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Abstract

I develop a theory of symplectic reduction that applies to bounded regions
in electromagnetism and Yang–Mills theories. In this theory gauge-covariant
superselection sectors for the electric flux through the boundary of the region
play a central role: within such sectors, there exists a natural, canonically de-
fined, symplectic structure for the reduced Yang–Mills theory. This symplectic
structure does not require the inclusion of any new degrees of freedom. In the
non-Abelian case, it also supports a family of Hamiltonian vector fields, which
I call “flux rotations,” generated by smeared, Poisson-non-commutative, elec-
tric fluxes. Since the action of flux rotations affects the total energy of the
system, I argue that flux rotations fail to be dynamical symmetries of Yang–
Mills theory restricted to a region. I also consider the possibility of defining
a symplectic structure on the union of all superselection sectors. This in turn
requires including additional boundary degrees of freedom aka “edge modes.”
However, I argue that a commonly used phase space extension by edge modes
is inherently ambiguous and gauge-breaking.
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1 Introduction

1.1 Context and motivations Building on [1–5], in this article I elaborate and present—
in a self-contained manner—a theory of symplectic reduction for Yang–Mills gauge theories
over finite and bounded regions. Physically, this article answers the following question:
what are the quasilocal degrees of freedom (dof) in electromagnetism and non-Abelian
Yang-Mills (YM) theories? By “quasilocal” I mean “confined in a finite and bounded
region,” with possibly a degree of nonlocality allowed within the region.

Gauge theoretical dof cannot be completely localized, since gauge invariant quantities
are somewhat nonlocal, the prototypical example being a Wilson line. In electromag-
netism, or any Abelian YM theory, although the field strength Fµν = 2∂[µAν] provides a
local gauge invariant observable, its components do not provide gauge invariant canonical
coordinates on field space: in 3 space dimensions, {Ei(x), Bj(y)} = εjik∂kδ(x, y) is not a
canonical Poisson bracket and the presence of the derivative on the right-hand-side is the
signature of a nonlocal behavior.

From a canonical perspective, responsible for this nonlocality is the Gauss constraint,
G = ∂iEi + [Ai, Ei] − ρ, whose Poisson bracket generates gauge transformations.1 The
Gauss constraint is an elliptic equation that initial data on a Cauchy surface Σ must
satisfy. In other words, the initial values of the gauge potential Ai and its momentum Ei

cannot be freely specified throughout a Cauchy surface Σ. Ultimately, this is the source
of both the nonlocality and the difficulty of identifying freely specifiable initial data—the
“true” degrees of freedom.

To summarize, the identification of the quasilocal dof requires dealing with (1 ) the
Gauss constraint and with (2 ) the separation of pure-gauge and physical dof. The two
tasks are related, but distinct. I will start by the second task by focusing on the foliation
of the YM phase space by the gauge orbits.

1.2 Sketch of the reduction procedure The goal of the symplectic reduction is to
construct a closed and non-degenerate, i.e. symplectic, 2-form on the reduced phase space
of YM and matter fields over a spacelike region R ⊂ Σ. The reduced phase space is
the space of gauge orbits of the YM configurations—comprising the gauge potential, the
electric field, and the matter fields—which are on shell of the Gauss constraint.

Since the reduced phase space is de facto inaccessible to an intrinsic description, it is
most convenient to concentrate the efforts on the space of gauge-variant fields. Viewing
this space as a foliated space with the structure of a fiducial infinite-dimensional fibre
bundle, I will focus on the construction of a horizontal and gauge-invariant (i.e. basic)
presymplectic 2-form. This pre-symplectic 2-form can then be restricted to the on-shell2

gauge-variant configurations and thus projected down to the reduced phase space. Here,
“horizontal” means “transverse to the gauge orbits.” Note that, since there is no canonical
notion of horizontality,3 the construction of the basic 2-form will a priori depend on the

1See [6, 7] for a thorough discussion of the central and pervasive role the Gauss constraint plays in
quantum electrodynamics and quantum Yang–Mills theory.

2In this article, “on-shell” refers to the Gauss constraint only, and not to the equations of motion.
3This statement is analogous, albeit more encompassing, to the statement that there is no canonical

gauge fixing. Note that despite the non-existence of a canonical choice, I will discuss a particularly natural
(i.e. convenient) one.
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choice of such a notion.4

A basic 2-form projects down to a non-degenerate 2-form on the reduced space only
if its kernel coincides with the space of gauge transformations, i.e. with the space of
vertical vectors. I will find that the “naive” presymplectic 2-form satisfies this condition
automatically only in Abelian theories—or in the absence of boundaries. In non-Abelian
theories, however, a canonical completion of the naive presymplectic 2-form exists which
leads to an actual non-degenerate, and therefore symplectic, 2-form on the reduced phase
space.

This completion also erases all dependence on the chosen notion of horizontality, so
that the final result is independent from it.

Crucially, throughout this construction, I will let gauge transformations be uncon-
strained at the boundary ∂R.5 I will also associate separate phase spaces to different
gauge-classes of the electric flux through ∂R, which I will call covariant superselection
sectors of the flux. As I will explain later, these two ingredients are closely related to each
other.

The fixation of a (covariant) superselction sector has two crucial consequences. First,
within a covariant superselection sector the construction of the symplectic form on the
reduced phase space does not require the addition of new dof, i.e. it does not require a
modification of the phase space manifold; even in the non-Abelian case this extension is
avoided, and the projected 2-form is rather made non-degenerate through the addition of
a canonical term to the presymplectic 2-form which eliminates its kernel. And second,
(only) within these sectors it is possible to define a symplectic form on the reduced phase
space which is independent of the chosen notion of horizontality—think of this as a form
of gauge-fixing independence.

1.3 Flux superselection sectors Given their central role in the construction of the
reduced symplectic structure, I will now spend a few words discussing flux superselection
sectors.

Flux superselection sectors find their origin in the structure of the Gauss constraint in
bounded regions. To streamline the discussion, let me introduce the Coulombic potential
ϕ, so that the Gauss constraint can be written as an elliptic (Poisson) equation that fixes
the Laplacian of ϕ in terms of the YM charge density,6 D2ϕ = ρ. However, in a finite and
bounded region, this Poisson equation is insufficient to fully fix the Coulombic potential:
a boundary condition is needed.

A preferred choice of boundary condition (in YM theory) is dictated by the interplay
between the symplectic and fibre-bundle geometry of the YM phase space. This choice of
boundary condition corresponds to fixing the electric flux f though the boundary ∂R. I.e.
denoting si the unit outgoing normal at ∂R, the missing boundary condition is Dsϕ = f .

From the global perspective of the entire Cauchy surface Σ, f at ∂R depends on
the geometry7 and the field content of both R and its complement. But these data are

4Note that an explicit notion of horizontality (as encoded in a connection form, see below) is not needed
to decide whether a given form is basic, but it is needed to build a horizontal form out of a given one.

5This distinguishes the current approach from the standard lore, by which gauge symmetry is usually
frozen or broken at the boundary. See e.g. [8–11] (cf. also [12–15] on the related but different topic of
asymptotic boundaries and infra-red sectors of gauge theories).

6D = d+A is the gauge-covariant differential, and D2 is the gauge covariant Laplace-Beltrami operator.
7Indeed, although the “creation” of a point charge in R will in general affect the flux f , to be able to

compute the induced change in the flux one needs the Green’s function of the Laplacian in Σ, which in
turn depends on the geometry of R and of its complement as well. Therefore, from within R, there is no
way to compute the induced change in flux. Maybe more strikingly, at generic background configurations
of the non-Abelian theory (which are irreducible), the charge and flux data are completely independent.
At reducible configurations (and in Abelian theories), at most a finite number of surface integrals of f
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inaccessible from the quasilocal perspective intrinsic to R: therefore the only meaningful
manner to understand the quasilocal Gauss constraint is thus within a superselection
sector of fixed electric flux. However, fixing the flux completely goes against my pledge
of not treating gauge transformations differently at the boundary. Therefore, in the non-
Abelian theory where the flux is gauge variant, it becomes necessary to introduce covariant
superselection sectors (CSSS) labelled not by a flux, but by a conjugacy class of fluxes,
[f ].

In quantum mechanics, a superselection sector is invoked when a certain physical
observable O with eigenvalues oα commutes with all other available observables in the
theory; then, quantum states cannot be stirred in a quantum superposition of eigenstates of
this observable through any physical operation; as a consequence the observable O behaves
classically, and theory “factorizes” into at most a statistical superposition of sectors labeled
by the eigenvalues oα. Such an O is said “superselected.” How is this characterization
of the notion of superselection consistent with the one used above for the electric flux f?
In Abelian theories f does not appear in the reduced symplectic structure associated to
a superselection sector; therefore, f is treated as a mere parameter which commutes with
all other quantities, and the two notion of superselection are perfectly compatible. In
the non-Abelian theory, howewer, the situation is more subtle: the different components
of f turn out to be conjugate to each other as a consequence of the above-mentioned
completion procedure. This fact, whose origin I will explain in the next paragraph, means
in turn that the bulk “Coulombic” electric field—which depends functionally on f as a
consequence of the Gauss constraint—fails to commute with f ; however, f does commute
with all the unconstrained, i.e. “freely specifiable,” bulk fields and observables, which are
provided by the matter fields as well as the “radiative” part of the YM field.

1.4 Flux rotations In non-Abelian theories, the enlargement of the notion of superselec-
tion sector to its covariant counterpart introduces the possibility of “rotating” f within its
conjugacy class [f ] without altering neither ρ nor A. These transformations—that I name
flux rotations—produce genuinely new field configurations, for they alter, via the Gauss
constraint, the Coulombic potential and thus the energy content of R. Flux rotations are
therefore physical transformations that survive the reduction.

This is the problem with the naive reduction in the non-Abelian theory: flux rotations
end up being in the kernel of the candidate symplectic 2-form. Heuristically, this could
have been expected because the reduction procedure gets rid of the pure-gauge dof as well
as of the Coulombic dof which are conjugate to them and in any case fixed by the Gauss
constraint; but since f is imprinted precisely in the Coulombic part of the electric field,
getting rid of it means that f drops from the candidate symplectic 2-form.

This is not a problem in Abelian theories, where f is fixed once and for all in a given
superselection sector. But in non-Abelian theories, the covariant superselection sector
only fixes the conjugacy class of f : within [f ], variations of f relative to the bulk fields
become thus possible and physically relevant—but remain “invisible” to the candidate
symplectic 2-form.

1.5 Completion of the reduced symplectic structure This problem can be overcome
by completing the candidate symplectic structure in a canonical manner. Indeed, within a
CSSS, the space of allowed fluxes [f ] is equipped with a canonical symplectic structure: the
Kirillov–Konstant–Sourieu (KKS) symplectic structure for the (co)adjoint orbits. Using

is fixed—through an integral Gauss law—by the charge content within R. This number is bound by the
dimension of the charge group of the theory. See [5] for a more thorough discussion.
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the techniques developed for the bulk fields, also the KKS symplectic structure can be
modified into a basic 2-form and thus fed into the reduction procedure.

Remarkably, the inclusion of this basic 2-form on the flux space, makes the ensuing
total symplectic structure over a covariant superselection sector [f ] independent from the
chosen notion of horizontality!

Such a total symplectic over a covariant superselection sector [f ] can be characterized
in a simple way: it is given by the sum of (the pullback to the given superselection sector
of) the naive symplectic structure ΩYM =

∫
Tr(dE f dA) and a boundary KKS 2-form

over the space of covariantly superselected fluxes [f ], ω
[f ]
KKS; inclusion of charged matter

fields does not alter this structure. Schematically:8

Ω
[f ]
total ≈ ΩYM + Ωmatter + ω

[f ]
KKS. (1)

1.6 Superselection sectors vs. edge modes The physical viability of the notion of
superselection sector for the electric fluxes—which implies that of the superselection of
the electric charge charge [16, 17]9—has been criticized in the past [24].10 Therefore, it is
interesting to attempt the reduction procedure in the union of all superselection sectors.

