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Abstract

Structural glasses feature quasilocalized excitations whose frequencies ω follow
a universal density of states D(ω)∼ω4. Yet, the underlying physics behind this
universality is not yet fully understood. Here we study a mean-field model of
quasilocalized excitations in glasses, viewed as groups of particles embedded
inside an elastic medium and described collectively as anharmonic oscillators.
The oscillators, whose harmonic stiffness is taken from a rather featureless
probability distribution (of upper cutoff κ0) in the absence of interactions, in-
teract among themselves through random couplings (characterized by strength
J) and with the surrounding elastic medium (an interaction characterized by
a constant force h). We first show that the model gives rise to a gapless den-
sity of states D(ω)=Ag ω

4 for a broad range of model parameters, expressed in
terms of the strength of stabilizing anharmonicity, which plays a decisive role
in the model. Then — using scaling theory and numerical simulations — we
provide a complete understanding of the non-universal prefactor Ag(h, J, κ0), of
the oscillators’ interaction-induced mean square displacement and of an emerg-
ing characteristic frequency, all in terms of properly identified dimensionless
quantities. In particular, we show that Ag(h, J, κ0) is a non-monotonic function
of J for a fixed h, varying predominantly exponentially with −(κ0h

2/3/J2) in
the weak interactions (small J) regime — reminiscent of recent observations
in computer glasses — and predominantly decays as a power-law for larger
J , in a regime where h plays no role. We discuss the physical interpretation
of the model and its possible relations to available observations in structural
glasses, along with delineating some future research directions.
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1 Introduction

Many key mechanical, dynamic and thermodynamic phenomena in structural glasses —
ranging from wave attenuation and heat transport to elasto-plastic deformation and yield-
ing — are controlled by the abundance and micromechanical properties of low-frequency
(soft) quasilocalized vibrational modes (QLMs) [1–7]. These nonphononic excitations (see
example in Fig. 1a) emerge from self-organized glassy frustration [8], which is generic to
structural glasses quenched from a melt [9]. Their associated frequencies ω have been
shown [10–12] to follow a universal nonphononic (non-Debye) density of states D(ω)∼ω4

as ω→0, independently of microscopic details [13, 14], spatial dimension [15, 16] and for-
mation history [17,18]. Some examples for D(ω), obtained in computer glasses, are shown
in Fig. 1b. Due to the prime importance of soft QLMs for many aspects of glass physics,
developing theoretical understanding of their emergent statistical-mechanical properties is
a timely challenge.
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Figure 1: (a) An example of a QLM observed in a two-dimensional (2D) computer glass [15].
(b) Nonphononic spectra D(ω) vs. frequency ω, reported for 2D, 3D and 4D soft-sphere computer
glasses [15]. Data are shifted vertically for visual clarity. (inset) The prefactor Ag of the non-
phononic ω4 spectrum vs. the inverse of the parent equilibrium temperature Tp from which glasses
were instantaneously quenched, calculated for the soft-sphere computer glass model investigated
in [17].

Nearly two decades ago, Gurevich, Parshin and Schober (GPS) put forward a three-
dimensional (d̄=3, where d̄ is the spatial dimension) lattice model [19], aimed at resolving
the vibrational density of states of QLMs. The model assumes QLMs to exist inside an
embedding elastic medium and to be described as anharmonic oscillators — meant to
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represent small, spatially-localized sets of particles — that are characterized by a stiffness
probability distribution p(κ) in the absence of interactions. The oscillators interact with
each other via random couplings, which are characterized by strength J that follows the
∼ r−d̄ spatial decay of linear-elastic dipole-dipole interactions, where r is the distance
between the oscillators. GPS showed numerically that the model’s vibrational spectrum
indeed grows from zero frequency as D(ω)∼ω4 [19] for various choices of p(κ), and these
numerical results have been rationalized using a phenomenological theory [19–21].

