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Abstract1

Inspired by topological data analysis techniques, we introduce persistent ho-2

mology observables and apply them in a geometric analysis of the dynamics3

of quantum field theories. As a prototype application, we consider data from4

a classical-statistical simulation of a two-dimensional Bose gas far from equi-5

librium. We discover a continuous spectrum of dynamical scaling exponents,6

which provides a refined classification of nonequilibrium universal phenom-7

ena. A possible explanation of the underlying processes is provided in terms8

of mixing strong wave turbulence and anomalous vortex kinetics components9

in point clouds. We find that the persistent homology scaling exponents are10

inherently linked to the geometry of the system, as the derivation of a packing11

relation reveals. The approach opens new ways of analyzing quantum many-12

body dynamics in terms of robust topological structures beyond standard field13

theoretic techniques.14
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1 Introduction53

Emanating from algebraic topology and Morse theory, the applied mathematics branch54

of topological data analysis has gained considerable attention over the past two decades,55

accompanied by far-reaching theoretical and computational developments [1, 2]. Using56

tools from abstract algebra, algebraic topology offers powerful and versatile methods to57

globally study the structure of topological spaces by means of homology groups. Derived58

from the latter, quantities such as Betti numbers prominently appear in this context59

[3]. Resolving homological structure on different scales, hierarchically, in topological data60

analysis the notion of persistent homology makes a multi-scale description of topological61

structure contained in point cloud data possible [4–6]. To accomplish this, simplicial62

complexes such as so-called Čech complexes, Vietoris-Rips complexes or alpha shapes63

[7,8] are employed. Besides the mathematical investigations on persistent homology, very64

fruitful applications to physical systems include studies in astrophysics and cosmology65
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[9–12], physical chemistry [13], amorphous materials [14], quantum algorithms [15–19]66

and the theory of quantum phase space [20].67

In this work, we propose persistent homology observables for the analysis of the dy-68

namics of quantum many-body systems. As a prototype application, we consider a Bose69

gas far from equilibrium. While there are many different ways of driving a Bose gas away70

from equilibrium, it has recently been demonstrated experimentally that the subsequent71

relaxation dynamics can exhibit universal properties that are insensitive to the details of72

the initial conditions and system parameters [21–23]. Theoretical results based on field73

correlation functions indicate that vastly different systems far from equilibrium may share74

very similar universal scaling properties, ranging from post-inflationary dynamics in the75

early universe [24,25], and ultra-relativistic collision experiments with heavy nuclei [26–28],76

to ultra-cold quantum gases in the laboratory [29, 30]. In particular, quantum as well as77

classical statistical field theories appear to belong to the same nonthermal universality78

class [31]. These similarities have to be tested against refined analysis and classification79

schemes. We will exploit the multi-scale topological information encoded in a family of80

alpha complexes and in associated persistent homology groups in order to analyze self-81

similar scaling dynamics in position space variables.82

More precisely, serving as a numerical testbed, we apply topological data analysis83

techniques to the dynamics of the single-component nonrelativistic Bose gas in two spatial84

dimensions, described by the time-dependent Gross-Pitaevskii equation with quantum ini-85

tial conditions. The latter exhibits a rich phenomenology far from equilibrium, including86

various nonthermal fixed points associated to regimes of weak and strong wave turbu-87

lence [32–34]. Focussing on the nonperturbative strong wave turbulence regime, a vertex-88

resummed two particle-irreducible expansion scheme has been successfully employed to89

obtain analytical predictions for relevant scaling exponents [31, 35]. The existence of cor-90

responding nonthermal fixed points has been confirmed by means of numerical lattice simu-91

lations [36]. In addition, the infrared nonthermal fixed point can be dominated by vorticial92

excitations interacting anomalously with each other via 3-vortex interactions [36,37], that93

is, altering the universal scaling behavior. It has been conjectured that this anomalous94

vortex kinetics is associated to the formation of Onsager vortex clusters out of equilib-95

rium via evaporative heating [38, 39]. Recently, experimental evidence for scale-invariant96

dynamics and Onsager’s model has been reported [40,41].97

Guided by numerical results for the two-dimensional Bose gas, we reveal that at late98

times far from equilibrium persistent homology observables can show self-similar scaling99

characteristic to a nonthermal fixed point. We discover a continuous spectrum of dynami-100

cal scaling exponents, depending on a filtration parameter to construct point clouds, which101

provides a refined classification of nonequilibrium universal phenomena. The existence of102

such a scaling exponent spectrum seems to indicate scaling species mixing, in our case103

between the strong wave turbulence and the anomalous vortex kinetics nonthermal fixed104

points present in the infrared of the particular Bose gas. The analysis is supplemented105

by a thorough investigation of accompanying subtleties of the chosen persistent homology106

approach such as amplitude redistribution-induced exponent shifts.107

On the theoretical side, we define persistent homology observables. We introduce the108

notion of a persistence pair distribution and its statistical asymptotics in order to infer109

self-similar behavior of the latter. We reveal that the appearing scaling exponents probe110

the geometry at hand, as indicated by a packing relation derived in this study.111

This publication is structured as follows. With the Bose gas simulations at hand,112

we introduce and study point clouds and persistent homology groups in Sec. 2. Redis-113

covering self-similarity, this exploration culminates in the existence of a scaling exponent114

spectrum. In Sec. 3 we carry out the construction of persistent homology observables115
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in the classical-statistical framework, introduce the asymptotic persistence pair distribu-116

tion and related geometric quantities and investigate a corresponding self-similar scaling117

ansatz. We discuss amplitude redistribution-induced exponent shifts, persistences and118

Betti number distributions in Sec. 4. Finally, in Sec. 5 we summarize, draw conclusions119

and issue an outlook.120

2 Persistent homology in a Bose gas121

Focussing on lattice simulations of the nonrelativistic Bose gas in two dimensions, we122

introduce a simple approach to construct point clouds, namely as sublevel sets of field123

amplitudes. Given such point clouds, a rather intuitive sketch of the construction of124

alpha complexes and persistent homology groups is provided. In corresponding far-from-125

equilibrium simulations we discover growing geometric structures and self-similar scaling126

at large length scales and late times. In particular, the existence of a scaling exponent127

spectrum is revealed. By means of the mixing of scaling dynamics species we offer a128

possible route to explain this finding.129

2.1 Simulation prerequisites130

The nonrelativistic Bose gas can be described by complex scalar fields ψ(t,x) depending on131

time and space, in numerical simulations restricted to a spatial lattice and time-evolved in132

discrete time-steps. We focus on the overoccupied regime, in which the classical-statistical133

approximation is suitable [31]. Accordingly, at initial time Qt = 0 a number k of classi-134

cal field configurations is sampled from a Gaussian ensemble, computing their individual135

subsequent dynamics according to the time-dependent Gross-Pitaevskii equation. In the136

classical-statistical approximation expectation values of an observable are computed as137

ensemble-averages of the observable evaluated for individual field configurations. With138

the momentum denoted by p, initial field configurations fulfill139

1

2

∫
d2x e−ipx〈ψ(0,x)ψ∗(0,0) + ψ(0,0)ψ∗(0,x)〉 =

50

2mgQ
Θ(Q− |p|), (1)

that is, initially, the Fourier-transformed statistical two-point correlation function — the140

occupation number spectrum — is described in terms of a momentum scale Q. Unlike a141

system in thermal equilibrium, where the typical occupancy is of order unity at a character-142

istic temperature scale T , here we consider a nonequilibrium system where the occupancy143

at a given characteristic scale Q is much higher than unity. Any dimensionful physical144

quantity will be given in units of Q. We set the mass m/Q = 8 and coupling Qg = 0.0625145

throughout this work. Outside the box, no ‘quantum-half’ is taken into account and no146

initial condensate is specified. Spatial coordinates are restricted to a square lattice, Λ,147

consisting of a regular grid of N2 points within a volume L2 with periodic boundary con-148

ditions. Throughout this work, the lattice spacing reads Qa = 0.0625, the number of149

lattice sites N = 1536, such that150

Λ = {(an1, an2) |n1, n2 ∈ {0, . . . , N − 1}}. (2)

If not stated differently, we average over k = 72 classical-statistical realizations to compute151

classical-statistical expectation values. For further details on the numerical simulations152

we refer to Appendix E.153
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Figure 1: Amplitudes (left) and phases (right) of an example field configuration at time
Qt = 3750.

