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Abstract

In this work, we study non-equilibrium dynamics in Floquet conformal field theories
(CFTs) in 1+1D, in which the driving Hamiltonian involves the energy-momentum den-
sity spatially modulated by an arbitrary smooth function. This generalizes earlier work
which was restricted to the sine-square deformed type of Floquet Hamiltonians, operating
within a sl2 sub-algebra. Here we show remarkably that the problem remains soluble
in this generalized case which involves the full Virasoro algebra, based on a geometrical
approach. It is found that the phase diagram is determined by the stroboscopic trajec-
tories of operator evolution. The presence/absence of spatial fixed points in the operator
evolution indicates that the driven CFT is in a heating/non-heating phase, in which the
entanglement entropy grows/oscillates in time. Additionally, the heating regime is further
subdivided into a multitude of phases, with different entanglement patterns and spatial
distribution of energy-momentum density, which are characterized by the number of spa-
tial fixed points. Phase transitions between these different heating phases can be achieved
simply by changing the duration of application of the driving Hamiltonian. We demon-
strate the general features with concrete CFT examples and compare the results to lattice
calculations and find remarkable agreement.
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1 Introduction

Non-equilibrium dynamics in time-dependent driven quantum many-body systems has received
extensive recent attention. Floquet driving sets up a new stage in the search for novel systems
that may not have an equilibrium analog, e.g., Floquet topological phases [1–13] and time
crystals [14–22]. It is also one of the basic protocols to study non-equilibrium phenomena,
such as localization-thermalization transitions, prethermalization, dynamical Casimir effect,
etc [23–31]. In this work, we are interested in a quantum (1 + 1) dimensional conformal field
theory (CFT), which may be viewed as the low energy effective field theory of a many-body
system at criticality. The property of conformal invariance at the critical point can be exploited
to constrain the operator content of the critical theory [32,33]. In particular, for (1+1)D CFTs,
the conformal symmetry is enlarged to the full Virasoro symmetry, which makes it tractable in
the study of non-equilibrium dynamics, such as the quantum quench problems [34,35].

There are several possibilities of choosing the driving protocols, such as locally coupling the
system to an external source [36, 37]. In this work, the protocol will be implemented with the
deformed Hamiltonians

Hv =

∫ L

0

dx

2π

(
v(x)T (x) + v(x)T (x)

)
, (1)

where v(x) = v(x+L) and v(x) = v(x+L) are two independent smooth real functions, dubbed
deformation functions. Here T (x) and T (x) are the chiral and anti-chiral energy-momentum
density, namely, T + T is the energy density and T − T the momentum density. The ordinary
homogeneous CFT Hamiltonian corresponds to v(x) = v(x) = 1. There are a few advantages to
this choice. First, it does not rely on the operator content or the symmetry of the system and
should lead to universal results. Second, the corresponding operator evolution has a particularly
simple geometric interpretation, that deserves more explanation below. Moreover, it also has
a natural generalization to higher dimensions, which will be explained in later sections.
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The application of this setup to Floquet problems was initiated by Ref. [38], where the
deformation is a sine-square function v(x) = v(x) = sin2(πx/L). This special choice has
an underlying SL2 algebraic structure that facilitates a thorough discussion on the dynamics,
including the quasi-periodic and random driving cases [38–45]. In all three cases, both the
non-heating and heating phases are identified, and the heating phase is found to exhibit energy-
momentum peaks with linearly growing entanglement. In addition, a quasi-particle picture was
also introduced to interpret the results above [40,43]. Namely, the energy and entanglement are
assumed to be carried by fictitious quasi-particles, which see the sine-square function as their
velocity profile and move accordingly. When their stroboscopic motion (i.e. observing their
positions at the end of each cycle of driving) has stable fixed points, the quasi-particles will
accumulate at those locations, which gives rise to the energy peaks and growing entanglement.
This is the geometric interpretation of (1) advertised above phrased in terms of quasi-particle
motion.

This work generalizes the discussion to arbitrary smooth v(x) and v(x) in (1). Solving the
dynamics from the algebraic viewpoint is no longer tractable because the underlying algebra
becomes the infinite dimensional Virasoro algebra. On the other hand, the geometric viewpoint
still works in this general case. Namely, the deformation functions v(x), v(x) can still be
considered as the velocity of quasi-particles. In more technical terms, the operator evolution
eiHvtO(x)e−iHvt follows a conformal transformation, which is intimately related to the classical
trajectory of quasi-particles generated by v(x), v(x). In this work, we will follow the geometric
viewpoint exclusively and give quasi-particle interpretation to most of the results.

Concrete examples Having a less constrained deformation function v(x) brings much more
possibilities to the Floquet dynamics. To have an idea of what could happen, we construct a
concrete example, the main result of which is shown in Fig. 1 and Fig. 2, which is explained
briefly below: (More details are in Sec. 3.4)

1. There are still non-heating and heating phases, as shown by the yellow and blue regions
in Fig. 1 (a) respectively. However, the heating phase regions are rather fragmented
compared with the SL2 case.

2. On the contrary to the SL2 case, where all the heating phases have the same number
of energy-momentum peaks, the heating phases in the general setup can have different
number of peaks, denoted by the white and black text in Fig. 1 (a). Typical configurations
of the energy-momentum peaks are shown in Fig. 1 (b). Notice that the energy momentum
peaks do not necessarily have the same height, which is also different from the SL2 case.
After each cycle, those peaks can shuffle their position cyclically and come back to its
original position after every p cycles. In the case of Fig. 1 (b), let xi=1,2,3 denote the
positions of the peaks from the left to right. Then the peak at x1 can move to x2 after
one cycle of driving and so on, then return to x1 after 3 cycles. Fig. 1 (b) shows the results
for every 6 cycles, which is why we do not see the position-switching from the figure. This
micro-motion also manifests in the entanglement entropy growth as mentioned below in
Point 4.

3. These energy-density peaks also share entanglement with and only with its nearest neigh-
bors, which can be explained by the quasi-particle picture as follows (see Fig. 1(c) for a

3



(a)

q = 2 1 2

6
5

4
3

5 5
3

4
5
6

1
6
1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5
5
6

· · ·· · ·

(c)

Figure 1: (a) Phase diagram in a generalized Floquet CFT, with both heating phases (in
blue) and non-heating phases (in yellow). There are distinct heating phases characterized by
different numbers (q) of fixed points in the operator evolution. (b) Time evolution of the chiral
energy-momentum density in the heating phase with period-3 fixed points. (c) A cartoon plot
of the emergent entanglement pattern and the energy-momentum density distribution (in real
space) in the heating phase of a generalized Floquet CFT. During the driving, the unstable
fixed points (◦) serve as sources of quantum entanglement. The degrees of freedom carrying
quantum entanglement (pairs of •), which can be intuitively viewed as EPR pairs, flow from
the unstable fixed points (◦) to the nearby two fixed points (•) separately. This process creates
the entanglement between every neighboring peaks (blue spikes) of energy-momentum density.

cartoon). The initial state contains quasi-particles that are locally entangled with a part-
ner, as denoted by the pairs of red dots, which move chirally under the time evolution.
Namely, two particles in a pair move towards different directions. In the heating phase,
their motions have both unstable (vacant dots) and stable fixed points (black dots), the
former are the main source of particles and the later are the sink. These energy peaks
can be understood as an accumulation of particles that come from the source, denoted
by the red dots on top of the vacant dots. Since each dot is entangled with its partner
who departures towards different destinations, this gives rise to the energy peaks as well
as their entanglement pattern.

4. We also study the entanglement entropy for a fixed subsystem that encloses one or multiple
peaks (if they exist). In the non-heating phase, the entanglement oscillates in time (yellow
curve in Fig. 2). In the heating phase, the entanglement overall grows linearly (blue and
red curve in Fig. 2), while it can exhibits oscillating behavior within small time scales.
For example, the red curve shows a clear oscillation within every three cycles. This is
a manifestation of the periodicity of the micro-motion of the energy-momentum peaks
shown in Fig. 1(b).
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CFT data
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Figure 2: Time evolution of the entanglement entropy in the non-heating phase, and the heating
phases with period-2 and period-3 fixed points, respectively. A longer time scale for the heating
phase with period-3 fixed points is shown in the inset.

5. In addition to the CFT calculation, we also did a lattice simulation using complex free
fermions with nearest neighbor hopping and find good agreement, as shown by the dots
in Fig. 2.

General features With this concrete example in mind, now we summarize the general fea-
tures for Floquet CFT with generally deformed Hamiltonians:

1. The presence of fixed points determines the heating phase. There are generally q > 1
fixed points. However, the conformal map (quasi-particle motion) associated to the single-
cycle Floquet driving may miss some spatial fixed points that only appear in multi-cycle
driving. This phenomenon also exists in the simple SL2 deformed Floquet CFTs [43].
After each driving cycle, these spatial fixed points will shuffle among each other in the
array, and come back to the original locations after p (p ≥ 1) driving cycles, thus dubbed
as period-p fixed points. We will show that all the fixed points must share the same
periodicity, which is then a good characteristic of the heating phase. Notice that the
number of fixed points does not have to be equal to the periodicity.