Yet, despite previous efforts [1, 22–26], we currently lack insight into the origin of
QLMs’ statistical-mechanical properties. Moreover, recent progress in studying computer
glass-formers revealed intriguing properties of QLMs [17,18,27], e.g. the dependence of the
amplitude Ag of the ω4 universal law on the state of glassy disorder (cf. inset of Fig. 1b),
which are not yet fully understood. In this work we study — using scaling theory and
numerical simulations — the spectral properties of the mean-field variant of GPS’s lattice
model, obtained by taking the limit of infinite spatial dimension (d̄→∞), and by allowing
the oscillators to also interact with their surrounding elastic medium through a constant
force h. A similar mean-field model, albeit without a force term, was studied by Kühn and
Horstmann [28] in the context of low-temperature glassy anomalies [29–31]. We therefore
refer to our model hereafter as the KHGPS model.

In this work, we show that the low-frequency spectrum of the KHGPS model1 — to
be explicitly formulated below — rather generically follows D(ω) = Ag ω

4, as is widely
observed in particle-based computer glass-formers, cf. Fig. 1b. Furthermore, we develop
a complete understanding of the non-universal prefactor Ag(h, J, κ0) (where κ0 charac-
terizes the initial stiffness probability distribution p(κ), see details below), of the oscil-
lators’ interaction-induced mean square displacement, and of an emerging characteristic
frequency, all in terms of properly identified dimensionless quantities. In particular, we
show that Ag(h, J, κ0) is a non-monotonic function of J for a fixed h and strength of anhar-
monicity, varying predominantly according to log[Ag(h, J, κ0)]∼−(κ0h

2/3/J2) in the weak
interactions (small J) regime — reminiscent of recent observations in computer glasses
shown in the inset of Fig. 1b — and predominantly decays as a power-law for larger J , in
a regime where h plays no role. We discuss the physical interpretation of the model and
its possible relations to available observations in structural glasses, along with delineating
some future research directions.

2 The model

QLMs in glasses have been shown to feature large displacements inside a localized core of
a few atomic distances in linear size, accompanied by power-law decaying dipolar displace-
ments away from the core (cf. Fig. 1a). QLMs also feature low vibrational frequencies,
i.e. they represent particularly soft regions inside a glass, and are randomly distributed in
space. The main question we aim at addressing in this work is whether one can develop
a relatively simple mean-field model, using this physical picture of QLMs as an input, to
obtain their universal density of states D(ω)=Ag ω

4 and to gain insight into the properties
of the non-universal prefactor Ag.

To this aim, we closely follow GPS and adopt a coarse-grained picture in which QLMs
are anharmonic oscillators embedded inside an elastic medium. The elastic medium me-
diates interactions between the QLMs and can also affect them directly. We consider
a collection of N anharmonic oscillators, each described by a generalized coordinate xi,

1We study zero temperature states (local minima) reached by a minimization of the Hamiltonian,
starting from random states. The spectrum of true ground states of the model might be different.
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Figure 2: The vibrational density of states of the KHGPS model, calculated numerically in systems
of N = 16000 oscillators, for h= 0.01 and various values of the parameters J and κ0 as indicated
by the legend, see text for further discussion. The linear scaling at high frequencies seen in some
regimes of parameter-space is a remnant of the initial flat distribution of oscillators’ harmonic
stiffnesses p(κ)=κ−1

0 .

whose Hamiltonian takes the form

H ≡ 1

2

∑
i

κix
2
i +

A

4!

∑
i

x4
i +

∑
i<j

Jijxixj − h
∑
i

xi . (1)

The oscillators in Eq. (1) are characterized by random harmonic stiffnesses κi, extracted
from a probability distribution p(κ) (see details and discussion below). They also feature
a fourth order stabilizing anharmonicity of strength A2. Each anharmonic oscillator is
coupled to all other oscillators by interaction coefficients Jij , assumed to be Gaussian,
i.i.d. random variables of variance J2/N ∀ i 6=j. As the anharmonic oscillators are thought
to be embedded inside an elastic medium, J represents the strength of disorder in the
emerging elastic interactions, taken to be space-independent in the mean-field framework.
Finally, the elastic medium generically features internal forces that act on the oscillators,
mimicked by a constant field h that is linearly coupled to the generalized coordinates xi.
Note that h breaks the xi→−xi symmetry of the Hamiltonian.