However, on the union of all superselection sectors no symplectic structure can be
canonically defined: therefore to go beyond the superselection framework, it is necessary
to resort to an extended phase space which includes additional new fields symplectically
conjugate to the electric flux—the most natural choice for these new dof gives precisely
DF’s “edge modes.”

Curiously, the total symplectic structure on a covariant superselection sector, once
written in an over-complete set of coordinates over [f ], is formally similar to the “edge
mode” proposal of Donnelly and Freidel (DF) [26–29] (see also [8, 9, 30–34] among many
others). But the two are very different in substance: contrary to what happens in a
superselection sector, in the DF edge mode framework no superslection sector is fixed and
new dof are added to the phase space.

Beyond the addition of new dof, there is also another price to pay for the DF con-
struction: that is a new type of ambiguity emerges which is related to the non-canonical
nature of the DF extension of phase space. This ambiguity is rooted in the fact that
the DF extended phase space can as well be obtained from breaking the boundary gauge
symmetry, and different ways to do so lead to different (although isomorphic) DF phase
spaces.

In sum, it appears that any attempt to go beyond the superselection framework must
not only introduce new dof but also introduce ambiguities which would not be present
otherwise. In my opinion, this strongly supports the viability and necessity of the concept
of covariant superselection sectors. In the conclusions I will come back to this point.

After this overview, it is time to delve into the details.

2 Mathematical setup

2.1 The YM configuration space as a foliated space To start, let me introduce some
notation and recall some simple facts. Let G = SU(N) be the charge group of the YM

8The symbol ≈ here indicates equality upon pullback to the covariant superselection sector of [f ].
9See also: [18–20] as well as [21]. Moreover, for recent results on a residual gauge-fixing dependence

of QED in the presence of (asymptotic) boundaries and flux superselection, see [22] (and also [23]). At
present it is unclear how these recent results square with the classical treatment presented here.

10Cf. also [25] in relation to quantum reference frames.
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theory under investigation; in the Abelian case, I will have electromagnetism in mind, with
G = U(1) or (R+,×). The quasilocal configuration space of the gauge potential11 over
R ⊂ Σ, with R̊ ∼= RD, is the space of Lie-algebra valued one forms A ∈ A := Ω1(R,Lie(G))
that transform under gauge transformations g : R→ G as A 7→ Ag = g−1Ag+g−1dg, with
d the spatial exterior derivative. The space of gauge transformations G := C∞(R,G) 3 g
inherits a group structure from G via pointwise multiplication. Call G the gauge group.
The action of gauge transformations g on the gauge potential A, provides an action of G on
A. The orbits of this action, OA, are called gauge orbits and their space A/G =

⋃
A∈AOA

is the space of physical configurations. This is the “true” configuration space of the theory,
but it is de facto inaccessible.

The orbits of G on A induces an infinite-dimensional foliation of configuration space,
A → A/G.12 An infinitesimal gauge transformation, ξ ∈ Lie(G), defines a vector field
tangent to the gauge orbits. I will denote this vector field13 by ξ] ∈ TA,

ξ] =

∫
(Diξ)

α(x)
δ

δAαi (x)
. (2)

where
∫

:=
∫
R dDx. At each A ∈ A, the span of the ξ]|A defines the vertical subspace of

TAA, i.e. VA := Spanξ∈Lie(G)(ξ
]
|A) ⊂ TAA. The ensemble of these vertical subspace gives

the vertical distribution V = T(
⋃
A∈AOA) ⊂ TA.

Physically, vertical directions are “pure gauge” and variations of the fields in these
directions are physically irrelevant. Therefore, the “physical directions” in TA must be
those transverse to V , i.e. the horizontal directions H ⊂ TA. However, the decomposition
TA = V ⊕H is not canonically defined; in loose terms, there is no canonical “gauge fixing”
for infinitesimal variations of the fields. Rather, the choice of an equivariant horizontal
distribution is equivalent to the choice of a functional Ehresmann connection on A → A/G.
This is a functional 1-form valued in the Lie algebra of the gauge group,14

$ ∈ Ω1(A,Lie(G)), (3)

characterized by the following two properties:{
iξ]$ = ξ,

Lξ]$ = [$, ξ] + dξ.
(4)

Hereafter, double-struck symbols refer to geometrical objects and operations in field space:
d is the (formal) field-space exterior differential,15 with d2 ≡ 0; i is the inclusion, or
contraction, operator of field-space vectors into field-space forms; and LX is the field-space
Lie derivative of field-space vectors and forms along the field-space vector field X ∈ X1(A).
When acting on forms, the field-space Lie derivative can be computed through Cartan’s

11I adopt a canonical perspective in which A0 = 0 (temporal gauge). Consider electromagnetism. Since
A and E will be treated as independent, the spatial components of the gauge potential can be further gauge-
fixed to e.g. Coulomb gauge, ∇iAi = 0, without losing the Coulombic potential which is the pure-gradient
part of E. Analogous statements hold in the non-Abelian case. This will become clear below.

12Strictly speaking the above choice of gauge group does not lead to a bona-fide (albeit infinite dimen-
sional) foliation of A. This is due to the presence of reducible configurations [35–37], i.e. configurations
that are left invariant by a (necessarily finite) subgroup of G. For what concerns the present article, this
issue can be solved by replacing G with G∗ ⊂ G, the subgroup of gauge transformations which are trivial
at one given point x∗ ∈ R, g(x∗) ≡ 1. For a more thorough discussion of this subtlety and its physical
consequences in relation to global charges, see [5].

13The covariant derivative is Dξ = dξ + [A, ξ].
14I usually pronounce $ by its typographical code, Var-Pie.
15I prefer this notation to the more common δ, because the latter is often used to indicate vectors as

well as forms, hence creating possible confusions.
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formula, LX = iXd + diX. When acting on vectors, I will also use the Lie-bracket notation,
LXY ≡ JX,YK. Finally, I will denote the wedge product between field space forms by f.

The first of the above properties, the projection property, is what grants one to define
H as the complement to V through

H := ker$. (5)

This means that the vertical and horizontal projections in TA can be written respectively
as V̂ (X) = (iX$)] and Ĥ(X) = X−(iX$)]. The second property ensures that the above def-
inition is compatible with the group action of G on A, i.e. transforms “covariantly” under
the action of gauge transformations. The term dξ is only present if ξ is chosen differently
at different points of A, i.e. if ξ is an infinitesimal field-dependent gauge transformation.
Gauge fixings, and changes between gauge fixings, bring about typical examples of field-
dependent gauge transformations. Note that the generalization to field-dependent gauge
transformations comes “for free:” the equivariance property of $ as it appears in (4) can
be deduced from the standard transformation property Lξ]$ = [$, ξ] for field-independent
ξ’s (i.e. ξ’s constant throughout A), together with the projection property of $.

From a mathematical perspective, generalizing to field-dependent gauge transforma-
tions means promoting ξ to be a general, i.e. not-necessarily constant, section of the
trivial bundle A× Lie(G)→ A, i.e. ξ ∈ Γ(A,A× Lie(G)). In this way, any vertical vector
field V ∈ Γ(A, V ) can be written as V = ξ] for the field-dependent ξ = $(V)—here ξ] is
defined pointwise over A as in (2). This setup is best expressed in terms of the action Lie
algebroid16 associated to the action of G on A, with anchor map ·] (see [5, Sect.2]). In
the following, equations that hold only for field-independent ξ’s will be accompanied by
the notation (dξ = 0) which indicates the choice of a constant section of A× Lie(G)→ A.
(Later we will replace A with a larger space Φ which includes the electric and matter
fields.)

One last property of the horizontal distribution H = ker$ is its anholonomicity, i.e.
a measure of its failure of being integrable in the sense of Frobenius’s theorem:

F := $(JĤ(·), Ĥ(·)K) ∈ Ω2(A,Lie(G)), (6)

so that F] captures the vertical part of the Lie bracket of any two horizontal vector fields.
As standard from the theory of principal fibre bundles, one can prove that

F = d$ + 1
2 [$ f, $], (7)

for [ · , · ] the Lie-bracket in Lie(G) pointwise extended to Lie(G). The functional curvature
F satisfies an algebraic Bianchi identity dHF = dF + [$ f, F] = 0.

If F = 0, $ is said to be flat. In this case, the horizontal distribution is integrable
and defines a horizontal foliation of A. A leaf in such a foliation provides a global section
A/G → A, i.e. a gauge fixing proper. In this sense functional connections are “infinitesi-
mal” gauge fixings which generalize the usual global concept.

Finally, the choice of a horizontal distribution allows to introduce a new differential:
the horizontal differential dH . This is by definition transverse to the vertical, pure gauge,
directions: that is, for any X, iXdHA := i

Ĥ(X)
dA. Thus, iξ]dHA ≡ 0. Later, I will show

that (in most circumstances of interest) dH , expressed in terms of $, takes the form of a
“covariant differential” dH = d−$, whose failure to be nilpotent is captured by F.

2.2 An example: the SdW connection An important example of functional connection
is provided by the Singer–DeWitt connection (SdW), $SdW. Whenever A is equipped with
a positive-definite gauge-invariant supermetric17 G—i.e. a supermetric such that Lξ]G = 0

16For generalities on action Lie algebroids, see e.g. [38].
17A weaker condition is indeed sufficient, see [3] and [5].
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if dξ = 0,—then an appropriately covariant functional connection I call SdW can be defined
by orthogonality to the fibres, TA = HG ⊥ V .

In the case of YM theory there is a natural such candidate for G. This is the kinetic
supermetric18

G(X1,X2) :=

∫
√
g gijTr(X1

iX
2
j ) ∀X1,2 =

∫
X1,2
i

δ

δAi
∈ TA. (8)

From this definition, it is easy to see that a vector h =
∫
hi

δ
δAi

is SdW-horizontal, i.e.

G-orthogonal to all ξ] =
∫

Diξ
δ
δAi

, if and only if{
Dihi = 0 in R,

sihi = 0 at ∂R.
(9)

Therefore, SdW-horizontality is a generalization, to the non-Abelian and bounded case,
of Coulomb gauge for the infinitesimal variations of A. In this sense, SdW-horizontal
variations generalize the concept of a (transverse) photon in the same manner.

Demanding that h ≡ ĤG(X) = X− (iX$SdW)] is SdW-horizontal for all X, leads to the
following defining equation for $SdW:{

D2$SdW = DidAi in R,

Ds$SdW = dAs at ∂R.
(10)

In the Abelian case, the SdW connection is exact and flat.19 In the non-Abelian case,
the anholonomicity of $SdW satisfies the following [3, 5]:{

D2FSdW = gij [dHAi f, dHAj ] in R,

DsFSdW = 0 at ∂R.
(11)

Notice that the unrestricted nature of the gauge freedom at the boundary is crucial to
obtain not only a boundary condition for the SdW horizontal modes, but most importantly
a well-posed boundary value problem for $SdW (and thus for FSdW, too).