2. These spatial fixed points, stable and unstable ones, determine the entanglement growth.
When the subsystem encloses an unstable fixed point in the operator evolution, 1 the
entanglement will grow in time. However, the growth rate is controlled by the nearby
stable fixed points. Thus, it is tempting to interpret the unstable fixed point as the sink of
EPR pairs that are created at stable fixed points. Therefore, the stable/unstable spatial
fixed points determine the patterns of entanglement in the Floquet driving.

1As will be discussed in detail in Sec.2, in the study of operator evolution as opposed to state evolution,
the time direction is reversed. As a result, the stable/unstable fixed points for the quasi-particle moving (state
evolution) in Fig. 1(c) will correspond to the unstable/stable fixed points in the operator evolution.
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3. These spatial fixed points also determine the energy-momentum density distribution. We
show that if the initial state is a highly excited state or a thermal ensemble in high
temperature, then there must be peaks of energy-momentum density at the unstable
spatial fixed points of operator evolution. If the initial state is chosen as the ground
state of homogeneous CFT Hamiltonian, quantum fluctuation may cause subtleties and
we refer readers to Sec. 3.3 for detailed discussion.

The structure of the rest of this paper is arranged as follows. In Sec. 2, we define “deformed
Hamiltonian” in CFTs of general dimensions and specialize ourselves to (1+1)d to show the
operator evolution as a conformal map. In particular, we explain how to interpret the defor-
mation as a velocity to generate that conformal map. In Sec. 3, we discuss all possible Floquet
dynamics with arbitrary smooth deformation with a minimal setup. The more familiar SL2

case is first reviewed in Sec. 3.2 to prepare us with all the necessary concepts before the general
discussion in Sec. 3.3 so that readers can explicitly see how they fall into a unified framework
and how general deformation brings more possibilities to the phenomena. We also provide a
specific example in Sec. 3.4 to demonstrate some of the features in our general discussion, which
is further supported by a lattice simulation. Readers more interested in concrete models can
directly jump to Sec. 3.4 after Sec. 3.2, and come back to the general discussion later. Finally,
we conclude with a few discussion. Appendix. A concerns with a global quench problem, which
is inspired by our discussion in Sec. 3.

2 Operator evolution under deformed Hamiltoninan

In this section, we start with the topological surface operators associated with the conformal
symmetries in general dimensions, and show that the deformed Hamiltonian (1) belongs to
such family when the spacetime dimension is two. Then we demonstrate that the operator
evolution driven by (1) is expressible as a conformal transformation generated by the deforma-
tions (v(x), v(x)) in the Hamiltonian. Finally, we apply the formalism to the entanglement and
energy density calculation.

2.1 Conformal symmetry and the deformed Hamiltonian

A conformal field theory in the space-time dimension d > 2 is equipped with SO(d + 1, 1) as

its symmetry group2. Geometrically, the conformal group SO(d+ 1, 1) is specified by (d+2)(d+1)
2

conformal Killing vectors ξµ, which generate the conformal transformations. In the operator
language, these transformations can be realized by the following topological surface operators

Qξ(Σ) = −
∫

Σ

dσµξνTµν (2)

where Σ is a codimension-1 surface, and the operators are conserved/topological in the sense
that they are invariant under small deformation of Σ, i.e. the surface Σ can shrink until
it hits other operators. Therefore, the symmetry charge Qξ acting on a local operator still

2Here we use the Euclidean signature. For Lorentzian CFT, the symmetry group is SO(d, 2)
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yields another local operator by conformal transformation in spite of its non-local appear-
ance.3 As a familiar example, in Lorentzian signature we have the ordinary Hamiltonian
H = −

∫
dd−1xT00 =

∫
dd−1xT tt associated to the time translation ξ0 = const, here the sur-

face Σ is chosen to be a spatial slice in the Cartesian coordinate. In general, we can choose
another conformal Killing vector ξµ and regard the associated symmetry charge Qξ as a “de-
formed Hamiltonian”, and use it to construct an evolution operator exp(−itQξ) that acts on
states on Σ. Such evolution has a nice property that its action on local operators can be fully
characterized by a conformal transformation generated by ξµ.

Now for d = 2, in addition to the “global” conformal group SO(3, 1) ' SL(2,C) that has
been used to generate the “SL2 deformed Hamiltonian” as discussed in Ref. [47–55], we can also
exploit the enhanced symmetry, i.e. the infinite dimensional Virasoro symmetry, to construct
more general deformed Hamiltonians. More explicitly, at d = 2 the conformal Killing equation

∂µξν + ∂νξµ −
2

d
ηµν∂

µξµ = 0 (3)

reduces to the equations
∂zξ

z = 0, ∂zξ
z = 0, (4)

where we have adopted the complex coordinates

z = x0 + ix1, z = x0 − ix1, ∂z =
1

2
(∂0 − i∂1) , ∂z =

1

2
(∂0 + i∂1) . (5)

Vector ξz = ξ0 + iξ1, ξz = ξ0 − iξ1 follows the same rule as z = xz and z = xz. The conformal
Killing equation (4) indicates that at d = 2, we have an infinite set of solution ξz(z, z) = ξ(z),
ξz(z, z) = ξ(z), where ξ(z) and ξ(z) are two arbitrary independent holomorphic and anti-
holomorphic functions. With ξ and ξ, we can express the charges associated to the conformal
symmetry as follows (let Σ be the spatial slice at x0 = 0 momentarily and parametrized by
x = x1 for simplicity)

Qξ = −
∫
dx(ξ0T00 + ξ1T01) = −

∫
dx
(
ξTzz + ξTzz

)
. (6)

In the second step, we have used the tracelssness of the energy-momentum tensor T µµ = 0
to eliminate the Tzz and Tzz component. And the conservation law ∂µTµν = 0 implies that
∂zTzz = ∂zTzz = 0, namely Tzz is chiral and Tzz anti-chiral. It is customary to use the following
notation

T (z) = −2πTzz, T (z) = −2πTzz . (7)

Therefore, the deformed Hamiltonian on the real line has the following form

Qξ =

∫
dx

2π

(
ξ(z)T (z) + ξ(z)T (z)

)
|z=−z=ix , (8)

where the integration is over section z = −z = ix. This is just (1) but defined on the infinite
real line. In the following, we will first derive the result on the real line and translate to the

3Note that under this definition, the symmetry charge here does not have to commute with the “Hamil-
tonian”, which itself is a charge associated with a time-like Killing vector in Lorentzian signature. See e.g.
Ref. [46] for an exposition on this subject.
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cylinder through conformal transformation. For a general surface Σ parametrized by (z, z), we
have

Qξ(Σ) =

∮
Σ

1

2πi

(
dz ξ(z)T (z)− dz ξ(z)T (z)

)
. (9)

2.2 Operator evolution on complex plane

Now for a chiral primary field O(z) at surface Σ with conformal weight h, we can derive the
operator evolution Ot(z) := eitQξ(Σ)O(z)e−itQξ(Σ) via Heisenberg equation w.r.t. the deformed
Hamiltonian, i.e. d

dt
Ot(z) = i[Qξ(Σ), Ot(z)]. At t = 0, the commutator can be obtained via the

OPE of T and O

[Qξ(Σ), O(z)] =

∮
C

dw

2πi
ξ(w)T (w)O(z) = (hξ′(z)O(z) + ξ(z)∂O(z)) (10)

where contour C circles z counter-clockwisely. The evolution can be recasted as a coordinate
transformation generated by ξ. More explicitly, for an infinitesimal t = ε, we have

Oε(z) =

(
∂zε
∂z

)h
O(zε), with zε = z + iεξ(z), at ε→ 0 . (11)

Thus, the operator evolution at finite t is

Ot(z) =

(
∂zt
∂z

)h
O(zt), with

dzt
dt

= iξ(zt). (12)

For the chiral energy-momentum tensor T (z), we will have a central charge term for the con-

formal transformation z
ξ−→
t
zt

Tt(z) =

(
∂zt
∂z

)2

T (zt) +
c

12
Sch(zt, z) (13)

where c is the central charge and Sch(y, x) stands for the Schwarizan derivative

Sch(y, x) =
y′′′(x)

y′(x)
− 3

2

(
y′′(x)

y′(x)

)2

. (14)

Similarly, the operator evolution of the anti-chiral primaries and energy-momentum tensor are
determined by the vector field ξ(z).

In summary, we confirmed that the operator evolution driven by exp(−itQξ(Σ)), where
Qξ(Σ) is a deformed Hamiltonian (9), is given by a conformal transformation (z, z) → (zt, zt)
generated by the flow of vector fields (ξ(z), ξ(z))

dzt
dt

= iξ(zt),
dzt
dt

= iξ(zt). (15)

In particular, the above discussions are performed at Euclidean signature, and t is regarded as
a parameter, not confused with “time” x0.
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2.3 Deformation as velocity profile

Now let us move to the Lorentzian signature and check the meaning and implication of the
above transformation law in real time.