The low-frequency density of states

Our first goal is to understand whether, and if so under what conditions, the KHGPS
Hamiltonian in Eq. (1) with rather featureless initial distributions p(κ) leads to D(ω)∼ω4,
where ω2 is the stiffness characterizing the minima of H. More formally, we are interested
in the spectrum of the Hessian, Mij ≡ ∂2H/∂xi∂xj = Jij + δij(κi + 1

2Ax
2
i ), evaluated

at positions (x∗)i for which H attains a minimum. The off-diagonal contribution, Jij ,
represents a Gaussian random matrix that does not give rise to an ω4 spectrum [33]. The
diagonal contribution, which potentially gives rise to an ω4 spectrum, is a sum of κi that
follows an input distribution p(κ) and of 1

2Ax
2
i . The statistics of the latter, corresponding

2We set A to be (the same) constant for all oscillators, consistent with direct calculations for soft,
localized modes in computer glasses [10,32]

4



SciPost Physics Submission

to the stabilizing anharmonicity, is therefore the most important part. Note that while we
focus on studying the zero temperature (T→0) properties of the model, i.e. the statistical
properties of the Hessian matrix Mij , we envision that p(κ) encodes information about a
glass-forming liquid above its glass transition temperature, and that the minimization of
H mimics the self-organization processes the liquid undergoes while quenched to a low T
during glass formation.

Since instantaneous liquid states typically feature also negative stiffnesses [34–36], we
expect p(κ= 0)≥ 0. For simplicity, we take this expectation into account by considering
p(κ)=κ−1

0 . That is, we hereafter take p(κ) to correspond to a uniform probability distri-
bution over the interval [0, κ0], where κ0 is a stiffness scale characterizing the liquid state
in which the oscillators are taken to be non-interacting. As the temperature is reduced
during a quench, elasticity builds up and finite interactions emerge (i.e. finite Jij and h).
The latter restructure the initial distribution p(κ) into D(ω), characterizing the ensemble
of minima of H. In the language of GPS [19,20], p(κ) undergoes complete reconstruction
well below a frequency scale ωx (to discussed below) upon minimizing H.

We measure xi relative to some reference position x0, which is also taken to set the
unit length in the model. Energy is measured in units of Ax4

0. Consequently, κi, κ0 and J
are measured in units of Ax2

0, and the force h in units of Ax3
0. We first study the KHGPS

model numerically by initializing N = 16000 oscillators placed at xi = 0, and assigning
values for the parameters (h, J, κ0). As explained above, we draw κi from a uniform
distribution over the interval [0, κ0] and the couplings Jij from a Gaussian distribution
of width J/

√
N . We then minimize the Hamiltonian given in Eq. (1) with respect to the

coordinates xi by a standard nonlinear conjugate gradient minimization. The HessianMij

is evaluated and diagonalized upon reaching a minimum, where the oscillators attain new
displacements (x∗)i. This procedure is repeated at least 1150 times for each (h, J, κ0), and
the statistics of the respective spectra are analyzed.

The resulting density of states D(ω), for a rather broad range of parameter sets
(h, J, κ0), are shown in Fig. 2. It is observed that in all cases there exists a low-frequency
regime in which D(ω)∼ω4. We take this numerical evidence to indicate that the KHGPS
model features a gapless density of states D(ω)=Ag ω

4 for a broad range of model param-
eters. The theoretical status of this statement is further discussed below. Next, taking
D(ω)∼ω4 to be generically valid, we shift our focus to the dependence of the main emer-
gent quantities in the model on the parameters h ,J and κ0. In particular, we aim at
obtaining a theoretical understanding of the characteristic frequency scale ωx, of the mean
square displacement 〈x2

∗〉 of the oscillators at minima of H and of the prefactor Ag.
The frequency scale ωx divides the initial frequency domain 0≤ω≤ω0 (with ω2

0≡κ0)
into a low frequency regime that undergoes reconstruction and a high frequency regime
that does not. Indeed, D(ω) is observed to vary linearly with ω in the high frequency
regime of Fig. 2 — corresponding to the initial uniform p(κ) —, where D(ω)∼ω4 emerges
at significantly smaller frequencies. 〈x2

∗〉 is the average of the xi dependent part of the
HessianMij =Jij +δij(κi+

1
2Ax

2
i ) at minima of H, and quantifies the average interaction-

induced force that the oscillators generate, as will be further discussed below. Finally,
Ag(h, J, κ0) is a non-universal quantity that — in structural glasses — encodes information
about the non-equilibrium history of the material, having fundamental implications for its
physical properties [17,37,38].