In the following I will call elliptic boundary value problems of the same kind as (10)
and (11), “SdW boundary value problems.” Their properties are analyzed in detail in [5].
In this article, I will consider SdW boundary value problems to be uniquely invertible in
Ω0(A,Lie(G)).20

2.3 The phase space of YM theory with matter as a fibre bundle These constructions
can be readily generalized to the full off-shell phase space

Φ := T∗A× Φmatter 3 (Ai, E
i, ψ, ψ). (12)

Here, Ei is the electric field and, for definiteness, I chose Φmatter = Ψ × Ψ to be the
space of Dirac spinors and their conjugates—which correspond to the matter’s canonical
momenta. The off-shell phase space is foliated by the action of gauge transformations,
Ag = g−1Ag + g−1dg, Eg = g−1Eg, ψg = g−1ψ, and ψ

g
= ψg. Thus, the corresponding

18The name comes from the fact that the kinetic energy of YM theory is given by K = G(Ȧ, Ȧ) where
Ȧ :=

∫
Ȧi

δ
δAi

. Hereafter the contraction Tr(··) is normalized to coincide with the killing form over Lie(G)

for G = SU(N).
19A connection $ is exact iff G is Abelian and $ is flat.
20This is true at irreducible configurations, and also otherwise provided that Lie(G) is replaced by Lie(G∗)

modified; cf. footnote 12.
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infinitesimal field-dependent gauge transformations ξ ∈ Γ(Φ,Φ × Lie(G)) define vertical
vectors tangent to the gauge orbits in Φ,

ξ] =

∫
Diξ

δ

δAi
+ [Ei, ξ]

δ

δEi
− ξψ δ

δψ
+ ψξ

δ

δψ
∈ Γ(Φ, V ) ⊂ X1(Φ). (13)

Notice that I have redefined V to be the vertical subspace of TΦ rather than TA. Similarly,
for the horizontal distribution H ⊂ TΦ, TΦ = H ⊕ V .

A choice of an equivariant horizontal distribution can once again be identified with
a choice of a connection on Φ. Rather than considering general connections over Φ, I
will exclusively focus on connections defined on Φ through a pull-back from A. That is,
π : Φ → A the canonical projection, I will only consider functional connections of the
form21 $̃ = π∗$ ∈ Ω1(Φ,Lie(G)). This restriction will be important in the following.
Henceforth, $̃  $.

Horizontal differentials can also be introduced on Φ. Explicitly, they read{
dHA = dA−D$,

dHE = dE − [E,$],
and

{
dHψ = dψ +$ψ,

dHψ = dψ − ψ$.
(14)

Loosely speaking, horizontal differentials are “covariant” differentials in field space.22

Indeed, as it is easy to show horizontal differentials transform always homogeneously under
gauge transformations, even field-dependent ones:{

Lξ]dHA = [ξ, dHA],

Lξ]dHE = [ξ, dHE],
and

{
Lξ]dHψ = −ξdHψ,
Lξ]dHψ = (dHψ)ξ.

(15)

Finally, from the above it is easy to prove that relationship between d2
H and F:{

d2
HA = −DF,

d2
HE = −[E,F],

and

{
d2
Hψ = Fψ,

d2
Hψ = −ψF.

(16)

2.4 Flat functional connections, gauge fixings, and dressings There is a relationship
between gauge fixings, flat functional connections, and dressings of the charged matter
fields [3, Sect.9] (on dressings, see [39–46]). As explained at the end of paragraph 2.1, flat
connections correspond to integrable horizontal distribution, i.e. to (a family of) global
sections of A → A/G, i.e. to a gauge fixing. Moreover, flat connections are of the form
$ = κ−1dκ for some κ = κ[A] ∈ Ω0(A,G) which transforms by right translation under the
action of G, i.e. R∗g(h) = hg. Pulling back κ from A to Φ, it is easy to prove that

dψ̂ = κdHψ for ψ̂ := κψ (17)

and that ψ̂ is a composite, generally nonlocal,23 gauge invariant field (similar equations
hold for ψ). E.g. in electromagnetism, the SdW connection is flat and ψ̂ reduces precisely
to the Dirac dressing of the electron if R = R3 [5].

21For $ a connection on A, it is straightforward to check that $̃ := π∗$ satisfies the two defining
properties of a functional connection over Φ, cf. (4).

22On forms that are horizontal and equivariant with respect to some representation R, dH can be shown
to to act as a covariant derivative dH = d−R($).

23Spatially local dressings exist in special circumstances where the gauge symmetry is “non-substantial”
[45]. The prototypical example of this is a gauge symmetry introduced via a Stückelberg trick. For other
examples see e.g. [3, Sect.s 7 & 8].
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Therefore, choices of flat connections correspond to choices of dressings for the mat-
ter fields, and the horizontal differentials of the matter fields are closely related to the
differentials of the associated dressed matter fields.

Its relationship to dressings equips the geometric object dH with an intuitive physical
interpretation.24

3 Symplectic geometry, the Gauss constraint, and flux superse-
lection

3.1 Off-shell symplectic geometry Define the off-shell symplectic potential of YM the-
ory and matter over R to be given by

θ :=

∫
√
gTr(EidAi)−

∫
√
g ψγ0dψ ∈ Ω1(Φ), (18)

where
√
g is the square root of the spatial metric gij on R, and (γ0, γi) are Dirac’s γ-

matrices.25 Note that the first term in the equation above (θYM) is the tautological 1-form
over T∗A—this identifies the geometrical meaning of the electric field Ei. Of course this
formula for θ can be derived from the YM Lagrangian.

The above (polarization of the) symplectic potential is invariant under field-independent
gauge transformations:

Lξ]θ = 0 (dξ = 0), (19)

but it fails to be invariant under field-dependent ones. Moreover, in the presence of
boundaries θ fails to be horizontal even on-shell of the Gauss constraint (≈):

iξ]θ ≈
∮ √

hTr(Esξ), (20)

where
√
h is the square root of the determinant of the induced metric on ∂R, and∮

:=
∫
∂R dd−1x. This formula is the main reason why it has become common lore that

gauge transformations that do not trivialize at the boundary must have a different status:
their associated charge does not vanish. As proven in section 5.8, this is e.g. the interpre-
tation embraced by the “edge mode” approach of [26]. But there is an alternative to this
conclusion which relies on the introduction of superselection sectors.

To understand what this means, appreciate how this choice will be imposed upon us,
and understand how it can be implemented in the non-Abelian case without breaking the
gauge symmetry at ∂R, it is essential to first devise an alternative to θ which is manifestly
gauge-invariant and horizontal.

(For a sketch of the superselection construction in the Abelian case where most sub-
tleties do not arise, see section 4.1.)

A manifestly gauge-invaraint and horizontal, i.e. basic, 1-form is obtained by taking
the horizontal part of θ. In formulas,

θH := θ(Ĥ(·)) =

∫
√
gTr(EidHAi)−

∫
√
g ψγ0dHψ ∈ Ω1(Φ) (21)

is such that
Lξ]θ

H = 0 and iξ]θ
H = 0, (22)

24See [3, Sect.9] for a generalization of the notion of dressing to the case of non-Abelian connections,
which relates this construction to the Vilkovisky–DeWitt geometric effective action.

25I follow here Weinberg’s conventions [47].
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even for field-dependent gauge transformations (cf. (15)).
The remaining part of the off-shell symplectic potential, its vertical part θV := θ− θH ,

is on the other hand given by

θV =

∫
√
gTr(EiDi$ + ρ$) =

∫
√
gTr

(
(−DiE

i + ρ)$
)

+

∮ √
hTr(Es$) (23)

where I introduced the charge density ρ :=
∑

α(ψγ0ταψ)τα for {τα} a Tr-orthonormal
basis of Lie(G).26 On shell of the Gauss constraint θV becomes supported on the boundary
(however, note that $ is nonlocal within R). This is the part of θ that is responsible for
it not being horizontal.

The off-shell symplectic form is defined by differentiating the off-shell symplectic po-
tential, i.e. Ω := dθ. Similarly, I define a horizontal presymplectic 2-form by differentiating
the horizontal part of the symplectic potential, θH :

ΩH := dθH . (24)

Since θH is basic (22), and thus gauge invariant, it is not hard to realize that dHθH ≡
dθH .27 Moreover, using the Cartan calculus equation Jd,LK = 0, it is immediate to verify
from (19) that ΩH is also gauge invariant. In sum, ΩH is basic and closed:

iξ]Ω
H = 0, Lξ]Ω

H = 0, and dΩH = 0. (25)

Let me observe that θH and ΩH depend on the choice of horizontal distribution, i.e.
on the choice of functional connection $. Moreover, if the horizontal distribution is non-
integrable i.e. F 6= 0, one can show that ΩH 6= Ω(Ĥ(·), Ĥ(·)), and only the former is a
closed 2-form.28

A crucial remark: it is ultimately thanks to equation (19) that it is possible to define a
basic and closed presymplectic structure on Φ in this geometric manner. In this regard, it
is relevant to notice that equation (19) distinguishes YM theory from Chern-Simons and
BF theories, where no polarization exists in which the (off-shell) symplectic potential is
gauge invariant—this is because in those theories the variables canonically conjugate to
the gauge potential do not transform homogeneously under gauge transformations.29

3.2 Radiative and Coulombic electric fields Before delving into the reduction proce-
dure, it is convenient to further analyze the dof entering θH , and in particular its pure-YM
contribution. In the previous sections I have introduced two decompositions: one for the
tangent space TA = H ⊕ V , and a dual one for the 1-form θ = θH + θV ∈ T∗A. It is in-
structive to express the latter decomposition in coordinates, i.e. to define E = Erad+ECoul

so that

θHYM =

∫
√
gTr(EiraddAi) and θVYM =

∫
√
gTr(EiCouldAi). (26)

Notice that, contrary to (21) and (23), in these formulas the burden of the horizontal and
vertical projections is not carried by dHA and $, but instead by the functional properties
of Erad and ECoul.

26That is, ρ is defined by Tr(ρξ) := ψγ0ξψ for all ξ. Indeed, ρ (just as the electric field and flux) is most
naturally understood as valued in the dual of the Lie algebra Lie(G)∗.

27Cf. footnote 22.
28Indeed, Ω(Ĥ(·), Ĥ(·)) = ΩH +

∮ √
hTr(fF) [5].

29See [48] for a derivation of the Wess-Zumino-Witten edge-mode theory of Chern-Simons from the
failure of the latter to have a gauge-invariant symplectic structure.
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Thus, from the verticality condition θV (Ĥ(X)) ≡ 0 for all X, one obtains the following
$-dependent conditions for ECoul (hereafter, $(X) ≡ iX$):∫

√
gTr

(
EiCoul(Xi −Di$(X))

)
= 0 ∀X =

∫
Xi

δ

δAi
. (27)

Conversely, from the horizontality condition θH(ξ]) =
∫ √

gTr(EiDiξ) ≡ 0 for all ξ, one
obtains through a simple integration by parts the following universal conditions for Erad:{

DiE
i
rad = 0 in R,

siE
i
rad = 0 at ∂R.

(28)

Therefore, Erad generalizes a transverse electric field to the non-Abelian and bounded case;
this is why I call it “radiative.” Independently of the choice of connection, the radiative
electric field contains two independent dof, whereas the Coulombic electric field contains
one.

Finally, note that the YM dof in θ organize as follows: the radiative electric field is
paired with the horizontal modes of A in θH , whereas the Coulombic electric field is paired
with $ in θV . The horizontal matter modes appearing in θH do not satisfy an independent
condition of their own; they can be understood as “dressed matter fields” [2, 3, 5].

3.3 An example: the SdW case The reader will have noticed the analogy between
(9) and (28) defining the SdW-horizontal variations and the radiative electric field, re-
spectively. Indeed, the SdW choice of connection is the only one for which the velocity-
momentum relation reads as a simple horizontal projection, i.e. Erad = ĤG(Ȧ) where
Erad =

∫
gijE

i
rad

δ
δAj

and Ȧ =
∫
Ȧi

δ
δAi

.

This parallel between SdW-horizontal variations and radiative electric fields, has an
analogue in the complementary sectors which comprise vertical (i.e. pure-gauge) variations
and the Coulombic electric field. Indeed, equation (27) for $ = $SdW dictates that the
SdW-Coulombic electric field is of the form

EiCoul = gijDjϕ (SdW), (29)

for some Lie(G)-valued scalar ϕ I will call the SdW Coulombic potential.

3.4 The Gauss constraint and superselection sectors Note that, in the absence of
boundaries, the first of the equations (28) indicates that Erad does not take part in the
Gauss constraint. This not only justifies the name “Coulombic” for ECoul = E−Erad, but
most importantly prompts the following definition.