In Lorentzian signature, we wick rotate x0 → ix0 and therefore

z = i(x0 + x1), z = i(x0 − x1). (16)

For simplicity, we put the surface Σ at time x0 = 0 in this discussion and focus on the chiral
part first. A chiral operator O(z) (i.e. obeying ∂zO = 0) travels along the lightcone x1 =
x0 + xinitial when we increase time x0. Now, when applying U = e−itHξ to the chiral operator
Ot(z) = U−1O(z)U , we can have two interpretations for the conformal transformation z =
i(x0 + x1)→ zt = i(x0

t + x1
t ), as follows:

1. It can be understood as a shift on the time coordinate x0 while keep the spatial coordinate
x1 fixed, namely

dx0
t

dt
= ξx(x

0
t ), with ξx1(x

0) := ξ(z)|z=i(x0+x1) . (17)

Here the subscript x1 denotes the spatial location of the operator O(z) at time x0 = 0. In
this interpretation, we regard the vector ξ(z) as governing the uneven time flow for chiral
operators at fixed location. Similarly, the vector ξ(z) governs the time flow for anti-chiral
operators.

2. It can also be understood as a shift on the spatial coordinate x1 with fixed time x0 = 0,
namely

dx1
t

dt
= v(x1

t ), with v(x1) := ξ(z)|z=ix1 . (18)

In this interpretation, we stay in the same time slice, and regard ξ as governing the
non-uniform traveling “velocity” of the chiral operator in the spatial direction. For the
anti-chiral operator with z = i(x0 − x1), we have

dx1
t

dt
= −v(x1

t ), with v(x1) := ξ(z)|z=−ix1 . (19)

In this paper, we will take the second interpretation, and rename the symmetry charge Qξ

(8) as the deformed Hamiltonian Hv

Hv =

∫
dx

2π

(
v(x)T (x) + v(x)T (x)

)
(20)

with the smooth velocity functions (v, v) identified with the conformal Killing vectors (ξ, ξ) at
the spatial slice. For the infinite line discussed above, we have (v(x), v(x)) = (ξ(z)|z=ix, ξ(z)|z=−ix),
representing the right and left moving velocities for chiral and anti-chiral operators.

9



2.4 Operator evolution on cylinder

In the main text, we will consider a finite system of length L with periodic boundary condition,
which can be realized by the unit circle on the complex plane

z = exp

(
2π

L
w

)
, z = exp

(
2π

L
w

)
; w = τ + ix, w = τ − ix (21)

namely we let the surface Σ locate at τ = 0 and be parametrized by x ∈ [0, L]. Now the
time translation along τ is related to the dilation in radial direction, i.e. the corresponding
conformal Killing vectors are ξ(z) = z, ξ(z) = z, and the associated dilation operator derived
from (9) has the following form

D =
L

2π
·
∫ L

0

dx

2π

(
T (w) + T (w)

)
+
c+ c

24
(22)

where we have used the transformation rule for the chiral energy-momentum tensor

T (w) =

(
∂z

∂w

)2

T (z) +
c

12
Sch (z, w) =

(
2π

L

)2 [
e

4π
L
wT (z)− c

24

]
(23)

and similarly for the anti-chiral part. It is customary to identify the integral in (22) as the
(ordinary) Hamiltonian on the circle, namely

H =

∫ L

0

dx

2π
(T (w) + T (w))|w=−w=ix. (24)

Now let us consider a deformation generated by (ξ, ξ) that is holomorphic and anti-holomorphic
on cylinder parametrized by τ ∈ (−∞,∞) and x ∈ [0, L]. In the (z, z) coordinate, the cylinder
regime corresponds to the complex plane with origin removed, i.e. C− {0}. Therefore, we can
write ξ and ξ in Laurent series

ξ(z) = z
+∞∑

n=−∞

ṽnz
n, ξ(z) = z

+∞∑
n=−∞

ṽnz
n (25)

here we factor out a z and z for later convenience in notation.4 Inserting into (9), we obtain
the corresponding topological surface operator evaluated at the unit circle as follows

Qξ =
L

2π

∫ L

0

dx

2π

(
v(x)T (x) + v(x)T (x)

)
+
v0c+ v0c

24
(26)

where v(x) and v(x) are the Fourier transform of {vn} and {vn}

v(x) =
+∞∑

n=−∞

ṽne
i 2πn
L
x, v(x) =

+∞∑
n=−∞

ṽne
−i 2πn

L
x. (27)

4The SL2 deformed Hamiltonian studied in Ref. [38,40,43] corresponds to the case with v−q,0,q (and v−q,0,q)
only, i.e. conformal Killing vector ξ(z) (and ξ(z)) is a quadratic polynomial of z (and z).

10



Similarly, we will single out the integral part in (26) as our deformed Hamiltonian on the circle

Hv =

∫ L

0

dx

2π

(
v(x)T (x) + v(x)T (x)

)
(28)

Note it has the similar form as the deformed Hamiltonian on infinite line (20) except the integral
domain.

We can also derive the transformation law for the coordinates of a chiral operator O(w)

following (15). Let Ot = eitHvOe−itHv = eit
2π
L
QξOe−it

2π
L
Qξ , then we have

dzt
dt

= i
2π

L
ξ(zt)⇒

d

dt
e

2π
L
wt = i

2π

L
e

2π
L
wt

+∞∑
n=−∞

vne
2π
L
nwt

︸ ︷︷ ︸
v(−iwt)

⇒ dwt
dt

= iv(−iwt) .

(29)

Further restrict to the τ = 0 slice (i.e. w = ix), we have

dxt
dt

= v(xt) (30)

For the anti-chiral operator O(w), we will get dxt
dt

= −v(xt). Note these two equations are of
the same forms as the trajectories (18) (19) for operators on the infinite line.

2.5 Entanglement and energy

With the above formalism, let us summarize the recipe to determine the operator evolution
and apply it to the entanglement and energy calculation on a finite circle with length L

1. For a given deformed Hamiltonian (28) characterized by (v(x), v(x)), we can determine
the corresponding conformal transformations (w,w)→ (wt, wt) for holomorphic and anti-
holomorphic parts as follows

dwt
dt

= iv(−iwt),
dwt
dt

= iv(iwt) . (31)

2. A primary operator O(w,w) of weight (h, h) transform as follows

Ot(w,w) =

(
∂wt
∂w

)h(
∂wt
∂w

)h
O(wt, wt) , (32)

where the Ot(w,w) = eiHvtO(w,w)e−iHvt is the evolved operator. And the energy-
momentum tensor transform as

Tt(w) =

(
∂wt
∂w

)2

T (wt) +
c

12
Sch(wt, w),

T t(w) =

(
∂wt
∂w

)2

T (w(t)) +
c

12
Sch(wt, w) .

(33)
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In the applications to the Floquet system that will be discussed in the following section, we are
interested in measuring the equal time two point function of primaries (e.g. twist operators for
the entanglement entropy calculation) and one point function of energy-momentum tensor on
evolved vacuum |ψ〉 = e−it1Hv1e−it2Hv2 ...e−itnHvn |vac〉

〈O(x, n)O(y, n)〉 := 〈eitnHvn ...eit1Hv1O(x)O(y)e−it1Hv1 ..e−itnHvn 〉,
〈T (x, n)〉 := 〈eitnHvn ...eit1Hv1T (x)e−it1Hv1 ..e−itnHvn 〉,
〈T (x, n)〉 := 〈eitnHvn ...eit1Hv1T (x)e−it1Hv1 ..e−itnHvn 〉

(34)

where we have labelled the operators with their spatial coordinate x only as they are defined
on τ = 0 slice, i.e. w = −w = ix. Therefore, it will be convenient (and intuitive) to express
(34) in terms of their trajectories on the spatial direction as discussed in section 2.3, namely we
introduce (formally) two spatial coordinates (xt, xt) = (−iwt, iwt) representing the chiral and
anti-chiral parts of the operator which obey the flow equation

dxt
dt

= v(xt),
dxt
dt

= −v(xt). (35)

For a consecutive evolution e−it1Hv1e−it2Hv2 ...e−itnHvn of n steps, we obtain n end points (x1, x2, ..., xn)
as smooth functions of initial position x

x
v1−→
t1
x1

v2−→
t2
x2

v3−→
t3
...

vn−→
tn

xn (36)

and similarly for (x1, x2, ..., xn) as functions of x.
With this, we can express the correlation function in (34) as follows

〈O(x, n)O(y, n)〉 =

(
∂xn
∂x

∂yn
∂y

)h (
∂xn
∂x

∂yn
∂y

)h
[
L
π

sin
(
π
L

(xn − yn)
)]2h [L

π
sin
(
π
L

(xn − yn)
)]2h (37)

from which we can deduce the entanglement (von Neumann) entropy for interval A = [x, y]
following [56–58]

SA(n) =
c

12
log

[
L2

π2ε2
sin
(
π
L

(xn − yn)
)

sin
(
π
L

(xn − yn)
)]2(

∂xn
∂x

∂yn
∂y

∂xn
∂x

∂yn
∂y

) (38)

where the argument n denotes the number of step of driving, not confused with n-th Renyi
entropy. Here and in the following, we assume a non-chiral CFT with c = c. The above formula
is subject to a constant ambiguity from the UV cutoff, here denoted by ε.