The approach we take aims at developing a comprehensive scaling theory of the KHGPS
model, identifying the main quantities that control its behavior, the relevant groups of
dimensionless parameters and the different regimes it exhibits. The scaling predictions
are then being quantitatively tested against extensive numerical simulations of the model.
Such an approach provides valuable insight into the possible relations between the model
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and realistic glasses, most notably the model’s potential implications for our understanding
of quasilocalized excitations in glasses, including their universal and history-dependent
properties.

3 The weak interactions regime

We first consider the weak inter-oscillator interactions regime, i.e. situations in which the
force h is finite and J is small (note that h and J have different physical units, so this
statement should be properly recast in dimensionless form, as will be done below). Our
strategy is to first understand the properties of the oscillators in the non-interacting case,
J = 0, and then to treat the effect of small J > 0 perturbatively. In the non-interacting
case, J=0, the single oscillator Hamiltonian Hs takes the form Hs = 1

2κx
2+ 1

4!x
4−hx (note

that here A and x0 are already used to set the units of all of the other quantities). We
expect D(ω)∼ω4 to emerge for ω�ωx upon the introduction of interactions, J >0, but also
expect ωx itself not to be affected by J in the weak interactions regime. Consequently, ωx is
determined by the oscillations frequency at the minimum of Hs for small κ, i.e. ωx(h)∼h1/3.

0.01

0.03

0.1

0.3

1

1

(a)

1

1

(b)

Figure 3: (a) The partial averages 〈x̄2∗〉(κ) of oscillators’ squared displacements (see text for
precise definitions) in the weak interactions regime, summed over and plotted against κ, for various
strengths of the field h as specified in the legend, and κ0 = 1. (b) Rescaling 〈x̄2∗〉(κ) and κ by
ω2

x ∼h2/3 leads to a perfect collapse of the partial averages, validating our prediction ωx∼h1/3 in
the weak interaction regime. Inset: scatter-plotting x̃2∗ vs. κ validates the predicted ∼κ−2 scaling
for κ&ω2

x , see text for discussion.

The basic roles played by the frequency scale ωx in the model can be further demon-
strated by considering the oscillators’ mean square displacement 〈x2

∗〉 (〈•〉 stands for av-
eraging over the statistics of both κ and Jij). Let us consider the displacement x̃∗ of
oscillators featuring

√
κ� ωx(h). That is, x̃∗ is the displacement of individual oscilla-

tors as a function of their initial stiffness κ. Analyzing Hs in this limit, assuming that J
makes a negligible contribution to x̃∗, leads to 〈x̃2

∗〉(κ)∼ ω2
x , i.e. 〈x̃2

∗〉(κ) is predicted to
be independent of κ in this limit. Considering the opposite limit,

√
κ�ωx(h), we obtain

〈x̃2
∗〉(κ)∼κ−2. Note that the existence of a frequency domain

√
κ�ωx(h) implies that κ0

— the upper cutoff of p(κ) — is in fact the largest stiffness scale in the problem (com-
pared to J and h2/3, which are also of stiffness dimensions). To see how 〈x2

∗〉 emerges from
the κ-dependent 〈x̃2

∗〉(κ), we define the partial average 〈x̄2
∗〉(κ) = κ−1

∫ κ
0 〈x̃

2
∗〉(κ′)dκ′. The

motivation for defining the partial average is that 〈x2
∗〉=〈x̄2

∗〉(κ0) (recall that p(κ)=κ−1
0 ),

i.e. it provides insight into the statistical weight of the different κ regimes in the emerging
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〈x2
∗〉. Evaluating the partial average for

√
κ�ωx(h), we obtain 〈x̄2

∗〉(κ)∼ω2
c ∼h2/3, while

for
√
κ� ωx(h) we have 〈x̄2

∗〉(κ)∼ ω4
x /κ∼ h4/3/κ, where the amplitude of the latter has

been set such that the two scaling laws smoothly connect at
√
κ ≈ ωx(h). The scaling

predictions for 〈x̄2
∗〉(κ) are fully supported by numerical simulations, as shown in Fig. 3.

