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Abstract1

Inspired by topological data analysis techniques, we introduce persistent ho-2

mology observables and apply them in a geometric analysis of the dynamics3

of quantum field theories. As a prototype application, we consider data from4

a classical-statistical simulation of a two-dimensional Bose gas far from equi-5

librium. We discover a continuous spectrum of dynamical scaling exponents,6

which provides a refined classification of nonequilibrium self-similar phenom-7

ena. A possible explanation of the underlying processes is provided in terms8

of mixing strong wave turbulence and anomalous vortex kinetics components9

in point clouds. We find that the persistent homology scaling exponents are10

inherently linked to the geometry of the system, as the derivation of a packing11

relation reveals. The approach opens new ways of analyzing quantum many-12

body dynamics in terms of robust topological structures beyond standard field13

theoretic techniques.14
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1 Introduction54

Over the past two decades the mathematical field of topological data analysis (TDA) has55

gained considerable attention, accompanied by far-reaching theoretical and computational56

developments [1,2]. Prominently, with the notion of persistent homology the TDA toolbox57

offers a versatile and numerically fairly simply applicable tool to study topological features58

contained in data, such as connected components, loops or voids [3–5]. In particular,59

persistent homology associates length scales to such topological features, allowing for a60

numerical discrimination of dominant features and possible noise in data. To accomplish61

this, simplicial complexes such as so-called Čech complexes, Vietoris-Rips complexes or62

alpha shapes [6, 7] are employed. Besides the mathematical investigations on persistent63

homology, very fruitful applications to physical systems include studies in astrophysics and64

cosmology [8–11], physical chemistry [12], amorphous materials [13], quantum algorithms65
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[14–18] and the theory of quantum phase space [19]. In particular, persistent homology66

has been successfully applied to the detection of equilibrium phase transitions in statistical67

mechanics [20] as well as to the identification of phases in lattice spin models [21].68

In this work, we propose persistent homology observables for the analysis of the dy-69

namics of quantum many-body systems. As a prototype application, we consider a Bose70

gas far from equilibrium. While there are many different ways of driving a Bose gas away71

from equilibrium, it has recently been demonstrated experimentally that the subsequent72

relaxation dynamics can exhibit universal properties that are insensitive to the details of73

the initial conditions and system parameters [22–24]. Theoretical results based on field74

correlation functions indicate that vastly different systems far from equilibrium may share75

very similar universal scaling properties, ranging from post-inflationary dynamics in the76

early universe [25,26], and ultra-relativistic collision experiments with heavy nuclei [27–29],77

to ultra-cold quantum gases in the laboratory [30, 31]. In particular, quantum as well as78

classical statistical field theories appear to belong to the same nonthermal universality79

class [32]. These similarities have to be tested against refined analysis and classification80

schemes. We will exploit the multi-scale topological information encoded in a family of81

alpha complexes and in associated persistent homology groups in order to analyze self-82

similar scaling dynamics in position space variables.83

More precisely, serving as a numerical testbed, we apply TDA techniques to the dy-84

namics of the single-component nonrelativistic Bose gas in two spatial dimensions, de-85

scribed by the time-dependent Gross-Pitaevskii equation with quantum initial conditions.86

The latter exhibits a rich phenomenology far from equilibrium, including various non-87

thermal fixed points associated to regimes of weak and strong wave turbulence [33–35].88

Focussing on the nonperturbative strong wave turbulence regime, a vertex-resummed two89

particle-irreducible expansion scheme has been successfully employed to obtain analytical90

predictions for relevant scaling exponents [32, 36]. The existence of corresponding non-91

thermal fixed points has been confirmed by means of numerical lattice simulations [37].92

In addition, the infrared nonthermal fixed point can be dominated by vorticial excitations93

interacting anomalously with each other via 3-vortex interactions [37, 38], that is, alter-94

ing the universal scaling behavior. It has been conjectured that this anomalous vortex95

kinetics is associated to the formation of Onsager vortex clusters out of equilibrium via96

evaporative heating [39,40]. Recently, experimental evidence for scale-invariant dynamics97

and Onsager’s model has been reported [41,42].98

Guided by numerical results for the two-dimensional Bose gas, we reveal that at late99

times far from equilibrium persistent homology observables can show self-similar scaling100

characteristic to a nonthermal fixed point. We discover a continuous spectrum of dynami-101

cal scaling exponents, depending on a filtration parameter to construct point clouds, which102

provides a refined classification of nonequilibrium self-similar phenomena. The existence103

of such a scaling exponent spectrum seems to indicate scaling species mixing, in our case104

between the strong wave turbulence and the anomalous vortex kinetics nonthermal fixed105

points present in the infrared of the particular Bose gas. The analysis is supplemented106

by a thorough investigation of accompanying subtleties of the chosen persistent homology107

approach such as amplitude redistribution-induced exponent shifts.108

On the theoretical side, we define persistent homology observables. We introduce the109

notion of a persistence pair distribution and its statistical asymptotics in order to infer110

self-similar behavior of the latter. We reveal that the appearing scaling exponents probe111

the geometry at hand, as indicated by a packing relation heuristically derived in this study.112

This publication is structured as follows. We first describe the lattice simulations113

and discuss self-similar scaling for the occupation number spectrum in Sec. 2. With114

the Bose gas simulations at hand, we introduce and study point clouds and persistent115
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homology groups in Sec. 3. Rediscovering self-similarity, this exploration culminates in116

the existence of a scaling exponent spectrum. In Sec. 4 we carry out the construction117

of persistent homology observables in the classical-statistical framework, introduce the118

asymptotic persistence pair distribution and related geometric quantities and investigate119

a corresponding self-similar scaling ansatz. We discuss amplitude redistribution-induced120

exponent shifts, persistences and Betti number distributions in Sec. 5. Finally, in Sec. 6121

we summarize, draw conclusions and issue an outlook.122

2 Self-similarity in occupation numbers123

Laying the foundations for the introduction of persistent homology observables, we first124

discuss self-similar scaling in the two-dimensional Bose gas for the well-established occu-125

pation number spectrum. The two-dimensional Bose gas is among the simplest systems126

to give rise to different nonthermal fixed points and to allow for the fast and reasonable1
127

computation of persistent homology observables. We start this section by introducing the128

lattice simulations.129

2.1 Simulation prerequisites130

The nonrelativistic Bose gas can be described by complex scalar fields ψ(t,x) depending on131

time and space, in numerical simulations restricted to a spatial lattice and time-evolved in132

discrete time-steps. We focus on the overoccupied regime, in which the classical-statistical133

approximation is suitable [32]. Accordingly, at initial time t = 0 a number k of classical134

field configurations is sampled from a Gaussian ensemble, computing their individual sub-135

sequent dynamics according to the time-dependent Gross-Pitaevskii equation as described136

in Appendix E. In the classical-statistical approximation expectation values of an observ-137

able are computed as ensemble-averages of the observable evaluated for individual field138

configurations.139

Given a field configuration ψ(t,x), we define the statistical two-point correlation func-140

tion141

F (t, t′,x− x′) =
1

2
〈ψ(t,x)ψ∗(t′,x′) + ψ(t′,x′)ψ∗(t,x)〉, (1)

〈·〉 indicating evaluating the expectation value in the classical-statistical ensemble. Subse-142

quently, with momentum denoted by p we define the occupation number spectrum f(t,p)143

via144

f(t,p) + (2π)3δ(3)(p) |ψ0|2(t) ≡
∫
d3x e−ipxF (t, t,x). (2)

Due to spatial isotropy of expectation values in the system, the distribution function only145

depends on the modulus of momenta, f(t, p) ≡ f(t, |p|). The term ∼ |ψ0|2(t) represents a146

condensate occurring in the system.147

We choose the initial occupation number spectrum to describe overoccupation up to a148

characteristic momentum scale Q. To this end, initial field configurations are defined as149

f(0,p) = f0Θ(Q− |p|), (3)

with f0 = 50/(2mgQ) in the simulations. Unlike a system in thermal equilibrium, where150

the typical occupancy is of order unity at a characteristic temperature scale T , here we151

1Persistent homology groups of point clouds in one spatial dimension describe connected components
present in the data. In two spatial dimensions, topologically more interesting loop-like structures can be
studied.
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consider a nonequilibrium system where the occupancy at a given characteristic scale Q152

is much higher than unity. Any dimensionful physical quantity will be given in units of153

Q. We set the mass m/Q = 8 and coupling Qg = 0.0625 throughout this work. Outside154

the box, no ‘quantum-half’ is taken into account and no initial condensate is specified.155

Spatial coordinates are restricted to a square lattice, Λ, consisting of a regular grid of N2
156

points within a volume L2 with periodic boundary conditions. Throughout this work, the157

lattice spacing reads Qa = 0.0625, the number of lattice sites N = 1536, such that158

Λ = {(an1, an2) |n1, n2 ∈ {0, . . . , N − 1}}. (4)

If not stated differently, we average over k = 72 classical-statistical realizations to compute159

classical-statistical expectation values. For further details on the numerical simulations160

we refer to Appendix E.161

2.2 Self-similarity in the occupation number spectrum162

After a relatively short time interval with a quick redistribution of the initial mode occu-163

pancies, the dynamics slows down and begins to indicate the vicinity of a nonthermal fixed164

point by means of self-similarity. Self-similar scaling of the occupation number spectrum165

f(t,p) is described by a scaling ansatz including two scaling exponents, α and β,166

f(t, p) = (t/t′)α f(t′, (t/t′)βp). (5)

In the infrared regime, a thorough numerical analysis as described in Ref. [32] yields the167

following scaling exponents,168

β = 0.189± 0.011, α = 0.395± 0.025, (6)

choosing reference time Qt′ = 1250, fitting momenta between p/Q = 0.07 and p/Q = 0.7169

and times between Qt = 1875 and Qt = 37500. Thus, α/β = 2.09 ± 0.18. In Fig. 1170

occupation number spectra are displayed in the infrared regime. By means of the residuals171

the correctness of the extracted scaling exponents can be easily verified.172

The results confirm the findings for box initial conditions in Ref. [38], in which the173

infrared dynamics of a two-dimensional relativistic scalar field theory has been mapped to174

that of nonrelativistic complex scalar fields. The extracted scaling exponent β is in very175

good agreement with the prediction for the anomalous vortex kinetics nonthermal fixed176

point in a nonrelativistic single-component Bose gas, attributed to the specific dynamics177

of vortex defects and related vortex interactions [37]. Additionally, α/β ≈ 2 indicates the178

transport of particle numbers to lower momenta [32].179

3 Persistent homology in a Bose gas180

Given the lattice simulations of the nonrelativistic Bose gas described in the previous181

section, we introduce a simple approach to construct point clouds from field configurations,182

namely as sublevel sets of field amplitudes. A rather intuitive sketch of the construction183

of alpha complexes and persistent homology groups from such point clouds is provided. In184

corresponding far-from-equilibrium simulations we discover growing geometric structures185

and self-similar scaling at large length scales. In particular, the existence of a scaling186

exponent spectrum is revealed. By means of the mixing of scaling dynamics species we187

offer a possible route to explain this finding.188
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Figure 1: Occupation number distributions in the infrared. In black: The initial unrescaled
occupation number distribution.

Figure 2: Amplitudes (left) and phases (right) of an example field configuration at time
Qt = 3750.
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Figure 3: Amplitudes of an example field configuration and corresponding point clouds.
First column from the left: Spatially-resolved field amplitudes, |ψ(t, x, y)|. Second to
fourth column: Point clouds Xν(t) for the different ν̄-values indicated. First row: Qt =
3750. Second row: Qt = 11250.

3.1 Phenomenology of point clouds189

Given a classical-statistical field realization ψ(t,x), an immense freedom of choice exists190

in constructing point clouds, which are, generally speaking, finite sets of points in an191

arbitrary Euclidean space. We define a filtration function f to be a map from C to R used192

to generate point clouds as subsets of the lattice Λ. We may construct point clouds as193

sublevel sets of f(ψ(t, ·)), that is, at time Qt define them as {x ∈ Λ | f(ψ(t,x)) ∈ (−∞, ν]}194

for a filtration parameter ν. In this work, point clouds are generated as sublevel sets of195

the field amplitude, thus defining196

Xν(t) := {x ∈ Λ | |ψ(t,x)| ≤ ν}. (7)

By means of this definition, the ensemble of classical-statistical field realizations translates197

for each time Qt into an ensemble of point clouds. Numerically, we specify the filtration198

parameter ν by means of the dimensionless variant ν̄,199

ν̄ := ν/〈|ψ(t = 0)|〉vol, (8)

with the volume-averaged initial field amplitude200

〈|ψ(t = 0)|〉vol =
1

N2

∑
x∈Λ

|ψ(t = 0,x)|. (9)

We want to emphasize that in experiments with cold atoms optical density images201

as given by the square of the amplitudes displayed in Fig. 2 and used in the filtration202

protocol, Eq. (7), form a typical observational quantity and can be easily accessed via203

absorption images. Varying the filtration parameter ν̄ amounts to measurements up to the204

square root of corresponding condensate densities, highlighting the physical significance205

of the employed point cloud construction via Eq. (7).206

Simulating on a spatial square lattice with constant lattice spacing, we want to stress207

that to obtain finite point clouds by means of Eq. (7) the finiteness of the lattice is208
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crucial. Else, Xν(t) might consist of infinitely many points. The subsequent construction209

of persistent homology observables, described in detail in Sec. 3.2, is robust against210

perturbations of the lattice points2. This renders the microscopic form of the lattice211

irrelevant for later numerical persistent homology results. The constant lattice spacing212

and finite lattice volume solely amount to a smallest and a largest length scale amenable213

to the investigated real-time dynamics.214

In Fig. 2 amplitudes and phases of a single classical-statistical field realization are215

displayed. One may first note from the amplitudes on the left that in position space216

the system comprises two major components: fluctuations in the bulk around a mean217

amplitude value larger than zero and distinct minima with minimum values near to zero.218

While phases differ locally only slightly in regions where minima are absent, around each219

minimum phase windings with shifts of ±2π occur. Thus, the minima can be identified220

with elementary vortex nuclei.221

In Fig. 3 at two different times we show spatially-resolved amplitudes and a variety of222

point clouds computed from a single classical-statistical field realization. In point clouds223

Xν(t) as defined by Eq. (7), at both times visualized we find clear manifestations of224

the aforementioned two components appearing in amplitudes. Having approximately zero225

amplitude at the center of their nuclei, vortices dominate the point clouds Xν(t) for small226

filtration parameters such as ν̄ = 0.2. In the limit of ν̄ → 0 point clouds actually comprise227

mostly vortex positions themselves, although the presence of points originating from bulk228

density fluctuations cannot be excluded. Described by point vortex models, for this reason229

the low-ν̄ limit can be associated to the incompressible limit of the theory. Increasing ν̄,230

in point clouds points first accumulate around vortex nuclei but at moderately high values231

such as ν̄ = 0.6 also occur in the bulk. The higher ν̄ gets, the denser point clouds become,232

reducing the average distance between points. Hence, studying point clouds at different233

ν̄-values effectively probes the system on different length scales.234

Comparing the two times displayed, we note that the number of vortices decreases with235

time, or, equivalently, the average inter-vortex distance increases. In Fig. 3 point clouds236

at ν̄ = 0.2 reflect this behavior, becoming sparser in the course of time. Similarly, at237

higher values of ν̄ the density of points in point clouds decreases in regions where vortices238

are absent. All this indicates that in the temporal regime of the displayed times geometric239

structures in point clouds continuously grow at large length scales.240

Yet, one may notice that for ν̄ = 0.6 and ν̄ = 0.7 the number of points in the bulk241

decreases faster compared to the decline in vortex numbers. This provides a first hint at242

the presence of different components, whose dynamics differ in terms of “speed”.243

3.2 An introduction to persistent homology244

To obtain a robust quantitative means of the topological structure present in a point cloud245

Xν(t), persistent homology can be employed. Aiming at an intuitive treatment, with a246

point cloud Xν(t) at hand as it appears in the Bose gas simulations we introduce relevant247

notions from computational topology. From given input data we first define the Delaunay248

complex and a notion of the size of a simplex. The so-called Delaunay radius function249

can then be used to construct a nested sequence of subcomplexes, called alpha complexes,250

whose persistent homology groups form our objects of interest and eventually provide251

multi-scale information on the topological structure of the input point cloud. While we252

carry out constructions in two spatial dimensions here, they generalize easily to higher253

dimensions.254

2Mathematically speaking, in a number of ways persistent homology groups are stable against pertur-
bations of corresponding input, cf. inter alia Refs. [43,44]. This implies, that if points in Xν(t) are altered
slightly, then persistence diagrams of the sequence of alpha complexes of Xν(t) change only slightly, too.
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In Appendix A we rigorously introduce relevant fundamental algebraic topology no-255

tions and discuss the mathematical construction of persistent homology groups. For a256

general introduction to algebraic topology we refer to Ref. [45]; for a thorough introduc-257

tion to computational topology the interested reader may consult Refs. [2,5], for instance.258

3.2.1 Alpha complexes259

Let Xν(t) be a point cloud as defined by Eq. (7). We construct persistent homology260

groups from a nested family of simplicial complexes. A simplicial complex S on Xν(t)261

comprises the set Xν(t) together with a collection S of subsets of Xν(t). The defining262

property of a simplicial complex is that for all points x ∈ Xν(t), the vertex {x} ∈ S, and263

if τ ⊆ σ ∈ S, then τ ∈ S, i.e. S is closed under taking subsets. The elements of S are264

called its simplices. Combinatorially, this structure allows for the computation of various265

descriptors of its topology, in particular the homology groups of S. We deliver details in266

Appendix A.1.267

Let us construct the particular type of simplicial complexes employed in this work:268

alpha complexes. Clearly, for any three points in Xν(t) that do not lie on a single straight269

line, a unique circumsphere passing through the points exists. Any two points can be270

trivially identified with a zero-dimensional circumsphere. We shall assume that the points271

in Xν(t) are in general position. This excludes, for example, the possibility that three or272

more points are collinear or that four or more points lie on a single circle3. Then, any273

two or three points in Xν(t) have a unique zero- or one-dimensional circumsphere passing274

through these points, respectively4. We call a circumsphere empty, if all points of Xν(t)275

lie on or outside the sphere.276

The Delaunay complex, Del(Xν(t)), can be defined to consist of all points in Xν(t) as277

well as those edges and triangles whose circumspheres are empty [47]. Speaking about278

terminology, a point is a zero-dimensional simplex, an edge between two points is a one-279

dimensional simplex and a triangle is a two-dimensional simplex. As described in Ref. [46],280

for point clouds in general position this procedure yields that the corresponding Delaunay281

complex is a simplicial complex, allowing for the construction of homology groups as282

described intuitively below.283

The Delaunay radius function Rad : Del(X)→ [0,∞) is defined to map every simplex284

to the smallest radius of all its empty circumspheres. Intuitively, it provides a measure285

for the size of a simplex. In Fig. 4d the Delaunay complex of an example point cloud286

Xν(t) as it appears in the Bose gas simulations is displayed for ν̄ = 0.6. Note that287

simplices of different Delaunay radii are visually of distinct dominance, typically. Smaller288

simplices appear foremost around local accumulations of points, while simplices of larger289

radii mainly make up the large-scale structure between them.290

Let Qr ∈ [0,∞) be some length scale. Capturing appearing structures of particular291

sizes, from the Delaunay radius function we finally construct alpha complexes5 as its292

sublevel sets,293

αr(Xν(t)) := {σ ∈ Del(Xν(t)) |Rad(σ) ≤ Qr}. (10)

For all 0 ≤ r ≤ s we find αr(Xν(t)) ⊆ αs(Xν(t)). To this end, we obtain what is294

called a filtration of the Delaunay complex Del(Xν(t)), that is, a nested sequence of alpha295

3While different definitions of general position exist across the literature, we employ the one used in
Ref. [46].

4In general spatial dimension d this would amount to any 2 ≤ j ≤ d + 1 points xi1 , . . . , xij having a
unique (j − 2)-dimensional circumsphere passing through all these points.

5Generically, alpha complexes are simplicial subcomplexes of the Delaunay complex [5].
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Figure 4: Alpha complexes of various radii Qr of the point cloud Xν(Qt = 3750) for
ν̄ = 0.6 as displayed in Fig. 3. Panel (a): Qr = 1.0. Panel (b): Qr = 3.0. Panel (c):
Qr = 7.0. Panel (d): Qr = 20.0.

complexes little by little filling out all Del(Xν(t)),296

∅ ⊆ αr1(X) ⊆ · · · ⊆ αrκ(X) = Del(X), (11)

with ri ≤ rj for all i < j.297

Again referring to the example point cloud Xν(t), in Fig. 4 corresponding alpha298

complexes of different radii Qr are displayed. Note that at a small radius such as Qr = 1.0299

the alpha complex mainly reflects the local accumulations of points in Xν(t). Topological300

structures such as holes are of tiny size and each connected component loosely corresponds301

to a local accumulation of points. Besides seemingly random connected structures, at302

intermediate radii comparably large-scale holes appear in the alpha complexes, such as303

visible in the Qr = 7.0 alpha complex displayed in Fig. 4c. At even larger radii, the304

full Delaunay complex is recovered, in accordance with Eq. (11). Leading to the notion305

of persistent homology, it is a crucial insight that independent connected components306

disappear at a certain radius, merging with other components, and that holes only appear307

in alpha complexes of a certain radius and disappear again at a higher radius.308

3.2.2 Persistent homology and the persistence diagram309

This intuitive picture can be turned into a mathematical concept: persistent homology.310

In Appendix A.2, we provide a more rigorous introduction to it, while here we focus on311

capturing its intuitive essence.312

Alpha complexes of zero radius only consist of the vertices, that is, all points contained313

in the point cloud Xν(t). Certainly, the number of connected components in the alpha314

complex of zero radius equals the cardinality of Xν(t). Increasing the radius, at a certain315

value a first edge between two vertices appears in the alpha complex. A previously inde-316

pendent connected component dies. We call the minimum radius at which it is not present317

anymore in the corresponding alpha complex its death radius. The radius rising further,318
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Figure 5: Persistence diagram of one-dimensional homology classes for the sequence of
alpha complexes partially displayed in Fig. 4, Dgm1(Xν(t)).

more and more connected components die, merging into a larger and larger complex. From319

a certain radius onwards, only one connected component is present in the corresponding320

alpha complexes. In Fig. 4 the process of connected components merging one by one into321

larger complexes can be observed as the sequence of alpha complexes is traversed towards322

larger radii.323

With radii increasing, in the sequence of alpha complexes holes begin to appear as is324

clearly visible in Figs. 4b and 4c. The minimum radius at which an independent hole325

first appears in the sequence of alpha complexes is called its birth radius. We say that it326

is born at its birth radius. Successively, a given hole is filled out with triangles in alpha327

complexes of rising radii, until from its death radius onwards the hole vanishes, being fully328

filled.329

In fact, in simplicial homology independent connected components are described by330

zero-dimensional homology classes and independent holes by one-dimensional homology331

classes. If the point clouds of interest lived in a higher-dimensional Euclidean space,332

one could continue analogously to describe the birth and death of higher-dimensional333

homology classes. This includes, for instance, independent enclosed voids represented334

by two-dimensional homology classes. Homology classes of dimension `, appearing and335

disappearing again as the sequence of alpha complexes is traversed, are collected in groups,336

the `-th persistent homology groups, cf. Appendix A.2.337

Summarizing the structure of `-th persistent homology groups, the `-th persistence338

diagram Dgm`(Xν(t)), is defined to contain all birth radius-death radius pairs (rb, rd) of339

`-dimensional homology classes appearing in the sequence of alpha complexes of Xν(t),340

taking respective multiplicities into account for coinciding such pairs6. In Fig. 5 the341

persistence diagram of one-dimensional homology classes is displayed for the sequence of342

alpha complexes partially shown in Fig. 4. Certainly, in a persistence diagram all points343

lie above the diagonal rb = rd, since the death of any homology class happens at a higher344

radius than its birth. We find that in the bottom-left of the diagram an accumulation345

of pairs is present, corresponding to comparably small one-dimensional homology classes346

(holes). The partly vertical alignment of points can be attributed to the homogeneity of the347

square lattice, on which Xν(t) resides. In addition, we find a second accumulation of pairs348

in the top-right of the diagram, corresponding to larger-size one-dimensional homology349

6The persistence diagram is a finite multiset of points in R2, also taking respective multiplicities into
account.
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Figure 6: Birth and death radii distributions in the infrared. Columns 1 and 2: Death radii
of of zero-dimensional homology classes. Columns 3 and 4: Birth radii of one-dimensional
homology classes. Individual columns show data for the indicated filtration parameter,
ν̄. Row 1: unrescaled distributions. Row 2: rescaled distributions. The employed time-
dependent scaling exponents are displayed in Fig. 8.

classes in corresponding alpha complexes. On these length scales birth and death radii350

are approximately independent from the microscopic lattice geometry.351

3.2.3 Statistical measures: birth and death radii distributions352

To obtain expectation values in the classical-statistical framework, ensemble-averages of353

quantities describing persistence diagrams of individual classical-statistical realizations354

are required. Persistence diagrams themselves are difficult objects to study statistically.355

Without modifications not even a statistical average can be defined unambiguously. Nev-356

ertheless, there exist multifarious quantities suitable for a statistical treatment [48]. We357

introduce two of these here, postponing the general description to Sec. 4.1. We explicitly358

construct classical-statistical ensemble-averages. To this end, let X
(i)
ν (t), i ∈ N, be an359

ensemble of point clouds, all constructed from individual field realizations according to360

Eq. (7). Denote by D
(i)
` (t) := Dgm`(X

(i)
ν (t)) the `-th persistence diagram of the i-th361

such point cloud. Let σ > 0 be a constant. We define the expectation values of the `-th362

distribution of birth radii and the `-th distribution of death radii as363

〈B`〉(t, rb) = lim
k→∞

1

k

k∑
i=1

∑
(r′b,r

′
d)∈D(i)

` (t)

1

2πσ2
exp

(
−(rb − r′b)2

2σ2

)
, (12a)

〈D`〉(t, rd) = lim
k→∞

1

k

k∑
i=1

∑
(r′b,r

′
d)∈D(i)

` (t)

1

2πσ2
exp

(
−(rd − r′d)2

2σ2

)
, (12b)

respectively. Note that these distributions are statistically well-behaved, such that aver-364

ages and the denoted limits exist [49]. The parameter σ is chosen sufficiently large, such365

that numerical outcomes are independent from its particular value.366
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3.3 Growing geometric structures in persistent homology367

Using a computational topology pipeline as described in Appendix B, we can numeri-368

cally investigate birth and death radii distributions for different filtration parameters ν̄ in369

the aforementioned Bose gas simulations. For large length scales, in Fig. 6 death radii370

distributions of zero-dimensional homology classes and birth radii distributions of one-371

dimensional homology classes are displayed at times between Qt = 3750 and Qt = 35625.372

Zero-dimensional persistent homology classes are always born at radius Qrb = 0, turning373

the distribution of birth radii of zero-dimensional homology classes trivial. The occurring374

oscillations in distributions are due to statistical uncertainties, being computed from only375

a finite number of classical-statistical samples.376

We first discuss unrescaled variants of the displayed distributions. It is important377

to note that in any of the distributions the maximum number of counts in birth and378

death radii distributions decreases with time. Simultaneously, the steep decline at largest379

radii in birth and death distributions constantly shifts to higher radii. Clearly, these are380

manifestations of geometric structures in the system growing at large length scales as381

conjectured in Sec. 3.1 from the point clouds themselves. Beyond this, the approximately382

constant form of the distributions already provides a first hint at self-similar dynamics.383

In first death radii distributions a clear peak is visible, in particular for ν̄ = 0.2 as384

displayed in Fig. 6, panel (a3). Point clouds for small ν̄-values being dominated by385

accumulations of points around vortex nuclei, we expect this distinguished length scale386

to provide a measure for the average inter-vortex distance. At higher ν̄-values such as387

ν̄ = 0.6 the peak is blurred by means of bulk points entering corresponding point clouds.388

3.4 Unveiling a spectrum of scaling exponents389

Motivated by the approximately constant form of the distributions displayed in Fig. 6, we390

examine whether they can be consistently described by a self-similar scaling ansatz. We391

say that birth and death radii distributions scale self-similarly, if exponents η1, η
′
1 and η2392

exist, such that for all times t, t′,393

〈B`〉(t, rb) = (t/t′)η
′
1−η2〈B`〉(t′, (t/t′)−η1rb), (13a)

〈D`〉(t, rd) = (t/t′)η1−η2〈D`〉(t′, (t/t′)−η
′
1rd). (13b)

In Sec. 4.3 we deduce this particular form of scaling behavior from a scaling ansatz394

to a more general quantity that describes persistent homology groups, the asymptotic395

persistence pair distribution. Notice that in this scaling ansatz a possible dependence on396

the dimension ` of homology classes is neglected, supported by numerics.397

Using the numerical protocol described in Appendix G, scaling exponents are extracted398

from birth and death radii distributions of one-dimensional homology classes. Given a time399

Qtmin, birth and death radii distributions at times Qtmin, Qtmin + 625 and Qtmin + 1250400

are fitted simultaneously against distributions at reference time Qt′ = 3750. A measure401

for the quality of a self-similar description of the investigated distributions is provided by402

means of residuals. For instance, for the distribution of birth radii residuals at time Qt403

are computed as404

Res.(〈B`〉)(t, rb) :=
(t/t′)η

′
1−η2〈B`〉(t′, (t/t′)−η1rb)
〈B`〉(t, rb)

− 1. (14)

Indeed, distributions can be consistently rescaled by means of the scaling ansatz de-405

scribed in Eqs. (13a) and (13b). This can be deduced from Fig. 6 with residuals of406

rescaled distributions scattering approximately evenly around zero. Note that distribu-407

tions of both zero- and one-dimensional homology classes can be consistently rescaled with408
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Figure 7: Persistent homology scaling exponents at Qtmin = 18750.

Figure 8: Persistent homology scaling exponents for different filtration parameters ν̄ and
minimum fitting times Qtmin.

the same triple of exponents, validating that in the scaling ansatz we neglected a possible409

`-dependence. However, filtration parameter- and time-dependent scaling exponents are410

necessary for a successful rescaling.411

In Fig. 7 we show the scaling exponents for a single minimum fitting time Qtmin,412

highlighting the size of error bars. Errors origin from a finite number of classical-statistical413

samples taken into account and from fitting uncertainties. For values of ν̄ . 0.4 the414

displayed exponent values approximately lie around 0.2. A rise in values takes place415

for ν̄ & 0.5, up to a maximum value of approximately 0.8. Thus, we make the crucial416

observation that a continuous spectrum of scaling exponents exists, depending on the417

filtration parameter ν̄.418

Within error bars η1 equals η′1 at all ν̄-values investigated here. This provides numerical419

evidence for that birth and death radii show the same dynamics at large length scales. In420

addition, for all ν̄-values analyzed η2/η1 = 4 within the indicated error bars. This relation421

results from the bounded packing of homology classes of a given size into the constant422

lattice volume, as shown in Sec. 4.3.2.423

Comprehensively, results are summarized in Fig. 8, in which exponents are displayed424

in the full (ν̄, Qtmin)-plane. The gradual shift of the peak in scaling exponents to higher425

ν̄-values with increasing fitting time Qtmin is a result of the redistribution of amplitude426

values with time, discussed in Sec. 5.1. The scattering of exponent values at larger ν̄-values427

is due to statistical uncertainties.428
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3.5 Scaling species and exponents mixing conjecture429

An observation such as the existence of a whole spectrum of scaling exponents at large430

length scales requires an explanation. We conjecture that its appearance is linked to431

different dynamical scaling species occurring in the infrared of the two-dimensional Bose432

gas.433

First, note that momenta in the infrared regime correspond to large length scales.434

Hence, if infrared dynamics is visible in quantities describing the persistent homology of435

alpha complexes, it will show at correspondingly large birth and death radii. Vice versa,436

if ultraviolet physics is visible in persistent homology, it will show up at comparably small437

birth and death radii. To this end, we identify the regime of large birth and death radii438

in their distributions with the infrared regime of the system. This offers the possibility of439

linking aforementioned results to known momentum space dynamics of physical quantities.440

In addition, for positive scaling exponents η1 = η′1 and η2 the scaling ansatz described441

by Eqs. (13a) and (13b) corresponds to a blow-up of length scales as a power-law with442

exponent η1, as we detail in Sec. 4.3. Hence, a comparison of the exponent η1 with scaling443

exponents appearing in power-laws of further physical length scales is reasonable.444

We restrict the following discussion to η1. For ν̄ . 0.4, the exponent η1 meets the445

value of 1/5 associated to the anomalous vortex kinetics nonthermal fixed point [37, 42]446

and confirmed by the self-similar dynamics of occupation number spectra in the given447

simulations, Eq. (6). Point clouds, alpha complexes as well as birth and death radii448

distributions reflect the occurring vortex dynamics for small ν̄, correspondingly. This is449

in accordance with the observation made in Sec. 3.1 that for ν̄ . 0.4 point clouds mainly450

comprise accumulations of points around vortex nuclei.451

The exponent η1 increases with ν̄ up to maximum values of between 0.7 and 0.9452

depending on Qtmin, cf. Fig. 8 — a value which is significantly different from 1/5. We453

take a small detour to provide a physical interpretation for this phenomenon.454

Collectively, the vortices show anomalous kinetics and dominate point clouds at low455

ν̄-values: η1(ν̄ = 0.05) ≈ 0.2. It is well-known, however, that the two-dimensional nonrel-456

ativistic Bose gas not only exhibits the anomalous vortex kinetics nonthermal fixed point457

with β = 0.2, but also incorporates strong wave turbulence characterized by β = 0.5458

[32, 37, 42, 50]. If the vortices were absent or coupled strongly to sound excitations in the459

bulk, only self-similar scaling with β = 0.5 would be visible, as argued for in Ref. [37].460

Motivated by this, we infer that in the configurations investigated it is sound excitations in461

the bulk that reflect strong wave turbulence. Correspondingly, if bulk points enter point462

clouds, then birth and death radii distributions might show scaling behavior deviating463

from η1 = 0.2. As can be seen in Figs. 3, 7 and 8 this is the case for growing ν̄-values464

and explains the increase of η1. With this admittedly loose association of bulk points to465

strong wave turbulence and vortex nuclei points to anomalous vortex kinetics in mind, we466

refer to the underlying phenomenon as scaling species mixing in point clouds.467

Yet, the maximum value of η1(ν) exceeds 0.5 significantly for all Qtmin. A heuristic468

geometric explanation proceeds as follows. Restrict to the dynamics of a single classical-469

statistical field configuration and corresponding point clouds Xν(t). Let Yν(t) ⊆ Xν(t)470

be associated to anomalous vortex kinetics and Zν(t) ⊆ Xν(t) associated to strong wave471

turbulence in the bulk, such that Xν(t) = Yν(t) ∪ Zν(t). The alpha complexes of Xν(t),472

αr(Xν(t)), however, do not simply decay into αr(Yν(t)) and αr(Zν(t)). Instead, depending473

on the precise arrangements of points in Yν(t) and Zν(t), there may be a lot of simplices474

contained in αr(Xν(t)) which incorporate points of both Yν(t) and Zν(t). In addition,475

simplices that only consist of points in Yν(t) or Zν(t) can be very different from the ones476

in αr(Yν(t)) and αr(Zν(t)). The construction of alpha complexes from Yν(t) and Zν(t) is477

a highly nonlinear process. Birth and death radii distributions can reflect this behavior.478
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4 Persistent homology observables and self-similarity479

In this section we embed alpha complexes and persistent homology descriptors into the480

classical-statistical regime of quantum field theory (QFT). By means of functional sum-481

maries of persistence diagrams, this leads to the definition of persistent homology observ-482

ables. In quite a few examples of these the same integral kernel appears, which we call483

the asymptotic persistence pair distribution. This paves the way to a self-similar scaling484

approach for the asymptotic persistence pair distribution, whose outgrowths for birth and485

death radii distributions are given by Eqs. (13a) and (13b). In Sec. 3.4 this particular486

scaling behavior has been shown to describe simulation outcomes well.487

4.1 Persistent homology observables via functional summaries488

Naturally, studying persistent homology in QFT requires a statistical treatment. Persis-489

tence diagrams themselves, however, do not admit a clear notion of averages [48]. Instead,490

we propose to focus on so-called functional summaries, providing general statistically well-491

behaved descriptors of persistence diagrams. In Sec. 4.2 we reveal that the investigated492

birth and death radii distributions given by Eqs. (12a) and (12b) are corresponding ex-493

amples.494

Let D be the space of persistence diagrams, that is, the space of finite multisets of495

points within {(rb, rd) ∈ [0,∞)2 | rd ≥ rb}. Let F be a collection of functions, f : Ω→ R496

for all f ∈ F , Ω being a compact space. Following Ref. [49], a functional summary is in497

full generality any map from the space of persistence diagrams to a collection of functions,498

F : D → F .499

Upon the classical-statistical approximation, expectation values of quantum observ-500

ables are computed as ensemble-averages of classical field configurations, which are time-501

evolved via the corresponding classical equation of motion starting from fluctuating initial502

conditions. The range of validity of this approximation is typically restricted to high503

occupation numbers [32]. We propose to proceed analogously for functional summaries504

of persistence diagrams. To this end, any such summary F may be evaluated on the505

level of individual field configurations and its expectation value 〈F 〉 computed as the506

ensemble-average. We assume that the range of validity of this approach coincides with507

the well-known classical-statistical regime. Certainly, for any functional summary F this508

proposal requires the existence of a corresponding linear operator F , such that in the509

classical-statistical regime for any s ∈ Ω,510

tr(ρ(t)F)(s) = 〈F 〉(t, s), (15)

