the spectrum unaffected, which is a generalized version
of the Hermitian counterpart [46, 47]. We can exchange roles of momenta and positions,
in the second step. We re-interpret B as a new Fock-space projector, re-denoted as Pd, to
describe occupied states and A, as a new real-space projector, re-denoted as Rd to depict
the real partition. Thus, we obtain a correlation matrix Cd = RdPdRd from which we can
design the dual Hamiltonian Hd with an entirely real spectrum. Theorem 1 along with the
formula in Eq. (11) then indicates that Hd shares the same EE and ES with Ho. At this
stage, we finish building our duality between two systems, Ho with a real-space partition

6
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Ro and Hd with a real-space partition Rd. The procedures are depicted in Fig. 1. Such
a duality allows us to diagnose entanglement properties of a non-Hermitian system Ho

from the computation in its dual one.
Below we give a proof of Theorem 1.

Proof 3.1 From the property of Ho, there is an invertible operator O with Θ := OO† that
satisfies the condition in Eq. (7). Then, we have ΘP†o = PoΘ, or equivalently,

O−1PoO = O†P†oO†−1 . (18)

We define A = O−1PoO and A is Hermitian A = A†. Since an invertible similarity
transformation does not alter spectrum, we have

Spec (RoPoRo) = Spec(OBABO−1) = Spec(BAB) , (19)

where B = O−1RoO may be either Hermitian or not.
The next is to prove Spec(BAB) = Spec(ABA). Suppose an eigenstate |ξ〉 of BAB

with
BAB|ξ〉 = c|ξ〉 , (20)

and then B|ξ〉 = |ξ〉 by observing

cB|ξ〉 = BBAB|ξ〉 = c|ξ〉 . (21)

Thus, A|ξ〉 is an eigenstate of ABA:

ABA(A|ξ〉) = c(A|ξ〉) . (22)

Therefore, given an eigenstate |ξ〉 of BAB with eigenvalue c, A|ξ〉 is an eigenstate of ABA
with eigenvalue c. The converse is also true. Finally, we have

Spec (RoPoRo) = Spec(BAB) = Spec(ABA) . (23)

3.2 Two types of non-Hermitian systems

The duality shown in Fig. 1 maps a non-Hermitian system Ho into a new one Hd while they
share the same ES and EE. Therefore, we can diagnose entanglement in Ho by means of
Hd. If the dual system Hd turns out to be Hermitian, we can assert that non-Hermiticity
indeed does not play any essential role in entanglement of such a system Ho. The condition
for Hd being Hermitian, i.e.

O−1RoO = O†RoO−1† , (24)

is that a similarity transformation O exists such that Θ commutes with Ro,

[Θ,Ro] = 0 . (25)

Consequently, given Ho if at least such a similarity transformation exists to meet Eq. (25),
we regard such a system as type-I. Otherwise, the system is categorized into type-II.
Obviously, a Hermitian Hamiltonian belongs to type-I, for which we can simply take O to
be an identity matrix. The ES and EE of type-I obey the same tendency as a Hermitian
system. Thus we can understand it within the context of Hermitian systems. For example,
we expect that the entanglement formula inspired by Wisdom conjecture [48–51] still work
and EE and ES are directly obtained from known results on Hermitian systems without

7
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Table 1: Criteria and entanglement spectrum (ES) for categorizations on non-Hermitian
free systems as well as two examples. We obtain two types of non-Hermitian free systems
according to whether at least one Θ in Eq. (8) exists to commute with a real space partition
Ro.

Criteria ES Example

Type-I At least one Θ commutes with Ro Real Non-reciprocal model [Sec. 4.1]
Type-II No Θ commutes with Ro Real or complex non-Hermitian SSH model [Sec. 4.2]

complicated calculations. On the other hand, non-Hermiticity is supposed to play an
intrinsic role in entanglement of type-II.

The operator Θ varies for different choices on O. Explicitly, given O1 that satisfies
Eq. (7), the operator O2 = O1U1SU2 also meets Eq. (7), but Θ is changed. Here U1

denotes a unitary transformation that diagonalizes O1HoO−11 , U2 is an arbitrary unitary
matrix and S is an invertible matrix that commutes with spectral matrix of Ho. In
Appdendix A, we give an example to illustrate this point. In practice, to determine the
type of a system, one can start with O that diagonalizes O−1HoO = Λ. If [OO†,Ro] = 0,
then it belongs to type-I. Otherwise, we have to check whether some S exists to solve the
equation

[
OSS†O†,Ro

]
= 0. In Appendix A, we make more explanation on the procedure

to determine the type of a given non-Hermitian model.
Based on the theorem, two corollaries naturally follow.

Corollary 1 The ES for type-I non-Hermitian system is real. A non-Hermitian system
with complex ES belongs to type-II.

The Corollary 1 is a direct consequence of the duality process. The real-valued ES of
a type-I arises from the identical spectrum to a Hermitian system. The converse-negative
proposition of the first part produces the second argument. We point out that we do not
exclude a type-II system possessing a real ES.

Corollary 2 In the case of a Hermitian system, one recovers the “position-momentum
duality”.

The Corollary 2 is obvious since one can simply choose O to be an identity matrix,
which exactly recovers the result established in Ref. [46]. In Table 1, we summarize the
properties of two types of non-Hermitian systems as well as two typical examples that will
be presented in Sec. 4.1 and Sec. (4.2).

4 Examples

In this section, we present two examples to exemplify the two types of non-Hermitian
systems.

4.1 An example for Type-I: Nonreciprocal model

As a warm-up, we consider one of the simplest non-Hermitian models on a chain of L sites

Ho = −t
L∑
x=1

(
eαc†xcx+1 + e−αc†x+1cx

)
, (26)

8
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Figure 2: Illustration of non-reciprocal model and its dual system for a general filling and
partition. After duality, the partition is changed from Xo = Ao ∪ Bo to Xd = Ad ∪ Bd.
Non-Hermiticity in Ho arises from non-reciprocal hopping te±α while the dual system is
Hermitian with hopping integral t′.

where c†x and cx are the fermion creation and annihilation operators at site x, respectively.
The nonreciprocal left/right hopping te±α can arise from asymmetric gain/loss, which is
shown in Fig. 2. Under an open boundary condition (OBC), it is exactly solvable and one
can write down the right and left eigenvectors |r, k〉 and |l, k〉 as

|r, k〉 =

√
2

L+ 1

L∑
x=1

e−αx sin
πkx

L+ 1
|x〉 , (27)

|l, k〉 =

√
2

L+ 1

L∑
x=1

eαx sin
πkx

L+ 1
|x〉 , (28)

with a real gapless spectrum εo(k) = −2t cos πk
L+1 parametrized by momentum indices

k = 1, · · · , L.
Now we conduct the duality in Fig. 1. In Step- 1©, we can choose O to be

O = diag(e−α, · · · , e−Lα) , (29)

which describes the transformation

c†x → c†xe
−xα , cx → cxe

xα . (30)

Partition the system into two subregions Ao and Bo with the Fock-space and real-space
projectors being

Po =
∑
k∈occ

|r, k〉〈l, k| ,Ro =
∑
x∈Ao

|x〉〈x| . (31)

After Step- 1© with a similarity transformation in Eq. (29) acting on both Po and Ro in
Eq. (31),

O−1PoO =
∑
k∈occ

|k〉〈k| ,O−1RoO =
∑
x∈A0

|x〉〈x| , (32)

in Step- 2©, we interchange the roles of momenta and positions, which defines dual pro-
jectors

Rd =
∑
x∈occ

|x〉〈x| ,Pd =
∑
k∈Ao

|k〉〈k| , (33)

9
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Figure 3: (Color online) Entanglement entropy SEE (a) v.s. LAo with L = 100, α = 0.1
and (b) v.s. α with L = 100, LAo = 20; Entanglement spectrum (c) v.s. LAo with
L = 100, α = 0.1 and (d) v.s. α with L = 100, LAo = 20 for non-reciprocal model in
Eq. (26). In (a), SEE calculated via the definition in Eq. (10) marked by blue triangles
is consistent with the formula of SEE guided by a red line that is inferred by the duality.
(b) shows SEE is independent of α. (c) depicts EE dependence on the size of region Ao.
(d) shows EE is not altered when α changes. All calculations are conducted under open
boundary condition at half-filling with t = 1.

where the two basis’s |k〉 and |x〉 inRd and Pd satisfy the relation, |k〉 =
√

2
L+1

∑L
x=1 sin πkx

L+1 |x〉.
Here the Fock-space projector Pd means that states with momentum in region Ao are oc-
cupied and Rd defines a real-space partition. For example, at half-filling of Ho, we can
conduct a partition with Ao containing half the chain. Then we can take the spectral
dispersion to be εd = −2t′ cos πkx

L+1 , and the dual Hamiltonian Hd reads

Hd = −t′
L∑
x=1

(
c†xcx+1 + c†x+1cx

)
, (34)

with a partition Ad being half the chain 4. For a general partition, we can introduce a
chemical potential such that εd(k) < 0 when k ∈ Ao. In Fig. 2, we depict lattices for Ho

and its dual Hd with partition Xo = Ao ∪ Bo and Xd = Ad ∪ Bd respectively.
Remarkably, the dual Hamiltonian in Eq. (34) does not depend on the parameter α,

which indicates that non-Hermiticity plays no role in EE and ES in original non-Hermitian
system. It is further numerically checked in Fig. 3(b) and Fig. 3(d) that no changes in EE
and ES occur when we change α. Furthermore, the quantity OO† for the present choice
is diagonal in the real-space such that at least one dual system is Hermitian regardless of
the system partition.

4Here the strength of hopping integral t′ does not influence entanglement.
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In summary, the non-Hermitian non-reciprocal model in Eq. (26) shares the same ES
and EE with the dual Hermitian free fermi gas in Eq. (34), which exemplifies a type-I
system. This feature allows us to understand entanglement of type-I under the framework
of a Hermitian system. For example, instead of complicated calculation, we can directly
extract that in the nonreciprocal model, momenta and positions enter SEE symmetrically
with the expression [46,52–55] as

SEE =
1

6
ln

[
L

π
sin

πLA
L

sin
πLF
L

]
+ · · · , (35)

where LA denotes the length of region Ao, LF is the number of occupied bands of its
L eigenstates and · · · includes constant and finite-size corrections from 1/L and higher.
Figure 3(a) shows consistence between SEE from Eq. (10) and the duality.

4.2 An example for Type-II: Non-Hermitian SSH model

Another example is the non-Hermitian Su-Schrieffer-Heeger (SSH) model in a bipartite
lattice with 2N sites at half-filling,

Ho =

N−1∑
x=1

(
ωc†2xc2x+1 + υc†2x+1c2x+2

)
+ h.c.

+

N∑
x=1

iu
(
c†2xc2x − c†2x+1c2x+1

)
(36)

with u, υ, ω ∈ R. Here we introduce staggered imaginary chemical potentials. Under a
periodic boundary condition (PBC), then HSSH is translationally invariant and can be
reformulated in the Fock-space (i.e., momentum space) as

Ho=⊕kHk with Hk=

[
iu vk
v∗k −iu

]
, (37)

where vk = ωe−ika +υ with a the lattice constant. The system is PT -invariant σxHkσx =

H∗k with spectrum εk,± = ±
√
|v + weika|2 − u2 and we restrict ourselves in the region of

real spectrum.
To conduct the duality, in Step- 1©, we choose the matrix O = ⊕kOk in the momentum

space to be

Ok =

[
−e−i(θk+ϕk) 1

1 e−i(θk−ϕk)

]
, (38)

where we reparametrize

ρke
iϕk = υ + ωeika , ρke

iθk = εk,+ + iu . (39)

At half-filling, we have the two projectors

Po =
∑
k∈occ

|r, k,−〉〈l, k,−|, Ro =
∑
i∈Ao

∑
s=1,2

|i, s〉〈i, s| , (40)

where Po projects onto all occupied states with |r, k,−〉 (|l, k,−〉) as its right(left) eigen-
vector and Ro defines partition with s = 1, 2 labeling two sublattices. After a similarity
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transformation acting on both the two projectors in Eq. (40), in Step- 2©, we interchange
the roles on positions and momenta and we have

Pd =
∑

k∈Ao,`=±
O−1d |k, `〉〈k, `|Od , (41)

Rd =
∑
x∈occ

|x,−〉〈x,−| , (42)

where in the dual real-space, Od = ⊕Nx=1Ox is the similarity transformation in the first
step and ` can be interpreted as internal degrees or layer indices. The expression of Ox is
obtained by replacing k in Eq. (38) by x, and

ρxe
iϕx = υ + ωei

2πx
Na , ρxe

iθx = εx + iu . (43)

We can introduce the following biorthogonal eigenvectors

|r, k, `〉 = O−1d |k, `〉 (44)

and bifermionic operators

ψ†r,k,`|0〉 = |r, k, `〉 , ψ†l,k,`|0〉 = |l, k, `〉 (45)

such that
Pd =

∑
k∈Ao,`=±

|r, k, `〉〈l, k, `| , (46)

and the dual Hamiltonian takes the form as Hd =
∑

k,s εk,`ψ
†
r,k,`ψl,k,` where εk,` is the

dispersion relation that is constrained by εk,` < 0 for k ∈ Ao, ` = ±. Specifically, we
can take Ao to be half the chain, then the dispersion relation can be simply chosen as
εk,` = −2t

√
N cos ka. Thus, the dual Hamiltonian can be formulated as

Hd = −t
∑
x

∑
y=x±a

c†xe
iAx,y ·σ+iA0

x,yσ0cy , (47)

where cx = (cx,−, cx,+)T is a two-component spinor, σ = (σx, σy, σz) is a vector of Pauli
matrices and σ0 is an identity matrix. The fields Ax,y and A0

x,y reside at the link (x, y)
and no longer keeps anti-symmetric on its spatial indices, Ax,y 6= −Ay,x, A

0
x,y 6= −A0

y,x.
Thus we map non-Hermitian SSH model to non-Hermitian non-Abelian gauge field theory.
The original band indices are interpreted as component indices and Rd involves partition
on the internal spinor degrees as well as spatial degrees. General expressions for the dual
Hamiltonian are presented in Appendix B. On the other hand, commutation with Ro

requires Θ to be a block diagonal matrix and no S exists to make OSS†O† commute with
Ro. Therefore, the non-Hermitian SSH belongs to type-II, which is consistent with its
complex ES.

At the end of this section, we give some useful remarks on our duality and Dyson
map. Our duality is distinct from a Dyson map [38, 56]. A Dyson map is referred to as a
similarity transformation which maps a non-Hermitian system to a Hermitian counterpart,
which keeps an energy spectrum unchanged but generically generally alters entanglement
spectrum. In contrast, our duality has a different mission: keeping entanglement spectrum
unchanged while imposing no constraints on energy spectrum. For this purpose, we have
designed the duality shown in Fig. 1 which includes two necessary steps. For a PT -
symmetric system, one can define a parity operator to act on the Hamiltonian just as the
way as Θ in Eq. (8). However, the factorization constraint Θ = OO† does not allow Θ to
be such a parity operator. In fact, our duality is applicable to a general non-Hermitian
system since as shown in Fig. 1 the duality targets at invariance of ES and EE and no
restriction is needed for energy spectra.
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5 Conclusions

In this paper, we are interested in the role that non-Hermiticity plays in quantum entangle-
ment and develop a rigorous duality for probing the role. We make an initial step towards
a unified picture of non-Hermiticity and Hermiticity from the entanglement perspective.
Explicitly, we have considered non-Hermitian non-interacting systems whose Hamiltonians
are assumed to act on the Hilbert space with a complete set of biorthonormal eigenvectors
and possess an entirely real spectrum. We classify these systems into two types, which is
summarized in Table 1. For type-I, non-Hermiticity plays no role and thus we can effi-
ciently obtain entanglement entropy and entanglement spectrum by means of well-studied
results in Hermitian systems. For type-II, non-Hermiticity indeed plays an intrinsic role.
Several implications and applications are discussed.

Motivated by this work, we present here several questions for future study. First, is
there a similar/generalized duality or generalized LU for characterizing many-body en-
tanglement of non-Hermitian interacting systems [57,58]? For example, it is important to
define non-Hermitian version of LRE states via generalized LU. Second, is it possible to
find Wannier interpolation on non-Hermitian non-interacting entanglement [59]? Such an
interpolation may help us to semi-analytically understand ES of non-Hermitian fermion
systems. Third, how can we further physically distinguish two subclasses of type-II sys-
tems? In Corollary 1, we have shown that ES of type-II systems may be either complex
or real. So, it is interesting to further investigate finer structures of type-II systems.
Third, a free Hamiltonian plays a role as a mean-field theory of an interacting system.
What is the relation between two interacting systems if their mean-field theory are dual
to each other? Fourth, it is appealing to generalizing our duality into momentum space
entanglement [60, 61]. Furthermore, it is important to perform experimental measure-
ment to distinguish entanglement behaviors of the two-type non-Hermitian systems using
the experimental breakthroughs [62, 63] and in particular to confirm our statement for
type-I non-Hermitian systems. After the first arxiv version, we were aware that there are
some other interesting investigations on entanglement of non-Hermitian systems, such as
Refs. [64–66]. In the future, it will be interesting to combine these increasing new findings
and duality together.
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In the appendix, we make some explanation on the choices of O in the first step of the
duality and detailed derivations on the dual model for non-Hermitian SSH model.

A A two-site model

In this appendix, We concentrate on the procedures to determine the type of a given non-
Hermitian system. As is shown in Fig. 1, our duality is split into two steps. In Step- 1©, a
similarity transformation O are conducted on both Fock-space and real-space projectors
Po and Ro and then in Step- 2© an interchange between interpretation on momenta and
positions follows. According the duality, we classify non-Hermitian systems into two type.
Explicitly, if at least one Hermitian dual system Hd exists, a non-Hermitian system belongs
to type-I. Otherwise, it belongs to type-II. In practice, we need to check all possible O in
Step- 1©.

Here we consider a system with only two lattice sites that reads

Ho = reiθc†1c1 + sc†1c2 + re−iθc†2c2 + sc†2c1. (48)

where cs (s = 1, 2) is a fermion annihilation operator at the site s. The system has only
one particle. Non-Hermiticity arises from a complex-valued chemical potential. Following
the preliminary, we introduce bifermionic operators

ψl− =
1√

2 cosα
(eiαc1 + c2) ,

ψl+ = − 1√
2 cosα

(−c1 + eiαc2) ,

ψ†r− =
1√
2

(c†1 + e−iαc†2) ,

ψ†r+ =
1√
2

(−e−iαc†1 + c†2) ,

(49)

with seiα = ir sin θ +
√
s2 − r2 sin2 θ. And then we have the spectral decomposition

Ho = ε−ψ
†
r−ψl− + ε+ψ

†
r+ψl+ , (50)

where ε± = r cos θ ±
√
s2 − r2 sin2 θ are eigenenergies of the two states |r,±〉 = ψ†r±|0〉.

The ground state describes occupation of the state |r,−〉 and the corresponding Fock-space
projector Po is

Po = ψ†r−|0〉〈0|ψl− . (51)

We make a partition where the subregion Ao only contains the first site with the real-space
projector being

Ro = c†1|0〉〈0|c1 . (52)

Let’s start our duality. In Step- 1©, we can choose O to be

O =
1√
2
eiαc†1|0〉〈0|c1 +

1√
2
c†1|0〉〈0|c2 −

1√
2
c†2|0〉〈0|c1 +

1√
2
eiαc†2|0〉〈0|c2 , (53)

which defines a similarity transformation on both Po and Ro. We introduce the notations

c± = O−1ψr±O,
c†± = O−1ψ†l±O ,

ψr1,2 = O−1c1,2O,
ψ†l1,2 = O−1c†1,2O ,

(54)
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under which we get a compacted form after action of O

O−1PoO = c†−|0〉〈0|c−, O−1RoO = ψ†r1|0〉〈0|ψl1 . (55)

It is easy to check that in Eq. (54), c± and c†± are conventional fermion operators while

ψr1,2 and ψ†l1,2 are bifermionic operators [See Sec. 2]. In Step- 2©, we exchange indices {±}
and spatial indices {1, 2}, thus obtaining two projectors Pd and Rd in the dual system

Pd = ψ†r−|0〉〈0|ψl−, Rd = c†1|0〉〈0|c1 , (56)

where

ψl− =
1√

2 cosα
(c1 − e−iαc2) ,

ψl+ =
1√

2 cosα
(e−iαc1 + c2) ,

ψ†r− =
1√
2

(eiαc†1 − c†2) ,

ψ†r+ =
1√
2

(c†1 + eiαc†2) .

(57)

One should not confuse operators in Eq. (56) with those in the original system Ho. We
can build the dual Hamiltonian Hd by designing its spectrum ± cosα,

Hd = − cosαψ†r−ψl− + cosαψ†r+ψl+

= −i sinαc†1c1 + c†1c2 + c†2c1 + i sinαc†2c2 (58)

When α 6= 0, non-Hermiticity of Hd arises from the complex-valued chemical potential.
Consistently, the quantity Θ = OO† in Eq. (8)

Θ = 2c†1|0〉〈0|c1 + 2i sinαc†1|0〉〈0|c2 + 2i sinαc†2|0〉〈0|c1 + 2c†2|0〉〈0|c2 (59)

indeed fails to commute with Ro

[Θ,Ro] = −2i sinαc†1|0〉〈0|c2 + 2i sinαc†2|0〉〈0|c1 (60)

To determine the type of Ho, we have to check whether at least one Hermitian dual Hd

exists. Suppose
S = λ1c

†
1|0〉〈0|c1 + λ2c

†
2|0〉〈0|c2 . (61)

Then OS also satisfies the requirement in Step- 1©. However, we can not find any S to
make

[
OSS†O†,Ro

]
= 0,[

OSS†O†,Ro

]
=
(
e−iα |λ1|2 − eiα |λ2|2

)
c†1|0〉〈0|c2 −

(
e−iα |λ1|2 − eiα |λ2|2

)
c†2|0〉〈0|c1 .

(62)
Therefore, Ho belongs to type-II. On the other hand, we can directly calculate the reduced
density matrix

ρo = TrBo |r,−〉〈l,−| =
1

2 cosα

(
e−iαc†1|0〉〈0|c1 + eiα|0〉〈0|

)
(63)

and entanglement spectrum is complex-valued and

SEE = − e−iα

2 cosα
log

e−iα

2 cosα
− eiα

2 cosα
log

eiα

2 cosα
. (64)
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As comparison, we consider non-reciprocal model on a lattices with two sites,

Ho = rc†1c1 + t12c
†
1c2 + rc†2c2 + t21c

†
2c1 (65)

with single particle and subregion containing the first site. In step-1, we can choose O to
be

O =
√
t12c

†
1|0〉〈0|c1 +

√
t12c

†
1|0〉〈0|c2 −

√
t21c

†
2|0〉〈0|c1 +

√
t21c

†
2|0〉〈0|c2 . (66)

To determine the type of Hamiltonian in Eq. (65), suppose S = λ1c
†
1|0〉〈0|c1 +λ2c

†
2|0〉〈0|c2

and then[
OSS†O†,Ro

]
=
(
|λ1|2 − |λ2|2

)√
t12t21c

†
1|0〉〈0|c2 −

(
|λ1|2 − |λ2|2

)√
t12t21c

†
2|0〉〈0|c1 .

(67)
When |λ1| = |λ2|,

[
OSS†O†,Ro

]
= 0 and we are allowed to build a map to a Hermitian

system. When |λ1| 6= |λ2|, the dual system is non-Hermitian. Therefore, Ho in Eq. (65)
belongs to type-I. One can also follow the steps in Fig. 1 to construct the dual system,
which is just like what we do for the system in Eq. (50).

B Non-Hermitian SSH model

Here we present details on duality of non-Hermitian SSH model discussed in Sec. 4. To
be more transparent, we work in the framework of Dirac’s notations. The similarity
transformation O = ⊕kOk can be written as

Ok =− e−i(θk+ϕk)|k, 1〉〈k, 1|+ |k, 1〉〈k, 2|+ |k, 2〉〈k, 1|+ e−i(θk−ϕk)|k, 2〉〈k, 2| , (68)

where |k, s〉 denotes a basis vector carrying momentum k on sublattice s. So we have B,

B =
∑
x∈A
O−1|x, s〉〈x, s|O

=
1

N

∑
x∈A

∑
k,k′

O−1k |x, s〉〈x, s|Ok′

=
1

N

∑
x∈A

∑
k,k′

ei(k−k
′)x

1 + e−2iθk
[
(
eiϕk−iϕk′e−iθk−iθk′ + 1

)
|k, 1〉〈k′, 1|

+
(
−eiϕke−iθk + eiϕk′e−iθk′

)
|k, 1〉〈k′, 2|+

(
e−iϕke−iθk − e−iϕk′e−iθk′

)
|k, 2〉〈k′, 1|

+
(
e−iϕk+iϕk′e−iθk−iθk′ + 1

)
|k, 2〉〈k′, 2|] , (69)

where we use the relation

Ok|x, 1〉 =
1√
N
eikx

(
−e−i(θk+ϕk)|k, 1〉+ |k, 2〉

)
(70)

Ok|x, 2〉 =
1√
N
eikx

(
|k, 1〉+ e−i(θk−ϕk)|k, 2〉

)
(71)

with ρke
iϕk = υ+ωeika and ρke

iθk = εk+iu. Exchange the roles of positions and momenta
and we have the dual Fock-space projector Pd to occupied states

16



SciPost Physics Submission

Pd =
1

N

∑
x,y,k∈A

ei(x−y)k

1 + e−2iθx
[
(
eiϕx−iϕye−iθx−iθy + 1

)
|x,−〉〈y,−|

+
[
−eiϕxe−iθx + eiϕye−iθy

]
|x,−〉〈y,+|+

[
e−iϕxe−iθx − e−iϕye−iθy

]
|x,+〉〈y,−|

+
[
e−iϕx+ϕye−iθx−iθy + 1

]
|x,+〉〈y,+| . (72)

Therefore, we have the dual Hamiltonian,

Hd =
1

N

∑
x,y,k,`,`′

εk,`e
i(x−y)kU ``

′
xy c
†
x,`cy,`′ , (73)

where

Uxy =
1

1 + e−2iθx

[
eiϕx−iϕye−iθx−iθy + 1 −eiϕxe−iθx + eiϕye−iθy

e−iϕxe−iθx − e−iϕye−iθy e−iϕx+iϕye−iθx−iθy + 1

]
(74)

and ρxe
iϕx = υ+ωei

2πx
Na , ρxe

iθx = εx + iu. The spectrum dispersion relation is constrained
to εk,` < 0 when k ∈ A. Its form depends on choices of region Ao. For example, if Ao is
half the chain, we can take εk,` = −2t

√
N cos ka to be independent of index `. In this case,

we arrange cx = (cx,−, cx,+)T as a two-component spinor such that the dual Hamiltonian
can be formulated compactly,

Hd = −t
∑
x

∑
y=x±a

c†xUxycy = −t
∑
x

∑
y=x±a

c†xe
iAx,y ·σ+iA0

x,yσ0cy . (75)

Here we identify Uxy = eiAx,y ·σ+iA0
x,yσ0 to give non-Abelian gauge field theory of the non-

Hermitian version. The form of εk,` for a general region Ao can be obtained by adding a
proper chemical potential.
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