Consequently, the mean square displacement in the weak interactions regime is predicted
to follow 〈x2

∗〉∼h4/3/κ0, to be verified later. In addition, we confirm that
Up until now, the interaction strength J has not appeared explicitly in the quantities

discussed, though J >0 is essential for having D(ω)∼ω4. How does J enter the problem
in the weak interactions regime? To start addressing this question, we first ask what is the
dimensionless combination of parameters in which a small J can appear. Since J has the
dimension of stiffness (i.e. frequency squared) and since ωx(h) is a relevant J-independent
frequency scale in the problem, we expect the smallness of J to be manifested through the
ratio J/ωx(h). The latter, which is of frequency dimension, can be made dimensionless
using the other large frequency scale in the problem, i.e.

√
κ0. Consequently, a scaling

consideration predicts that J enters the problem in the weak interactions regime through

the dimensionless combination y≡J/(h1/3κ
1/2
0 ).

To understand the appearance of J in the weak interactions regime, we consider next
Ag(h, J, κ0), the non-universal prefactor of the universal ∼ω4 density of states. To obtain
a scaling estimate of Ag(h, J, κ0), we note that the number of oscillators that undergo
interaction-induced reconstruction is ∼(ω2

x /κ0)N , just by the definition of ωx. If the upper
frequency cutoff of the density of states D(ω) =Ag(h, J, κ0)ω4 is proportional to ωx, we
then obtain

∫ ωx

0 D(ω)dω∼ (ω2
x /κ0)N . The latter implies Ag(h, J, κ0)=g(y)/(κ0[ωx(h)]3)=

g(y)/(κ0h), where g(y) is a dimensionless function of the small dimensionless quantity

y=J/(h1/3κ
1/2
0 )�1, which cannot be obtained by pure scaling considerations.

In order to go beyond pure scaling theory, one needs to invoke an effective description
of the full Hamiltonian of (1). That is, one may ask how the interactions with all the other
oscillators — characterized by the couplings Jij — affect an effective oscillator of stiffness
κ. In the most general case, interactions shift κ, by amount denoted by κshift(h, J, κ0),
and generate an effective force f(h, J, κ0) in addition to h [19, 20]. Consequently, a rep-
resentative oscillator of stiffness κ and position x is described by an effective potential of
the form

veff(x)=[κ−κshift(h, J, κ0)]
x2

2
+
x4

4!
− [h+f(h, J, κ0)]x . (2)

Comparing (1) to (2), we immediately conclude that the
∑

i<jJijxixj term in the former
corresponds to the f(h, J, κ0)x term in the latter, where f(h, J, κ0) is normally distributed,
with a zero mean and a standard deviation of J

√
〈x2
∗〉, for sufficiently large N (according to

the central limit theorem). This result yet again demonstrates the importance of the mean
square displacement 〈x2

∗〉. Obtaining the effective shift κshift(h, J, κ0) is more involved; at
this point, we assume it is negligible in the weak interaction limit, an assumption that will
be validated a posteriori below.

To obtain the dimensionless function g(y) in Ag(h, J, κ0)=g(y)/(κ0h), we consider (2)
with κshift(h, J, κ0) = 0. When f(h, J, κ0) = 0, i.e. in the non-interacting case discussed
above, oscillators in the initial frequency domain [0,

√
κ0] are strongly blue-shifted by

amount ∼h1/3, leaving a gap near ω=0. Consequently, as stated above, we observe that
in the absence of interactions a gapless density of states cannot possibly emerge. The
only possible scenario in which (2) with κshift(h, J, κ0) = 0 can lead to a gapless density
of states is that f(h, J, κ0) cancels h. This can happen despite J being small, because
f(h, J, κ0) is a random variable that can experience large fluctuations. Since f is normally
distributed, the probability to observe a f=−h fluctuation is given by (J

√
〈x2
∗〉)−1 exp

[
−

h2/(2J2〈x2
∗〉)
]
. Using the scaling prediction derived above, 〈x2

∗〉 ∼ h4/3/κ0, and recalling

7
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that y=J/(h1/3κ
1/2
0 ), we conclude that log[y g(y)]∼−y−2.