As I have argued earlier, in the presence of boundaries the Gauss constraint needs to
be complemented by a boundary condition. The question is which boundary condition
is the most natural. This is where the second of the equations (28) plays a crucial role:
demanding that Erad completely drops from the Gauss constraint—i.e. not only from its
bulk term, but also from its boundary condition,—one is led to define the Gauss constraint
in bounded regions as a boundary value problem labelled by the value of the electric flux,
f := siE

i
|∂R:

Gf :

{
DiE

i = ρ in R,

siE
i = f at ∂R.

(30)

Note that (28) for Erad is canonical and therefore so is the above extension of the Gauss
constraint: i.e. neither equation depends on the choice of $.

12
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Introducing the radiative/Coulombic split of the electric field, E = Erad +ECoul, from
(28) it follows that the burden of satisfying the Gauss constraint Gf falls completely on
ECoul:

Gf :

{
DiE

i
Coul = ρ in R,

siE
i
Coul = f at ∂R.

(31)

In Appendix A.1 I prove that the above boundary value problem uniquely fixes a ECoul

as a function of (A, ρ, f).30 However, note that since the radiative/Coulombic split of E
depends on a choice of functional connection $, so do the solutions of (31). Of course, all
such solutions differ by a radiative contribution.

That f is a datum completely independent from the values of A, Erad, ψ and ψ, as
well as from the geometry of R, is particularly clear for the SdW choice of connection,
where Gf is yet another SdW boundary value problem which can always be inverted, no
matter what the values of ρ and f are.31 It is possible to show that the same holds true
for any choice of connection by building on the SdW case, see Appendix A.1.

Configurations in ΦG :=
⋃
f{Gf = 0} define the on-shell32 subspace of Φ. However,

since f is independent of any physical quantity contained in R, it is meaningful to further
restrict attention from the set of on-shell configurations to a given superselection sector
labelled by f . In order not to break (boundary) gauge-invariance down to gauge trans-
formations that stabilize f , I introduce the covariant superselection sector (CSSS) Φ[f ]:

Φ[f ] :=
⋃
f∈[f ]

{φ ∈ Φ|Gf = 0}, (32)

where [f ] := {f ′ ∈ C∞(∂R,Lie(G)) such that ∃g ∈ G for which f ′ = g−1
|∂Rfg|∂R}. Since

gauge transformations act on the whole region R, this conjugacy class by definition does
not include boundary gauge transformations that are not connected to the identity.33

The CSSS Φ[f ] is the arena in which the rest of this article will unfold.

4 Reduced symplectic structure in a CSSS

In this section I will construct the reduced symplectic structure in a CSSS. Before address-
ing the general case, I will quickly sketch the construction in the simpler Abelian case,
highlighting the main difficulties characterizing its non-Abelian counterpart.

4.1 Overview of the Abelian case If G is Abelian, the electric field is gauge invariant.
Hence, a CSSS comprises one single flux, [f ] = {f}, and thus reduces to the usual notion
of superselection sector (SSS).

In the rest of this overview, equality within the SSS Φ{f} will be denoted by “≈.”34

Being basic, ΩH can be projected down to the reduced phase space. In the Abelian
case and within a given SSS Φ{f}, the projection of ΩH on the reduced SSS Φ{f}/G defines
a 2-form which is not only closed but also non-degenerate. Therefore this construction

30Uniqueness of the solution holds only at irreducible configurations. Cf. footnotes 12 and 31.
31This statement holds true at irreducible configurations, which constitute a dense subset of configura-

tions in non-Abelian YM theory. At reducible configurations, however, there are integral relations between
these quantity in a number bounded by dim(G). In electromagnetism this is the integral Gauss law,∫ √

gρ =
∮ √

hf . See also footnote 7
32In this article I ignore equations of motion. Thus “on-shell” means “on-shell of the Gauss constraint”

only.
33For an elementary discussion, see [49].
34More precisely, ≈ stands for equality upon pullback to Φ{f} understood as a sub-bundle of Φ.
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equips the reduced SSS with a symplectic structure. But this symplectic structure has a
drawback: it depends on the chosen notion of horizontality, i.e. on $.

This dependence can be corrected by adding to ΩH the term
∮ √

hTr(fF). To see why
this term is a viable addition to ΩH , observe that it is not only manifestly basic, but also
exact and therefore closed. This follows from two facts. On the one hand the Abelian
functional curvature is exact F = d$ (7). On the other hand the Abelian superselection
condition [f ] = {f} means that df ≈ 0. Taken together, these two facts imply that in the
given SSS,

∮ √
hTr(fF) ≈ d

∮ √
hTr(f$). One can then check that not only ΩH but also

ΩH +
∮ √

hTr(fF) defines, after projection, a symplectic structure on Φ{f}/G.
Now, in the SSS Φ{f}, the 2-form ΩH +

∮ √
hTr(fF) equals Ω. Indeed, using (23) and

the fact that in the Abelian SSS df ≈ 0, one has

Ω = dθH + dθV = dθH + d
(
−
∫
√
g G$+

∮ √
h f$

)
≈ ΩH +

∮ √
hTr(fF) (Abelian).

(33)
Therefore Ω itself is basic within the Abelian SSS Φ{f}. This can be checked explicitly
and relies on the Gauss constraint Gf ≈ 0, the superselection condition df ≈ 0, and the
horizontality of the curvature F = d$:

iξ]Ω = −
∫
√
g ξdG +

∮ √
h ξdf ≈ 0,

Lξ]Ω = dLξ]θ = d
(
−
∫
√
g Gdξ +

∮ √
h fdξ

)
≈ 0

(Abelian). (34)

The first of these equations also shows that in a SSS the Hamiltonian charge with
respect to Ω of any gauge transformation ξ] (even field dependent ones!) vanishes35 iden-
tically, even though iξ]θ 6≈ 0 and also d(iξ]θ) 6≈ 0 if dξ 6= 0.

Since Ω is manifestly independent from $, one concludes from the above equations
that in the Abelian case it provides a canonical symplectic structure on the reduced SSS
Φ{f}/G, which is independent of the chosen notion of horizontality.

In the non-Abelian theory, matters are more complicated. There, not only d$ fails
to be horizontal, F to be closed, and [f ] to be constituted by a single point (so that in a
non-Abelian Covariant-SSS df 6≈ 0); but also Ω fails to be basic in a CSSS, and ΩH fails to
define a non-degenerate 2-form on the reduced CSSS. Therefore, any naive generalization
of the above construction would fail in the non-Abelian theory.

The goal of the following discussion is to resolve these difficulties and provide a proper
non-Abelian generalization. To achieve this goal, I will start by investigating the last
of the differences listed above, i.e. why ΩH fails to define a non-degenerate 2-form on
the reduced phase space. Understanding this question will lead to the definition of flux
rotations among other insights, and eventually to the sought construction of a symplectic
structure on the reduced CSSS Φ[f ]/G which is completely canonical.

4.2 The projection of ΩH in a CSSS Since the 2-form ΩH is basic, it can be unam-
biguously projected down to the reduced phase space, and more specifically down to the
reduced CSSS Φ[f ]/G.

The CSSS Φ[f ] is a submanifold of Φ foliated by the action of G. Denote π̃ : Φ[f ] →
Φ[f ]/G the projection on the space of gauge orbits and ι : Φ[f ] ↪→ Φ the natural embedding.
Note that ι acts as the identity map between the gauge orbits in Φ[f ] and Φ. Note also that
pulling back by ι∗ means going on shell of the Gauss constraint (within a given CSSS).

35Up to a field-space constant
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Thus, the 2-form Ωred
$ ∈ Ω2(Φ[f ]/G) stemming from the projection of ι∗ΩH is defined

by the relation
π̃∗Ωred

$ := ι∗ΩH . (35)

Once again, this definitioin is unambiguous because ΩH and thus ι∗ΩH are basic.
Moreover, since d commutes with the pullback and since π̃ is surjective, one deduces

from dΩH = 0 that also Ωred
$ is closed:

dΩred
$ = 0. (36)

Since Ωred
$ is closed, it defines a symplectic form on Φ[f ]/G if and only if it is non-

degenerate. In turn, being defined through the projection π̃ : Φ[f ] → Φ[f ]/G, the 2-form
Ωred
$ is non-degenerate if and only if the kernel of ι∗ΩH coincides with the space spanned

by pure-gauge transformations, i.e. with V [f ] = T
(⋃

φ∈Φ[f ] Oφ
)
, where Oφ is the gauge

orbit of φ. However, ker(ι∗ΩH) does not generally coincide with V [f ], unless G is Abelian.

4.3 The kernel of ΩH To see why ker(ι∗ΩH) does not generally coinicide with V [f ], and
to compute it in the general case, one needs an explicit formula for ΩH = dθH = dHθH :

ΩH =

∫
√
gTr

(
dHE

i
rad f dHAi

)
−
∫
√
g
(
dHψγ

0 f dHψ + Tr(ρF)
)
∈ Ω2(Φ). (37)

Observe that only the radiative degrees of freedom and the “dressed” matter fields enter
ΩH , whereas no component of the Coulombic electric field enters this formula.

Now, consider a vector X ∈ TΦ[f ], and denote η = $(X) its vertical part. Notice
that, since $ is defined by pullback from A, η is a function(al) of X(A) only. Then,
computing (ι∗ΩH)(X) it is easy to see that X ∈ ker(ι∗ΩH) if and only if X(•) = η](•) for
• ∈ {A,Erad, ψ, ψ}, here seen as (coordinate) functions on Φ. Since these conditions do
not constrain the action of X on ECoul, this still leaves open the possibility that X is not
purely vertical: i.e. it can still be that X(ECoul) 6= η](ECoul) and therefore X 6= η].

However, since ECoul is fixed by the Gauss constraint (31), and X is assumed to preserve
that constraint, the quantity X(ECoul) can be determined by deriving equation (31) along
X. Denoting the action of X on f by X(f) = −[f, ζ ′∂ ] for some field-dependent ζ ′∂ (recall
that X ∈ TΦ[f ] and therefore preserves the CSSS), one can show that X ∈ ker(ι∗ΩH) if
and only if X = η] + Yζ∂ , where Yζ∂ is defined by:

Yζ∂ (•) = 0 for • ∈ {A,Erad, ψ, ψ}, and


DiYζ∂ (EiCoul) = 0 in R,

siYζ∂ (EiCoul) = −[f, ζ∂ ] at ∂R,∫ √
gTr

(
Yζ∂ (EiCoul)dHAi

)
= 0,

(38)
for ζ∂ = ζ ′∂ − η|∂R. Notice that the last equation just states that Yζ∂ (ECoul) is itself
Coulombic. Therefore these equations have a unique solution for the very same reason
that the Gauss constraint (31) does.

E.g. in the SdW case, that last equation states that Yζ∂ (ECoul) = Dζ for some Lie(G)-
valued function ζ. Using this fact, from the remaining equations one deduces that

Y(SdW)
ζ∂

=

∫
ζ
δ

δϕ
for

{
D2ζ = 0 in R,

Dsζ = −[f, ζ∂ ] at ∂R
(SdW). (39)

I will call flux rotations vectors of the form (38); I will denote the space spanned by
these vectors Y [f ] ⊂ TΦ[f ]. I have thus argued that the kernel of ι∗ΩH is composed of
vertical vectors and flux rotations, i.e.

ker(ι∗ΩH) = V [f ] ⊕ Y [f ]. (40)
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Notice that since Yζ∂ (A) = 0, flux rotations are horizontal, i.e. $(Yζ∂ ) = 0 (once again,
on Φ, the connection $ is defined by pullback from A).

A more thorough proof of these statements can be found in Appendix A.2.
Henceforth, with a slight abuse of notation, I will also call “flux rotations” vector fields

which arise as sections of Y [f ] ⊂ TΦ[f ]; I will denote these vector fields Yζ∂ as well, and
their space

Y [f ] := Γ(Φ, Y [f ]) ⊂ X1(Φ[f ]). (41)

Notice that this definition allows the parameter ζ∂ in the vector field Yζ∂ to be field-
dependent itself.