Next, the expectation value of energy-momentum tensor5

〈T (x, n)〉 =

(
∂xn
∂x

)2

〈T (xn)〉 − c

12
Sch(xn, x),

〈T (x, n)〉 =

(
∂xn
∂x

)2

〈T (xn)〉 − c

12
Sch(xn, x).

(41)

5If we insert the vacuum expectation value of energy-momentum tensor on circle 〈T (x)〉 = − cπ2

6L2 and use the
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Note the sign change in front of the Schwarzian term as a consequence of the coordinate
transform ∂wf(w) = −i∂xf(w) and ∂wf(w) = i∂xf(w) when acting on holomorphic and anti-
holomorphic functions.6

3 Floquet CFT with general deformation

The formalism in the last section explains how the evolution of physical observable, such as
energy and entanglement entropy, is determined by the smooth deformation (v(x), v(x)) in
Hamiltonian (28)

Hv =

∫ L

0

dx

2π

(
v(x)T (x) + v(x)T (x)

)
(42)

For a consecutive evolution U = e−itnHvn ...e−it2Hv2e−it1Hv1 of n steps, the dynamics is encoded
in the n end points (x1, x2, ..., xn) of the flow

x
v1−→
t1
x1

v2−→
t2
x2

v3−→
t3
...

vn−→
tn

xn (43)

as if a chiral operator O(x) starting at x is moved to xn after n-step of driving, and similarly
for the anti-chiral part that is controlled by the vector field v(x).

In this framework, Floquet dynamics corresponds to the special case when we have period-
icity built in the driving sequence U . In this paper, we are mostly interested in the long time
asymptotics of the driven dynamics.

3.1 Two-step driving protocol

As a minimal setup, we consider the following two-step driving protocol:

H(t):

H1

H0

t
Periodic driving

(44)

That is, the evolution

U = e−iT0H0e−iT1H1︸ ︷︷ ︸
1 cycle

...e−iT0H0e−iT1H1 = (e−iT0H0e−iT1H1)n (45)

following identity

Sch
(
ei

2πxn
L , x

)
= Sch(xn, x) +

1

2

(
2π

L

)2(
∂xn
∂x

)2

(39)

we can group the two terms in (41) together

〈T (x, n)〉 = − c

12
Sch

(
ei

2πxn
L , x

)
. (40)

6For the scaling factor ∂xxn, there is no additional sign when transforming from ∂wwn since xn = −iwn.
However, the Schwarzian term (14) involves two un-cancelled derivatives and therefore leads to a sign flip in
(41). Alternatively, one can derive (41) from commutation relation of the energy-momentum tensor and confirm
the sign here.
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consists of n repeating cycles, with each cycle generated by two non-commuting Hamiltonians
H1 and H0, for time duration T1 and T0 respectively.7

Now following the framework introduced in the last section, the operator evolution is fully
characterized by the two step conformal transformation generated by the vector flow (v0, T0),
(v1, T1)

x
v0−→
T0

y
v1−→
T1︸ ︷︷ ︸

1 cycle

x1
v0−→
T0

y1
v1−→
T1

x2...
v0−→
T1

xn (46)

where we denote the end point of middle step by yj and the end point of a cycle by xj, obeying

T0 =

∫ yj

xj

dx

v0(x)
, T1 =

∫ xj+1

yj

dx

v1(x)
for j = 0, 1, ..., n− 1 . (47)

For later convenience, let us denote the 1-cycle flow by a smooth orientation preserving map
f ∈ Diff+(S1): x1 = f(x), then the flow of n-consecutive cycle is given by the n-th composition

xn = fn(x) := f ◦ f ◦ · · · ◦ f(x) (48)

and similarly for the anti-chiral part xn = f
n
(x).

3.2 Revisiting the SL2 deformation and fixed points

In the SL2 deformed Floquet CFT [38–44], we modulate the Hamiltonian by a single wavelength,
namely we let

v(x) = a+ b · sin 2πqx

L
+ c · cos

2πqx

L
, a, b, c ∈ R, q ∈ Z. (49)

and similarly for v(x) in the deformed Hamiltonian (42). With this choice, the deformed
Hamiltonian can be expressed as a linear superposition of two copies of sl2 (chiral and anti-
chiral), i.e. {L0, Lq, L−q} ⊕ {L0, Lq, L−q}, here q could be a different integer from q.

For an illustration, let us take v(x) = 2 sin2(πqx
L

) (with q > 1), and v(x) = 0 in the deformed
Hamiltonian H1

H1 =

∫ L

0

dx

2π

(
v(x)T (x) + v(x)T (x)

)
(50)

and H0 is chosen to be the homogeneous one with v(x) = v(x) = 1. Using (47), we find

T1 =
1

2πq
L

tan
(πqxj

L

) − 1
2πq
L

tan
(πqyj

L

) , T0 = xj+1 − yj. (51)

Eliminating yj, we find the map xj+1 = f(xj) is determined by the following equation

cot
qπ(xj + T0)

L
− cot

qπxj+1

L
=

2πqT1

L
. (52)

7This minimal setup can be straightforwardly generalized to the case with multiple steps of driving within
a cycle, or quasi-periodic driving, as discussed in Ref. [43] where the Hamiltonian is spatially modulated by a
single wavelength. In this paper, we keep the driving protocol simple but allow the deformation general.
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x
τ

w

O(x, τ)

x = 0 x = L

z = e
2πq
L
w

−→

z O(z)•

Figure 3: For an operator O(w) with w = τ + ix on a finite system of length L with periodic

boundary condition, we can map it to an operator on q-sheet Riemann surface via z = e
2πq
L
w,

where the operator evolution by SL2 deformed Hamiltonian (49) can be recast into a Möbius
transformation.

Using complex variable z = e
2πq
L
w, w = τ + ix, the above formula is equivalent to a Möbius

transformation on the q-sheet Riemann surface (see Fig. 3)

zj+1 =
αzj + β

β∗zj + α∗
, with α = (1 +

iπT1

L
)e

iπT0
L , β = −iπT1

L
e−

iπT0
L (53)

which has also been obtained in [38, 40, 43, 44] from a different perspective. That is to say, in
the special case with SL2 deformation, the flow equation xj+1 = f(xj) in x-frame corresponds
to a Möbius transformation in z-frame.

In the aforementioned references, the phase diagrams of the SL2 deformed Floquet CFT
was obtained by analyzing the motion of points on the unit circle |z| = 1 under the Möbius
transform (53) as follows

1. Non-heating phase: The points oscillate around the unit circle under the map zj → zj+1.
This corresponds to an elliptic Möbius transformation with |α + α∗| < 2 in (53). In this
phase, both the entanglement entropy and the total energy oscillate in time.

2. Heating phase: There is a pair of stable-unstable8 fixed point emergent in the map zj →
zj+1. Points on the circle move exponentially close to the stable fixed point under the
Floquet driving, which corresponds to a hyperbolic Möbius transformation with |α+α∗| >
2 in (53). In this phase, the entanglement entropy grows linearly in time, and the total
energy of the system grows exponentially in time. In addition, the energy is mostly
accumulated at the unstable fixed point (See, e.g., Fig. 1(c)).

3. Phase transition: The pair of stable-unstable fixed point merge to a single point with
one side flow-in and the other side flow-out (will be called critical fixed point in this
paper). The operator will be polynomially close to the stable fixed point as we increase
the number of driving cycles, which corresponds to a parabolic Möbius transformation
with |α+α∗| = 2 in (53). In this phase, the entanglement entropy grows logarithmically,
and the total energy grows polynomially.

When we translate the above description in the z frame back to the x frame where the
physical system is defined, we encounter a subtlety as we unfold the q-sheet Riemann surface

8characterized by whether the points in vicinity will flow towards or away respectively
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by inverting the map z = e
2πq
L
ix (restricted to unit circle τ = 0 slice already), due to the

multivalueness of the inverse map z → (x, x+ L
q
, x+ 2L

q
, ..., x+ (q−1)L

q
). Therefore, a fixed point

in the z frame corresponds to q fixed points in the x frame, and there could be cases that a fixed
point in the x-frame needs more than 1 cycle to return to itself, see Fig. 5 for an illustration.

In general, for an orientation preserving diffeomorphism f with q fixed point {x∗,j}j=1,2...,q

on circle, let us denote its period by p, i.e.

x∗ = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
p times

(x∗) (54)

where p is the minimal integer that makes the equation hold. Then we know that p is a divisor
of q. This is because as we label the fixed point by 1 to q, the order has to be preserved
under f and therefore the permutation among them after each cycle is simply a shift by s,
with 1 6 s 6 q (shift is defined modulo q). Then the period p = q/gcd(q, s), where gcd stands
for the greatest common divisor.9 Analogous to the single period fixed point, for the period-p
fixed point x∗ = fp(x∗), we can define the stable (denoted as x•), unstable (denoted as x◦) and
critical fixed point (denoted as xc) by checking the flow of the points in the vicinity of the fixed
point under fp (see Fig. 4 for an illustration). More explicitly, we call x∗

1. a stable fixed point if dfp(x)
dx
|x=x∗ < 1,

2. an unstable fixed point if dfp(x)
dx
|x=x∗ > 1,

3. a critical fixed point if dfp(x)
dx
|x=x∗ = 1, as it can be regarded as a degenerate case when a

stable fixed point and an unstable fixed point merge together.