With the dimensionless function g(y) at hand, we use the scaling predictionAg(h, J, κ0)=
g(y)/(κ0h) to obtain

log
[
κ

1/2
0 h2/3JAg

]
∼ −κ0 h

2/3

J2
, (3)

in the weak interactions regime. This prediction is tested against extensive numerical
data in Fig. 4, revealing excellent quantitative agreement. The predominantly exponential
variation of Ag(h, J, κ0) with −κ0 h

2/3/J2 is reminiscent of the predominantly exponential
variation of Ag with −1/Tp in computer glasses [17]. This similarity is suggestive, calling
for a better understanding of the possible relations between the model parameters κ0, h
and J , and the parent temperature Tp that characterizes the liquid state at which the
glass falls out of equilibrium during a quench. This interesting issue is further discussed
below.

Figure 4: Validation of the weak-interaction regime prediction given by Eq. 3 for the prefactor
Ag(h, J, κ0) of the ∼ ω4 glassy spectrum, for various values of the parameters J, κ0 and h as
indicated by the legend.

4 The intermediate-strength interactions regime

What happens when the interaction strength J is further increased, beyond the weak
interactions regime? How can we properly define the two regimes and the transition
between them? To address these questions, we need to consider again the effective potential
of (2). In the weak interactions regime, ωx(h)∼ h1/3 is a central frequency scale set by
h alone, and perturbative corrections for small J have been considered. The latter are
mainly related to the effective random force f(h, J, κ0) in (2), while the stiffness shift
κshift(h, J, κ0) is negligible. As J is increased, we expect to enter a regime where the
constant force h plays no role anymore, but where the stiffness shift κshift plays a dominant
role. To see this, consider (2) with h=0; assuming that large fluctuations in the effective
random force f play no major role here, we immediately observe that ‘small’ and ‘large’
κ is defined relative to the stiffness shift κshift. Consequently, we identify the latter as ω2

x

in this regime, which we term the intermediate-strength interactions regime. Moreover,
we expect ωx =

√
κshift in this regime to be a function of J and κ0 (as h is expected to

play no role here), and the crossover between the weak and intermediate strength regimes
to be determined by the interaction strength J for which the to-be-calculated ωx(J, κ0)
smoothly connects to h1/3, the prediction for ωx in the weak interaction regime.

8
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While the calculation of ω2
x = κshift in the intermediate-strength interactions regime

goes beyond a scaling theory and requires additional analysis, the scaling theory provides
strong predictions for the role of ωx in the intermediate-strength interactions regime, and
hence allows to cleanly determine it numerically. To see this, we consider the mean
square displacement 〈x2

∗〉, by analyzing (2) with h = 0, closely following the derivation
presented above in the weak interactions regime. For κ�κshift =ω2

x , κ can be neglected
and we obtain 〈x̃2

∗〉(κ) ∼ ω2
x . For κ� κshift = ω2

x , κshift can be neglected and we obtain
〈x̃2
∗〉(κ)∼κ−2. Evaluating again the partial average 〈x̄2

∗〉(κ)=κ−1
∫ κ

0 〈x̃
2
∗〉(κ′)dκ′ (such that

〈x2
∗〉 = 〈x̄2

∗〉(κ0) and recall that p(κ) = κ−1
0 ), we obtain 〈x̄2

∗〉(κ) ∼ ω2
x for

√
κ� ωx(J, κ0),

while for
√
κ� ωx(J, κ0) we have 〈x̄2

∗〉(κ)∼ ω4
x /κ, where the amplitude of the latter has

been set such that the two scaling laws smoothly connect for
√
κ≈ωx(J, κ0). Note that all

of these results, once presented in terms of ωx, are identical to the corresponding results
in the weak interactions regime, yet again highlighting the central role played by the
characteristic frequency ωx in the KHGPS model.

The above analysis predicts that 〈x̄2
∗〉(κ)/ω2

x is a function of κ/ω2
x that is independent of

J and κ0, once ωx(J, κ0) is properly identified. Hence, we can ask what function ωx(J, κ0)
generates the predicted collapse, and determine it numerically. This procedure is pre-
sented in Fig. 5a, where both a perfect collapse is demonstrated and ωx(J, κ0) is extracted
(inset). The latter shows that ωx(J, κ0) is a predominantly power-law (the numerical data

suggest the power-law approximation ωx(J, κ0)∼J7/8/κ
3/8
0 , indicated by the straight line

in the inset, added as a guide to the eye). The success of the 〈x̄2
∗〉 analysis then implies

〈x2
∗〉= 〈x̄2

∗〉(κ0)∼ ω4
x /κ0. Furthermore, with the numerical ωx(J, κ0) at hand, we can de-

termine the crossover JX(h, κ0) between the weak and intermediate-strength interactions
regimes by numerically solving ωx(JX, κ0)∼ h1/3 (note that the numerical power-law ap-

proximation for ωx(J, κ0) implies JX(h, κ0)∼h8/21κ
3/7
0 ). The complete scaling predictions

for 〈x2
∗〉, in both the weak interactions and intermediate-strength interactions regimes

and including the crossover interaction strength JX(h, κ0), are verified against extensive
numerical simulations in Fig. 5b.
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Figure 5: (a) We extract the function ωx(J) in the intermediate-strength interactions regime, by
choosing values that lead to a collapse of the partial averages 〈x̄2∗〉(κ) when rescaled by ω2

x and
plotted against κ/ω2

x , with a crossover at κ/ω2
x ∼O(1). We find numerically that J7/8 represents

a good analytic approximation for the crossover frequency ωx(J), see inset. (b) The mean squared
displacements 〈x2∗〉 of oscillator coordinates are shown to follow the prediction 〈x2∗〉∼ω4

x /κ0, where
ωx(J, h, κ0) follows different scaling laws in the weak- (J <JX) and intermediate- (J >JX) strength
interaction regimes, as shown above. In the J � κ0 regime at which interactions dominate, we
observe a trivial 〈x2∗〉∼J scaling behavior.

Finally, we consider the prefactor Ag. Repeating the derivation detailed above in the
weak interaction regime verbatim, we obtain Ag(h, J, κ0) = s(z)/(κ0[ωx(J, κ0)]3), where
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s(z) is a dimensionless function of the dimensionless quantity z≡J/κ0�1, which formally
cannot be obtained by pure scaling considerations. However, the analysis suggests that
unlike the weak interactions regime (where a strongly varying multiplicative dimensionless
function f(y)�1 exists, cf. (3)), there exists no additional strong dependence on z in the
intermediate-strength interactions regime (of course we cannot exclude the possibility that
it is a very weak function of z). Consequently we take s(z) to be a constant (which is
expected to be of order unity) to obtain

Ag(h, J, κ0) ∼ 1

κ0[ωx(J, κ0)]3
for J � JX(h, κ0) , (4)

where ωx(J, κ0) has been numerically obtained in the inset of Fig. 5a. Using the lat-
ter, the prediction in (4) is verified against extensive numerical simulations in Fig. 6.
Since ωx(J, κ0) is numerically approximated by a power-law, so is Ag(h, J, κ0), and we
conclude that Ag decays predominantly as a power-law in the intermediate-strength in-
teractions regime (within the numerical power-law approximation, we have Ag(h, J, κ0)∼
J−21/8/κ

−1/8
0 , which corresponds to the line shown in Fig. 6).

Now that we have the crossover interaction strength JX(h, κ0) at hand, it is clear that
Ag(h, J, κ0) in (3) is in fact valid for J� JX(h, κ0). Consequently, Ag(h, J, κ0) is a non-
monotonic function of the interaction strength J , increasing with it for J�JX(h, κ0) (as
described by (3)) and decreasing with it for J � JX(h, κ0) (as described by (4)), with
markedly different functional forms. This non-monotonic dependence on J is explicitly
demonstrated in Fig. 6. The intermediate-strength interactions regime clearly crosses over
to yet another regime at J ∼ κ0, i.e. when z = J/κ0 is no longer small. The strong
interactions regime, J � κ0, is not discussed here, though the expected scaling relation
〈x2
∗〉∼J is in fact observed in Fig. 5b.