4.4 Flux rotations are physical transformations Flux rotations Yζ∂ affect the electric
flux f precisely as a gauge transformation ξ with ξ|∂R = −ζ∂ would. However, since they
leave all other field components invariant, flux rotations are not gauge transformations.
In fact, through the Gauss constraint (which is by definition imposed in a CSSS), they
alter the bulk Coulombic field ECoul and thus physical observables such as the total YM
energy in R. This establishes the physical nature of flux rotations.

Begin physical, flux rotations must survive the projection onto the reduced CSSS
Φ[f ]/G. However, as vector fields not all flux rotations are projectable. Flux rotations
which are projectable must be gauge invariant, i.e. Yζ∂ is projectable if and only if
JYζ∂ , ξ

]K = 0 for all dξ = 0. It is easy to verify that this condition holds if and only
if the parameter ζ∂ transforms covariantly, i.e. if and only if

Lξ]ζ∂ = [ζ∂ , ξ|∂R]. (42)

I will denote the set of covariant flux rotations Y [f ]
cov.

Let me emphasize that the definition of flux rotations depends on the choice of $,

i.e. Yζ∂ ≡ Y($)
ζ∂

: any choice of $ produces a distinct Y($)
ζ∂

corresponding to a distinct
physical transformation in the same phase space; each of these transformations affect
slightly different components of the electric field while preserving the validity of the Gauss

constraint. Choosing the SdW radiative/Coulombic split of the electric field, E = E
(SdW)
rad +

Dϕ as providing a natural choice of coordinates over field space, one finds that whereas
the SdW Coulombic potential of ϕ depends only on the parameter ζ∂ , the change of the

SdW-radiative part of E is $-dependent. That is, whereas Y($)
ζ∂

(ϕ) = Y(SdW)
ζ∂

(ϕ) as in

(A3) for any choice of $, one finds that Y($)
ζ∂

(E
(SdW)
rad ) = 0 if and only if $ = $SdW.

Therefore, the transformations Y($)
ζ∂

for different choices of $ are all equally physical, but
distinct from each other.

4.5 The kernel of Ωred
$ From (35), (40), and the previous discussion on flux rotations,

one concludes that
ker(Ωred

$ ) = π̃∗Y
[f ]. (43)

Therefore, Ωred
$ is non-degenerate if and only if Y [f ] is trivial. Inspection of (38), shows

that this is the case if G is Abelian or if the flux is trivial (either because f = 0 or because
∂R = ∅). Therefore if G is Abelian, or f is trivial, the reduced space (Φ[f ]/G,Ωred

$ )
is symplectic. In these cases, the reduction procedure could be considered complete.
However, unless f is trivial, the resulting symplectic structure fails to be canonical: it
depends on the choice of $.

In the non-Abelian theory, if boundaries are present, Ωred
$ even fails to provide a

symplectic structure for the reduce: Ωred
$ is degenerate with flux rotations constituting its

nontrivial kernel.
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4.6 Completing Ωred
$ In the non-Abelian case, the issue with Ωred

$ is that, although
there are different f ’s in [f ] each potentially associated with a different Coulombic field,
the candidate symplectic 2-form Ωred

$ cannot tell them apart from each other. This leaves
flux rotations as degenerate directions of Ωred

$ . To correct this issue, I propose to complete
Ωred
$ by adding to it a symplectic form on [f ], the space of fluxes belonging to a given

CSSS.
The remarkable aspect is that this completion, despite not being provided by the

off-shell symplectic structure Ω, can still be chosen canonically. This canonical choice
is provided by the Kirillov–Konstant–Sourieu (KKS) construction of the homogeneous
symplectic structure over a (co)adjoint orbit (see e.g. [50]). Although this symplectic
structure fails to be $-horizontal, I will show this issue can be easily rectified.

Regarding the fact that the KKS symplectic structure is canonical on coadjoint orbits,
note that electric fields—and thus fluxes—are dual to the gauge potential A and therefore
are best understood as valued in the dual Lie(G)∗ (as a vector space). The identification
is performed via the Killing form, e.g. f ↔ f∗ = Tr(f ·). Although I will not use this
notation in the following, this observation further justifies the naturalness of the use of
the KKS construction.

4.7 Review of the KKS symplectic structure on [f ] To provide an explicit formula
for the KKS symplectic form on [f ], let me first choose a reference flux fo ∈ [f ] and thus
over-parametrize [f ] by group-valued variables u ∈ G|∂R:

f = ufou
−1. (44)

From this formula it follows that

[f ] ∼= G|∂R/Go|∂R (45)

as a right-quotient, where Go|∂R ⊂ G|∂R is the subset of G|∂R which stabilizes fo. In
other words, right translations of u by a stabilizer transformations go ∈ Go|∂R, u 7→ ugo,
end up stabilizing the reference fo and therefore have no effect on f . Therefore, these
transformations are a redundancy in the description of [f ] in terms of the group-valued
u ∈ G|∂R: the goal is to eventually quotient them away.

To be clear, the notation G|∂R stands for G|∂R = {u ∈ C∞(∂R,G) such that ∃g ∈
G for which u = g|∂R}, that is the group G|∂R coincides with the subset of boundary gauge
transformations C∞(∂R,G) which are connected to the identity. In other words [f ] is the
connected part of the adjoint orbit of f by the adjoint action of G∂ = C∞(∂R,G).36

Let me stress that fo ∈ Lie(G|∂R) is a mere reference: all flux dof are completely—and
redundantly—encoded in the group elements u ∈ G|∂R. Hence, dfo ≡ 0 always.

To explicitly construct the (otherwise canonically given) KKS symplectic structure on
[f ], I will first endow G|∂R with a presymplectic 2-form which I will then project down to
a symplectic 2-form on Go|∂R/G|∂R ∼= [f ]. With this goal in mind, it is useful to consider
G|∂R as a field-space for the group value fields u which is foliated by the right action of the
stabilizer transformations go ∈ Go|∂R, and to define the projection πo onto the associated

space of orbits G|∂R/Go|∂R ∼= [f ]:

πo : G|∂R → G|∂R/Go|∂R ∼= [f ], u 7→ f := ufou
−1. (46)

Thus, on G|∂R, define the presymplectic potential ϑ[f ] :=
∮ √

hTr(fou
−1du) and the

corresponding presymplectic form

ω[f ] := dϑ[f ] = −
∮ √

hTr
(

1
2fo[u

−1du f, u−1du]
)
. (47)

36Cf. footnote 33.
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This 2-form is basic with respect to the stabilizer transformations of the reference flux fo,
i.e. it is basic in (G|∂R, πo).37 Therefore, ω[f ] can be projected down to G|∂R/Go|∂R along

πo. This projection defines the 2-form ω
[f ]
KKS ∈ Ω2(G|∂R/Go|∂R) through the relation

π∗oω
[f ]
KKS := ω[f ]. (48)

The 2-form ω
[f ]
KKS is non degenerate, and therefore symplectic. Moreover, although the

construction of the bundle (G|∂R, πo) depends on the choice of reference fo, ω
[f ]
KKS is ho-

mogeneous over [f ] ∼= G|∂R/Go|∂R, and thus independent of the choice of the reference fo.

The 2-form ω
[f ]
KKS is precisely the canonical KKS symplectic form on [f ].38

If G is Abelian, the electric field is gauge invariant and [f ] = {fo} reduces to one
(functional) point that cannot support a 2-form. Consistently, the presymplectic 2-form

ω[f ] vanishes in this case, and therefore so does ω
[f ]
KKS. Interestingly, however, the presym-

plectic potentail ϑ[f ] fails to vanish, even in the Abelian case—a fact that will play a role
later.

Thinking of [f ] as embedded in the CSSS Φ[f ], one can pull-back ω
[f ]
KKS along this

embedding from [f ] to Φ[f ] thus giving a 2-form that I will denote by the same symbol.

But seen as 2-form on Φ[f ], ω
[f ]
KKS fails to basic with respect to the action of gauge

transformations on Φ[f ]. This menas that, as it is, ω
[f ]
KKS cannot be projected down to the

reduced CSSS Φ[f ]/G and therefore cannot be used to complete Ωred
$ to a symplectic form.

This issue can be solved by defining a gauge-horizontal version of ω
[f ]
KKS.

4.8 A gauge-horizontal KKS 2-form In view of the over-parametrization of [f ] ∼=
G|∂R/Go|∂R by u ∈ G|∂R, I will temporarily extend the field space Φ[f ] to Φ

[f ]
ext by replacing

the flux dof f ∈ [fo] with the group-valued dof u ∈ G|∂R. This extension parallels the
construction of the previous paragraph, from which I will borrow the notation.

Thus, consider a fibre bundle which has Φ[f ] as a base manifold and Go|∂R as a fibre:

πo : Φ
[f ]
ext → Φ[f ] = Φ

[f ]
ext/Go|∂R, (A,Erad, ψ, ψ, u) 7→ (A,Erad, ψ, ψ, f = ufou

−1). (49)

The fibre-generating symmetries on (Φ
[f ]
ext, πo) are given by the stabilizer transformations of

fo, which act on u from the right while leaving all other fields invariant: (A,Erad, ψ, ψ, u)
7→ (A,Erad, ψ, ψ, ugo). Therefore, an infinitesimal stabilizer transformation σo ∈ Lie(Go|∂R)

defines a vector field on Φ
[f ]
ext. In analogy with the map ·], introduce

·§ : Lie(Go|∂R)→ X1(Φ
[f ]
ext), σo 7→ σ§o (50)

so that (here, as above, • ∈ {A,Erad, ψ, ψ})

σ§o(•) := 0 and σ§o(u) := uσo. (51)

It is straightforward to extend the action of gauge symmetries and flux rotations from

Φ[f ] to Φ
[f ]
ext. Indeed, it is enough to prescribe their action on the u’s so that the ensu-

ing action on f is the known one. For this, notice that gauge transformation and flux

37On the contrary, the presymplectic potential ϑ[f ] fails to be basic in (G|∂R, πo).
38E.g. in the finite dimensional example G|∂R  SU(2), the (co)adjoint orbit of a non-vanishing element

of the (dual of the) Lie algebra Lie(SU(2)) is a 2-sphere, whereas the corresponding KKS symplectic form
is, up to a scale, the area element of the round 2-sphere.
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rotations act identically on f (up to a sign), that is Lξ]f = [f, ξ|∂R] and LYζ∂
f = −[f, ζ∂ ]

respectively.39 From these, it is natural to prescribe that both gauge transformations and
flux rotations act on u from the left:

Lξ]u = −ξ|∂u and LYζ∂
u = ζ∂u. (52)

Hence, Φ
[f ]
ext is also foliated by gauge transformations.

Combining the action of gauge transformations G and stabilizer transformations Go|∂R,

one obtains an action of the group Gext := G×Go|∂R on Φ
[f ]
ext and a projection Π to the space

of the Gext-orbits in Φ
[f ]
ext—which is nothing else than the reduced CSSS. In formulas:

(G × Go|∂R)× Φ
[f ]
ext → Φ

[f ]
ext(

(g, go), (• , u)
)
7→ (•, u)(g,go) = (•g , g−1

|∂Rugo) (53)

and
Π : Φ

[f ]
ext → Φ

[f ]
ext/(G × Go|∂R) = Φ[f ]/G, (54)

where • = (A ,Erad , ψ , ψ) with the usual Ag = g−1Ag + g−1dg, Egrad = g−1Eradg, ψg =

g−1ψ and ψ
g

= ψg.

The space of Π-vertical vectors in TΦ
[f ]
ext—defined as the space vectors tangent to the

orbits of Gext—is thus given by:

Vext = Span
{

(ξ], σ§o)
}
. (55)

Using the functional connection $ over (Φ[f ], π̃), one defines through a pull-back by π∗o a

functional connection over (Φ
[f ]
ext,Π)—which I will still denote $. Because of the gauge-

transformation property of u (52), one has

dHu = du+$|∂Ru. (56)

With these tools and notations, one can finally define on Φ
[f ]
ext the horizontal version

of the KKS potential ϑ[f ], that is:

ϑ
H,[f ]
ext :=

∮ √
hTr(fou

−1dHu) ∈ Ω1(Φ
[f ]
ext). (57)

This 1-form is basic with respect to the action of gauge transformations.40 Therefore,

defining ω
H,[f ]
ext := dϑH,[f ]

ext one obtains a gauge-basic and closed 2-form on Φ
[f ]
ext, i.e.

dωH,[f ]
ext = 0, iξ]ω

H,[f ]
ext = 0, and Lξ]ω

H,[f ]
ext = 0. (58)

Explicitly, from ω
H,[f ]
ext = dϑH,[f ]

ext = dHϑ
H,[f ]
ext (which holds because ϑ

H,[f ]
ext is basic) and

d2
Hu = Fu,

ω
H,[f ]
ext =

∮ √
hTr

(
− 1

2fo[u
−1dHu f, u

−1dHu] + fou
−1Fu

)
∈ Ω2(Φ

[f ]
ext). (59)

39Recall, gauge transformations and flux rotations have (very) distinct actions on the other fields in Φ[f ].
40However, ϑ

H,[f ]
ext fails to be basic with respect to the whole structure group Gext, because it fails to be

basic with respect to the action of the stabilizer Go|∂R. Cf. footnote 37.
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Moreover, as it was the case for ω[f ], the 2-form ω
H,[f ]
ext is also basic with respect to the

flux-reference stabilizer transformations, and therefore it is basic in (Φ
[f ]
ext,Π):41

i
(ξ],σ§o)

ω
H,[f ]
ext = 0 and L

(ξ],σ§o)
ω
H,[f ]
ext = 0. (60)

Because of this property, ω
H,[f ]
ext can be projected not only down to Φ[f ]—where it gives

a gauge-horizontal version of the KKS symplectic structure ω
[f ]
KKS—but also down to the

gauge-reduced CSSS Φ
[f ]
ext/(G × Go|∂R) = Φ[f ]/G.

Before using this fact to finally introduce the sought completion of Ωred
$ which will

turn the reduced CSSS Φ[f ]/G into a symplectic space, let me conclude this section with
an observation.

4.9 The completion of Ωred
$ To define the sought symplectic completion of Ωred

$ , first

define in (Φ
[f ]
ext,Π) the presymplectic completion of ΩH by ωH,[f ] as

Ω
H,[f ]
ext := π∗oι

∗ΩH + ω
H,[f ]
ext ∈ Ω2(Φ

[f ]
ext). (61)

In coordinates, this reads:

Ω
H,[f ]
ext =

∫
√
gTr

(
dHE

i
rad f dHAi

)
−
∫
√
g
(
dHψγ

0 f dHψ + Tr(ρF)
)

+

∮ √
hTr

(
− 1

2fo[u
−1dHu f, u

−1dHu] + fou
−1Fu

)
. (62)

This form is closed, basic, and its kernel can be shown to comprise vertical vectors only
(now, the KKS contribution takes care of the flux rotations in the kernel of π∗oι

∗ΩH ; see
Appendix A.3 for a proof):

ker(Ω
H,[f ]
ext ) = Vext. (63)

Being basic, this 2-form, can be projected down to the reduced CSSS Φ[f ]/G to give the
2-form Ωred,[f ] ∈ Ω2(Φ[f ]/G), defined through the relation

Π∗Ωred,[f ] := Ω
H,[f ]
ext . (64)

Finally, thanks to the above-mentioned properties of ΩH,[f ], the 2-form Ωred,[f ] is also
closed and non-degenerate, and thus

the reduced CSSS (Φ[f ]/G,Ωred,[f ]) is symplectic. (65)

(As explained in footnote 12, I have been neglecting reducible configurations—cf. ap-
pendix A.1. Here, let me only mention that in electromagnetism, where all configurations
are reducible, the above equation needs to be corrected by excluding from V [f ] the 1-
dimensional space of spatially constant “gauge transformations.” This fact is relevant
because these transformations—related to the total electric charge—are then promoted to
physical transformations in the reduced field space. The situation is much more compli-
cated, and less clear-cut, in non-Abelian theories, cf. the forthcoming v3 of [5].)

41Since $ is pulled-back from Φ[f ], one has i
σ
§
o
$ = 0 = L

σ
§
o
$.
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4.10 Independence from $ Although it is not manifest from e.g. (62), the presym-

plectic 2-form Ω
H,[f ]
ext is independent of $, and therefore so is the symplectic form Ωred,[f ]

on the reduced CSSS Φ[f ]/G. The reduced symplectic structure Ωred,[f ] on Φ[f ]/G is indeed
completely canonical.

To show this—and highlight the role of the KKS symplectic structure—it is convenient

to perform the reduction by Π of (Φ
[f ]
ext,Ω

H,[f ]
ext ) in two steps: first to (Φ[f ],ΩH,[f ]) by

projecting out the stabilizer transformations, and then to (Φ[f ],Ωred,[f ]) by projecting out
gauge transformations.

Thus, let me backtrack to the definition of ϑH,[f ] (57). Using dHu = du + $|∂Ru and

the fact that within a CSSS ι∗θV =
∮ √

hTr(f$) (23), this 1-form can be written as

ϑH,[f ] = ϑ[f ] + π∗oι
∗θV ∈ Ω1(Φ

[f ]
ext). (66)

Differentiating, one finds

ωH,[f ] = dϑH,[f ] = ω[f ] + π∗oι
∗dθV ∈ Ω2(Φ

[f ]
ext) (67)

where ω[f ] is precisely the KKS presymplectic form (47). Note that the rightmost term
in this equation explains why ωH,[f ] does not identically vanish in the Abelian case, even
though ω[f ] does: in this case it is easy to check that ωH,[f ] = π∗oι

∗dθV = π∗oι
∗ ∮ √h foF,

in agreement with the overview of paragraph 4.1.
Although (in the non-Abelian theory) only the sum of ω[f ] and π∗oι

∗dθV is basic with
respect to gauge transformations, each term is individually basic with respect to sta-
bilizer transformations of the reference flux fo. Therefore, each term can be indepen-
dently projected down to Φ[f ] along πo. In particular, ω[f ] projects to the KKS 2-form

ω
[f ]
KKS ∈ Ω2(Φ[f ]) (48).

From equations (48) and (67), one readily sees that in the definition of the presym-

plectic 2-form Ω
H,[f ]
ext over (Φ

[f ]
ext,Π) (61), the horizontal and vertical parts of the off-shell

symplectic structure combine as in Ω = ΩH + dθV (see (23)), thus yielding

Ω
H,[f ]
ext = π∗oι

∗Ω + ω[f ] ∈ Ω2(Φ
[f ]
ext), . (68)

Then, subsequent reductions along Φ
[f ]
ext

πo−→ Φ[f ] π̃−→ Φ[f ]/G lead first to a gauge-basic

2-form on Φ[f ] = πo(Φ
[f ]
ext)

ΩH,[f ] := ι∗Ω + ω
[f ]
KKS ∈ Ω2(Φ[f ]), (69)

and finally to the fully reduced symplectic 2-form Ωred,[f ] on Φ[f ]/G = π̃(Φ[f ]).

Because not only ω[f ] and ω
[f ]
KKS, but also Ω and the maps ι and πo are independent of

$, so must be the expressions (68) and (69), and therefore the reduced symplectic space:

(Φ[f ]/G,Ωred,[f ]) is independent from the choice of $. (70)

4.11 The reduced symplectic structure (Φ[f ]/G,Ωred,[f ]) is canonical An important

aspect of equations (68) and (69) which express Ω
H,[f ]
ext and ΩH,[f ] in terms of Ω—as opposed

to equation (61) which expresses Ω
H,[f ]
ext in terms of ΩH ,—is that only the sum of the 2-

forms appearing on their right-hand side defines a 2-form which is basic with respect to
gauge transformations.

The only exceptions to this statement arise when ω
[f ]
KKS vanishes, that is when the flux

is trivial (either because f = 0 or ∂R = ∅) or when G is Abelian. This explains why the
Abelian case is so much simpler.
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In the Abelian case, comparison with the result of paragraph 4.5 shows that there
are multiple symplectic structures available on the reduced superselection sector Φ{fo}/G:
there is the symplectic structure Ωred,{fo}, but also the family of structures Ωred

$ for each
$. However, as the notation suggests, only Ωred,{fo} is independent of $—cf. paragraph
4.1.

In the non-Abelian case none of the 2-forms Ωred
$ is non-degenerate due to the nontrivial

nature of flux-rotations; hence, the only available symplectic form over the reduced CSSS
Φ[f ]/G is Ωred,[f ], which also happens to be independent of $. Therefore the completion of
Ωred
$ through the addition of a (gauge-horizontal) KKS symplectic structure on the space

of fluxes, not only cures the kernel of ι∗ΩH but also its dependence on $.
Indeed, the reduced symplectic structure Ωred,[f ] is fully canonical: its construction

does not depend on any external choice or input, even the KKS form is canonically given
on [f ]. In sum, once the focus is set on covariant superselection sectors, the form of Ωred,[f ]

is enforced upon us by the resulting geometry of field space and by the existence of flux
rotations.

4.12 Flux rotations symmetries What is the fate of the projectable flux transforma-

tions Y [f ]
cov in relation to the canonical symplectic structure Ωred,[f ]?

Consider a flux rotation Yζ∂ ∈ Y
[f ]
cov viewed, as described above, as a horizontal vector

field on Φ
[f ]
ext. Recall that a flux rotation Yζ∂ is projectable down to Φ

[f ]
ext/Gext = Φ[f ]/G if

and only if it is “covariant” i.e. if only if the label ζ∂ has a field-dependence that makes
it change covariantly along the gauge directions: Lξ]ζ∂ = [ζ∂ , ξ|∂R]. Denote its projection

Ỹζ∂ := Π∗Yζ∂ ∈ X1(Φ[f ]/G).
Now, for a covariant parameter ζ∂ , define

Hζ∂ := −
∮ √

hTr(fou
−1ζ∂u) ∈ Ω0(Φ[f]/G) (71)

and note that this quantity is invariant both under the flux-reference stabilizer transforma-
tions, and under gauge transformations. Therefore, Hζ∂ = −

∮ √
hTr(fζ∂) can be under-

stood as defining a function on the reduced CSSS Φ[f ]/G, or more precisely Hζ∂ = Π∗H̃ζ∂

for a H̃ζ∂ ∈ Ω0(Φ[f ]/G). Moreover, from its gauge invariance, one deduces that

dHζ∂ = dHHζ∂ . (72)

One can then compute the contraction

Ω
H,[f ]
ext (Yζ∂ ) = ω

H,[f ]
ext (Yζ∂ ) =

∮ √
hTr

(
fo[u

−1ζ∂u, u
−1dHu]

)
. (73)

and thus to verify that

Ω
H,[f ]
ext (Yζ∂ ) = −dHζ∂ +HdHζ∂ , (74)

where dHζ∂ = dζ∂ − [ζ∂ , $|∂R]. As all other terms, HdHζ∂ is also basic both with respect
to flux-reference stabilizer transformations and gauge transformations. It is therefore
projectable to a h̃ζ∂ ∈ Ω1(Φ[f ]/G) according to Π∗h̃ζ∂ := HdHζ∂ .

Using the defining relation of Ωred,[f ] and the surjectivity of Π, one finds

Ωred,[f ](Ỹζ∂ ) = −dH̃ζ∂ + h̃ζ∂ . (75)

Therefore, on the reduced CSSS Φ[f ]/G the flux rotation Ỹζ∂ is a Hamiltonian vector field
of charge H̃ζ∂ if and only if h̃ζ∂ = 0, i.e. if and only if HdHζ∂ = 0.
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However, for HdHζ∂ = 0 to vanish (without Hζ∂ to vanish as well) one needs

dHζ∂ = 0. (76)

In turn, this condition can be satisfied nontrivally throughout Φ
[f ]
ext—i.e. without incurring

in overly-restrictive integrability conditions—only if $ is flat, i.e. only if F = 0.
Then, if F = 0 and if in addition the parameters ζ∂ ’s do not change under flux-

rotations Yζ′∂ (ζ∂) = 0 (this is the case if ζ∂ is independent of ECoul), the charges H̃ζ∂

satisfy a Lie(G|∂R) Poisson algebra

{H̃ζ∂ , H̃ζ′∂
} := Ωred,[f ](Ỹζ∂ , Ỹζ′∂ ) = H̃[ζ∂ ,ζ

′
∂ ], (77)

constituting a representation of the following Lie algebra of field-space vector fields:42

JỸζ∂ , Ỹζ′∂ K = Ỹ[ζ∂ ,ζ
′
∂ ]. (78)

Notice that the Hamiltonian nature of flux rotations relies on the flatness of $, even
though Ωred,[f ] is $-independent, because the very definition of flux rotations relies on a
choice of $ to provide the radiative/Coulombic split of the electric field: only ECoul is
affected by the action of Yζ∂—see paragraph 4.4. In particular, if the topology of A is
such that no flat $ exists on it,43 it is then impossible to define a radiative/Coulombic
split that corresponds to flux rotations which are Hamiltonian.

To summarize, covariant flux rotations define Hamiltonian vector fields, i.e. kinemat-
ical symmetries, on Φ[f ]/G only if they are based on a $ which is flat. In this case, their
Hamiltonian generator is given by a (gauge-invariant) smearing of the electric flux, H̃ζ∂ .
Moreover, if the parameters ζ∂ ’s are chosen independent of ECoul, these charges satisfy a
Lie(G|∂R) Poisson algebra, hallmark of the noncommutativity of the electric fluxes f .

Finally, note that since flux rotations alter the Coulombic part of the electric field and
therefore the energy content of the field configuration, it seems unlikely that flux rotations
can be promoted to dynamical symmetries too.

5 Beyond CSSS: edge modes

In the first part of this article I built a canonical symplectic structure on reduced CSSS.
In the reminder of this article I will discuss how to define a reduced symplectic structure
in a context that goes beyond the CSSS framework. This will involve the inclusion of
new “edge mode” dof symplectically conjugate to the electric flux. I will argue that the
Donnelly–Freidel prescription for the inclusion of edge modes [26] is the most natural
one. Despite this fact I will show that this prescription is equivalent to breaking gauge
symmetry at the boundary. Based on this observation I will argue at the end that only
the CSSS approach provides a canonical framework which is free of ambiguities.

5.1 Beyond CSSS In the construction of Ωred,[f ], it was crucial to restrict attention
to a (covariant) flux superselection sector. However the notion of superselection sector
has at times been put into question [24,53].44 It is therefore of interest to investigate the
consequences of not restricting to a flux superselection sector.

Then, Φ[f ] is replaced with the larger space of all on-shell field configurations

ΦG :=
⋃
f∈F
{φ ∈ Φ|Gf = 0} (79)

42This equation holds under the same condition which determine the validity of (77).
43This is the same as saying that A admits no global section [51,52].
44See also [25] in relation to superselection and quantum reference frames.
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where F := {f} is the total space of fluxes. On the reduced on-shell space, ΦG/G, the
2-form Ωred

$ (35) can only have a larger kernel than before, with the result that this kernel
is now nontrivial even in Abelian theories. This is because in ΦG/G one can not only
“rotate” fluxes in a give conjugacy class but also change their conjugacy class, and now
both transformations go undetected by Ωred

$ .
In a CSSS, the issue of the kernel of Ωred

$ was solved by recognizing the presence of
a canonically-given symplectic structure on the space of covariantly superselected fluxes
[f ] ∼= G|∂R/Go|∂R. However, in general no canonical symplectic structure exists for the

total space of fluxes F ∼= C∞(∂R,Lie(G)).45 In a finite dimensional analogue, whereas a
(co)adjoint orbit in (the dual of) a Lie algebra admits a canonical symplectic structure,
the Lie algebra itself does not: e.g. the Lie algebras (R,+) and Lie(SU(2)) even fail to be
even-dimensional.

Therefore, the only option to solve the problem of the kernel of Ωred
$ in the context

of non-superselected on-shell fields, is to enlarge, or extend, the phase space by including
new, additional, dof canonically conjugate to the fluxes f ∈ F . The question is: is there
a most natural way to perform this extension?

5.2 Two possible phase space extensions As I have already noted in section 4.6, fluxes
are best understood as objects valued in the dual of the Lie algebra, F ∼= C∞(∂R,Lie(G)∗),
where the dualization is made through the map f 7→ f∗ = Tr(f ·). For brevity I will use
the (slightly misleading) notation Lie(G∂)∗ := C∞(∂R,Lie(G)∗).

Enlarging the phase space by adding new dof canonically conjugate to the flux means
“doubling” the space F to obtain a new symplectic space (DF , ω) on which gauge trans-
formation have a Hamiltonian action. There are two natural ways of achieving this.

These two ways are based on the “doubled” spaces (DF0 , ω0 = dϑ0) and (DFDF, ωDF =
dϑDF) respectively defined by:

DF0 := Lie(G∂)× Lie(G∂)∗ 3 (α, f∗) and ϑ0 :=

∮ √
hTr(fdα), (80)

and

DFDF := G∂ × Lie(G∂)∗ 3 (k, f∗) and ϑDF :=

∮ √
hTr(fdkk−1). (81)

Notice thatDF0 ∼= C∞(∂R,T∗Lie(G)) andDFDF
∼= C∞(∂R,T∗G), both featuring Lie(G∂)∗

as momentum space. In particular, with the latter identification, (k, f∗)x∈∂R are coordi-
nates on T∗G obtained through the right-invariant trivialization of the bundle, and ϑDF

originates in the tautological 1-form on T∗G. The space (DFDF, ωDF) is the edge-mode
phase-space proposed by Donnelly and Freidel [26]. It will become clear that this is the
most natural choice between the two.

The inclusion of the degrees of freedom α or k leads to the following extensions of the
on-shell phase space (here, • ∈ {0,DF}):

πF ,• : ΦF ,•G :=→ ΦG, ΦF ,•G :=

{
ΦG × Lie(G∂) for • = 0,

ΦG × G∂ for • = DF,
(82)

for projections πF ,• which send (α, f) 7→ f and (k, f) 7→ f respectively.
The demand of gauge invariance of ϑ•, i.e. Lξ]ϑ• = 0 for dξ = 0, forces us to demand

that gauge transformations act on α and k (now seen as coordinates in ΦF ,•G ) by the adjoint

45This group is distinct from G|∂R since the latter does not contain “large boundary gauge transforma-
tions.” Cf. footnote 33.
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representation and (inverse) left translations respectively:

αg = g−1
|∂Rαg|∂R and kg = g−1

|∂Rk. (83)

Thus, the extended spaces ΦF ,•G are naturally foliated by gauge orbits. I will call the

tangent space to the gauge orbits in ΦF ,•G the vertical subspace of ΦF ,•G and I will denote
it VF ,•.

Pulling back $ from ΦG to ΦF ,•G through the canonical projection πF ,• (but omitting

the pullback in the following formulas), one can introduce horizontal derivatives on ΦF ,•G :

dHf = df + [f,$|∂R] and

{
dHα = dα+ [α,$|∂R] for • = 0,

dHk = dk +$|∂Rk for • = DF.
(84)

Hence, the horizontal modifications of the canonical symplectic forms on ΦF ,•G are

ϑH0 :=

∮ √
hTr

(
fdHα

)
∈ Ω1(ΦF ,0G ), (85a)

and

ϑHDF :=

∮ √
hTr

(
fdHkk

−1
)
∈ Ω1(ΦF ,DF

G ). (85b)

It is immediate to check that these 1-forms are basic with respect to the action of gauge
transformations, and therefore so are the following 2-forms (cf. the derivation of (25))

ωH0 := dϑH0 =

∮ √
hTr

(
dHf f dHα+ [f, α]F

)
∈ Ω2(ΦF ,0G ). (86a)

and

ωHDF := dϑHDF =

∮ √
hTr

(
dHf f dHkk

−1 + 1
2f [dHkk

−1 f, dHkk
−1] + fF

)
∈ Ω2(ΦF ,DF

G ).

(86b)
Using the projections πF ,•, one can thus define the following presymplectic 2-forms

over the extended on-shell phase spaces ΦF ,•G (here, ι : ΦG ↪→ Φ):

ΩH,F
• := π∗F ,•ι

∗ΩH + ωH• ∈ Ω2(ΦFG ). (87)

These presymplectic 2-forms are basic and closed. Moreover, their respective kernels are
given by the vertical subspaces of ΦF ,•G :

ker(ΩH,F
• ) = VF ,•. (88)

Hence, the presymplectic 2-forms ΩH,F
• induce a symplectic structure on the reduced

spaces ΦF ,•G /G. Introducing the projections π̃F ,• : ΦF ,•G → ΦF ,•G /G, the reduced symplectic

structures Ωred,F
• ∈ Ω2(ΦF ,•G /G) are defined by the relations

π̃∗F ,•Ω
red,F
• := ΩH,F

• . (89)

Whereas Ωred,F
0 is $-dependent, the DF symplectic structure is $-independent. In-

deed, equations (84–87) and (23) yield (omitting the pullbacks46):

ΩH,F
• = d(θH + ϑHDF) = d(θH + θV + ϑDF) = Ω + ωDF, (90)

where the right-most term in this equation is manifestly independent of the choice of $.
Given the relationship of (flat) functional connections and gauge fixings this seems to

mean that the DF symplectic structure is fully gauge-invariant. However, despite these
appearances, I shall argue in section 5.8 that the gauge invariance of the DF symplectic
structure is an illusion.

46The action of the missing pullbacks is independent of $.
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5.3 Lie bialgebras and quantum doubles Both symplectic structures ΩH
F ,• find their

origin in the theory of Lie-bialgebras and quantum doubles [50], albeit being somewhat
trivial examples thereof. In particular, ω0 reflects the canonical symplectic structure
carried by the double Lie-bialgebra d0 = Lie(G) ⊕ Lie(G)∗ built from the Lie bialgebra
g0 = (Lie(G), [·, ·], γ = 0) with trivial cobracket γ. Similarly, ωDF reflects the canonical
symplectic structure carried by the Heisenberg double D+ = exp d0

∼= T∗G.
I mention this because, although the cases treated here are the most trivial exam-

ples of Lie-bialgebras and quantum doubles, it turns out that upon discretization other
far less trivial “double” structures can naturally arise [54] or become available [55, 56].
These structures can be understood as deformations of these most trivial cases to new
phase spaces where gauge acts through a quantum-group symmetry. Typically, these
more general structure involve some sort of “exponentiated flux” (in a way similar to
how D+ = exp d0). I refer to the cited articles for further references on this topic and
its relevance for quantum gravity, self-dual formulations of YM theory, and the theory of
topological phases of matter.

5.4 Dof in (Φ
[f ]
ext,Ω

H,[f ]
ext ) vs. (ΦF ,DF

G ,ΩH,F
DF ) The reader will have surely noticed the

parallel between the formulas that characterize the field-space extension à la DF ΦF ,DF
G ,

and those that describe the presymplectic structure in the extended description of the

CSSS Φ
[f ]
ext. Indeed, the two are formally mapped onto each other by u k.47

But crucially, whereas the u’s are just an (over)-parametrization of the already existing
flux dof in the CSSS [f ], in the DF framework not only the electric fluxes live in the larger
space f ∈ F but also the edge modes k’s embody new, independent dof. Mathematically
this difference is encoded in the relation f = ufou

−1 and the ensuing flux-stabilizer sym-
metry u 7→ ugo that reduces the variables u ∈ G|∂R to variables in G|∂R/Go|∂R ∼= [f ]. There
is no such symmetry acting on the edge modes.

5.5 Flux rotations in the Donnelly-Freidel extension The natural extension of flux
rotations to the Donnelly–Freidel extended phase space requires that the edge modes k
also transform under this kinematical symmetry. In ΦF ,DF

G , I thus define48

Yζ∂ (f) = −[f, ζ∂ ], Yζ∂ (k) = ζ∂k and Yζ∂ (•) = 0 otherwise, (91)

i.e. for • ∈ {A,Erad, ψ, ψ}. As above, for flux rotations to be projectable onto the reduced
phase space, ζ∂ must be field dependent in a way that makes it transform covariantly
under gauge transformations: Lξ]ζ∂ = [ζ∂ , ξ|∂R]. I call the corresponding flux rotations,
covariant flux rotations.

Notice that the very definition of flux rotations depends on a choice of $: it requires
splitting the electric field into radiative and Coulombic components, so that Yζ∂ can act
on the latter and not on the former. This is why, although ΩH

F ,DF does not depend on $,
the following flow equation does:

ΩH,F
DF (Yζ∂ ) = −dHH

DF
ζ∂

+HDF
dHζ∂ where HDF

ζ∂
=

∮ √
hTr(fζ∂). (92)

From this and in complete analogy with the reasoning made within a single CSSS,
one deduces that covariant flux rotations are Hamiltonian in the reduced symplectic space
(ΦF ,DF

G /G,ΩH,F
DF ) if and only if $ is flat.

47E.g. ϑ[f ] =
∮ √

hTr(fou
−1du) =

∮ √
h,Tr(fduu−1) 

∮ √
hTr(fdkk−1) = ϑDF.

48Note that the vector fields Yζ∂ are here redefined to be sections of TΦF,•G rather than TΦ[f ].
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In the Abelian case, f is left invariant by flux rotations, which have the sole effect of
translating k: i.e. Abelian flux rotations have absolutely no effect on the Gauss constraint
and the Coulombic electric field. Indeed, in the CSSS framework, Abelian flux rotations
are completely trivial. Here their action is nontrivial only because of the extension of
the phase space by edge modes. In this sense—contrary to what happens in a CSSS—in
DF the physical significance of Abelian flux rotations ultimately relies on the physical
interpretation one attaches to the edge mode k; see below.

5.6 “Boundary symmetries” of the Donnelly-Freidel extension Having introduced the
new edge-mode dof k, the possibility arises of producing a new symmetry that translates
the k′’s while leaving all other fields untouched. This idea yields what DF called “surface
(or boundary) symmetries” [26].

Define the vector field Zη∂ ∈ X1(ΦF ,DF
G ) by the following action on the coordinate

functions of ΦF ,DF
G :

Zη∂ (k) = kη∂ and Zη∂ (•) = 0 otherwise, (93)

for η∂ a possibly field-dependent parameter valued in Lie(G∂). Since these transformations
and gauge transformations act on the opposite side of k, the vector field Zη∂ is projectable
to the reduced phase space—i.e. JZη∂ , ξ

]K = 0 (dξ = 0)—if and only if dη∂ = 0. I will
henceforth assume this condition to hold. The ensuing Zη∂ are DF’s boundary symmetries.

Boundary symmetries are Hamiltonian [26] (hence the name “symmetries”). Indeed,

ΩH
F ,DF(Zη∂ ) = −dQDF

η∂
where QDF

η∂
=

∮ √
hTr

(
η∂Ad−1

k f
)
. (94)

Notice that QDF
η∂

is gauge invariant and hence the pullback by π̃F ,DF of a function Q̃DF
η∂

defined on the reduced phase space: QDF
η∂

= π̃∗F ,DFQ̃η∂ .
In the Abelian case, these transformations have the same action as flux rotations—

however, this is a coincidence due to the fact that Abelian flux rotations are in a sense
trivial (see above). In general, they represent a pure translation of the edge modes k by
a parameter which is “malleable” over ∂R but “rigid” throughout phase space. Their
physical meaning fully relies on the physical interpretation one attaches to the edge mode
k.

Geometrically DF’s boundary symmetries encode an ambiguity in the identification of
the “origin” of the extended phase space DFDF = G∂×Lie(G∂)∗ with that of C∞(∂R,T∗G).
In fact, whereas T∗G seen as a group possesses an identity, i.e. a preferred origin, as a
manifold it is completely homogeneous and thus lacks a preferred origin. Therefore the
manifold isomorphism T∗G ∼= G × Lie(G)∗ is natural but not canonical, i.e. depends on
the choice of an origin.49 In other words, the origin of these symmetry can be ultimately
traced back to the fact that the projection from T∗G to Lie(G)∗ fails to be canonical—even
if the cotangent bundle T∗G is trivial.

This suggests that the “boundary symmetries” might encode a fundamental ambiguity
in the definition of the DF extended phase space and symplectic structure. This is what
I will discuss next.

5.7 DF edge modes as open Wilson lines Comparison to the lattice suggest an in-
terpretation of the edge mode k’s as open Wilson lines which land transversally onto the

49Combinations of flux rotations and “boundary symmetry” can also change the orientation of the
tangent plane at the origin, without shifting the origin.
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boundary. This interpretation explains not only the fact that k is conjugate to the flux,
but also its gauge transformation property.

Since variations of A within R do not affect k, for this interpretation to be valid the
whole Wilson line needs to lie in the complementary region R = Σ \ R̊—which might seem
puzzling if ∂R is an asymptotic boundary.

Thus, for any x ∈ ∂R, one can interpret k as being given by the path-ordered expo-
nential of A along some (arbitrary) choice of paths {γx}x∈∂R:

k(x) =
←−−−
Pexp

∫
γx

A where γx : [0, 1]→ R, γx(1) = x. (95)

From this perspective, the “boundary symmetries” of the edge modes are nothing else
than changes in the choice of gauge at γx(0) (or possibly changes in the choice of the
ensemble of paths {γx}). According to this construction, the Wilson lines k(x) have the
interpretation of “gauge reference frames” with respect to the exterior of R; or, if γx(0) is
taken arbitrarily close to γx(1) = x, it seems reasonable to conclude that the edge modes
k are nothing else than the result of breaking of the original gauge symmetry at ∂R.

This viewpoint is confirmed by the following observation: the DF extension and sym-
plectic structures can be obtained by reducing the space of on-shell configurations equipped
with the symplectic structure Ω with respect to the action of the group G̊ of gauge trans-
formations that are trivial at the boundary.50 I will call G̊ the group of bulk gauge trans-
formations.

This observation means that DF does break the gauge symmetry at the boundary, only
to give the impression it does not by resorting to a Stückelberg trick at ∂R. Even more
importantly, it also means that DF is based on an implicit choice of a (boundary) gauge
fixing and that the effects of changing this gauge fixing are completely degenerate with
the effects of changing the field configuration up to bulk-only gauge transformations. Let
me sketch a proof.

5.8 DF edge modes from breaking of boundary gauge invariance To define a sym-
plectic form on ΦG/G̊, it is necessary to first parametrize this space effectively. Instead of
working with ΦG foliated by orbits of G̊, I will work with a larger space ΦG × K foliated
by orbits of an enlarged gauge group G × G̊:

πK : ΦG ×K → ΦG, (A,E, . . . , k) 7→ (A = k−1Ak + k−1dk,E = k−1Ek, . . . ) (96)

where k ∈ K ∼= G is a new G-valued field, and where the two gauge symmetries act as:

G :


Ag = g−1Ag + g−1dg,

Eg = g−1Eg,

. . .

kg = g−1k,

and G̊ :


Ag̊ = A,

E g̊ = E,

. . .

kg̊ = kg̊;

(97)

here the “. . . ” stand for the obvious generalizations in presence of matter fields. Note that
the G-symmetry is meant to reabsorb the new dof k (à la Stückelberg), whereas the the G̊
symmetry is the original gauge symmetry which now conveniently acts on the new k fields
only.

Denote ι : ΦG ↪→ Φ as before. Then, the on-shell symplectic structure ι∗Ω—for
the full Ω =

∫ √
gTr(dE f dA) + . . .—is basic with respect to the action of bulk gauge

50I have heard or read this argument before, but I was unable to track a publication filling in the details.
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transformations G̊. Its pullback by πK yields the following 2-form on the extended space
ΦG ×K:

π∗Kι
∗Ω =

∫
√
gTr(dE f dA) + · · ·+ d

∮ √
hTr(fdkk−1). (98)

This 2-form is basic with respect to the action of the enlarged gauge group G × G̊. This is
clear from the following two facts: on the one hand π∗K(A) = k−1Ak+k−1dk etc. are man-
ifestly G-invariant expressions, and on the other hand (on-shell of the Gauss constraint)
k appears only at the boundary where the action of G̊ is trivial. Since G̊ acts trivially on
the expression π∗Kι

∗Ω, I will denote by the same symbol the 2-form obtained by project-

ing π∗Kι
∗Ω down to (ΦG × K)/G̊. Note that for now I am quotienting out the bulk gauge

symmetries only.
From these expressions and the action of the G-gauge symmetry it is clear that (cf.

also (90))51 (
(ΦG ×K)/G̊, π∗Kι∗Ω

) ∼= (ΦF ,DF
G ,ΩH,F

DF

)
. (99)

Therefore, the DF edge modes are nothing else than the would-be-gauge dof unfrozen
by the action of quotienting ΦG only by bulk gauge transformations, rather than by the
full group of gauge transformations. In other words, the DF edge modes are the would-
be-gauge dof unfrozen through the action of explicitly breaking gauge invariance at the
boundary.

Changes in the would-be-boundary-gauge of A correspond to right translations of k by
elements of G|∂R—similarly to the DF boundary symmetries. This suggests that the DF
boundary symmetries corresponds to changes in the choice of gauge at the boundary in
a context where one is demanding configurations to be equivalent only up to bulk gauge
transformations.

Let me be more precise about this point, because it involves an important subtlety. To
understand what the relationship is among (i) right translations of k, (ii) DF boundary
symmetries, and (iii) (would-be-)gauge transformations supported at the boundary, I will
revert to discussing the action of the full group of gauge transformations G rather than
just G̊. In other words, I will consider the effect of extending the action of G̊ to G in
order to understand how would-be-gauge transformations manifest in the gauge-breaking
interpretation of the DF phase space presented above.

Thus, consider the bundle ΦG → ΦG/G and refer to figure 1 for a graphical represen-
tation of what follows. The choice of a gauge fixing in ΦG → ΦG/G is usually understood
as the choice of global section σ : ΦG/G → ΦG (left panel in fig. 1). Through vertical
translations of the section σ → σg := Rg ◦ σ by field-independent g ∈ G (dgg−1 = 0), one
can define from σ an equivariant horizontal foliation Hσ ⊂ TΦG composed of leaves each
“parallel” to σ (center panel in fig. 1). Since the choice of a section and of an equivariant
horizontal foliation are in 1-to-1 correspondence, I will henceforth identify the choice of
a gauge fixing with the entire equivariant horizontal foliation, and not with the single
section. The choice of a single section in a gauge fixing corresponds to choosing a leaf
in the gauge fixing foliation. Infinitesimal changes of horizontal leaf within the horizon-
tal foliation are nothing else than the field-independent boundary symmetries of DF Zη∂ ,
dη∂ = 0. Boundary symmetries change the leaf in a gauge fixing foliation, not the gauge
fixing itself.

51A subtlety: this identification is correct only up to global issues. In the DF phase space one is free
to consider k ∈ G∂ , whereas in the gauge-breaking setting discussed here one finds that k ∈ G|∂R which
corresponds to the connected component of G∂ which is connected to the identity. It is not clear to me if
this distinction is of any relevance, i.e. whether taking k ∈ G∂ in DF means simply dealing with multiple
copies of the same space/theory—one per connected component of G∂ ,—which cannot communicate with
each other.
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Figure 1: The (fiducial) infinite dimensional field space bundle ΦG → ