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Abstract

In the standard framework of self-consistent many-body perturbation theory,
the skeleton series for the self-energy is truncated at a finite order N and
plugged into the Dyson equation, which is then solved for the propagator
GN . For two simple examples of fermionic models – the Hubbard atom at
half filling and its zero space-time dimensional simplified version – we find
that GN converges when N → ∞ to a limit G∞, which coincides with the
exact physical propagator Gexact at small enough coupling, while G∞ 6= Gexact

at strong coupling. We also demonstrate that it is possible to discriminate
between these two regimes thanks to a criterion which does not require the
knowledge of Gexact, as proposed in [1].

1 Introduction

Self-consistent perturbation theory is a particularly elegant and powerful approach in
quantum many-body physics [2,3]. The single-particle propagator G is expressed through
the Dyson equation

G−1 = G−1
0 − Σ (1)

in terms of the non-interacting propagator G0 and the self-energy Σ, which itself is formally
expressed in terms of G through the skeleton series

Σ = Σbold[G] =

∞∑
n=1

Σ
(n)
bold[G] (2)

where Σ
(n)
bold[G] is the sum of all two-particle irreducible Feynman diagrams of order n

(built with bold propagator lines representing G).
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The standard procedure for solving Eqs. (1,2) is to truncate the skeleton series at a
finite order N , and to look for the solution GN of the self-consistency equation1

G−1
N = G−1

0 − Σ
(≤N)
bold [GN ] (3)

with Σ
(≤N)
bold :=

∑N
n=1 Σ

(n)
bold. The natural expectation is that one obtains the exact propa-

gator by sending the truncation order to infinity: GN → Gexact for N →∞.

However, as was discovered in [4], the series Σ
(≤N)
bold [Gexact] can converge when N →∞

to a result which differs from the exact physical self-energy Σexact = G−1
0 − G

−1
exact. This

misleading convergence phenomenon was observed for three fermionic textbook models —
Hubbard atom, Anderson impurity model, and half-filled 2D Hubbard model— in a region
of the parameter space (at and around half filling, at strong interaction and low tempera-
ture). Gexact was computed with a numerically exact quantum Monte Carlo method, and
the skeleton series was evaluated up to N = 6 or 8 by diagrammatic Monte Carlo [5].
Numerous works [1,6–14] have studied various aspects of the problem found in [4], as well
as the related divergences of irreducible vertices ([8, 10, 11, 13, 15–18] and Refs. therein).
In particular, Ref. [7] introduced an exactly solvable toy model, which has the structure of
a fermionic model in zero space-time dimensions, and features the misleading convergence
problem of [4].

In this article, we study the consequences of this problem for the sequence GN , which is
the crucial question in the most relevant cases where Gexact is unknown. For the toy model
of [7], we find that GN converges when N →∞ to a limit G∞ which differs from Gexact at
strong coupling. For the Hubbard atom, our numerical data strongly indicate that such
misleading convergence of the sequence GN also occurs at large coupling and half filling.
Moreover, we demonstrate that a criterion proposed in [1] allows to discriminate between
the G∞ 6= Gexact and G∞ = Gexact regimes without using the knowledge of Gexact.

We note that although we restrict here to the scheme (1,2) where G is the only bold
element, our findings may also be relevant to other schemes containing additional bold
elements, such as a bold interaction line W , or a bold pair propagator line Γ. The scheme
built with G and W is natural for Coulomb interactions, and is widely used for solids
and molecules with a truncation order N = 1 (the GW approximation) and sometimes
with N = 2 (see, e.g., Refs. [19–22]), while for several paradigmatic lattice models, bold
diagrammatic Monte Carlo (BDMC) made it possible to reach larger N and claim a small
residual trunction error [23–26]. The scheme built with G and Γ is natural for contact
interactions; truncation at order N = 1 then corresponds to the self-consistent T-matrix
approximation [27–29], and precise large-N results were obtained by BDMC in the normal
phase of the Hubbard model [30, 31] and of the unitary Fermi gas [32–34]. Other BDMC
results were obtained for models of coupled electrons and phonons, where it is natural to
introduce a bold phonon propagator [23, 35], and for frustrated spins [36–38]. Schemes
containing three- or four-point bold vertices were also employed, to construct extensions
of dynamical mean-field theory [17,39].

1We assume that the solution GN of (3) is unique, or at least that there is no difficulty in identifying a
unique physical solution (e.g., by starting from the weakly interacting limit where GN → G0, and following
the solution as a function of interaction strength).
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2 Zero space-time dimensional toy-model

2.1 Definitions and reminders

We begin with some reminders from [7]. While fermionic many-body problems can be
represented by a functional integral over Grassmann fields, which depend on d space coor-
dinates and one imaginary time coordinate [40], in this simplified toy model the Grassmann
fields are replaced with Grassmann numbers ϕs and ϕ̄s that do not depend on anything,
apart from a spin index s ∈ {↑, ↓}. The partition function, the action and the propagator
are then defined by

Z =

∫ (∏
s

dϕsdϕ̄s

)
e−S[ϕ̄s,ϕs]

S[ϕ̄s, ϕs] = −µ
∑
s

ϕ̄sϕs + Uϕ̄↑ϕ↑ϕ̄↓ϕ↓

G = − 1

Z

∫ (∏
s

dϕsdϕ̄s

)
e−S[ϕ̄s,ϕs] ϕs ϕ̄s,

the dimensionless parameters µ and U being the analogs of chemical potential and inter-
action strength. We restrict for convenience to µ > 0 (changing the sign of µ essentially
amounts to the change of variables ϕ↔ ϕ̄) and to U < 0 (as in [7]).

The coefficients of the skeleton series have the analytical expression

Σbold[G] =
∞∑
n=1

anG
2n−1Un with an =

(−1)n−1(2n− 2)!

n!(n− 1)!
.

It is convenient to work with rescaled variables, multiplying propagators with
√
|U | and

dividing self-energies with the same factor,

g := G
√
|U |, σ := Σ/

√
|U |. (4)

The rescaled skeleton series is then given by

σbold(g) =
∞∑
n=1

σ
(n)
bold(g) with σ

(n)
bold(g) = an(−1)ng2n−1

and accordingly σ
(≤N)
bold (g) ≡

∑N
n=1 σ

(n)
bold(g).

The exact self-energy and propagator are given by

σexact(g0) = −g0

gexact(g0) =
g0

1 + g2
0

in terms of the rescaled free propagator g0 :=
√
|U |G0 =

√
|U |/µ.

If one evaluates the bold series at the exact G, one obtains the correct physical self-
energy for |U | < µ2 and an incorrect result for |U | > µ2. More precisely, the self-energy
functional (which reduces to a function in this toy model) has the two branches

σ(±)(g) =
−1±

√
1− 4g2

2g
(5)

as represented on Fig. 1. The physical branch is the (+) branch for g0 < 1, and the (−)
branch for g0 > 1; i.e., σexact(g0) = σ(sign(1−g0))(gexact(g0)). On the other hand, the bold
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series, evaluated at the exact physical propagator, always converges to the (+) branch;
i.e., σbold(gexact(g0)) = σ(+)(gexact(g0)) for all g0 > 0.

Note that σbold(g) is the expansion of σ(+)(g) in powers of g, and thus from (5) the
convergence radius of the series σbold(g) is 1/2.

Figure 1: The two branches of the self-energy as a function of the full propagator, for the
toy model in zero space-time dimensions. The skeleton series converges up to g = 1/2 and
coincides with the (+) branch: σbold(g) = σ(+)(g) for g ≤ 1/2.

2.2 Limit of the skeleton sequence

We will refer to the sequence GN as the skeleton sequence. Rescaling variables as in (4),
in particular setting gN := GN

√
|U |, the self-consistency equation (3) becomes

1

gN
=

1

g0
− σ(≤N)

bold (gN ). (6)

This equation is readily solved for gN numerically: The solutions are roots of a polynomial
of order 2N , and we observe that there is a unique real positive root, which we take to
be gN (recall that the exact g is always real and positive); alternatively, we solved Eq. (6)
by iterations (with a damping procedure described in the next Section), and we found
convergence to this same gN . We find that

• for g0 < 1, gN −→
N→∞

gexact(g0)

• for g0 > 1, gN −→
N→∞

g∞ 6= gexact(g0)

i.e., the skeleton sequence converges to the correct physical result below a critical coupling
strength, and to an unphysical result above it.

Let us focus on the regime g0 > 1, where the convergence to an unphysical result
takes place (as demonstrated in Fig. 2). The fact that the skeleton sequence converges
at all in this regime is non-trivial. The value of the unphysical limit g∞ = 1/2 of the
skeleton sequence gN is equal to the radius of convergence of the skeleton series σbold(g).
This is not a coincidence, and the reason for this self-tuning towards the convergence
radius becomes clear from Fig. 3: For a large truncation order, the curve representing the
truncated bold series as a function of g becomes an almost vertical line above the position
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of the convergence radius (g = 1/2), so that it intersects the Dyson-equation curve near
this value of g. It also becomes clear that we are in an unusual situation where

lim
N→∞

σ
(≤N)
bold (gN ) 6= lim

N→∞
σ

(≤N)
bold (g∞) ≡ σbold(g∞).

 0.45

 0.5

 0.55

 0.6

 0  0.1  0.2  0.3  0.4

g N

1/N
Figure 2: Illustrative example of misleading convergence of the skeleton sequence for the
toy model. The rescaled propagator gN , obtained from the self-consistency equation with
the skeleton series truncated at order N , converges for N → ∞ to the limit 0.5, which
differs from the exact result (dashed line). This happens when the rescaled free propagator
g0 > 1 (here, g0 = 1.5).

Figure 3: Explanation for the misleading convergence. The two branches of the self-energy

σ(±)(g), together with the partial sums of the skeleton series σ
(≤N)
bold (g) for different values

of the truncation order N . Also shown is the curve corresponding to the Dyson equation,

−σ = 1/g − 1/g0. This Dyson-equation curve intersects σ
(≤N)
bold (g) at g = gN , whereas the

exact propagator g = gexact is given by the intersection of the Dyson-equation curve with
the physical branch σ(sign(1−g0))(g). It appears clearly that for g0 < 1, gN converges to the
exact g, while for g0 > 1, gN always tends to 1/2, the convergence radius of the skeleton
series.
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2.3 Diagnosing the misleading convergence

In the general case where Gexact is unknown, when one observes numerically that GN
converges to some limit, one needs a way to tell whether or not this limit is equal to
Gexact. Assuming that GN → G∞ for N → ∞, the following criterion [1] is a sufficient
condition for G∞ to be equal to Gexact:

There exists ε > 0 such that for any ξ in the disc D = {|ξ| < 1 + ε},
ΣN,ξ converges for N →∞;

moreover, this sequence is uniformly bounded for ξ ∈ D

where

ΣN,ξ :=
N∑
n=1

Σ
(n)
bold[GN ] ξn. (7)

For all practical purpose, we expect this criterion to be essentially equivalent to the fol-
lowing simpler one:

There exists ξ > 1 such that ΣN,ξ converges for N →∞. (8)

In what follows we will use this simplified criterion. We also introduce an extra factor
1/ξN0 in the definition (7) of ΣN,ξ, where the value of N0 will be conveniently chosen; such
an N -independent factor does not matter for the criterion (it does not change whether or
not the sequence ΣN,ξ converges).

For the toy-model, this means that assuming gN → g∞ for N → ∞, a sufficient
condition for g∞ to be equal to the correct physical gexact(g0) is that there exists ξ > 1
such that

σN,ξ :=
N∑
n=1

σ
(n)
bold(gN ) ξn−1 = σ

(≤N)
bold (gN

√
ξ) /

√
ξ (9)

converges for N → ∞. As illustrated in Fig. 4, this criterion indeed allows to detect the
misleading convergence for g0 > 1, and to trust the result for g0 < 1.

Figure 4: Detecting the misleading convergence for the toy model. Introducing a finite ξ
, the sequence becomes divergent which allows to detect the problem (left), or remains
convergent which allows to trust the result (right).
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3 Hubbard atom

We turn to the single-site Hubbard model, defined by the grand-canonical Hamiltonian
−µ
∑

s ns + Un↑n↓. The propagator can be expressed as a functional integral over β-
antiperiodic Grassmann fields [40],

Gs(τ) = −
∫
DϕDϕ̄ ϕs(τ)ϕ̄s(0) e−S∫

DϕDϕ̄ e−S
(10)

with the action

S =

∫ β

0
dτ

[
−
∑
s

ϕ̄s(τ)(G−1
0 ϕs)(τ) + U(ϕ̄↑ϕ̄↓ϕ↓ϕ↑)(τ)

]
(11)

and

G−1
0 = µ− d

dτ
. (12)

We restrict for simplicity to the half-filled case µ = U/2, which should be the most
dangerous case, since it is at and around half-filling that the misleading convergence of
Σbold[Gexact] was discovered in [4]. We use the BDMC method [5, 32, 41, 42] to sum all
skeleton diagrams and solve the self-consistency equation (3) for truncation orders N ≤ 8

(note that at half filling, Σ
(n)
bold = 0 for all odd n > 1).

The first question is whether the skeleton sequence GN can also converge to an un-

physical result, or equivalently, whether Σ
(≤N)
bold [GN ] =: ΣN can converge to an unphysical

result. Let us first consider the double occupancy

D = 〈n↑n↓〉 = U−1 tr(ΣG) (13)

and the corresponding sequence DN := U−1 tr(ΣN GN ). At large enough U , our data
strongly indicate that this sequence does converge (albeit slowly) towards an unphysical
result, see left panel of Fig. 5. For small enough U , there is a fast convergence to the
correct result, see right panel of Fig. 5.

 0
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 0.04

 0.06

 0.08

 0.1

 0  0.1  0.2  0.3  0.4  0.5

D
N

1/N

βU=8

 0.188

 0.19

 0.192

 0  0.1  0.2  0.3  0.4  0.5

D
N

1/N

βU=1

Figure 5: For the Hubbard atom at half filling, the double occupancy, as obtained from the
skeleton sequence, converges to an unphysical result for large U (left) and to the correct
result for small enough U (right) when the truncation order N → ∞ (dashed line: exact
result).
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The next question is whether the criterion (8) allows us to discriminate between these
two situations. We therefore plot the sequence ΣN,ξ in Figs. 6 and 7. We only show the
imaginary part because in the considered half-filled case, the real part of ΣN (ωn) auto-
matically equals U/2; moreover we focus for simplicity on the lowest Matsubara frequency
ω0 = π/β, and we choose N0 = 2.

For ξ = 1, ΣN,ξ reduces to the original skeleton sequence ΣN , and the behavior is
similar to the double occupancy: The sequence appears to converge, albeit slowly, towards
an unphysical result for βU = 8 (Fig. 6), while fast convergence to the correct physical
result takes place for βU = 1 (Fig. 7). For ξ > 1, the sequence does not appear to converge
any more for βU = 8, see Fig. 6: The criterion correctly indicates that the results should
not be trusted in this case. In contrast, for βU = 1, the criterion allows to validate the
results, since the sequence remains convergent at ξ > 1, see Fig. 7. Regarding the choice
of ξ, it should be neither too small in order to have an effect at the accessible orders, nor
too large to avoid making the criterion too conservative; here we see that ξ = 1.1 and 1.2
are appropriate.

-3

-2

-1

 0  0.1  0.2  0.3  0.4  0.5

Im
 Σ

N
, ξ

(ω
0)

1/N

βU = 8

ξ=1
exact
ξ=1.1
ξ=1.2

Figure 6: For the half-filled Hubbard atom at large coupling, the original skeleton sequence
(ξ = 1) converges to an unphysical result. At ξ > 1, the sequence does not converge any
more: The criterion allows to detect the misleading convergence.
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exact
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Figure 7: For the half-filled Hubbard atom at small enough coupling, the original skeleton
sequence (ξ = 1) converges to the correct physical result. At ξ > 1, the sequence remains
convergent: The criterion allows to trust the result.
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We remark that when solving Eq. (3) by iterations, in the case where the convergence
to the unphysical result for N →∞ occurs, convergence as a function of iterations at fixed
N only takes place if we use a damping procedure, where GN at iteration (i+1) is obtained

as G
(i+1)
N = [G−1

0 −Σ(i)]−1 with Σ(i) a weighted average of Σ
(≤N)
bold (G

(i)
N ) and Σ(i−1) [while the

fixed point is unstable for the undamped iterative procedure Σ(i) := Σ
(≤N)
bold (G

(i)
N ) ]. Such

a damping procedure is commonly used in BDMC where it also reduces the statistical
error [42,43]. In the toy model, one can easily show that an increasingly strong damping is

required when N is increased, because for N →∞, the slope [dσ
(≤N)
bold (g)/dg]g=gN diverges,

making the undamped iterative procedure unstable. This observation could also be useful
for misleading-convergence detection.

Finally, we comment on the link with the multivaluedness of the self-energy functional
Σ[G] (i.e., of the Luttinger-Ward functional). In [4], the misleading convergence of the
skeleton series was found to be towards an unphysical branch of the self-energy functional,
in the sense that if Eqs. (10,11) are viewed as a mapping G0 7→ G[G0], then there exists
G0,unphys such that Σbold[Gexact] = G−1

0,unphys −G
−1
exact and G[G0,unphys] = Gexact ≡ G[G0].

As noted in [4], this G0,unphys does not belong to the set of physical bare propagators which
are of the form (12) for some value of chemical potential; therefore, by looking at G0,unphys,
one can tell that the result is on an unphysical branch, and hence detect the misleading
convergence of the skeleton series. In contrast, the misleading convergence of the skeleton
sequence found here cannot be detected in this way. Indeed, the self-consistency equation
(3) is enforced with the original physical G0.

4 Conclusion

We have observed that there is a regime where the solution of self-consistent many-body
perturbation theory converges to an unphysical result in the limit of infinite truncation
order of the skeleton series. This surprising breakdown of the standard framework re-
sults from a subtle mathematical mechanism which we have clarified by analyzing the
zero space-space dimensional model. In this problematic regime, lowest order calcula-
tions can be off by one order of magnitude, but access to higher orders allows to detect
the problem numerically through the divergence of a slightly modified sequence, whereas
seeing convergence of this modified sequence allows to rule out misleading convergence
and to trust the result, as proposed in [1] and demonstrated here for the Hubbard atom.
Such a proof of principle is relevant for many-body problems in regimes where, in spite
of important progress with non self-consistent frameworks [44–54] (for which misleading
convergence generically does not occur [1]), self-consistent BDMC remains the state of the
art to date. In particular, the present findings served as a basis to discriminate between
physical and unphysical BDMC results for the doped two-dimensional Hubbard model at
strong coupling in a non-Fermi liquid regime [55].
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[45] F. Šimkovic and E. Kozik, Determinant Monte Carlo for irreducible Feynman di-
agrams in the strongly correlated regime, Phys. Rev. B 100, 121102(R) (2019),
doi:10.1103/PhysRevB.100.121102.

[46] A. Moutenet, W. Wu and M. Ferrero, Determinant Monte Carlo algorithms for
dynamical quantities in fermionic systems, Phys. Rev. B 97, 085117 (2018),
doi:10.1103/PhysRevB.97.085117.
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