Figure 6: We estimate the prefactors Ag for h = 0.01, κ0 = 1, and various values of J , via the
numerically calculated D(ω) as shown e.g. in Fig. 2. As predicted, Ag varies non-monotonically,
peaking at J/JX∼O(1). The solid line corresponds to κ−1

0 ω−3
x , where ωx(J, κ0) was extracted as

explained in Fig. 5.

5 Conclusion

In this work, we introduced and studied a mean-field model of interacting quasilocalized
excitations, termed the KHGPS model and defined by the Hamiltonian in Eq. (1). A

10
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major result of our analysis is that local minima of the model appear to robustly feature
D(ω)∼ ω4 vibrational spectra, independently of the input parameters h, J and κ0. As
such, the KHGPS Hamiltonian in Eq. (1) appears to offer a relatively simple model for
the emergence of the universal D(ω) ∼ ω4 nonphononic spectra, previously observed in
finite-dimensional, particle-based computer glass-formers [10–15,18].

Several other non-mean-field models [22, 23] and phenomenological theories [1, 24–26]
were previously put forward to the same aim; most of them, however, require parameter
fine-tuning [22–24, 26] or some rather strong a priori assumptions [1]. In addition, sev-
eral other mean-field models, introduced in order to explain the low-frequency spectra of
structural glasses, predict D(ω)∼ ω2, independently of spatial dimension [16, 39–41]. In
light of these previous efforts, our results appear to support — and further highlight —
GPS’s suggestion [19, 20] that stabilizing anharmonicities — absent from the aforemen-
tioned mean-field models — constitute a necessary physical ingredient for observing the
universal ∼ω4 law in this class of mean-field models.

We also developed a comprehensive scaling theory of the salient quantities in the model
— the oscillators mean square displacement 〈x2

∗〉(h, J, κ0), the emergent characteristic fre-
quency scale ωx(h, J, κ0) and the non-universal prefactor Ag(h, J, κ0) — and supported
the theoretical predictions by extensive numerical simulations. Our results show that the
internal force h, which is absent from GPS’s original work [19, 20], is responsible for the
existence of two distinct regimes, where the ω4 law emerges from quite different ingredi-
ents. One regime is characterized by weak inter-oscillator interactions, where h plays an
important role, and the other by stronger interactions, where h plays no role. In both
regimes the frequency scale ωx(h, J, κ0) plays important roles, but in the former regime
large fluctuations in the inter-oscillator interactions result in a predominantly exponential
dependence of Ag(h, J, κ0) on −(κ0h

2/3/J2). The latter is reminiscent of recent observa-
tions in computer glasses, where the control parameter is the temperature Tp at which a
glass falls out of equilibrium (cf. inset of Fig. 1a), and hence might offer a promising route
to link the model to realistic glass formation processes.

Our findings give rise to several interesting questions and research directions. First,
while we provide strong numerical support to the generic emergence of the D(ω) ∼ ω4

density of states in the KHGPS model, it would be desirable to obtain a rigorous proof
of this observation and its validity conditions. Second, it would be most useful to further
explore the analogy between the KHGPS model and finite-dimensional glasses, better
understanding the hypothesized relation between the minimization of the Hamiltonian
and the self-organization processes taking place while a glass is quenched from a melt. In
particular, it would be interesting to understand whether and how the model parameters
h, J and κ0 might be related to measurable quantities in supercooled liquids and glasses.

Finally, in the analysis above, the stiffness scale κ0 fully characterized the initial stiff-
ness distribution p(κ) — describing the non-interacting oscillators — that was taken to
be gapless and uniform in the interval [0, κ0]. It would very interesting to understand the
relations between p(κ) and liquid states above the glass temperature, both in terms of its
functional form and in relation to the possible existence of a gap in it, which has not been
considered here. Establishing such relations may clarify what mean-field models such as
the KHGPS one can teach us about the physics of glasses.
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