Note in our setting, df
p(x)
dx
|x=x∗ > 0 since f is orientation preserving. So far, we have only consid-

ered the chiral part. The discussion for the anti-chiral part simply follows. For convenience, we
will only present the discussions for chiral part in the rest of the section (except the numerical
simulation part where the lattice model naturally comes with two parts together). One can
interpret this simplification as if we have only modified the chiral part of the Hamiltonian, i.e.
only v(x) is nonzero while v(x) = 0 as we have assumed for the SL2 case in the beginning of
this section.

In the end, let us comment on the number of fixed points q: for a SL2 deformed Floquet
CFT generated by L0 and L±q, the total number of pairs of fixed point is given by the label of
the Virasoro generator Lq. However, in a Floquet CFT with general deformations, as we will
see in Sec. 3.4, both the total number q and the periods p of the fixed points may vary with
driving parameter (T0, T1) in the heating phase. That is, the internal structures of the heating
phase with general deformations are much richer.

9For an explicit example showing this result, let us consider a the two-step driving in (44) with H0 the
homogeneous (undeformed) Hamiltonian and H1 with v(x) = 2 sin2(πqxL ), there are q pairs of fixed point
in heating phase, and the period of fixed points is determined by parameter T0 (driving time of T0): for
(s − 1)/q < T0/L < s/q where 1 6 s 6 q is an integer, one can explicitly check that the period is given by
p = q/gcd(q, s).
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x

fp(x)

L

x•

x◦

Figure 4: An illustration for fixed points of map fp: the lower intersection x• with diagonal is
the stable fixed point with slope less than 1 and the higher intersection x◦ is the unstable fixed
point with slope greater than 1.

x•,1

x◦,1x◦,2

x•,2

period-1 fixed point

x•,1

x◦,1x◦,2

x•,2

period-2 fixed point

Figure 5: In the cartoon, we have q = 2, and one pair of fixed points in z frame corresponds
to two pairs in x, denoted by x•(◦),j=1,2, where •(◦) indicate that the fixed point is stable
(unstable). Then there could be two scenarios that are indistinguishable in z frame, but have
different period in x frame. In the first case shown above, x•(◦),j will flow back to itself after
each driving cycle. In the second case, x•(◦),1 will flow to x•(◦),2 after one driving cycle, and
flow back to itself after another driving cycle.

3.3 Two-step Floquet with general deformation

Unlike the SL2 deformation, the underlying algebra for a general deformation v(x) is the infinite
dimensional Virasoro algebra, and therefore it is challenging to study the dynamics via an
algebraic approach. Instead, we will directly work on the stroboscopic trajectory xj+1 = f(xj),
which we classify into three classes:

1. No fixed point. In this case, the operators move around the circle with no accumulation
point and therefore the correlation functions are oscillatory and in particular we expect
that the entanglement entropy Eq. (38) will not grow in long time (large cycle number)
asymptotics. Analogous to the SL2 case [38,40], we refer this class as non-heating phase.

2. Only stable and unstable fixed points are present. In this case, points on the circle
can accumulate at (or diverge from) stable (unstable) fixed point x• (x◦), which will
correspond to the heating phase with growing entanglement following the discussion we
will present momentarily.

3. Critical fixed points. This case can be identified with a phase transition between heating
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and non-heating phase or between two heating phases with different number of fixed
points, since the critical fixed point is a degenerate situation when a stable fixed point
merges with an unstable one.

Now let us focus on the case 2, where only stable and unstable fixed point are present and
comment on the critical fixed point in the end.

As discussed in the last section, in general we will encounter fixed point x∗ with period
p > 1, namely fp(x∗) = x∗ but not for smaller integers. Then the stability of the fixed point is
determined by the derivative of fp at x∗. For instance, let us consider a point x∗ + ε near x∗
for small ε, then after map fp, we have

fp(x∗ + ε)− fp(x∗)
x∗ + ε− x∗

=
dfp(x)

dx

∣∣∣
x=x∗

(55)

that is to say, for dfp(x)
dx

∣∣
x=x∗

< 1, the distance to the fixed point is shrunken by a constant
factor and we identify it as the stable fixed point, and rename x∗ by x• in our notation. For
later convenience, let us denote the derivative here by an exponent λ(x•) as follows10

e−λ• :=
dfp(x)

dx

∣∣∣
x=x•

, λ• > 0 . (57)

Similarly, for unstable fixed point x∗ = x◦,

eλ◦ :=
dfp(x)

dx

∣∣∣
x=x◦

, λ◦ > 0. (58)

Thus, near the stable (unstable) fixed point, the deviation ε•(◦),n := (fp)n(x•(◦) + ε) − x•(◦)
decreases (increases) exponentially

ε•,n = εe−nλ• , ε◦,n = εenλ◦ (59)

which leads to the linear in n behavior of entanglement growth in the heating phase that will be
discussed in a moment. It is noted that λ• and λ◦ are also known as the Lyapunov exponents
of the map fp.

Let us make a final comment on fixed points connected through the map f . For instance,
let x• and y• be two period-p fixed points satisfying y• = f(x•). Then we take a point x =
x• + δx close enough to the fixed point x• and apply fp+1 to it. From one hand, we have
f(fp(x)) = f(x• + δxe−λ•(x•)) = y• + f ′(x•)δxe

−λ•(x•), where we have used the condition that
x• is a stable fixed point. On the other hand, we can first map it to y = f(x) and take fp, i.e.
fp(f(x)) = fp(y• + f ′(x•)δx) = y• + e−λ•(y•)f ′(x•)δx. The consistency between the two results
requires that all the fixed point in the same orbit of map f must have the same exponent.

10One can also assume an effective Hamiltonian Heff with smooth deformation veff and veff that reproduces
the p cycle driving, i.e. e−ip(T0+T1)Heff = (e−iH0T0e−iH1T1)p. Then the fixed points is related to the zeros of the
deformation veff(x∗) = 0, and the slope is related to the exponents λ•(◦) as follows

dfp(x)

dx

∣∣∣
x=x∗

= ev
′
eff (x∗)p(T0+T1) =⇒ λ• = −v′eff(x•)p(T0 + T1), λ◦ = v′eff(x◦)p(T0 + T1) (56)

This also inspires a discussion on the quantum quench as shown in appendix A.
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Case 1:
x y

x◦,2x◦,1x•,1 x•,2· · · · · ·

Case 2:
x y

· · · · · ·

Case 3:
x y

· · · · · ·

Case 4:
x y

· · · · · ·

Figure 6: Different configurations of the locations of two operators (or the entanglement cuts x
and y) with respect to the unstable (◦) fixed points in the stroboscopic trajectories of operator
evolution.

3.3.1 Entanglement entropy

For entanglement entropy of a cut A = [x, y] in the long time limit, we consider the following
configurations (see Fig. 6)

1. There is no unstable fixed point of operator evolution in [x, y]. In this case, operator
O(x) and O(y) will flow towards the same stable fixed point. In the long time limit, the
two-point function will approach a finite and stable value and so does the entanglement
entropy.

2. There is at least one (but not all) of unstable fixed points in [x, y], and x and y do not
coincide with any other unstable fixed points. In this case, O(x) and O(y) will flow to
different stable fixed points x•,1 and x•,2 respectively. The chiral part of the two-point
function after np cycles (n times of p-period map) is given by

〈O(x, np)O(y, np)〉 '
(
e−(λ•,1+λ•,2)n

)h(L
π

sin
π(x•,1 − x•,2)

L

)−2h

(60)

where λ•,1, λ•,2 > 0 characterize the rate of operators approaching the stable fixed points.
In turn, the entanglement entropy grows linearly in n as

SA(np)− SA(0) ' c

12
log

sin2(π(x•,1 − x•,2)/L)

sin2(π(x− y)/L)
+

c

12
· (λ•,1 + λ•,2) · n. (61)

Physically, the stable fixed point in operator evolution corresponds to the unstable fixed
point in state evolution, and therefore serves as a source emitting EPR pairs. The config-
uration in case 2 allows the subregion A to capture increasing number of entangling EPR
pairs as illustrated in Fig. 1.

3. x and y are located at two different unstable fixed points x◦,1 and x◦,2 respectively. In
this case, O(x) and O(y) will stay at these two unstable fixed points, and the correlation
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function will increase in n as follows

〈O(x, np)O(y, np)〉 '
(
e(λ◦,1+λ◦,2)n

)h(L
π

sin
π(x◦,1 − x◦,2)

L

)−2h

(62)

where λ◦,1, λ◦,2 > 0 characterize the rate of operators flowing away from the unstable
fixed points. The entanglement entropy will decrease as follows

SA(np)− SA(0) ' c

12
log

sin2(π(x◦,1 − x◦,2)/L)

sin2(π(x− y)/L)
− c

12
· (λ◦,1 + λ◦,2) · n. (63)

Physically, this linear decreasing is due to the fact that degrees of freedom that contribute
to the entanglement flow to the entanglement cuts in time. The non-local EPR pairs now
become local in real space and ‘annihilate’ with each other.

4. One of x and y is at unstable fixed point, and the other is not. Assuming that O(x) stays
at the unstable fixed point x◦.1, and O(x) finally flows to the stable fixed point denoted
by x•,2, then one has

〈O(x, np)O(y, np)〉 '
(
e(λ◦,1−λ•,2)n

)h(L
π

sin
π(x◦,1 − x•,2)

L

)−2h

(64)

where λ◦,1, λ•,2 > 0. The correlation function depends on the competition between the
stable and unstable fixed points. This competition effect can also be seen in the entan-
glement entropy evolution as

SA(np)− SA(0) ' c

12
log

sin2(π(x◦,1 − x•,2)/L)

sin2(π(x− y)/L)
+

c

12
· (−λ◦,1 + λ•,2) · n. (65)

Physically, it is because there is one source of EPR pairs, and at the same time one sink
of EPR pairs. Notably, in a fine-tuned case λ◦,1 = λ•,2, the entanglement will remain
constant.

In addition, based on the same analysis in Ref. [40], one can find that each region [x◦,j−ε, x◦,j+ε]
centered at x◦,j is mainly entangled with the nearby two regions [x◦,j−1 − ε, x◦,j−1 + ε] and
[x◦,j+1 − ε, x◦,j+1 + ε], which contributes to the linear n growth of entanglement entropy in
(61). Finally, we hope to remark that the entanglement evolution discussed above is defined
at the complete period, i.e. the total cycle number is np, where p is the period of fixed points.
If we look into the middle steps within a period, then one may observe fine structures in the
entanglement evolution (See, e.g., Fig.1(c)).

At last, we discuss the critical fixed points, where we have dfp(x)
dx
|x=xc = 1. Let us assume

the next leading power after linear in the Taylor expansion is am(x− xc)m with m > 2, namely
we have the following expansion near critical point

fp(xc + ε) = xc + ε+ amε
m + o(εm), (66)

that is to say the deviation after a p-period driving, ε1 := fp(xc+ε)−xc ≈ ε+amε
m is changed

by a high power of ε. It is more convenient to express the change by

1

εm−1
1

≈ 1

εm−1
(1− (m− 1)amε

m−1) =
1

εm−1
− (m− 1)am (67)
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as it can be used to find the deviation for larger n, ε1−m
n = ε1−m − n(m − 1)am, where

εn := (fp)n(xc + ε) − xc, here we focus on the stable fixed point with am < 0, i.e. case 2
in the configurations of Fig. 6. That means the distance from the fixed point changes as a
fraction power of n in stable fixed point, and therefore the entanglement entropy will grow
logarithmically in n as

SA(np)− SA(0) ' c

12
log

sin2(π(x•,1 − x•,2)/L)

sin2(π(x− y)/L)
+

c

12

(
n•,1

n•,1 − 1
+

n•,2
n•,2 − 1

)
log n. (68)

3.3.2 Energy-momentum density distribution

Finally, we consider how the fixed points manifest themselves in the evolution of the energy-
momentum density. If the initial state is a primary state with conformal weight (h, h), the
chiral energy density after np cycles is

〈T (x, np)〉 =

(
∂fnp(x)

∂x

)2 (
h− c

24

)
− c

12
Sch(fnp(x), x)

=h

(
∂fnp(x)

∂x

)2

− c

12
Sch

(
tan

fnp(x)

2
, x

) (69)

where we have chosen L = 2π. On the second line, we explicitly separate the contribution from
the conformal vacuum (second term) and the primary excitation (first term).

From our analysis on the entanglement entropy, we have seen that the entanglement entropy
of a subsystem does not grow unless it encloses one unstable fixed point. Thus, it is natural
to expect an energy peak to appear at unstable fixed points. This intuition is consistent with
the first term. Namely, when x = x◦,j is an unstable fixed point, then the first term will be
exponentially growing at the late time

h

(
∂fnp(x)

∂x

)2

≈ he2λ◦,jn. (70)

And when x is some generic point, the first term decays to be exponentially small in time.
However, the second term might violate this simple picture and is actually the only term left
for the evolution from the conformal vacuum state (h = 0). To reveal the subtlety here, we set
h = 0 and calculate the change in energy density from one cycle to the next. At the unstable
fixed point and late time, we have

〈T (x◦, (n+ 1)p)〉 − 〈T (x◦, np)〉 ≈
c

24
e2λ◦n

(
1− e2λ◦ − 2 Sch (fp(x), x)

∣∣∣
x=x◦

)
. (71)

Notice that all the time dependence comes from the prefactor e2λ◦n, which is the same as
identified above. Thus the magnitude is still exponentially growing. However, we do not have
control on the sign of the term inside the bracket. When this term is positive and we have
an exponentially growing peak, the Schwarzian part Sch (fp(x), x) |x=x◦ can still be different
for different unstable fixed points, which implies that the energy peaks do not have the same
height. Moreover, when the term inside the bracket becomes negative, it leads to a negative
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energy density that keeps decreasing unbounded from below11 In the example discussed below,
we do not encounter such a pathological behavior. However, we are not aware of a proof to
exclude such thing to happen and leave this for a future study.

The growth rate of the (magnitude of) energy density is controlled by the unstable fixed
point λ◦, while the growth rate of its entanglement entropy is related to the nearby stable fixed
points x•,j±1, λ•,j±1. Thus, we generally do not expect a direct connection between the energy
and entanglement growth for any single peak.12 In our concrete example, the two growth rate
turns out to be the same.

As a final remark, it is also interesting to consider the case that the initial state is a
thermal ensemble at finite temperature 1/β. In the high temperature limit β � L, one has

〈T (x)〉 = Tr(e−βHT (x)) = π2c
6β2 . Then the chiral energy density becomes 〈T (x, np)〉 = (∂f

np(x)
∂x

)2 ·
π2c
6β2 − c

12
Sch(fnp(x), x). In the high temperature limit, the first term will dominate. One can

observe that the peaks of 〈T (x, np)〉 are located at the unstable fixed points where (∂f
np(x)
∂x

)2

grow exponentially in time.

3.4 Concrete example

In this section, we illustrate the features of generalized Flouqet CFTs with an explicit example.
It is a modification to the SL2 deformed Floquet CFT reviewed above and thus reduces

to the familiar SL2 cases in certain limits. This helps demonstrate how different features are
enriched and changed as we move away from the SL2 limit. After we explain the setup, we first
solve for the stroboscopic trajectories and fixed points, which determines the phase diagrams.
We then focus on the spatial energy-entanglement pattern in different heating phases and finally
close this section with a comparison between CFT results and lattice simulation.

3.4.1 Setup

The system is defined on a circle of length L. The two-step Floquet driving (44) is designed as
follows. We choose H0 to be the homogeneous Hamiltonian (v(x) = 1), H1 to be the deformed
one with the following deformation function

v(x) =


2 sin2

(
πx

LA

)
, 0 6 x 6 LA,

2 sin2

(
π(x− LA)

LB

)
, LA < x 6 L,

.

LA L

v(x)

(72)

where LA + LB = L. It consists of two sine-square deformations with wavelengths LA, LB
respectively and glued at x = LA and x = 0 (or L).13 We note that the two limits, namely

11The total energy is still positive. This is because our total energy is defined as the expectation valuf the
Virasoro generator L0, the spectrum of which is by itself bounded from below.

12In the SL2 case, we have λ•,j = λ◦,j = λ, and thus all the energy peaks have the same height and the energy
and entanglement growth are locally closely related.

13Note that so-defined v(x) is not smooth for generic LA, i.e. its second and higher order derivatives are
not continuous. It will lead to discontinuity in physical observable, such as the entanglement and energy
density. This issue can be remedied by smoothening out the deformation function near the gluing points. Such
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LA = 0 and LA = LB = L/2, correspond to the SL2 deformation with q = 1 and q = 2
respectively as reviewed in Sec. 3.2.

For generic LA ∈ (0, L), the deformation function involves infinite many Fourier compo-
nents and thus the corresponding algebra becomes Virasoro algebra, enlarging the sl2 discussed
previously. As we will show momentarily, even small deviation from the SL2 limit enriches
the phase diagram with structures beyond the SL2 prediction. However, they still falls into a
unified description from the geometric viewpoint.

Our protocol is symmetric with respect to the exchange of LA and LB, which allows us to
only focus on 0 6 LA 6 L/2. It is convenient to parametrize all the dimensionful quantities
by the total system size, thus we introduce xm = LA/L ∈ [0, 1/2] throughout the following
discussion.

3.4.2 Stroboscopic trajectories and phase diagrams

This section concerns with the phase diagram of our example. In the SL2 limit (xm = 0
or xm = 1/2 in our example), the dynamics and hence the phase diagrams can be solved
analytically, as shown by the first and last figure in Fig. 8. However, generic cases require
numerics. Thanks to the geometric interpretation of the deformed Hamiltonian, the phase
diagram can be determined by studying the trajectory of quasi-particles, as established in
Sec. 3.3 and briefly reviewed below for reader’s convenience.

Given a driving protocol, we can obtain the operator evolution using Eq. (35) and, most
importantly, the stroboscopic trajectory of the coordinates for the operator, also dubbed as
quasi-particle motion. The heating phase corresponds to the existence of fixed points, and the
different heating phases are specified by the number and periodicity of fixed points. In the
following, we first explain how we extract the two pieces of information and then show the
phase diagrams.

Let us consider an enough number of points uniformly initialized on the spatial circle, and
evolved by the conformal mapping that appears in the operator evolution formula. We keep
track of their stroboscopic trajectories. Once there are fixed points, all trajectories (without
fine tuned to the unstable ones) will flow towards the stable ones, which is a clear indicator of
the number of fixed points. We can further determine the periodicity of those fixed points by
tracing how each point moves in one cycle. Some typical examples are shown in Fig. 7, where
we can observe two distinct features as tuning the driving parameters T0/L and T1/L:

1. No fixed points. The trajectories keep winding around the circle, as seen in Fig. 7 (a).
This corresponds to the non-heating phase.

2. Multiple fixed points. The trajectories converges to q = 4, 3, 2 fixed points, as shown in
Fig. 7 (b), (c) and (d) respectively, which correspond to different heating phases. Here, the
periodicity happens to equal the number of stable fixed points and Fig. 7 only shows the
trajectories after every q cycles. In addition, one can also identify unstable fixed points,
on the two sides of which trajectories flow to different stable fixed points. In our example,
we always find an equal number of stable and unstable fixed points. We also checked that
these trajectories approach the fixed points exponentially close in time, which accounts

regularization does not change the physics and instead makes the problem less tractable. Therefore, we stick to
the original deformation function and interpret the potential discontinuity in the results as artifact.
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(a) (b)

(c) (d)

Figure 7: Stroboscopic trajectories (quasi-particle motion) for a fixed deformed Hamiltonian
(72) and various driving parameters T0/L, T1/L. We choose xm = LA/L = 0.3 and T0/L = 0.1
for all plots. We observed (a) no fixed points, (b) q = 4, (c) q = 3 and (d) q = 2 stable fixed
points with T1/L = 0.05, 0.2, 0.4, 0.8, respectively. In these examples, the number of stable
fixed points equals their periodicity, i.e. q = p, and all trajectories are plotted for every q
driving cycles with q = 4, 3, 2, respectively. The unstable fixed points are identified with the
bifurcation points of the trajectories.

for the exponential growth of the energy and linear growth of the entanglement entropy,
shown in the following section.

Based on the knowledge of fixed points and the discussion in Sec. 3.3, one can obtain the
phase diagrams, with typical ones shown in Fig. 1 and Fig. 8. In Fig. 8, we plot phase diagrams
for different xm from 0 to 1/2. For xm = 0 (the first figure), the driving reduces to the q = 1
SL2 case. There is only one heating phase characterized by 1 pair of fixed points. Similarly,
xm = 1/2 (the last figure) corresponds to the q = 2 SL2 case, and there are two heating phases.
Both of them have two pairs of fixed points, while the one sitting in 0 < T0/L < 1/2 has
period-2 fixed points and the other has period-1. However, such regularity gives way to the
following richer patterns as xm deviates from the SL2 limit to the Virasoro regime:

1. There are many different heating phases in the parameter space labeled by the number
of (stable) fixed points q and their periodicity p with p 6 q. Since q directly determines
the energy-momentum distribution and is more physical, we choose q to mark different
heating phases in making the plots. For example, in Fig. 1 (a), there are four heating
phases with 5 stable fixed points, all of which have period-5. As for the two heating phases
with 2 stable fixed points, the left one has period-2 while the right one has period-1.

2. As the number of fixed points increase, the stroboscopic trajectories converge with lower
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q = 1 q = 123 2 q = 1 22

q = 1 22 q = 2 1 2 q = 2 2

Figure 8: Phase diagram of a generalized Floquet CFT with different driving Hamiltonians in
(72), where we choose (from left to right, and then top to bottom) xm = 0, 0.1, 0.2, 0.3, 0.45,
and 0.5. Also see Fig. 1(a) for a zoomed-in version of the xm = 0.3 case. The regions in
yellow (blue) correspond to the non-heating (heating) phases. Different heating phases are
distinguished by the shades of color and the marks. Lighter blue regions have more fixed points
(with higher periodicity). For xm = 0 or 0.5, the setup reduces to a SL2 deformed Floquet CFT
and the phase diagram can be obtained analytically.

rate, which makes it numerically harder to identify the heating phase with large number
of fixed points. For example, we identify heating phases only up to q = 6 in Fig. 1 (a).

3. If we look at heating phases with fixed points of period p, they always intersect the
horizontal axis T1/L = 0 at T0/L = r/p (r and p are co-prime). In the example we
consider, the periodicity happens to be the same as the number of fixed points except
for the right most q = 2 heating phase. Consequently, in Fig. 1 (a), the heating phase
labeled with q intersects the horizontal axis at T0/L = r/q and the right most q = 2
heating phase at T0/L = 1. When T1/L = 0 and T0 = r/p, every point can be regarded
as a period-q fixed point. The above result seems to suggests that a small T1/L can lift
the degeneracy and yields finitely many period-p stable (and unstable) fixed points. 14

Such an observation also inspires us to conjecture that there can be infinite number of
heating phases associated to all rational numbers p/q. The verification is left for future

14This phenomenon is similar to Arnol’d tongues in iterating circle maps [59]. We hope to study the possible
relation to our phase diagram in the future.
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study.

4. When T1/L increases, the q = 2 and q = 1 phases occupy larger region. This is because
the dynamics in this regime is dominated by H1, and the fixed point structure inherits
that of H1. In our example, H1 has two fixed points at x = 0, LA which accounts for the
large region of q = 2 phases. For certain values of T0/L, one of the fixed points will be
skipped. For example, one can consider T0/L = xm + ε, then no matter where the initial
position of the point is, it always flows to the fixed point at x = 0. This explains the
appearance of the q = 1 phase and why it sits slightly on the right side of T0/L = xm for
large T1/L.

5. The q = 1 phase with periodic boundary conditions has some non-generic behavior com-
pared with the q > 1 phases. First, when xm = 0 the initial state cannot be chosen as
the ground state to give heating dynamics, as discussed in Ref. [39,40]. Second, suppose
we choose a general initial state such that the CFT is in a heating phase, then although
there is a single (chiral) energy peak, the entanglement entropy does not grow even when
the subsystem encloses the peak. This can be understood based on our quasi-particle
picture that all the quasiparticles accumulate at the single chiral/anti-chiral peak and
cannot contribute to entanglement. 15 This is different from the case of q > 1, where the
quasiparticles can accumulate at different fixed points in real space, which contributes to
a linearly growing entanglement entropy [39,40].

3.4.3 Energy and entanglement evolution

In this section, we focus on the heating phases and calculate the evolution of chiral energy-
momentum density 〈T (x, n)〉 and the entanglement entropy SA(n). The former exhibits growing
peaks associated to the unstable fixed points of the conformal mapping, and the later reveals
that they are the only resource of the entanglement generated by the Floquet driving. We
choose the system size to be L = 2π, the initial state to be the ground state of H0.

The evolution of the chiral energy-momentum density under generic deformed Hamiltonians
follows (41). When the initial state is the ground state, we have

〈T (x, n)〉 = − c

24

[(
∂xn
∂x

)2

+ 2 Sch (xn, x)

]
(73)

where xn = fn(x) is the image of x after n-cycle driving. For numerical stability, in particular
near the unstable fixed point, we invoke chain rule to reduce both terms in the above formula
to a single cycle map x1 = f(x). It is worth to mention that the chain rule for Schwarzian
derivative has the following interesting form

Sch(xn, x) =

(
∂xn−1

∂x

)2

Sch(xn, xn−1) + Sch(xn−1, x). (74)

15The situation becomes different if we consider open boundary conditions. Although there are still one chiral
peak and one anti-chiral peak, the open boundaries couple the chiral and anti-chiral modes together. Then there
will be linearly growing entanglement between the chiral and anti-chiral peaks of energy density.
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Figure 9: (a) Energy-momentum density 〈T (x, n)〉 after different numbers of driving cycles n.
The parameters are L = 2π, xm = 0.45, and T0/L = 0.42, T1/L = 0.05. Also see Fig. 1(b)
for T0/L = 0.28, T1/L = 0.05, which shows three peaks. (b) Total chiral energy v.s. the
entanglement entropy growth. The parameters are L = 2π, xm = 0.45 and T0/L = 0.28,
T1/L = 0.05. Results are plotted for every three cycles. (See the red curve in Fig. 2 for the
entanglement entropy of full cycles, see Fig. 1 (b) for the corresponding energy-momentum
density distribution)

The evolution of the entanglement entropy follows (38) and can be computed similarly. We
emphasize that the energy density will become negative without including the Schwarzian term
as can be seen from (73). Thus, the quantum fluctuation (i.e. the Schwarzian term, which
represents the Casimir energy in free theory) plays an important role in considering the energy
evolution especially from the ground state.

The results for the chiral energy-momentum density are shown in Fig. 1 (b) and Fig. 9
(a). We can see that it quickly develops peaks at positions exactly matching the unstable fixed
points for the one-cycle conformal map. In contrast to the SL2 case, the peaks are not of equal
height. For example, in Fig. 9 (a), one peaks is significantly higher than the other. By keeping
track of which peak is the higher one at a fixed time, we can see that the two peaks switches
position after every cycle, which is a physical demonstration on the periodicity of fixed points
(period-2 in this case). In Fig. 1 (b), there are three energy peaks plotted for every three cycles,
and the relative height of each peak does not change, which implies they are period-3. One
can also check that total chiral energy-momentum grows exponentially in time as shown by the
blue curve in Fig. 9 (b).

The results for the spatial structure of entanglement entropy are shown in Fig. 10. In (1a)
and (2a), we choose the subsystem as A = [0, x]. As we scan x from 0 to L, one can find
a kink structure, and the locations of kinks matches the position of energy peaks shown in
Fig. 9(a) and Fig. 1(b) respectively. In Fig. 10 (1a) and (2a), we choose the subsystem to
be A = [x − δ/2, x + δ/2], with δ small enough relative to the system size. As x increase
from 0 to L, we can also observe peaks, with their position matches that of the energy peaks.
These observation implies that the entanglement entropy growth only comes from the excitation
accumulated at the energy-momentum peaks, which is the same as the SL2 cases. Every peak
share entanglement with the nearest neighbor ones.
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Figure 10: Entanglement entropy for fixed deformed Hamiltonian and different driving steps n.
We choose L = 2π and fix xm = 0.45. The driving parameters are T0/L = 0.42, T1/L = 0.05
in (1a)(1b), and T0/L = 0.28 and T1/L = 0.05 in (2a)(2b), namely, the same set of parameters
as used for the energy-momentum density discussion. (1a)(2a): Entanglement entropy of A =
[0, x/L] where x ∈ [0, L] (1b)(2b): Entanglement entropy of A = [x − δ/2, x + δ/2] where
x ∈ [0, L] and δ = L/20. The negative value of SA in (1b) and (2b) are due to the ignorance of
the UV cutoff.

We can also fix the subsystem and study the entanglement growth with respect to the cycle
number n, the results are shown in Fig. 2 and Fig. 9(b), where the subsystem is chosen to
be the left half [0, L/2]. When the heating phase has period-3 fixed points, the entanglement
growth shows a clear oscillatory behavior within every three cycles (the red curve in Fig. 2).
If we instead plot the entanglement entropy for every three cycles (the red curve in Fig. 9(b)),
the result exhibits a linear growth in the late time regime. If the heating phase has period-2
fixed point, the oscillation is absent (the blue curve in 2). This is because there are only
two energy peaks in this case, and we are always counting the entanglement between them no
matter which peak is inside the subsystem. It is noted that the total energy and the half system
entanglement shows the same growth rate as shown in Fig. 9(b), which is the same as the SL2

case.

3.4.4 Numerical simulation of free fermion on lattice

In this section, we compare the CFT results and the lattice model calculations on the entan-
glement entropy evolution following Ref. [38].

We consider complex free fermions on an periodic chain with only nearest neighbor hopping
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Figure 11: Comparison of the entanglement entropy evolution for A = [0, x] between CFT
calculations (lines) and lattice calculations (vacant squares). For all plots, we choose parameters
L = 202, xm = 0.45, and we subtract the initial value of the entanglement entropy to get rid of
the non-universal piece. The driving parameters are chosen as (a) T0/L = 0.42, T1/L = 0.05
and (b) T0/L = 0.28, T1/L = 0.05, both of which are in the heating phase.

at the half-filling. The Hamiltonians H0, H1 for the two-step driving are
H0 =t

L∑
j=1

c†jcj+1 + h.c.

H1 =t
L∑
j=1

v(j) c†jcj+1 + h.c.

v(j) =


2 sin2

(
πj

LA

)
, j 6 LA,

2 sin2

(
π(j − LA)

LB

)
, LA 6 j < L,

(75)

where cj are fermionic operators satisfying the canonical anti-commutation relations {cj, c†k} =
δjk, L = LA + LB is the number sites and v(j) is the discretized deformation function. The
initial state is chosen to be the ground state of H0

We make stroboscopic measurement on the entanglement entropy and compare that with the
CFT calculation. Fig. 1(b) shows the results for the half-system entanglement as a function of
the driving periods and we find good agreement at the early time regime. However, discrepancy
does appear in the late time, because high energy excitation eventually dominates the dynamics
of the lattice model and is beyond the CFT description. To further support our CFT result
on the spatial structure, we also examine the entanglement for the subsystem A = [0, x] as a
function of x, and the results are in Fig. 11. They show a remarkable agreement in the early
time regime. Notice that both the chiral and anti-chiral components are deformed in our lattice
calculation. Thus, the effect of anti-chiral deformations must be include in the CFT calculation
to give a fair comparison. This accounts for the difference between Fig. 10(1a) (2a) and Fig. 11

4 Discussion and conclusion

In this work, we have studied the non-equilibrium dynamics in Floquet CFTs with generally
deformed Hamiltonians. The time evolution of correlation functions, entanglement entropy,
and energy-momentum density distribution are analyzed in detail. It is found that in the
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heating phase of Floquet CFTs, the physical properties are determined by the emergent spatial
fixed points of operator evolution. Compared to the SL2 deformed Flouqet CFTs, there are
more internal structures in the heating phases. One can have distinct heating phases with
different numbers of spatial fixed points, which result in different entanglement patterns and
energy-momentum density distribution.

We would like to comment on several interesting features in the Floquet CFTs and some
future problems:

Despite the fact that the entanglement pattern can be directly read out from the fixed point
structure, the evolution of the energy density distribution seems to be less constrained. First,
the quantum effects (such as Casimir energy) are important to the growth of the energy density
which makes it difficult to determine the sign of the energy-momentum density at the spatial
unstable fixed point. Second, it is noted that the growth rate of the entanglement entropy is
controlled by the stable fixed point while the growth rate of energy density is mainly controlled
by the unstable ones. And the relation between them is not clear to us. Same questions can
also be raised in the context of a global quench generated by generally deformed Hamiltonians.
We leave these for future study.

In this work, we use the topological surface operator to give a general definition of the
deformed Hamiltonian. Such a formulation automatically suggests a generalization to higher
dimensional CFTs. It is noted the conformal group in higher dimensional CFT is SO(d+ 1, 1),
d > 2 (See the discussion in Sec.2), which is non-compact. Thus we expect there are still
‘heating’ and ‘non-heating’ phases in the Floquet driving. It will be interesting to study the
detailed features of related quantities such as the entanglement entropy and energy density
evolution in the higher dimensional cases.

Our approach can be straightforwardly generalized to more general driving sequences such
as the quasi-periodic and random driving, which is shown to yield more interesting features in
the SL2 deformed case compared to the periodic one [43]. In the generalized Flouqet CFTs,
as we extend the sl2 algebra to the Virasoro algebra, it is also interesting to enquire the phase
diagram for quasi-periodic and random driving.

It is also interesting to consider the Floquet drivings with non-unitary time evolution. In
this case, more general conformal mappings are allowed in the operator evolution. It is expected
that more rich patterns of entanglement/energy evolution can be observed. Some initial efforts
along this direction can be found in Ref. [60].

In addition, since our results also hold for the large-c CFT, it is desirable to study the
holographic dual of our setup. It is also interesting to compare our setup to the Floquet setups
as studied in AdS4/CFT3 in Ref. [61,62].

Note added: During the preparation of this work, we noted a related work [63], which also
studies Floquet CFTs beyond the SL2 deformation, while concrete examples are different. We
thank the authors for their communications.
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A Quantum quenches with general deformation

Our discussion in the main text can be straightforwardly applied to the quantum quench prob-
lem, with the quenched Hamiltonian in the form of (28)

Hv =

∫ L

0

dx

2π

(
v(x)T (x) + v(x)T (x)

)
(76)

In the quantum quench, for simplicity, we choose the initial state as the ground state of a
homogeneous CFT with v(x) = v(x) = 1 in the above Hamiltonian. Then at t = 0, we quench
the Hamiltonian to the non-homogeneous one with smooth (v(x), v(x)), and evolve the system
in time. 16 For simplicity of discussion, we only deform the chiral part of Hamiltonian and
keep v(x) = 1.

The quench dynamics depends on whether there are zeros in the deformation function v(x).
If there are no zeros, then every physical observable will be a periodic function of time, with the
period T = Leff =

∫ L
0

dx
v(x)

, which is the effective length of the total system after deformation.

That means the entanglement entropy will oscillate in time. If there are zeros in v(x), the
entanglement entropy will in general grow in time. As shown in (77) is an example of the
profile v(x). In our convention, the chiral operators move right for v(x) > 0 and move left for
v(x) < 0. Then one can find that the zeros of v(x) correspond to the stable (•) and unstable
(◦) fixed points in the operator evolution

... ... ... ...
0

x = L

v(x)

x y

x•,1 x•,2

(77)

For smooth v(x), similar to the discussion in Sec. 3.3.1, the entanglement entropy of A =
[x, y] depends on how we choose the subsystem. As shown in (77), one non-trivial choice of
subsystem A is that there is at least one of the unstable fixed points inside A. Then, following
the discussion in Sec.3.3.1, we find that if v′(x•) 6= 0, then the entanglement entropy grows in
time t as

SA(t) ' c

12
· (λ•,1 + λ•,2) · t, (78)

where λ•,j := |v′(x•,j)|. While if the first derivative vanishes, and we assume the leading power
in the Taylor expansion is proportional to (x− x•,j)n•,j where n•,j > 1, then we have

SA(t) ' c

12

(
n•,1

n•,1 − 1
+

n•,2
n•,2 − 1

)
log t. (79)

16For related discussions on quantum quenches with inhomogeneous Hamiltonians, one can also refer to, e.g.,
Refs. [64–66].
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Here we have neglected the finite constant terms in Eqs.(78) and (79).
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