ρ(t) being the time-dependent density operator of interest, the trace taken over the cor-511

responding quantum theory Hilbert space and the right-hand side being computed via512

the aforementioned evaluation scheme. However, the existence of such an operator F is a513

priori not clear and will be discussed in a future work.514

We need to assure that in the limit of averaging infinitely many individual functional515

summaries of field configurations the statistical mean of the functional summary is recov-516

ered. This is guaranteed for by a mathematical statement on the pointwise convergence517

of so-called equicontinuous and uniformly bounded functional summaries, the details of518

which can be found in Proposition 1 of Ref. [49]. For the sake of this statement we restrict519

our proposal to functional summaries of persistence diagrams with these two fairly general520

conditions. By means of the described classical-statistical evaluation scheme we refer to521

such functional summaries as persistent homology observables.522

We want to stress that this proposal is neither restricted to the computation of persis-523

tent homology from equal-time alpha complexes, that is, alpha complexes computed from524
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point clouds constructed at individual instances of time as done in this work, nor to alpha525

complexes themselves.526

4.2 The asymptotic persistence pair distribution and geometric quanti-527

ties528

Let F : D → F be a functional summary in the above sense. We say that F is additive,529

if F (D + E) = F (D) + F (E) for any two persistence diagrams D,E ∈ D . Here, D + E530

denotes the sum of multisets, that is, the union of D and E with multiplicities of elements531

in both D and E added.532

Let D(t) ∈ D be a persistence diagram computed at time t as specified in Sec. 3.2.2533

and F an additive functional summary. We then find for all s ∈ Ω,534

F (D(t))(s) =
∑

(rb,rd)∈D(t)

F ({(rb, rd)})(s)

=

∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s)P(t, r′b, r
′
d), (16)

with the persistence pair distribution535

P(t, r′b, r
′
d) :=

∑
(rb,rd)∈D(t)

δ(r′b − rb) δ(r′d − rd), (17)

δ denoting the Dirac delta function.536

Let (D
(i)
` (t))i∈N ⊂ D be a classical-statistical ensemble of persistence diagrams de-537

scribing `-dimensional persistent homology classes at time t. We denote the persistence538

pair distribution of D
(i)
` (t) by P

(i)
` (t) and define the asymptotic persistence pair distribu-539

tion, 〈P`〉, at any time t implicitly, requiring that for any equicontinuous and uniformly540

bounded functional summary F as in the above proposal,541 ∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s) 〈P`〉(t, r′b, r′d)

:= lim
k→∞

1

k

k∑
i=1

∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s)P
(i)
` (t, r′b, r

′
d), (18)

for arbitrary s ∈ Ω.542

Functional summaries of relevance in this work include the distribution of birth and543

death radii that have been defined in Eqs. (12a) and (12b), respectively. With an obstacle544

to be described below, both can be computed as marginal distributions of 〈P`〉,545

〈B`〉(t, rb) =

∫ ∞
0

drd 〈P`〉(t, rb, rd), (19a)

〈D`〉(t, rd) =

∫ ∞
0

drb 〈P`〉(t, rb, rd). (19b)

In addition, we define the persistence distribution, that is, the distribution of rd − rb,546

〈P`〉(t, r) =

∫ ∞
0

drd 〈P`〉(t, rd − r, rd). (20)

Natural quantities to study are the `-th Betti numbers 〈β`〉(t, r). Intuitively, the zeroth547

Betti number 〈β0〉(t, r) specifies the number of connected components minus one7 present548

7We work with reduced homology groups. Thus, the zeroth Betti number actually counts the number
of connected components minus one.
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in the alpha complex of radius Qr and the first Betti number 〈β1〉(t, r) specifies the corre-549

sponding number of holes. Being zero in the present work, higher Betti numbers count how550

many nontrivial higher-dimensional homology classes are present in corresponding com-551

plexes. Betti numbers can be computed from the asymptotic persistence pair distribution552

via553

〈β`〉(t, r) =

∫ r

0
drb

∫ ∞
r

drd 〈P`〉(t, rb, rd). (21)

A mathematical obstacle appears with regard to definitions such as Eqs. (19a) and554

(19b). A priori, the sets of functions 〈B`〉(t, rb), of 〈D`〉(t, rd), of 〈P`〉(t, r) and of 〈β`〉(t, r)555

are not equicontinuous. However, only functional summaries which have this property are556

persistent homology observables in the sense of Sec. 4.1. For all positive σ we define557

ζσ(s) :=
1√

2πσ2
exp

(
− s2

2σ2

)
. (22)

By convolution with it at each time individually, sets of functions such as 〈B`〉(t, rb) can558

be rendered equicontinuous8. In fact, this way Eqs. (12a) and (12b) for birth and death559

radii distributions arise from Eqs. (19a) and (19b). In everything that follows we omit the560

convolution procedure in notations. As mentioned previously, the convolution procedure is561

numerically irrelevant. In computations, convergence of persistent homology observables562

is numerically verified, cf. Appendix F.563

The average number of persistent homology classes is encoded in 〈P`〉, too,564

〈n`〉(t) =

∫ ∞
0

drb

∫ ∞
0

drd 〈P`〉(t, rb, rd). (23)

Various length scales may be constructed from 〈P`〉. An interesting length scale is the565

average maximum death radius 〈rd,`,max〉(t), which can be computed from the asymptotic566

persistence pair distribution via9
567

〈rd,`,max〉(t) = lim
p→∞

(∫ ∞
0

drb

∫ ∞
0

drd r
p
d 〈P`〉(t, rb, rd)

)1/p

. (24)

Analogously, the average maximum birth radius can be computed. The average number568

of persistent homology classes and the average maximum death (birth) radius constitute569

persistent homology observables as constructed above.570

4.3 Self-similar scaling approach571

By means of the scaling behavior visible in birth and death radii distributions, in Sec. 3.4572

we have already begun the study of self-similarity in persistent homology observables in573

the vicinity of a nonthermal fixed. Here, we introduce a more general scaling ansatz for574

the asymptotic persistence pair distribution. We provide a heuristic packing argument575

relating the appearing scaling exponents.576

In Appendix D we provide a brief discussion on the relation between the self-similar577

scaling ansatz described here and known notions of self-similar scaling appearing across578

the literature.579

8Indeed, for any σ > 0 a constant Cσ > 0 exists, such that for all possible functions 〈B`〉(t, rb),
∂(〈B`〉 ∗ ζσ)(t, r)/∂r = (〈B`〉 ∗ ζ′σ)(t, r) < Cσ, the prime indicating taking the first derivative. Here we
employed that in the lattice framework all functions such as 〈B`〉(t, rb) are uniformly bounded.

9Given positive real numbers y1, . . . , ym, one obtains their maximum via max{y1, . . . , ym} =
limp→∞(

∑m
i=1 y

p
i )1/p. From this, the given formula derives.
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4.3.1 Scaling ansatz to the asymptotic persistence pair distribution580

Let 〈P`〉(t, rb, rd) be a time-dependent asymptotic persistence pair distribution as it ap-581

pears in Eq. (18). We say that 〈P`〉(t, rb, rd) scales self-similarly, if exponents η1, η
′
1 and582

η2 exist, such that for all times t, t′,583

〈P`〉
(
t, rb, rd

)
= (t/t′)−η2 〈P`〉

(
t′, (t/t′)−η1rb, (t/t

′)−η
′
1rd
)
. (25)

Due to the time-dependence of 〈P`〉 derived geometric quantities become time-dependent,584

too. Immediately, from Eq. (25) for birth and death radii distributions the scaling be-585

havior described by Eqs. (13a) and (13b) follows. Assuming η1 = η′1, the persistence586

distribution scales as587

〈P`〉(t, r) = (t/t′)η1−η2〈P`〉(t′, (t/t′)−η1r). (26)

The total number of persistence pairs scales as588

〈n`〉(t) = (t/t′)η1+η′1−η2〈n`〉(t′) (27)

and the average maximum death radius as589

〈rd,`,max〉(t) = (t/t′)η1〈rd,`,max〉(t′). (28)

Though not explicitly given here, the average maximum birth radius scales the same way.590

This provides evidence for the geometric intuition of persistence length scales blowing up591

or shrinking in the course of time upon self-similar scaling.592

Provided that η1 = η′1, the `-th Betti numbers scale as593

〈β`〉(t, r) = (t/t′)2η1−η2〈β`(t′, (t/t′)−η1r). (29)

4.3.2 A heuristic packing relation594

We assume that η1 = η′1 and consider a general spatial dimension d here. A fairly general595

heuristic argument leads to the packing relation η2 = (2 + d)η1. Intuitively, the argument596

encodes that only a finite number of persistent homology classes of a given size can be597

packed into a constant volume V .598

Let point clouds be dominated by a time-dependent length scale L(t). The d-dimensional599

volume V in which the point clouds reside is kept constant. Heuristically, a number600

〈nd−1〉(t) of (d− 1)-dimensional persistent homology classes fits into V , with this number601

scaling as602

〈nd−1〉(t) ∼
V

L(t)d
, (30)

since the volume that each (d− 1)-dimensional persistent homology class occupies generi-603

cally may scale as ∼ L(t)d. Inferring the scaling of length scales as described by Eq. (28),604

that is, L(t) ∼ tη1 , we find605

〈nd−1〉(t) ∼ t−dη1 . (31)

On the other hand, from Eq. (27) we obtain606

〈nd−1〉(t) ∼ t2η1−η2 . (32)

Hence,607

η2 = (2 + d)η1, (33)
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Figure 9: Distribution of amplitude-values at different times, averages taken across
classical-statistical sampling runs.

which shows that persistent homology observables represent in a direct fashion the geom-608

etry at hand.609

Of course, the assignment of occupied volumes to (d−1)-dimensional homology classes610

is highly heuristic, bearing in mind that a homology class is an equivalence class of many611

cycles within a simplicial complex, rendering any such mapping ambiguous. However,612

one may use elements of the proof of the Wasserstein stability theorem for persistence613

diagrams, carried out in Ref. [44], to deduce Eq. (33) more rigorously from physically614

reasonable assumptions. In Appendix C we sketch the corresponding derivation, provided615

in detail in Ref. [51].616

5 Exponent shifts, persistences and Betti number distribu-617

tions618

In this section the due explanation of temporal shifts of the scaling exponent spectrum619

observed in Sec. 3.4 is given as well as numerical outcomes for persistence distributions and620

Betti numbers. The latter provide further evidence for the suitability of the self-similar621

scaling ansatz for the asymptotic persistence pair distribution, as given by Eq. (25).622

5.1 Amplitude redistribution-induced exponents shifts623

The scaling exponents displayed in Fig. 8 change in time for ν̄ & 0.5. To discuss the624

origins of this effect, in Fig. 9 amplitude distributions are displayed for different times625

between Qt = 3750 and Qt = 37500. As is clearly visible, amplitudes redistribute with626

growing times towards the peak at around |ψ(t)|/〈|ψ(t = 0)|〉vol ≈ 1.05. As indicated in627

Fig. 10, point clouds Xν(t) with ν̄ . 1.0 become sparser with time, that is, for a fixed ν̄628

the cardinality of point clouds decreases.629

As deduced earlier, at low ν̄-values point clouds are dominated by accumulations of630

points around vortex nuclei, while for ν̄ & 0.4 points in the bulk enter point clouds. With631

point clouds getting sparser in the course of time it is first bulk points to disappear from632

point clouds. Accumulations of points around vortex nuclei remain, as can be seen from633

Fig. 11, in which point clouds are displayed for different filtration parameters and times.634

Given the example point cloud for ν̄ = 0.5 at time Qt = 3750, we observe that it is made635
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Figure 10: The average cardinality of point clouds varying with ν̄ at different times,
averages taken across classical-statistical sampling runs.

Figure 11: Example point clouds Xν(t) for different ν̄-values as indicated. Row (a): time
Qt = 3750. Row (b): Qt = 7500. Row (c): Qt = 11250.
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Figure 12: The average maximum death radius of 1-dimensional persistent homology
classes varying with time, displayed for ν̄-values as indicated.

up from accumulations of points (around vertices) mixed with random points in between,636

while at time Qt = 11250 the point cloud consists of nothing but the accumulations. The637

behavior of point clouds at ν̄ = 0.6 is similar, although the point cloud at Qt = 11250638

still contains random points associated to sound excitations between accumulations. Point639

clouds at ν̄ = 0.70 only get sparser but still contain many bulk points.640

The average maximum death radius of 1-dimensional persistent homology classes,641

〈rd,1,max〉(t), is displayed for different ν̄-values in Fig. 12. Comparably large fluctuations642

and outliners occur, since 〈rd,1,max〉(t) is very sensitive to particular geometric arrange-643

ments of points in point clouds of individual classical-statistical samples. According to644

Eq. (28), if the system’s asymptotic persistence pair distribution scales self-similarly in645

time and η1 = η′1, then 〈rd,1,max〉(t) ∼ tη1 . Indeed, 〈rd,1,max〉(t) shows power-law behavior646

within individual periods of time and confirms the shifts in scaling exponents as indicated647

by the results displayed in Fig. 8, which have been deduced from birth and death radii648

distributions. For instance, for ν̄ = 0.6 a shift occurs between times Qt ≈ 9000 and649

Qt ≈ 13000.650

Recently, the phenomenon of prescaling has been discovered, that is, the rapid es-651

tablishment of a universal scaling form of distributions long before the universal values652

of corresponding scaling exponents are realized [52, 53]. Although we also study time-653

dependent scaling exponents of constant-form distributions, we want to stress that in our654

case this is not a manifestation of prescaling. Instead, it is an artifact of the sharp cutoff655

at the filtration parameter to generate point clouds, rendering point clouds themselves656

and their persistent homology groups sensitive to amplitude redistribution effects.657

5.2 Persistence distributions658

In Fig. 13 persistence distributions for different filtration parameters are displayed. Again,659

fluctuations are due to statistical uncertainties. Distributions can be rescaled using time-660

dependent scaling exponents as given in Fig. 8. To this end, we attribute the observed661

behavior to the physics at large length scales. We want to emphasize that the persistence662

distributions at a low filtration parameter such as ν̄ = 0.2 show distinctly a power-law663

behavior at all times. A power-law fit of the rescaled distributions for ν̄ = 0.2 reveals a664
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Figure 13: Persistence distributions. Each column shows data for the indicated filtration
parameter, ν̄. The employed time-dependent scaling exponents are displayed in Fig. 8.
Insets show corresponding residuals.

scaling with persistence as ∼ (rd − rb)−ζ with10
665

ζ = 1.468± 0.021. (34)

The relation of the exponent ζ to known signatures of for example strong wave turbulence666

is to date not clear to us.667

5.3 Betti numbers as a consistency check668

In Sec. 4.3 we derived that if the asymptotic persistence pair distribution scales self-669

similarly, then Betti number distributions do so as well, described by Eq. (29). Having670

extracted scaling exponents from birth and death radii distributions in Sec. 3.4, we inves-671

tigate Betti number distributions as a consistency check.672

In Fig. 14 Betti number distributions for both zero- and one-dimensional homology673

classes are displayed at ν̄ = 0.2. For all times 〈β0〉(t, r) is a monotonically decreasing674

function, since zero-dimensional persistent homology classes are born at zero radius and675

〈β0〉(t, r) captures only their death. We find a peak in unrescaled 〈β1〉(t, r), which, again,676

decreases in magnitude and shifts to higher radii as an indication of growing geometric677

structures.678

10The power-law fit is first carried out for persistence values between Q(rd − rb)min = 0.3125 and
Q(rd − rb)max = 5.0 at each of the times Qti = 3750, 4375, . . . , 37500, individually, to obtain values for
ζ(ti) and its fitting error at time ti, ∆ζ(ti), i = 1, . . . , Ni. Subsequently, the value of ζ is defined to be
the average of the obtained exponents. Its error squared, ∆ζ2, is computed by means of standard error
propagation as the sum of the temporal error squared and the sum of all ∆ζ(ti)

2/N2
i .
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Figure 14: Betti number distributions for ν̄ = 0.2 are shown for dimensions ` as indicated.
The employed time-dependent scaling exponents are displayed in Fig. 8, setting η′1 := η1.
Insets show corresponding residuals.

Approximately, Betti numbers display self-similar scaling behavior. However, residuals679

of the rescaled 〈β0〉(t) increase at large radii and 〈β1〉(t) shows comparably large fluctu-680

ations. Nonetheless, rescaled Betti number distributions confirm previously extracted681

exponents.682

6 Conclusions683

In the present study we proposed a novel class of observables, persistent homology ob-684

servables, to study the dynamical behavior of quantum fields. Serving as a prototype685

application, we investigated the self-similar dynamics at nonthermal fixed points in the686

classical-statistical approximation. Accompanied by mathematical considerations that687

guarantee, for example, for the convergence of averages, we studied functional summaries688

of persistent homology groups. We found that the notion of an asymptotic persistence689

pair distribution is a suitable probability measure for a self-similar scaling ansatz.690

By means of simulations of the two-dimensional nonrelativistic Bose gas we revealed691

that the self-similar scaling dynamics characterizing nonthermal fixed points is a phe-692

nomenon that also appears in persistent homology observables. Crucially, this way we693

discovered a continuous spectrum of scaling exponents, depending on a filtration parame-694

ter that appears in the construction of point clouds. We provided a possible explanation695

in terms of scaling species mixing associated to two different dynamical processes: Strong696

wave turbulence and anomalous vortex kinetics.697

For all times investigated we found a power-law in persistence, possibly providing a698

direct indication in persistent homology observables for the presence of a turbulent cascade.699

It is currently unclear to us how to relate the deduced persistence power-law exponent to700

known power-law exponents appearing in occupation number spectra, typically signaling701
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strong wave turbulence or hinting at topological defect structures [28,37,38].702

Describing the wrapping of finite-size homology classes into a finite volume, by means of703

a packing relation we argued that self-similarity in persistent homology observables reflects704

the geometry at hand. Further exploring the relation between such geometric effects and705

conserved quantities associated to transport processes at nonthermal fixed points would706

be interesting, but lies outside the scope of this work.707

Of particular relevance in the proposed persistent homology ansatz is the filtration708

function to generate point clouds from individual field configurations. We showed that709

already a simple variant such as the amplitude of the complex-valued fields can give710

rise to interesting observations. It is a feature of our analysis that the information on711

phase windings around vortex nuclei is not necessary in order to show the existence of712

further dynamical components beyond vortices. Nonetheless, we want to stress that at713

this point of the analysis scheme an immense freedom of choice exists, rendering the714

persistent homology ansatz highly flexible.715

Also without such a filtration procedure the proposed methods can be applied to for716

instance point vortex models. Surpassing the present work, one does in principle not need717

a lattice to construct persistent homology groups. Even for fields with an arbitrary smooth718

and triangulable manifold as their domain there exist multifarious ways to construct per-719

sistent homology groups [5].720

Myriad of interesting further applications of persistent homology within QFT exist.721

With regard to the recent experimental progress in handling ultracold quantum gases to722

simulate quantum dynamics [22, 23, 31]: What can we learn from a thorough persistent723

homology analysis of experimental data, including the investigation of different filtration724

functions? Can relative homology groups give new geometrical insights into the relevant725

physical processes?726

Certainly, paths to illuminate also include analytics. Inter alia, for different types of727

random fields statistical statements could be made [54], and by means of integral geom-728

etry techniques predictions for alpha complexes of a class of random point clouds have729

been derived [46]. Using similar methods, is it possible to obtain analytic predictions for730

alpha complexes and their persistent homology in the context of quantum fields and path731

integrals?732

Given the present study, we believe to have found a promising machinery to understand733

emergent connectivity and clustering structures far from equilibrium beyond the language734

of correlation functions via geometry and topology, providing a first step on the route of735

introducing persistent homology observables to QFT.736
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A The mathematics of persistent homology749

The first part of this appendix serves as an intuitive entry point to standard algebraic750

topology concepts of relevance in this work. In the second part we construct persistent751

homology groups more rigorously than in the main text, including structural aspects.752

Physically speaking, in this appendix we assume that all quantities are dimensionless.753

To this end, no factors of Q appear.754

A.1 Relevant notions from algebraic topology755

We introduce the notions of a simplicial complex, of chain groups and the boundary oper-756

ator in order to finally introduce standard homology groups. For a thorough introduction757

to algebraic topology the reader may consult, for instance, Ref. [45].758

Let K be a simplicial complex. An element σ ∈ K is a simplex of dimension `, if759

card(σ) = ` + 1. Letting τ ⊆ σ, we call τ a face of σ, and, vice versa, σ a coface760

of τ . The orientation of an `-simplex σ = {v0, . . . , v`} ∈ K, is an equivalence class of761

permutations of its vertices, (v0, . . . , v`) ∼ (vπ(0), . . . , vπ(`)) if sign(π) = 1. An oriented762

simplex is denoted by [σ]. Geometrically, a simplex can be realized as the convex hull of763

`+ 1 affinely independent points in Rd, d ≥ `. To this end, simplices of low dimension can764

be thought of as vertices, edges, triangles or tetrahedra, respectively.765

Subcomplexes of a simplicial complex are subsets L ⊆ K that are simplicial complexes,766

too. A nested sequence of complexes, ∅ = K0 ⊆ K1 ⊂ · · · ⊆ Kk = K is called a filtration767

of the complex K.768

We call the free Abelian group on the set of oriented `-simplices of a simplicial complex769

K the `-th chain group C`, where [σ] = −[τ ] if σ = τ and σ and τ are oriented differently.770

An element c ∈ C` is an `-chain, c =
∑

imi[σi] with σi ∈ K and mi ∈ Z. We define the771

boundary operator ∂` : C` → C`−1 to be the linear map defined by its action on a simplex772

σ = [v0, . . . , v`] ∈ c,773

∂`σ =
∑
j

(−1)j [v0, v1, . . . , v̂j , . . . , v`], (35)

v̂j indicating that vj is deleted from the denoted sequence. Intuitively, the boundary774

operator maps an `-chain to its boundary, validating its nomenclature. A key feature is775

that ∂` ◦ ∂`+1 = 0, i.e. the boundary of a boundary is empty. Therefore the boundary776

operator connects the chain groups into an exact sequence, the chain complex C∗,777

· · · → C`+1
∂`+1−→ C`

∂`−→ C`−1 → . . . . (36)

To this end, the boundary group B` := im∂`+1 and the cycle group Z` := ker ∂` are nested,778

B` ⊆ Z` ⊆ C`.779

The `-th homology group is then defined as H` := Z`/B`. Its elements are equivalence780

classes of homologous cycles. Defined over a ring Z, homology groups are Z-modules.781

However, if defined over a field such as Z2 as done in the main text, homology groups782

become vector spaces.783

A.2 The construction and structure of persistent homology groups784

We carry out the construction of persistent homology groups for the sequence of alpha785

complexes described in the main text, cf. Sec. 3.2.1. Let X ⊂ Rd be an arbitrary786
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Figure 15: An illustration of the definitions of birth and death of homology classes. Picture
inspired by Ref. [5].

point cloud and (αr(X))r∈[0,∞) its sequence of alpha complexes. The sequence is nested,787

αr(X) ⊆ αs(X) for all r ≤ s. X being finite, only finitely many different αr(X) exist,788

which can be specified by means of a finite set of different ri, i = 1, . . . , κ. We abbreviate789

notations by means of αi := αri(X) for all i.790

For all i ≤ j, the inclusion map ιi,j : αi → αj induces a homomorphism between791

homology groups, ιi,j` : H`(αi) → H`(αj), for each dimension ` = 0, . . . , d. To this end,792

the filtration of alpha complexes yields a sequence of homology groups,793

0→ H`(α1)→ · · · → H`(ακ) = H`(Del(X)). (37)

Within this sequence, homology classes are born and later die again, when they become794

trivial or merge with other classes. With this intuition in mind, we set795

H i,j
` := im(ιi,j` ), ∀ 0 ≤ i ≤ j ≤ κ, (38)

as well as796

βi,j` = dim(H i,j
` ), (39)

counting the number of homology classes that are born at or before ri and die after rj .797

To make the notions of birth and death of a simplex rigorous, let γ ∈ H`(αi). We798

say that γ is born at αi if γ /∈ H`(αi−1). If γ is born at αi, then it dies entering αj , if799

it merges with an older class as going from αj−1 to αj , that is, ιi,j−1
` (γ) /∈ H i−1,j−1

` , but800

ιi,j` (γ) ∈ H i−1,j
` . The persistence of γ is defined as pers(γ) := rj − ri, if γ is born at αi801

and dies entering αj . For an illustration of this definition we refer to Fig. 15.802

Actually, this intuitive definition has a conceptual drawback [2]. Any two homology803

classes that are born at the same birth radius rb, one of them merging with the other804

one at a radius r > rb, only die jointly at the death radius of the resulting homology805

class with highest death radius. A circumvention of this is provided by what is called806

the structure theorem of persistence modules [3, 4]. It states that up to isomorphism the807

family ((H`(αi))i, (ι
i,j
` )i≤j) can be described by its persistence diagram as defined in the808

main text, cf. Sec. 3.2.2. An equivalent notion to the persistence diagram which regularly809

appears across topological data analysis literature is that of a barcode.810

B The computational pipeline811

A variety of software exists designed to provide user-friendly and fast routines for the812

generation of simplicial complexes and the computation of persistent homology [2]. We813

employ the GUDHI library, which is a generic open source C++ library tailored to topo-814

logical data analysis and higher dimensional geometry understanding [55]. In particular,815

27



SciPost Physics Submission

with the simplex tree structure [56] it offers a handy data structure to store simplicial com-816

plexes. GUDHI employs the extensive CGAL library [57] to compute alpha complexes and817

uses a sophisticated algorithm to compute persistent homology groups. To give a rough818

indication of its speed, on a standard laptop alpha complexes of point clouds with approx-819

imately 100,000 data points can be analyzed in a few minutes, including the computation820

of persistent homology groups of all dimensions. For an overview of the computational cost821

of topological data analysis implementations across software solutions we refer to Ref. [2].822

In this work we apply GUDHI functions to point clouds generated from individual field823

configurations according to Eq. (7). Obtaining persistent homology outcomes at various824

times for each field configuration, ensemble-averages are taken. Due to the lack of statis-825

tics, a direct analysis of the asymptotic persistence pair distribution 〈P`〉 is unfeasible.826

Instead, for the k = 72 configurations investigated we have verified that the persistent827

homology observables 〈B`〉(t, rb), 〈D`〉(t, rd), 〈P`〉(t, r) and 〈β`〉(t, r) converged properly.828

In Appendix F we analyze in detail the convergence behavior of persistent homology ob-829

servables with k.830

Of course, point clouds that are subsets of a regular lattice are generically not in general831

position, which can result in their Delaunay complexes not being simplicial complexes.832

GUDHI removes corresponding ambiguities by means of a built-in perturbation scheme833

for points out of general position. Effects of this procedure are not visible.834

While simulations take periodic boundary conditions into account, alpha complexes835

of point clouds are computed non-periodically. Certainly, the toroidal topology of the836

lattice Λ would have an effect on, for example, computed Betti numbers: The 2-torus837

has β0(T 2) = 0, β1(T 2) = 2 and β2(T 2) = 1, which would at all times and radii add to838

〈β`〉(t, r). The dynamics of point clouds and their persistent homology groups, however,839

would remain unaltered.840

C Packing relation from bounded total persistence841

In Sec. 4.3.2 we provided a heuristic argument leading to the packing relation between842

scaling exponents in a self-similar scaling ansatz to the asymptotic persistence pair distri-843

bution,844

η2 = (2 + d)η1. (40)

Actually, under physically reasonable assumptions this relation can be properly derived.845

Here we outline this deduction. Details are provided in Ref. [51].846

In Ref. [44] the notion of bounded total persistence has been introduced for the persis-847

tent homology of sublevel sets of a Lipschitz function f : M → R with certain properties,848

M being a connected, triangulable and compact metric space. For example, Lipschitz func-849

tions on the d-torus or the plane [0, L]d, L > 0, have bounded total persistence. Given a850

point cloud X ⊂ Rd such as the Xν(t) defined by Eq. (7), one can actually derive from851

the bounded total persistence an upper bound on the number of points in the persistence852

diagram of the sequence of alpha complexes. This upper bound scales with a particular853

length scale to the power of −d.854

A statistical treatment of point clouds and persistence diagrams is necessary in order855

to define the asymptotic persistence pair distribution and the corresponding self-similar856

scaling ansatz. To this end, functional summaries as described in Sec. 4.1 play a key857

role. Properties of point clouds, persistence diagrams and functional summaries such as858

self-averaging in the limit of large volumes can be turned rigorous.859

Eventually, one can obtain Eq. (40) from the upper bound on the number of points in860

persistence diagrams. Central to the interpretation of Eq. (40) as describing the packing861
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of homology classes into a constant volume is this upper bound.862

D Relating persistent homology exponents to correlation863

function exponents864

Typically, nonthermal fixed points and their properties are discussed in the framework of865

fixed-order correlation functions, both theoretically and experimentally [22,23,32,58–60].866

The self-similar scaling behavior at nonthermal fixed points allows for a grouping of far-867

from-equilibrium quantum systems into universality classes. Universality classes cover868

broad classes of far-from-equilibrium initial conditions, large ranges of relevant parameters869

and even theories with very different degrees of freedom [32]. Being a natural surrounding870

for universality, properties of nonthermal fixed points including scaling exponents have871

been derived within the renormalization group [61,62]. To this end, length scales derived872

from scaling correlation functions are expected to blow up or to shrink with a unique873

power-law in time.874

If the asymptotic persistence pair distribution shows self-similar scaling as in Eq. (25),875

then any length scale derived from it scales in time as a power-law with exponent η1,876

assuming η1 = η′1. As an example consider the average maximum death radius, defined in877

Eq. (24) and showing scaling as in Eq. (28). In light of this geometric analogy and the878

universality of scaling exponents at nonthermal fixed points, we expect that self-similar879

scaling behavior as extracted from correlation functions can typically be observed also in880

persistent homology observables.881

E Details on the nonrelativistic Bose gas simulations882

This appendix is devoted to provide details of the numerical setup to simulate the two-883

dimensional single-component nonrelativistic Bose gas in the classical-statistical regime.884

The computational implementation is described in Ref. [32].885

Correspondingly, in the atomic gas let a be the s-wave scattering length and n its886

density. We define a diluteness parameter [32],887

ζ =
√
na3, (41)

and assume that ζ � 1. A characteristic coherence length may be defined inversely via888

the momentum scale889

Q =
√

16πan. (42)

The average density, n, can be computed from the distribution function, f(|p|), p being890

the momentum, via891

n =

∫
ddp

(2π)d
f(|p|). (43)

For the validity of the classical-statistical approximation as well as extreme nonequilibrium892

conditions to trigger dynamics towards a nonthermal fixed point, we require a large char-893

acteristic mode occupancy, f(Q) � 1. Then, the dynamics becomes essentially classical894

and can be described by the time-dependent Gross-Pitaevskii equation for a nonrelativistic895

complex bosonic field, ψ,896

i∂tψ(t,x) =

(
− ∇

2

2m
+ g|ψ(t,x)|2

)
ψ(t,x). (44)
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Figure 16: Birth and death radii distributions and persistence distributions in the in-
frared varying with time, displayed for ν̄-values and numbers of samples to average, k, as
indicated.

Fluctuating initial conditions, f(p), are generated as samples of a Gaussian distibu-897

tion with a width as described in Eq. (3). Each realization is evolved according to the898

discretized Gross-Pitaevskii equation, numerically solving the equation on a spatial lattice899

using a split-step method [32].900

F Numerical convergence of persistent homology observ-901

ables902

In this appendix we provide results for how the different persistent homology observables903

of interest in the main text converge with the number of classical-statistical samples, k,904

increasing.905

In Fig. 16 we display birth and death radii distributions as well as persistence distri-906

butions for two values of ν̄, at different times within the persistent homology observables’907

self-similar scaling regime and for different values of k. It is clearly visible that occurring908

fluctuations decrease with k increasing.909
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Figure 17: Betti number distributions in the infrared varying with time, displayed for
ν̄-values and numbers of samples to average, k, as indicated.

In Fig. 17 we display Betti numbers. In particular 〈β0〉(t, r) converged very well for910

k = 72. 〈β1〉(t, r) converges later with the number of samples taken into account, since911

distributions are computed from fewer persistent homology classes with corresponding912

properties. Yet, additional samples do not alter the overall shape of 〈β1〉(t, r) anymore,913

solely reducing occurring statistical fluctuations.914

As observed in Sec. 5.1, the average maximum death radius, 〈rd,1,max〉(t), is a quantity915

that is very sensitive to particular geometric arrangements of points in analyzed point916

clouds. Resembling this effect, in Fig. 18 we display 〈rd,1,max〉(t) for different n and ν̄.917

Clearly, occurring oscillations drastically reduce with k increasing. Up to a few outliners,918

regions of approximate power-law behavior converged properly for k = 72 as studied in919

the main text.920

To sum up, different persistent homology observables converge differently fast with the921

number of classical-statistical samples, k, taken into account in averaging. Corresponding922

differences among their convergence behavior can be easily understood geometrically.923

G Numerical protocol to extract persistent homology scal-924

ing exponents925

Key to the analysis of results in our nonrelativistic Bose gas testbed in Sec. 3.4 is the926

extraction of persistent homology scaling exponents from approximately self-similar birth927

and death radii distributions. This appendix serves as a description of the applied protocol928

to accomplish this task.929
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Figure 18: The average maximum death radius of 1-dimensional persistent homology
classes varying with time, displayed for ν̄-values and numbers of samples to average, k, as
indicated.

We first define rescaled variants of the birth and death radii distributions,930

〈B`〉 resc(t, rb) = (t/t′)η2−η
′
1〈B`〉(t, (t/t′)−η1rb), (45a)

〈D`〉 resc(t, rd) = (t/t′)η2−η1〈D`〉(t, (t/t′)−η
′
1rd). (45b)

Distributions at later times are compared with those at the reference time t′, chosen to931

be the time at which the self-similar evolution sets in. However, we could equally well932

have chosen any other reference time within the self-similar scaling regime. Denote by933

tk > t′, k = 1, . . . , Ncom, all corresponding comparison times. If birth and death radii934

distributions were evolving perfectly self-similar following Eqs. (19a) and (19b), we would935

find936

∆〈B`〉(t, rb) = 〈B`〉 resc(t, rb)− 〈B`〉(t′, rb) = 0, (46a)

∆〈D`〉(t, rd) = 〈D`〉 resc(t, rd)− 〈D`〉(t′, rd) = 0. (46b)

Numerically, even for the correct triple of exponents (η1, η
′
1, η2) this is only approximately937

true due to statistical uncertainties as well as systematic errors entering since systems938

typically only enter the vicinity of a nonthermal fixed point. We optimize scaling exponents939

by means of minimizing occurring deviations, quantified by940

χ2(η1, η
′
1, η2) = χ2

b(η1, η
′
1, η2) + χ2

d(η1, η
′
1, η2), (47a)

χ2
b(η1, η

′
1, η2) =

1

Ncom

Ncom∑
k=1

∫ rmax

rmin
drb ∆〈B`〉(tk, rb)2∫ rmax

rmin
drb 〈B`〉(t′, rb)2

, (47b)

χ2
d(η1, η

′
1, η2) =

1

Ncom

Ncom∑
k=1

∫ rmax

rmin
drd ∆〈D`〉(tk, rd)2∫ rmax

rmin
drd 〈D`〉(t′, rd)2

. (47c)

Lower and upper limits of integration in the appearing expressions are set to Qrmin = 1.5941

and Qrmax = 25.0 for all ν̄ ≤ 0.7 and Qrmin = 1.0 and Qrmax = 10.0 for ν̄ = 0.8. A942

priori, the given expressions for χ2
b/d(η1, η

′
1, η2), are equally sensitive to the behavior at943

all scales of radii, increasing the weight of data points whose deviations are large. Linear944
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interpolations are employed to obtain birth and death radii distributions at rescaled birth945

and death radii, respectively.946

Minimizing deviations as measured by χ2(η1, η
′
1, η2), the optimal triple (η̃1, η̃

′
1, η̃2) is947

obtained. Analogously to Refs. [32, 63], a likelihood functions is defined as948

W (η1, η
′
1, η2) =

1

N exp

(
− χ2(η1, η

′
1, η2)

2χ2(η̃1, η̃′1, η̃2)

)
, (48)

N being a normalization constant such that949 ∫
dη1 dη

′
1 dη2W (η1, η

′
1, η2) = 1. (49)

Marginal likelihood functions are obtained upon integrating over two of the exponents, for950

instance,951

W (η1) =

∫
dη′1 dη2W (η1, η

′
1, η2). (50)

We fit marginal likelihood functions with Gaussian distributions to estimate corresponding952

standard deviations, ση1 , ση′1 and ση2 , the means still being given by η̃1, η̃
′
1 and η̃2.953

To derive time-dependent persistent homology scaling exponents, we apply the de-954

scribed fitting procedure with a fixed reference time Qt′ for Ncom = 3 times, simulta-955

neously: Qtmin as indicated in the main text as well as Qtmin + 625 and Qtmin + 1250.956

Repeating this procedure for different Qtmin, we obtain time-dependent scaling exponents.957
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