Figure 2: Amplitudes of an example field configuration and corresponding point clouds.
First column from the left: Spatially-resolved field amplitudes, |ψ(t, x, y)|. Second to
fourth column: Point clouds Xν(t) for the different ν̄-values indicated. First row: Qt =
3750. Second row: Qt = 11250.
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2.2 Phenomenology of point clouds154

Given a classical-statistical field realization ψ(t,x), an immense freedom of choice exists155

in constructing point clouds, which are, generally speaking, finite sets of points in an156

arbitrary Euclidean space. We define a filtration function f to be a map from C to R used157

to generate point clouds as subsets of the lattice Λ. We may construct point clouds as158

sublevel sets of f(ψ(t, ·)), that is, at time Qt define them as {x ∈ Λ | f(ψ(t,x)) ∈ (−∞, ν]}159

for a filtration parameter ν. In this work, point clouds are generated as sublevel sets of160

the field amplitude, thus defining161

Xν(t) := {x ∈ Λ | |ψ(t,x)| ≤ ν}. (3)

By means of this definition, the ensemble of classical-statistical field realizations translates162

for each time Qt into an ensemble of point clouds. Numerically, we specify the filtration163

parameter ν by means of the dimensionless variant ν̄,164

ν̄ := ν/〈|ψ(t = 0)|〉vol, (4)

with the volume-averaged initial field amplitude165

〈|ψ(t = 0)|〉vol =
1

N2

∑
x∈Λ

|ψ(t = 0,x)|. (5)

We want to emphasize that in experiments with cold atoms optical density images166

as given by the square of the amplitudes displayed in Fig. 1 and used in the filtration167

protocol, Eq. (3), form a typical observational quantity and can be easily accessed via168

absorption images. Varying the filtration parameter ν̄ amounts to measurements up to the169

square root of corresponding condensate densities, highlighting the physical significance170

of the employed point cloud construction via Eq. (3).171

Simulating on a spatial square lattice with constant lattice spacing, we want to stress172

that to obtain point clouds by means of Eq. (3), to compute alpha complexes and to173

evaluate persistent homology groups only the finiteness of the lattice is crucial. Else,174

Xν(t) might consist of infinitely many points. The construction of persistent homology175

groups, carried out in Sec. 2.3, is robust against perturbations of the lattice points1.176

This renders the microscopic form of the lattice irrelevant for later numerical persistent177

homology results. The constant lattice spacing and finite lattice volume solely amount to178

a smallest and a largest length scale amenable to the investigated real-time dynamics.179

In Fig. 1 amplitudes and phases of a single classical-statistical field realization are180

displayed. One may first note from the amplitudes on the left that in position space181

the system comprises two major components: fluctuations in the bulk around a mean182

amplitude value larger than zero and distinct minima with minimum values near to zero.183

While phases differ locally only slightly in regions where minima are absent, around each184

minimum phase windings with shifts of ±2π occur. Thus, the minima can be identified185

with elementary vortex nuclei.186

In Fig. 2 at two different times we show spatially-resolved amplitudes and a variety of187

point clouds computed from a single classical-statistical field realization. In point clouds188

Xν(t) as defined by Eq. (3), at both times visualized we find clear manifestations of189

the aforementioned two components appearing in amplitudes. Having approximately zero190

amplitude at the center of their nuclei, vortices dominate the point clouds Xν(t) for small191

1Mathematically, in a number of ways persistent homology groups are stable against perturbations of
corresponding input, cf. inter alia Refs. [42, 43]. This implies, that if points in Xν(t) are altered slightly,
then persistence diagrams of the sequence of alpha complexes of Xν(t) change only slightly, too.
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filtration parameters such as ν̄ = 0.2. In the limit of ν̄ → 0 point clouds actually comprise192

mostly vortex positions themselves, although the presence of points originating from bulk193

density fluctuations cannot be excluded. Described by point vortex models, for this reason194

the low-ν̄ limit can be associated to the incompressible limit of the theory. Increasing ν̄,195

in point clouds points first accumulate around vortex nuclei but at moderately high values196

such as ν̄ = 0.6 also occur in the bulk. The higher ν̄ gets, the denser point clouds become,197

reducing the average distance between points. Hence, studying point clouds at different198

ν̄-values effectively probes the system on different length scales.199

Comparing the two times displayed, we note that the number of vortices decreases with200

time, or, equivalently, the average inter-vortex distance increases. In Fig. 2 point clouds201

at ν̄ = 0.2 reflect this behavior, becoming sparser in the course of time. Similarly, at202

higher values of ν̄ the density of points in point clouds decreases in regions where vortices203

are absent. All this indicates that in the temporal regime of the displayed times geometric204

structures in point clouds continuously grow at large length scales.205

Yet, one may notice that for ν̄ = 0.6 and ν̄ = 0.7 the number of points in the bulk206

decreases faster compared to the decline in vortex numbers. This provides a first hint at207

the presence of different components, whose dynamics differ in terms of “speed”.208

2.3 An introduction to persistent homology209

To obtain a robust quantitative means of the topological structure present in a point cloud210

Xν(t), persistent homology can be employed. Aiming at an intuitive treatment, with a211

point cloud Xν(t) at hand as it appears in the Bose gas simulations we introduce relevant212

notions from computational topology. From given input data we first define the Delaunay213

complex and a notion of the size of a simplex. The so-called Delaunay radius function214

can then be used to construct a nested sequence of subcomplexes, called alpha complexes,215

whose persistent homology groups form our objects of interest and eventually provide216

multi-scale information on the topological structure of the input point cloud. While we217

carry out constructions in two spatial dimensions here, they generalize easily to higher218

dimensions.219

In Appendix A we rigorously introduce relevant fundamental algebraic topology no-220

tions and discuss the mathematical construction of persistent homology groups. For a221

general introduction to algebraic topology we refer to Ref. [3]; for a thorough introduction222

to computational topology the interested reader may consult Refs. [2, 6], for instance.223

2.3.1 Alpha complexes224

Let Xν(t) be a point cloud as defined by Eq. (3). We construct persistent homology225

groups from a nested family of simplicial complexes. A simplicial complex S on Xν(t)226

comprises the set Xν(t) together with a collection S of subsets of Xν(t). The defining227

property of a simplicial complex is that for all points x ∈ Xν(t), the vertex {x} ∈ S, and228

if τ ⊆ σ ∈ S, then τ ∈ S, i.e. S is closed under taking subsets. The elements of S are229

called its simplices. Combinatorially, this structure allows for the computation of various230

descriptors of its topology, in particular the homology groups of S. We deliver details in231

Appendix A.1.232

Let us construct the particular type of simplicial complexes employed in this work:233

alpha complexes. Clearly, for any three points in Xν(t) that do not lie on a single straight234

line, a unique circumsphere passing through the points exists. Any two points can be235

trivially identified with a zero-dimensional circumsphere. We shall assume that the points236

in Xν(t) are in general position. This excludes, for example, the possibility that three or237
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Figure 3: Alpha complexes of various radii Qr of the point cloud Xν(Qt = 3750) for
ν̄ = 0.6 as displayed in Fig. 2. Panel (a): Qr = 1.0. Panel (b): Qr = 3.0. Panel (c):
Qr = 7.0. Panel (d): Qr = 20.0.

more points are collinear or that four or more points lie on a single circle2. Then, any238

two or three points in Xν(t) have a unique zero- or one-dimensional circumsphere passing239

through these points, respectively3. We call a circumsphere empty, if all points of Xν(t)240

lie on or outside the sphere.241

The Delaunay complex, Del(Xν(t)), can be defined to consist of all points in Xν(t) as242

well as those edges and triangles whose circumspheres are empty [45]. Speaking about243

terminology, a point is a zero-dimensional simplex, an edge between two points is a one-244

dimensional simplex and a triangle is a two-dimensional simplex. As described in Ref. [44],245

for point clouds in general position this procedure yields that the corresponding Delaunay246

complex is a simplicial complex, allowing for the construction of homology groups as247

described intuitively below.248

The Delaunay radius function Rad : Del(X)→ [0,∞) is defined to map every simplex249

to the smallest radius of all its empty circumspheres. Intuitively, it provides a measure250

for the size of a simplex. In Fig. 3d the Delaunay complex of an example point cloud251

Xν(t) as it appears in the Bose gas simulations is displayed for ν̄ = 0.6. Note that252

simplices of different Delaunay radii are visually of distinct dominance, typically. Smaller253

simplices appear foremost around local accumulations of points, while simplices of larger254

radii mainly make up the large-scale structure between them.255

Let Qr ∈ [0,∞) be some length scale. Capturing appearing structures of particular256

sizes, from the Delaunay radius function we finally construct alpha complexes4 as its257

sublevel sets,258

αr(Xν(t)) := {σ ∈ Del(Xν(t)) |Rad(σ) ≤ Qr}. (6)

2While different definitions of general position exist across the literature, we employ the one used in
Ref. [44].

3In general spatial dimension d this would amount to any 2 ≤ j ≤ d + 1 points xi1 , . . . , xij having a
unique (j − 2)-dimensional circumsphere passing through all these points.

4Generically, alpha complexes are simplicial subcomplexes of the Delaunay complex [6].
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Figure 4: Persistence diagram of one-dimensional homology classes for the sequence of
alpha complexes partially displayed in Fig. 3, Dgm1(Xν(t)).

For all 0 ≤ r ≤ s we find αr(Xν(t)) ⊆ αs(Xν(t)). To this end, we obtain what is259

called a filtration of the Delaunay complex Del(Xν(t)), that is, a nested sequence of alpha260

complexes little by little filling out all Del(Xν(t)),261

∅ ⊆ αr1(X) ⊆ · · · ⊆ αrκ(X) = Del(X), (7)

with ri ≤ rj for all i < j.262

Again referring to the example point cloud Xν(t), in Fig. 3 corresponding alpha263

complexes of different radii Qr are displayed. Note that at a small radius such as Qr = 1.0264

the alpha complex mainly reflects the local accumulations of points in Xν(t). Topological265

structures such as holes are of tiny size and each connected component loosely corresponds266

to a local accumulation of points. Besides seemingly random connected structures, at267

intermediate radii comparably large-scale holes appear in the alpha complexes, such as268

visible in the Qr = 7.0 alpha complex displayed in Fig. 3c. At even larger radii, the269

full Delaunay complex is recovered, in accordance with Eq. (7). Leading to the notion270

of persistent homology, it is a crucial insight that independent connected components271

disappear at a certain radius, merging with other components, and that holes only appear272

in alpha complexes of a certain radius and disappear again at a higher radius.273

2.3.2 Persistent homology and the persistence diagram274

This intuitive picture can be turned into a mathematical concept: persistent homology.275

In Appendix A.2, we provide a more rigorous introduction to it, while here we focus on276

capturing its intuitive essence.277

Alpha complexes of zero radius only consist of the vertices, that is, all points contained278

in the point cloud Xν(t). Certainly, the number of connected components in the alpha279

complex of zero radius equals the cardinality of Xν(t). Increasing the radius, at a certain280

value a first edge between two vertices appears in the alpha complex. A previously inde-281

pendent connected component dies. We call the minimum radius at which it is not present282

anymore in the corresponding alpha complex its death radius. The radius rising further,283

more and more connected components die, merging into a larger and larger complex. From284

a certain radius onwards, only one connected component is present in the corresponding285

alpha complexes. In Fig. 3 the process of connected components merging one by one into286

larger complexes can be observed as the sequence of alpha complexes is traversed towards287

larger radii.288
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With radii increasing, in the sequence of alpha complexes holes begin to appear as is289

clearly visible in Figs. 3b and 3c. The minimum radius at which an independent hole290

first appears in the sequence of alpha complexes is called its birth radius. We say that it291

is born at its birth radius. Successively, a given hole is filled out with triangles in alpha292

complexes of rising radii, until from its death radius onwards the hole vanishes, being fully293

filled.294

In fact, in simplicial homology independent connected components are described by295

zero-dimensional homology classes and independent holes by one-dimensional homology296

classes. If the point clouds of interest lived in a higher-dimensional Euclidean space,297

one could continue analogously to describe the birth and death of higher-dimensional298

homology classes. This includes, for instance, independent enclosed voids represented299

by two-dimensional homology classes. Homology classes of dimension `, appearing and300

disappearing again as the sequence of alpha complexes is traversed, are collected in groups,301

the `-th persistent homology groups, cf. Appendix A.2.302

Summarizing the structure of `-th persistent homology groups, the `-th persistence303

diagram Dgm`(Xν(t)), is defined to contain all birth radius-death radius pairs (rb, rd) of304

`-dimensional homology classes appearing in the sequence of alpha complexes of Xν(t),305

taking respective multiplicities into account for coinciding such pairs5. In Fig. 4 the306

persistence diagram of one-dimensional homology classes is displayed for the sequence of307

alpha complexes partially shown in Fig. 3. Certainly, in a persistence diagram all points308

lie above the diagonal rb = rd, since the death of any homology class happens at a higher309

radius than its birth. We find that in the bottom-left of the diagram an accumulation310

of pairs is present, corresponding to comparably small one-dimensional homology classes311

(holes). The partly vertical alignment of points can be attributed to the homogeneity of the312

square lattice, on which Xν(t) resides. In addition, we find a second accumulation of pairs313

in the top-right of the diagram, corresponding to larger-size one-dimensional homology314

classes in corresponding alpha complexes. On these length scales birth and death radii315

are approximately independent from the microscopic lattice geometry.316

2.3.3 Statistical measures: birth and death radii distributions317

To obtain expectation values in the classical-statistical framework, ensemble-averages of318

quantities describing persistence diagrams of individual classical-statistical realizations319

are required. Persistence diagrams themselves are difficult objects to study statistically.320

Without modifications not even a statistical average can be defined unambiguously. Nev-321

ertheless, there exist multifarious quantities suitable for a statistical treatment [46]. We322

introduce two of these here, postponing the general description to Sec. 3.1. We explicitly323

construct classical-statistical ensemble-averages. To this end, let X
(i)
ν (t), i ∈ N, be an324

ensemble of point clouds, all constructed from individual field realizations according to325

Eq. (3). Denote by D
(i)
` (t) := Dgm`(X

(i)
ν (t)) the `-th persistence diagram of the i-th326

such point cloud. Let σ > 0 be a constant. We define the expectation values of the `-th327

5The persistence diagram is a finite multiset of points in R2, also taking respective multiplicities into
account.
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Figure 5: Birth and death radii distributions in the infrared. Columns 1 and 2: Death radii
of of zero-dimensional homology classes. Columns 3 and 4: Birth radii of one-dimensional
homology classes. Individual columns show data for the indicated filtration parameter,
ν̄. Row 1: unrescaled distributions. Row 2: rescaled distributions. The employed time-
dependent scaling exponents are displayed in Fig. 7.

distribution of birth radii and the `-th distribution of death radii as328

〈B`〉(t, rb) = lim
k→∞

1

k

k∑
i=1

∑
(r′b,r

′
d)∈D(i)

` (t)

1

2πσ2
exp

(
−(rb − r′b)2

2σ2

)
, (8a)

〈D`〉(t, rd) = lim
k→∞

1

k

k∑
i=1

∑
(r′b,r

′
d)∈D(i)

` (t)

1

2πσ2
exp

(
−(rd − r′d)2

2σ2

)
, (8b)

respectively. Note that these distributions are statistically well-behaved, such that aver-329

ages and the denoted limits exist [47]. The parameter σ is chosen sufficiently large, such330

that numerical outcomes are independent from its particular value.331

2.4 Growing geometric structures in persistent homology332

Using a computational topology pipeline as described in Appendix B, we can numeri-333

cally investigate birth and death radii distributions for different filtration parameters ν̄ in334

the aforementioned Bose gas simulations. For large length scales, in Fig. 5 death radii335

distributions of zero-dimensional homology classes and birth radii distributions of one-336

dimensional homology classes are displayed at times between Qt = 3750 and Qt = 35625.337

Zero-dimensional persistent homology classes are always born at radius Qrb = 0, turning338

the distribution of birth radii of zero-dimensional homology classes trivial. The occurring339

oscillations in distributions are due to statistical uncertainties, being computed from only340

a finite number of classical-statistical samples.341

We first discuss unrescaled variants of the displayed distributions. It is important342

to note that in any of the distributions the maximum number of counts in birth and343

death radii distributions decreases with time. Simultaneously, the steep decline at largest344

radii in birth and death distributions constantly shifts to higher radii. Clearly, these are345
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manifestations of geometric structures in the system growing at large length scales as346

conjectured in Sec. 2.2 from the point clouds themselves. Beyond this, the approximately347

constant form of the distributions already provides a first hint at self-similar dynamics.348

In first death radii distributions a clear peak is visible, in particular for ν̄ = 0.2 as349

displayed in Fig. 5, panel (a3). Point clouds for small ν̄-values being dominated by350

accumulations of points around vortex nuclei, we expect this distinguished length scale351

to provide a measure for the average inter-vortex distance. At higher ν̄-values such as352

ν̄ = 0.6 the peak is blurred by means of bulk points entering corresponding point clouds.353

2.5 Unveiling a spectrum of scaling exponents354

Motivated by the approximately constant form of the distributions displayed in Fig. 5, we355

examine whether they can be consistently described by a self-similar scaling ansatz. We356

say that birth and death radii distributions scale self-similarly, if exponents η1, η
′
1 and η2357

exist, such that for all times t, t′,358

〈B`〉(t, rb) = (t/t′)η
′
1−η2〈B`〉(t′, (t/t′)−η1rb), (9a)

〈D`〉(t, rd) = (t/t′)η1−η2〈D`〉(t′, (t/t′)−η
′
1rd). (9b)

In Sec. 3.3 we deduce this particular form of scaling behavior from a scaling ansatz359

to a more general quantity that describes persistent homology groups, the asymptotic360

persistence pair distribution. Notice that in this scaling ansatz a possible dependence on361

the dimension ` of homology classes is neglected, supported by numerics.362

Using the numerical protocol described in Appendix H, scaling exponents are extracted363

from birth and death radii distributions of one-dimensional homology classes. Given a time364

Qtmin, birth and death radii distributions at times Qtmin, Qtmin + 625 and Qtmin + 1250365

are fitted simultaneously against distributions at reference time Qt′ = 3750. A measure366

for the quality of a self-similar description of the investigated distributions is provided by367

means of residuals. For instance, for the distribution of birth radii residuals at time Qt368

are computed as369

Res.(〈B`〉)(t, rb) :=
(t/t′)η

′
1−η2〈B`〉(t′, (t/t′)−η1rb)
〈B`〉(t, rb)

− 1. (10)

Indeed, distributions can be consistently rescaled by means of the scaling ansatz de-370

scribed in Eqs. (9a) and (9b). This can be deduced from Fig. 5 with residuals of rescaled371

distributions scattering approximately evenly around zero. Note that distributions of372

both zero- and one-dimensional homology classes can be consistently rescaled with the373

same triple of exponents, validating that in the scaling ansatz we neglected a possible374

`-dependence. However, filtration parameter- and time-dependent scaling exponents are375

necessary for a successful rescaling.376

In Fig. 6 we show the scaling exponents for a single minimum fitting time Qtmin,377

highlighting the size of error bars. Errors origin from a finite number of classical-statistical378

samples taken into account and from fitting uncertainties. For values of ν̄ . 0.4 the379

displayed exponent values approximately lie around 0.2. A rise in values takes place380

for ν̄ & 0.5, up to a maximum value of approximately 0.8. Thus, we make the crucial381

observation that a continuous spectrum of scaling exponents exists, depending on the382

filtration parameter ν̄.383

Within error bars η1 equals η′1 at all ν̄-values investigated here. This provides numerical384

evidence for that birth and death radii show the same dynamics at large length scales. In385

addition, for all ν̄-values analyzed η2/η1 = 4 within the indicated error bars. This relation386
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Figure 6: Persistent homology scaling exponents at Qtmin = 18750.

Figure 7: Persistent homology scaling exponents for different filtration parameters ν̄ and
minimum fitting times Qtmin.

results from the bounded packing of homology classes of a given size into the constant387

lattice volume, as shown in Sec. 3.3.2.388

Comprehensively, results are summarized in Fig. 7, in which exponents are displayed389

in the full (ν̄, Qtmin)-plane. The gradual shift of the peak in scaling exponents to higher390

ν̄-values with increasing fitting time Qtmin is a result of the redistribution of amplitude391

values with time, discussed in Sec. 4.1. The scattering of exponent values at larger ν̄-values392

is due to statistical uncertainties.393

2.6 Scaling species and exponents mixing conjecture394

An observation such as the existence of a whole spectrum of scaling exponents at large395

length scales requires an explanation. We conjecture that its appearance is linked to396

different dynamical scaling species occurring in the infrared of the two-dimensional Bose397

gas.398

First, note that momenta in the infrared regime correspond to large length scales.399

Hence, if infrared dynamics is visible in quantities describing the persistent homology of400

alpha complexes, it will show at correspondingly large birth and death radii. Vice versa,401

if ultraviolet physics is visible in persistent homology, it will show up at comparably small402

birth and death radii. To this end, we identify the regime of large birth and death radii403

in their distributions with the infrared regime of the system. This offers the possibility of404

linking aforementioned results to known momentum space dynamics of physical quantities.405

In addition, for positive scaling exponents η1 = η′1 and η2 the scaling ansatz described406

by Eqs. (9a) and (9b) corresponds to a blow-up of length scales as a power-law with407

exponent η1, as we detail in Sec. 3.3. Hence, a comparison of the exponent η1 with scaling408
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exponents appearing in power-laws of further physical length scales is reasonable.409

We restrict the following discussion to η1. For ν̄ . 0.4, the exponent η1 meets the410

value of 1/5 associated to the anomalous vortex kinetics nonthermal fixed point [36, 41]411

and confirmed by the self-similar dynamics of occupation number spectra in the given412

simulations, cf. Appendix F. Point clouds, alpha complexes as well as birth and death413

radii distributions reflect the occurring vortex dynamics for small ν̄, correspondingly. This414

is in accordance with the observation made in Sec. 2.2 that for ν̄ . 0.4 point clouds mainly415

comprise accumulations of points around vortex nuclei.416

The exponent η1 increases with ν̄ up to maximum values of between 0.7 and 0.9417

depending on Qtmin, cf. Fig. 7 — a value which is significantly different from 1/5. We418

take a small detour to provide a physical interpretation for this phenomenon.419

Collectively, the vortices show anomalous kinetics and dominate point clouds at low420

ν̄-values: η1(ν̄ = 0.05) ≈ 0.2. It is well-known, however, that the two-dimensional nonrel-421

ativistic Bose gas not only exhibits the anomalous vortex kinetics nonthermal fixed point422

with β = 0.2, but also incorporates strong wave turbulence characterized by β = 0.5423

[31, 36, 41, 48], β denoting the corresponding scaling exponent in a correlation function424

scaling ansatz, cf. Eq. (43) in Appendix F. If the vortices were absent or coupled strongly425

to sound excitations in the bulk, only self-similar scaling with β = 0.5 would be visible, as426

argued for in Ref. [36]. Motivated by this, we infer that in the configurations investigated427

it is sound excitations in the bulk that reflect strong wave turbulence. Correspondingly, if428

bulk points enter point clouds, then birth and death radii distributions might show scaling429

behavior deviating from η1 = 0.2. As can be seen in Figs. 2, 6 and 7 this is the case for430

growing ν̄-values and explains the increase of η1. With this admittedly loose association431

of bulk points to strong wave turbulence and vortex nuclei points to anomalous vortex432

kinetics in mind, we refer to the underlying phenomenon as scaling species mixing in point433

clouds.434

Yet, the maximum value of η1(ν) exceeds 0.5 significantly for all Qtmin. A heuristic435

geometric explanation proceeds as follows. Restrict to the dynamics of a single classical-436

statistical field configuration and corresponding point clouds Xν(t). Let Yν(t) ⊆ Xν(t)437

be associated to anomalous vortex kinetics and Zν(t) ⊆ Xν(t) associated to strong wave438

turbulence in the bulk, such that Xν(t) = Yν(t) ∪ Zν(t). The alpha complexes of Xν(t),439

αr(Xν(t)), however, do not simply decay into αr(Yν(t)) and αr(Zν(t)). Instead, depending440

on the precise arrangements of points in Yν(t) and Zν(t), there may be a lot of simplices441

contained in αr(Xν(t)) which incorporate points of both Yν(t) and Zν(t). In addition,442

simplices that only consist of points in Yν(t) or Zν(t) can be very different from the ones443

in αr(Yν(t)) and αr(Zν(t)). The construction of alpha complexes from Yν(t) and Zν(t) is444

a highly nonlinear process. Birth and death radii distributions can reflect this behavior.445

3 Persistent homology observables and self-similarity446

In this section we embed alpha complexes and persistent homology descriptors into the447

classical-statistical regime of quantum field theory (QFT). By means of functional sum-448

maries of persistence diagrams, this leads to the definition of persistent homology observ-449

ables. In quite a few examples of these the same integral kernel appears, which we call450

the asymptotic persistence pair distribution. This paves the way to a self-similar scaling451

approach for the asymptotic persistence pair distribution, whose outgrowths for birth and452

death radii distributions are given by Eqs. (9a) and (9b). In Sec. 2.5 this particular453

scaling behavior has been shown to describe simulation outcomes well.454
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3.1 Persistent homology observables via functional summaries455

Naturally, studying persistent homology in QFT requires a statistical treatment. Persis-456

tence diagrams themselves, however, do not admit a clear notion of averages [46]. Instead,457

we propose to focus on so-called functional summaries, providing general statistically well-458

behaved descriptors of persistence diagrams. In Sec. 3.2 we reveal that the investigated459

birth and death radii distributions given by Eqs. (8a) and (8b) are corresponding exam-460

ples.461

Let D be the space of persistence diagrams, that is, the space of finite multisets of462

points within {(rb, rd) ∈ [0,∞)2 | rd ≥ rb}. Let F be a collection of functions, f : Ω→ R463

for all f ∈ F , Ω being a compact space. Following Ref. [47], a functional summary is in464

full generality any map from the space of persistence diagrams to a collection of functions,465

F : D → F .466

Upon the classical-statistical approximation, expectation values of quantum observ-467

ables are computed as ensemble-averages of classical field configurations, which are time-468

evolved via the corresponding classical equation of motion starting from fluctuating initial469

conditions. The range of validity of this approximation is typically restricted to high470

occupation numbers [31]. We propose to proceed analogously for functional summaries471

of persistence diagrams. To this end, any such summary F may be evaluated on the472

level of individual field configurations and its expectation value 〈F 〉 computed as the473

ensemble-average. We assume that the range of validity of this approach coincides with474

the well-known classical-statistical regime. Certainly, for any functional summary F this475

proposal requires the existence of a corresponding linear operator F , such that in the476

classical-statistical regime for any s ∈ Ω,477

tr(ρ(t)F)(s) = 〈F 〉(t, s), (11)

ρ(t) being the time-dependent density operator of interest, the trace taken over the cor-478

responding quantum theory Hilbert space and the right-hand side being computed via479

the aforementioned evaluation scheme. However, the existence of such an operator F is a480

priori not clear and will be discussed in a future work.481

We need to assure that in the limit of averaging infinitely many individual functional482

summaries of field configurations the statistical mean of the functional summary is recov-483

ered. This is guaranteed for by a mathematical statement on the pointwise convergence484

of so-called equicontinuous and uniformly bounded functional summaries, the details of485

which can be found in Proposition 1 of Ref. [47]. For the sake of this statement we restrict486

our proposal to functional summaries of persistence diagrams with these two fairly general487

conditions. By means of the described classical-statistical evaluation scheme we refer to488

such functional summaries as persistent homology observables.489

We want to stress that this proposal is neither restricted to the computation of persis-490

tent homology from equal-time alpha complexes, that is, alpha complexes computed from491

point clouds constructed at individual instances of time as done in this work, nor to alpha492

complexes themselves.493

3.2 The asymptotic persistence pair distribution and geometric quanti-494

ties495

Let F : D → F be a functional summary in the above sense. We say that F is additive,496

if F (D + E) = F (D) + F (E) for any two persistence diagrams D,E ∈ D . Here, D + E497

denotes the sum of multisets, that is, the union of D and E with multiplicities of elements498

in both D and E added.499
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Let D(t) ∈ D be a persistence diagram computed at time t as specified in Sec. 2.3.2500

and F an additive functional summary. We then find for all s ∈ Ω,501

F (D(t))(s) =
∑

(rb,rd)∈D(t)

F ({(rb, rd)})(s)

=

∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s)P(t, r′b, r
′
d), (12)

with the persistence pair distribution502

P(t, r′b, r
′
d) :=

∑
(rb,rd)∈D(t)

δ(r′b − rb) δ(r′d − rd), (13)

δ denoting the Dirac delta function.503

Let (D
(i)
` (t))i∈N ⊂ D be a classical-statistical ensemble of persistence diagrams de-504

scribing `-dimensional persistent homology classes at time t. We denote the persistence505

pair distribution of D
(i)
` (t) by P

(i)
` (t) and define the asymptotic persistence pair distribu-506

tion, 〈P`〉, at any time t implicitly, requiring that for any equicontinuous and uniformly507

bounded functional summary F as in the above proposal,508 ∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s) 〈P`〉(t, r′b, r′d)

:= lim
k→∞

1

k

k∑
i=1

∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s)P
(i)
` (t, r′b, r

′
d), (14)

for arbitrary s ∈ Ω.509

Functional summaries of relevance in this work include the distribution of birth and510

death radii that have been defined in Eqs. (8a) and (8b), respectively. With an obstacle511

to be described below, both can be computed as marginal distributions of 〈P`〉,512

〈B`〉(t, rb) =

∫ ∞
0

drd 〈P`〉(t, rb, rd), (15a)

〈D`〉(t, rd) =

∫ ∞
0

drb 〈P`〉(t, rb, rd). (15b)

In addition, we define the persistence distribution, that is, the distribution of rd − rb,513

〈P`〉(t, r) =

∫ ∞
0

drd 〈P`〉(t, rd − r, rd). (16)

Natural quantities to study are the `-th Betti numbers 〈β`〉(t, r). Intuitively, the zeroth514

Betti number 〈β0〉(t, r) specifies the number of connected components minus one6 present515

in the alpha complex of radius Qr and the first Betti number 〈β1〉(t, r) specifies the corre-516

sponding number of holes. Being zero in the present work, higher Betti numbers count how517

many nontrivial higher-dimensional homology classes are present in corresponding com-518

plexes. Betti numbers can be computed from the asymptotic persistence pair distribution519

via520

〈β`〉(t, r) =

∫ r

0
drb

∫ ∞
r

drd 〈P`〉(t, rb, rd). (17)

A mathematical obstacle appears with regard to definitions such as Eqs. (15a) and521

(15b). A priori, the sets of functions 〈B`〉(t, rb), of 〈D`〉(t, rd), of 〈P`〉(t, r) and of 〈β`〉(t, r)522

6We work with reduced homology groups. Thus, the zeroth Betti number actually counts the number
of connected components minus one.
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are not equicontinuous. However, only functional summaries which have this property are523

persistent homology observables in the sense of Sec. 3.1. For all positive σ we define524

ζσ(s) :=
1√

2πσ2
exp

(
− s2

2σ2

)
. (18)

By convolution with it at each time individually, sets of functions such as 〈B`〉(t, rb) can525

be rendered equicontinuous7. In fact, this way Eqs. (8a) and (8b) for birth and death526

radii distributions arise from Eqs. (15a) and (15b). In everything that follows we omit the527

convolution procedure in notations. As mentioned previously, the convolution procedure is528

numerically irrelevant. In computations, convergence of persistent homology observables529

is numerically verified, cf. Appendix G.530

The average number of persistent homology classes is encoded in 〈P`〉, too,531

〈n`〉(t) =

∫ ∞
0

drb

∫ ∞
0

drd 〈P`〉(t, rb, rd). (19)

Various length scales may be constructed from 〈P`〉. An interesting length scale is the532

average maximum death radius 〈rd,`,max〉(t), which can be computed from the asymptotic533

persistence pair distribution via8
534

〈rd,`,max〉(t) = lim
p→∞

(∫ ∞
0

drb

∫ ∞
0

drd r
p
d 〈P`〉(t, rb, rd)

)1/p

. (20)

Analogously, the average maximum birth radius can be computed. The average number535

of persistent homology classes and the average maximum death (birth) radius constitute536

persistent homology observables as constructed above.537

3.3 Self-similar scaling approach538

By means of the scaling behavior visible in birth and death radii distributions, in Sec. 2.5539

we have already begun the study of self-similarity in persistent homology observables in540

the vicinity of a nonthermal fixed. Here, we introduce a more general scaling ansatz for541

the asymptotic persistence pair distribution. We provide a heuristic packing argument542

relating the appearing scaling exponents.543

In Appendix D we provide a brief discussion on the relation between the self-similar544

scaling ansatz described here and known notions of self-similar scaling appearing across545

the literature.546

3.3.1 Scaling ansatz to the asymptotic persistence pair distribution547

Let 〈P`〉(t, rb, rd) be a time-dependent asymptotic persistence pair distribution as it ap-548

pears in Eq. (14). We say that 〈P`〉(t, rb, rd) scales self-similarly, if exponents η1, η
′
1 and549

η2 exist, such that for all times t, t′,550

〈P`〉
(
t, rb, rd

)
= (t/t′)−η2 〈P`〉

(
t′, (t/t′)−η1rb, (t/t

′)−η
′
1rd
)
. (21)

7Indeed, for any σ > 0 a constant Cσ > 0 exists, such that for all possible functions 〈B`〉(t, rb),
∂(〈B`〉 ∗ ζσ)(t, r)/∂r = (〈B`〉 ∗ ζ′σ)(t, r) < Cσ, the prime indicating taking the first derivative. Here we
employed that in the lattice framework all functions such as 〈B`〉(t, rb) are uniformly bounded.

8Given positive real numbers y1, . . . , ym, one obtains their maximum via max{y1, . . . , ym} =
limp→∞(

∑m
i=1 y

p
i )1/p. From this, the given formula derives.
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Due to the time-dependence of 〈P`〉 derived geometric quantities become time-dependent,551

too. Immediately, from Eq. (21) for birth and death radii distributions the scaling behav-552

ior described by Eqs. (9a) and (9b) follows. Assuming η1 = η′1, the persistence distribution553

scales as554

〈P`〉(t, r) = (t/t′)η1−η2〈P`〉(t′, (t/t′)−η1r). (22)

The total number of persistence pairs scales as555

〈n`〉(t) = (t/t′)η1+η′1−η2〈n`〉(t′) (23)

and the average maximum death radius as556

〈rd,`,max〉(t) = (t/t′)η1〈rd,`,max〉(t′). (24)

Though not explicitly given here, the average maximum birth radius scales the same way.557

This provides evidence for the geometric intuition of persistence length scales blowing up558

or shrinking in the course of time upon self-similar scaling.559

Provided that η1 = η′1, the `-th Betti numbers scale as560

〈β`〉(t, r) = (t/t′)2η1−η2〈β`(t′, (t/t′)−η1r). (25)

3.3.2 A heuristic packing relation561

We assume that η1 = η′1 and consider a general spatial dimension d here. A fairly general562

heuristic argument leads to the packing relation η2 = (2 + d)η1. Intuitively, the argument563

encodes that only a finite number of persistent homology classes of a given size can be564

packed into a constant volume V .565

Let point clouds be dominated by a time-dependent length scale L(t). The d-dimensional566

volume V in which the point clouds reside is kept constant. Heuristically, a number567

〈nd−1〉(t) of (d− 1)-dimensional persistent homology classes fits into V , with this number568

scaling as569

〈nd−1〉(t) ∼
V

L(t)d
, (26)

since the volume that each (d− 1)-dimensional persistent homology class occupies generi-570

cally may scale as ∼ L(t)d. Inferring the scaling of length scales as described by Eq. (24),571

that is, L(t) ∼ tη1 , we find572

〈nd−1〉(t) ∼ t−dη1 . (27)

On the other hand, from Eq. (23) we obtain573

〈nd−1〉(t) ∼ t2η1−η2 . (28)

Hence,574

η2 = (2 + d)η1, (29)

which shows that persistent homology observables represent in a direct fashion the geom-575

etry at hand.576

Of course, the assignment of occupied volumes to (d−1)-dimensional homology classes577

is highly heuristic, bearing in mind that a homology class is an equivalence class of many578

cycles within a simplicial complex, rendering any such mapping ambiguous. However,579

one may use elements of the proof of the Wasserstein stability theorem for persistence580

diagrams, carried out in Ref. [43], to deduce Eq. (29) more rigorously from physically581

reasonable assumptions. In Appendix C we sketch the corresponding derivation, provided582

in detail in Ref. [49].583
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Figure 8: Distribution of amplitude-values at different times, averages taken across
classical-statistical sampling runs.

Figure 9: The average cardinality of point clouds varying with ν̄ at different times, averages
taken across classical-statistical sampling runs.

4 Exponent shifts, persistences and Betti number distribu-584

tions585

In this section the due explanation of temporal shifts of the scaling exponent spectrum586

observed in Sec. 2.5 is given as well as numerical outcomes for persistence distributions and587

Betti numbers. The latter provide further evidence for the suitability of the self-similar588

scaling ansatz for the asymptotic persistence pair distribution, as given by Eq. (21).589

4.1 Amplitude redistribution-induced exponents shifts590

The scaling exponents displayed in Fig. 7 change in time for ν̄ & 0.5. To discuss the591

origins of this effect, in Fig. 8 amplitude distributions are displayed for different times592

between Qt = 3750 and Qt = 37500. As is clearly visible, amplitudes redistribute with593

growing times towards the peak at around |ψ(t)|/〈|ψ(t = 0)|〉vol ≈ 1.05. As indicated in594

Fig. 9, point clouds Xν(t) with ν̄ . 1.0 become sparser with time, that is, for a fixed ν̄595

the cardinality of point clouds decreases.596

As deduced earlier, at low ν̄-values point clouds are dominated by accumulations of597
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Figure 10: Example point clouds Xν(t) for different ν̄-values as indicated. Row (a): time
Qt = 3750. Row (b): Qt = 7500. Row (c): Qt = 11250.
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Figure 11: The average maximum death radius of 1-dimensional persistent homology
classes varying with time, displayed for ν̄-values as indicated.
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points around vortex nuclei, while for ν̄ & 0.4 points in the bulk enter point clouds. With598

point clouds getting sparser in the course of time it is first bulk points to disappear from599

point clouds. Accumulations of points around vortex nuclei remain, as can be seen from600

Fig. 10, in which point clouds are displayed for different filtration parameters and times.601

Given the example point cloud for ν̄ = 0.5 at time Qt = 3750, we observe that it is made602

up from accumulations of points (around vertices) mixed with random points in between,603

while at time Qt = 11250 the point cloud consists of nothing but the accumulations. The604

behavior of point clouds at ν̄ = 0.6 is similar, although the point cloud at Qt = 11250605

still contains random points associated to sound excitations between accumulations. Point606

clouds at ν̄ = 0.70 only get sparser but still contain many bulk points.607

The average maximum death radius of 1-dimensional persistent homology classes,608

〈rd,1,max〉(t), is displayed for different ν̄-values in Fig. 11. Comparably large fluctuations609

and outliners occur, since 〈rd,1,max〉(t) is very sensitive to particular geometric arrange-610

ments of points in point clouds of individual classical-statistical samples. According to611

Eq. (24), if the system’s asymptotic persistence pair distribution scales self-similarly in612

time and η1 = η′1, then 〈rd,1,max〉(t) ∼ tη1 . Indeed, 〈rd,1,max〉(t) shows power-law behavior613

within individual periods of time and confirms the shifts in scaling exponents as indicated614

by the results displayed in Fig. 7, which have been deduced from birth and death radii615

distributions. For instance, for ν̄ = 0.6 a shift occurs between times Qt ≈ 9000 and616

Qt ≈ 13000.617

Recently, the phenomenon of prescaling has been discovered, that is, the rapid es-618

tablishment of a universal scaling form of distributions long before the universal values619

of corresponding scaling exponents are realized [50, 51]. Although we also study time-620

dependent scaling exponents of constant-form distributions, we want to stress that in our621

case this is not a manifestation of prescaling. Instead, it is an artifact of the sharp cutoff622

at the filtration parameter to generate point clouds, rendering point clouds themselves623

and their persistent homology groups sensitive to amplitude redistribution effects.624

4.2 Persistence distributions625

In Fig. 12 persistence distributions for different filtration parameters are displayed. Again,626

fluctuations are due to statistical uncertainties. Distributions can be rescaled using time-627

dependent scaling exponents as given in Fig. 7. To this end, we attribute the observed628

behavior to the physics at large length scales. We want to emphasize that the persistence629

distributions at a low filtration parameter such as ν̄ = 0.2 show distinctly a power-law630

behavior at all times. A power-law fit of the rescaled distributions for ν̄ = 0.2 reveals a631

scaling with persistence as ∼ (rd − rb)−ζ with9
632

ζ = 1.468± 0.021. (30)

The relation of the exponent ζ to known signatures of for example strong wave turbulence633

is to date not clear to us.634

4.3 Betti numbers as a consistency check635

In Sec. 3.3 we derived that if the asymptotic persistence pair distribution scales self-636

similarly, then Betti number distributions do so as well, described by Eq. (25). Having637

9The power-law fit is first carried out for persistence values between Q(rd − rb)min = 0.3125 and
Q(rd − rb)max = 5.0 at each of the times Qti = 3750, 4375, . . . , 37500, individually, to obtain values for
ζ(ti) and its fitting error at time ti, ∆ζ(ti), i = 1, . . . , Ni. Subsequently, the value of ζ is defined to be
the average of the obtained exponents. Its error squared, ∆ζ2, is computed by means of standard error
propagation as the sum of the temporal error squared and the sum of all ∆ζ(ti)

2/N2
i .
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Figure 12: Persistence distributions. Each column shows data for the indicated filtration
parameter, ν̄. The employed time-dependent scaling exponents are displayed in Fig. 7.
Insets show corresponding residuals.

Figure 13: Betti number distributions for ν̄ = 0.2 are shown for dimensions ` as indicated.
The employed time-dependent scaling exponents are displayed in Fig. 7, setting η′1 := η1.
Insets show corresponding residuals.
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extracted scaling exponents from birth and death radii distributions in Sec. 2.5, we inves-638

tigate Betti number distributions as a consistency check.639

In Fig. 13 Betti number distributions for both zero- and one-dimensional homology640

classes are displayed at ν̄ = 0.2. For all times 〈β0〉(t, r) is a monotonically decreasing641

function, since zero-dimensional persistent homology classes are born at zero radius and642

〈β0〉(t, r) captures only their death. We find a peak in unrescaled 〈β1〉(t, r), which, again,643

decreases in magnitude and shifts to higher radii as an indication of growing geometric644

structures.645

Approximately, Betti numbers display self-similar scaling behavior. However, residuals646

of the rescaled 〈β0〉(t) increase at large radii and 〈β1〉(t) shows comparably large fluctu-647

ations. Nonetheless, rescaled Betti number distributions confirm previously extracted648

exponents.649

5 Conclusions650

In the present study we proposed a novel class of observables, persistent homology ob-651

servables, to study the dynamical behavior of quantum fields. Serving as a prototype652

application, we investigated the self-similar dynamics at nonthermal fixed points in the653

classical-statistical approximation. Accompanied by mathematical considerations that654

guarantee, for example, for the convergence of averages, we studied functional summaries655

of persistent homology groups. We found that the notion of an asymptotic persistence656

pair distribution is a suitable probability measure for a self-similar scaling ansatz.657

By means of simulations of the two-dimensional nonrelativistic Bose gas we revealed658

that the self-similar scaling dynamics characterizing nonthermal fixed points is a phe-659

nomenon that also appears in persistent homology observables. Crucially, this way we660

discovered a continuous spectrum of scaling exponents, depending on a filtration parame-661

ter that appears in the construction of point clouds. We provided a possible explanation662

in terms of scaling species mixing associated to two different dynamical processes: strong663

wave turbulence and anomalous vortex kinetics.664

For all times investigated we found a power-law in persistence, possibly providing a665

direct indication in persistent homology observables for the presence of a turbulent cascade.666

It is currently unclear to us how to relate the deduced persistence power-law exponent to667

known power-law exponents appearing in occupation number spectra, typically signaling668

strong wave turbulence or hinting at topological defect structures [27,36,37].669

Describing the wrapping of finite-size homology classes into a finite volume, by means of670

a packing relation we argued that self-similarity in persistent homology observables reflects671

the geometry at hand. Further exploring the relation between such geometric effects and672

conserved quantities associated to transport processes at nonthermal fixed points would673

be interesting, but lies outside the scope of this work.674

Of particular relevance in the proposed persistent homology ansatz is the filtration675

function to generate point clouds from individual field configurations. We showed that676

already a simple variant such as the amplitude of the complex-valued fields can give677

rise to interesting observations. It is a feature of our analysis that the information on678

phase windings around vortex nuclei is not necessary in order to show the existence of679

further dynamical components beyond vortices. Nonetheless, we want to stress that at this680

point of the analysis scheme an immense freedom of choice exists, rendering the persistent681

homology ansatz highly flexible. Also without such a filtration procedure the proposed682

methods can be applied to for instance point vortex models. Surpassing the present work,683

one does in principle not need a lattice to construct persistent homology groups. Even684
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for fields with an arbitrary smooth and triangulable manifold as their domain there exist685

multifarious ways to construct persistent homology groups [6].686

Myriad of interesting further applications of persistent homology within QFT exist.687

With regard to the recent experimental progress in handling ultracold quantum gases to688

simulate quantum dynamics [21, 22, 30]: What can we learn from a thorough persistent689

homology analysis of experimental data, including the investigation of different filtration690

functions? Can relative homology groups give new geometrical insights into the relevant691

physical processes?692

Certainly, paths to illuminate also include analytics. Inter alia, for different types of693

random fields statistical statements could be made [52], and by means of integral geom-694

etry techniques predictions for alpha complexes of a class of random point clouds have695

been derived [44]. Using similar methods, is it possible to obtain analytic predictions for696

alpha complexes and their persistent homology in the context of quantum fields and path697

integrals?698

Given the present study, we believe to have found a promising machinery to understand699

emergent connectivity and clustering structures far from equilibrium beyond the language700

of correlation functions via geometry and topology, providing a first step on the route of701

introducing persistent homology observables to QFT.702
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A The mathematics of persistent homology715

The first part of this appendix serves as an intuitive entry point to standard algebraic716

topology concepts of relevance in this work. In the second part we construct persistent717

homology groups more rigorously than in the main text, including structural aspects.718

Physically speaking, in this appendix we assume that all quantities are dimensionless.719

To this end, no factors of Q appear.720

A.1 Relevant notions from algebraic topology721

We introduce the notions of a simplicial complex, of chain groups and the boundary oper-722

ator in order to finally introduce standard homology groups. For a thorough introduction723

to algebraic topology the reader may consult, for instance, Ref. [3].724
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Let K be a simplicial complex. An element σ ∈ K is a simplex of dimension `, if725

card(σ) = ` + 1. Letting τ ⊆ σ, we call τ a face of σ, and, vice versa, σ a coface726

of τ . The orientation of an `-simplex σ = {v0, . . . , v`} ∈ K, is an equivalence class of727

permutations of its vertices, (v0, . . . , v`) ∼ (vπ(0), . . . , vπ(`)) if sign(π) = 1. An oriented728

simplex is denoted by [σ]. Geometrically, a simplex can be realized as the convex hull of729

`+ 1 affinely independent points in Rd, d ≥ `. To this end, simplices of low dimension can730

be thought of as vertices, edges, triangles or tetrahedra, respectively.731

Subcomplexes of a simplicial complex are subsets L ⊆ K that are simplicial complexes,732

too. A nested sequence of complexes, ∅ = K0 ⊆ K1 ⊂ · · · ⊆ Kk = K is called a filtration733

of the complex K.734

We call the free Abelian group on the set of oriented `-simplices of a simplicial complex735

K the `-th chain group C`, where [σ] = −[τ ] if σ = τ and σ and τ are oriented differently.736

An element c ∈ C` is an `-chain, c =
∑

imi[σi] with σi ∈ K and mi ∈ Z. We define the737

boundary operator ∂` : C` → C`−1 to be the linear map defined by its action on a simplex738

σ = [v0, . . . , v`] ∈ c,739

∂`σ =
∑
j

(−1)j [v0, v1, . . . , v̂j , . . . , v`], (31)

v̂j indicating that vj is deleted from the denoted sequence. Intuitively, the boundary740

operator maps an `-chain to its boundary, validating its nomenclature. A key feature is741

that ∂` ◦ ∂`+1 = 0, i.e. the boundary of a boundary is empty. Therefore the boundary742

operator connects the chain groups into an exact sequence, the chain complex C∗,743

· · · → C`+1
∂`+1−→ C`

∂`−→ C`−1 → . . . . (32)

To this end, the boundary group B` := im∂`+1 and the cycle group Z` := ker ∂` are nested,744

B` ⊆ Z` ⊆ C`.745

The `-th homology group is then defined as H` := Z`/B`. Its elements are equivalence746

classes of homologous cycles. Defined over a ring Z, homology groups are Z-modules.747

However, if defined over a field such as Z2 as done in the main text, homology groups748

become vector spaces.749

A.2 The construction and structure of persistent homology groups750

We carry out the construction of persistent homology groups for the sequence of alpha751

complexes described in the main text, cf. Sec. 2.3.1. Let X ⊂ Rd be an arbitrary752

point cloud and (αr(X))r∈[0,∞) its sequence of alpha complexes. The sequence is nested,753

αr(X) ⊆ αs(X) for all r ≤ s. X being finite, only finitely many different αr(X) exist,754

which can be specified by means of a finite set of different ri, i = 1, . . . , κ. We abbreviate755

notations by means of αi := αri(X) for all i.756

For all i ≤ j, the inclusion map ιi,j : αi → αj induces a homomorphism between757

homology groups, ιi,j` : H`(αi) → H`(αj), for each dimension ` = 0, . . . , d. To this end,758

the filtration of alpha complexes yields a sequence of homology groups,759

0→ H`(α1)→ · · · → H`(ακ) = H`(Del(X)). (33)

Within this sequence, homology classes are born and later die again, when they become760

trivial or merge with other classes. With this intuition in mind, we set761

H i,j
` := im(ιi,j` ), ∀ 0 ≤ i ≤ j ≤ κ, (34)

as well as762

βi,j` = dim(H i,j
` ), (35)
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Figure 14: An illustration of the definitions of birth and death of homology classes. Picture
inspired by Ref. [6].

counting the number of homology classes that are born at or before ri and die after rj .763

To make the notions of birth and death of a simplex rigorous, let γ ∈ H`(αi). We764

say that γ is born at αi if γ /∈ H`(αi−1). If γ is born at αi, then it dies entering αj , if765

it merges with an older class as going from αj−1 to αj , that is, ιi,j−1
` (γ) /∈ H i−1,j−1

` , but766

ιi,j` (γ) ∈ H i−1,j
` . The persistence of γ is defined as pers(γ) := rj − ri, if γ is born at αi767

and dies entering αj . For an illustration of this definition we refer to Fig. 14.768

Actually, this intuitive definition has a conceptual drawback [2]. Any two homology769

classes that are born at the same birth radius rb, one of them merging with the other770

one at a radius r > rb, only die jointly at the death radius of the resulting homology771

class with highest death radius. A circumvention of this is provided by what is called772

the structure theorem of persistence modules [4, 5]. It states that up to isomorphism the773

family ((H`(αi))i, (ι
i,j
` )i≤j) can be described by its persistence diagram as defined in the774

main text, cf. Sec. 2.3.2. An equivalent notion to the persistence diagram which regularly775

appears across topological data analysis literature is that of a barcode.776

B The computational pipeline777

A variety of software exists designed to provide user-friendly and fast routines for the778

generation of simplicial complexes and the computation of persistent homology [2]. We779

employ the GUDHI library, which is a generic open source C++ library tailored to topo-780

logical data analysis and higher dimensional geometry understanding [53]. In particular,781

with the simplex tree structure [54] it offers a handy data structure to store simplicial com-782

plexes. GUDHI employs the extensive CGAL library [55] to compute alpha complexes and783

uses a sophisticated algorithm to compute persistent homology groups. To give a rough784

indication of its speed, on a standard laptop alpha complexes of point clouds with approx-785

imately 100,000 data points can be analyzed in a few minutes, including the computation786

of persistent homology groups of all dimensions. For an overview of the computational cost787

of topological data analysis implementations across software solutions we refer to Ref. [2].788

In this work we apply GUDHI functions to point clouds generated from individual field789

configurations according to Eq. (3). Obtaining persistent homology outcomes at various790

times for each field configuration, ensemble-averages are taken. Due to the lack of statis-791

tics, a direct analysis of the asymptotic persistence pair distribution 〈P`〉 is unfeasible.792

Instead, for the k = 72 configurations investigated we have verified that the persistent793

homology observables 〈B`〉(t, rb), 〈D`〉(t, rd), 〈P`〉(t, r) and 〈β`〉(t, r) converged properly.794

In Appendix G we analyze in detail the convergence behavior of persistent homology795

observables with k.796

Of course, point clouds that are subsets of a regular lattice are generically not in general797
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position, which can result in their Delaunay complexes not being simplicial complexes.798

GUDHI removes corresponding ambiguities by means of a built-in perturbation scheme799

for points out of general position. Effects of this procedure are not visible.800

While simulations take periodic boundary conditions into account, alpha complexes of801

point clouds are computed non-periodically. This comes about since a crucial function to802

accomplish this for two-dimensional alpha complexes is still missing in GUDHI. Certainly,803

the toroidal topology of the lattice Λ would have an effect on, for example, computed804

Betti numbers: The 2-torus has β0(T 2) = 0, β1(T 2) = 2 and β2(T 2) = 1, which would at805

all times and radii add to 〈β`〉(t, r). The dynamics of point clouds and their persistent806

homology groups, however, would remain unaltered.807

C Packing relation from bounded total persistence808

In Sec. 3.3.2 we provided a heuristic argument leading to the packing relation between809

scaling exponents in a self-similar scaling ansatz to the asymptotic persistence pair distri-810

bution,811

η2 = (2 + d)η1. (36)

Actually, under physically reasonable assumptions this relation can be properly derived.812

Here we outline this deduction. Details are provided in Ref. [49].813

In Ref. [43] the notion of bounded total persistence has been introduced for the persis-814

tent homology of sublevel sets of a Lipschitz function f : M → R with certain properties,815

M being a connected, triangulable and compact metric space. For example, Lipschitz func-816

tions on the d-torus or the plane [0, L]d, L > 0, have bounded total persistence. Given a817

point cloud X ⊂ Rd such as the Xν(t) defined by Eq. (3), one can actually derive from818

the bounded total persistence an upper bound on the number of points in the persistence819

diagram of the sequence of alpha complexes. This upper bound scales with a particular820

length scale to the power of −d.821

A statistical treatment of point clouds and persistence diagrams is necessary in order822

to define the asymptotic persistence pair distribution and the corresponding self-similar823

scaling ansatz. To this end, functional summaries as described in Sec. 3.1 play a key824

role. Properties of point clouds, persistence diagrams and functional summaries such as825

self-averaging in the limit of large volumes can be turned rigorous.826

Eventually, one can obtain Eq. (36) from the upper bound on the number of points in827

persistence diagrams. Central to the interpretation of Eq. (36) as describing the packing828

of homology classes into a constant volume is this upper bound.829

D Relating persistent homology exponents to correlation830

function exponents831

Typically, nonthermal fixed points and their properties are discussed in the framework of832

fixed-order correlation functions, both theoretically and experimentally [21,22,31,56–58].833

The self-similar scaling behavior at nonthermal fixed points allows for a grouping of far-834

from-equilibrium quantum systems into universality classes. Universality classes cover835

broad classes of far-from-equilibrium initial conditions, large ranges of relevant parameters836

and even theories with very different degrees of freedom [31]. Being a natural surrounding837

for universality, properties of nonthermal fixed points including scaling exponents have838

been derived within the renormalization group [59,60]. To this end, length scales derived839
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from scaling correlation functions are expected to blow up or to shrink with a unique840

power-law in time.841

If the asymptotic persistence pair distribution shows self-similar scaling as in Eq. (21),842

then any length scale derived from it scales in time as a power-law with exponent η1,843

assuming η1 = η′1. As an example consider the average maximum death radius, defined in844

Eq. (20) and showing scaling as in Eq. (24). In light of this geometric analogy and the845

universality of scaling exponents at nonthermal fixed points, we expect that self-similar846

scaling behavior as extracted from correlation functions can typically be observed also in847

persistent homology observables.848

E Details on the nonrelativistic Bose gas simulations849

This appendix is devoted to provide details of the numerical setup to simulate the two-850

dimensional single-component nonrelativistic Bose gas in the classical-statistical regime.851

The computational implementation is undertaken similar to Ref. [31].852

Correspondingly, in the atomic gas let a be the s-wave scattering length and n its853

density. We define a diluteness parameter [31],854

ζ =
√
na3, (37)

and assume that ζ � 1. A characteristic coherence length may be defined inversely via855

the momentum scale856

Q =
√

16πan. (38)

The average density, n, can be computed from the distribution function, f(|p|), p being857

the momentum, via858

n =

∫
ddp

(2π)d
f(|p|). (39)

For the validity of the classical-statistical approximation as well as extreme nonequilibrium859

conditions to trigger dynamics towards a nonthermal fixed point, we require a large char-860

acteristic mode occupancy, f(Q) � 1. Then, the dynamics becomes essentially classical861

and can be described by the time-dependent Gross-Pitaevskii equation for a nonrelativistic862

complex bosonic field, ψ,863

i∂tψ(t,x) =

(
− ∇

2

2m
+ g|ψ(t,x)|2

)
ψ(t,x). (40)

Fluctuating initial conditions, f(p), are generated as samples of a Gaussian distibu-864

tion with a width as described in Eq. (1). Each realization is evolved according to the865

discretized Gross-Pitaevskii equation, numerically solving the equation on a spatial lattice866

using a split-step method [31].867

F 2-point correlation function results in the infrared868

In this appendix, we study the scaling properties of a time-dependent occupation number869

distribution f(t,p). In this appendix, p denotes the momentum absolute value. As in870

Ref. [31] we first define the statistical two-point correlation function871

F (t, t′,x− x′) =
1

2
〈ψ(t,x)ψ∗(t′,x′) + ψ(t′,x′)ψ∗(t,x)〉, (41)
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Figure 15: Occupation number distributions in the infrared. In black: The initial un-
rescaled occupation number distribution.
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〈·〉 indicating evaluating the expectation value in the classical-statistical ensemble of clas-872

sical field configurations. Subsequently, we define873

f(t,p) + (2π)3δ(3)(p) |ψ0|2(t) ≡
∫
d3x e−ipxF (t, t,x). (42)

Due to spatial isotropy of expectation values in the system, the distribution function874

only depends on the modulus of momenta, f(t, |p|). The term ∼ |ψ0|2(t) represents a875

condensate occurring in the system.876

A scaling ansatz for the occupation number distributions, f(t, p), includes two scaling877

exponents, α and β,878

f(t, |p|) = (t/t′)α f(t′, (t/t′)β|p|). (43)

In the infrared regime, a thorough numerical analysis as described in Ref. [31] yields879

the following scaling exponents,880

β = 0.189± 0.011, α = 0.395± 0.025, (44)

choosing reference time Qt′ = 1250, fitting momenta between p/Q = 0.07 and p/Q = 0.7881

and times between Qt = 1875 and Qt = 37500. Thus, α/β = 2.09 ± 0.18. In Fig. 15882

occupation number spectra are displayed in the infrared regime. By means of the residuals883

the correctness of the extracted scaling exponents can be easily verified.884

The results confirm the findings for box initial conditions in Ref. [37], in which the885

infrared dynamics of a two-dimensional relativistic scalar field theory has been mapped to886

that of nonrelativistic complex scalar fields. The extracted scaling exponent β is in very887

good agreement with the prediction for the anomalous vortex kinetics nonthermal fixed888

point in a nonrelativistic single-component Bose gas, attributed to the specific dynamics889

of vortex defects and related vortex interactions [36]. Additionally, α/β ≈ 2 indicates the890

transport of particle numbers to lower momenta [31].891

G Numerical convergence of persistent homology observ-892

ables893

In this appendix we provide results for how the different persistent homology observables894

of interest in the main text converge with the number of classical-statistical samples, k,895

increasing.896

In Fig. 16 we display birth and death radii distributions as well as persistence distri-897

butions for two values of ν̄, at different times within the persistent homology observables’898

self-similar scaling regime and for different values of k. It is clearly visible that occurring899

fluctuations decrease with k increasing.900

In Fig. 17 we display Betti numbers. In particular 〈β0〉(t, r) converged very well for901

k = 72. 〈β1〉(t, r) converges later with the number of samples taken into account, since902

distributions are computed from fewer persistent homology classes with corresponding903

properties. Yet, additional samples do not alter the overall shape of 〈β1〉(t, r) anymore,904

solely reducing occurring statistical fluctuations.905

As observed in Sec. 4.1, the average maximum death radius, 〈rd,1,max〉(t), is a quantity906

that is very sensitive to particular geometric arrangements of points in analyzed point907

clouds. Resembling this effect, in Fig. 18 we display 〈rd,1,max〉(t) for different n and ν̄.908

Clearly, occurring oscillations drastically reduce with k increasing. Up to a few outliners,909

regions of approximate power-law behavior converged properly for k = 72 as studied in910

the main text.911
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Figure 16: Birth and death radii distributions and persistence distributions in the in-
frared varying with time, displayed for ν̄-values and numbers of samples to average, k, as
indicated.
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Figure 17: Betti number distributions in the infrared varying with time, displayed for
ν̄-values and numbers of samples to average, k, as indicated.
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Figure 18: The average maximum death radius of 1-dimensional persistent homology
classes varying with time, displayed for ν̄-values and numbers of samples to average, k, as
indicated.

To sum up, different persistent homology observables converge differently fast with the912

number of classical-statistical samples, k, taken into account in averaging. Corresponding913

differences among their convergence behavior can be easily understood geometrically.914
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H Numerical protocol to extract persistent homology scal-915

ing exponents916

Key to the analysis of results in our nonrelativistic Bose gas testbed in Sec. 2.5 is the917

extraction of persistent homology scaling exponents from approximately self-similar birth918

and death radii distributions. This appendix serves as a description of the applied protocol919

to accomplish this task.920

We first define rescaled variants of the birth and death radii distributions,921

〈B`〉 resc(t, rb) = (t/t′)η2−η
′
1〈B`〉(t, (t/t′)−η1rb), (45a)

〈D`〉 resc(t, rd) = (t/t′)η2−η1〈D`〉(t, (t/t′)−η
′
1rd). (45b)

Distributions at later times are compared with those at the reference time t′, chosen to922

be the time at which the self-similar evolution sets in. However, we could equally well923

have chosen any other reference time within the self-similar scaling regime. Denote by924

tk > t′, k = 1, . . . , Ncom, all corresponding comparison times. If birth and death radii925

distributions were evolving perfectly self-similar following Eqs. (15a) and (15b), we would926

find927

∆〈B`〉(t, rb) = 〈B`〉 resc(t, rb)− 〈B`〉(t′, rb) = 0, (46a)

∆〈D`〉(t, rd) = 〈D`〉 resc(t, rd)− 〈D`〉(t′, rd) = 0. (46b)

Numerically, even for the correct triple of exponents (η1, η
′
1, η2) this is only approximately928

true due to statistical uncertainties as well as systematic errors entering since systems929

typically only enter the vicinity of a nonthermal fixed point. We optimize scaling exponents930

by means of minimizing occurring deviations, quantified by931

χ2(η1, η
′
1, η2) = χ2

b(η1, η
′
1, η2) + χ2

d(η1, η
′
1, η2), (47a)

χ2
b(η1, η

′
1, η2) =

1

Ncom

Ncom∑
k=1

∫ rmax

rmin
drb ∆〈B`〉(tk, rb)2∫ rmax

rmin
drb 〈B`〉(t′, rb)2

, (47b)

χ2
d(η1, η

′
1, η2) =

1

Ncom

Ncom∑
k=1

∫ rmax

rmin
drd ∆〈D`〉(tk, rd)2∫ rmax

rmin
drd 〈D`〉(t′, rd)2

. (47c)

Lower and upper limits of integration in the appearing expressions are set to Qrmin = 1.5932

and Qrmax = 25.0 for all ν̄ ≤ 0.7 and Qrmin = 1.0 and Qrmax = 10.0 for ν̄ = 0.8. A933

priori, the given expressions for χ2
b/d(η1, η

′
1, η2), are equally sensitive to the behavior at934

all scales of radii, increasing the weight of data points whose deviations are large. Linear935

interpolations are employed to obtain birth and death radii distributions at rescaled birth936

and death radii, respectively.937

Minimizing deviations as measured by χ2(η1, η
′
1, η2), the optimal triple (η̃1, η̃

′
1, η̃2) is938

obtained. Analogously to Refs. [31, 61], a likelihood functions is defined as939

W (η1, η
′
1, η2) =

1

N exp

(
− χ2(η1, η

′
1, η2)

2χ2(η̃1, η̃′1, η̃2)

)
, (48)

N being a normalization constant such that940 ∫
dη1 dη

′
1 dη2W (η1, η

′
1, η2) = 1. (49)
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Marginal likelihood functions are obtained upon integrating over two of the exponents, for941

instance,942

W (η1) =

∫
dη′1 dη2W (η1, η

′
1, η2). (50)

We fit marginal likelihood functions with Gaussian distributions to estimate corresponding943

standard deviations, ση1 , ση′1 and ση2 , the means still being given by η̃1, η̃
′
1 and η̃2.944

To derive time-dependent persistent homology scaling exponents, we apply the de-945

scribed fitting procedure with a fixed reference time Qt′ for Ncom = 3 times, simulta-946

neously: Qtmin as indicated in the main text as well as Qtmin + 625 and Qtmin + 1250.947

Repeating this procedure for different Qtmin, we obtain time-dependent scaling exponents.948
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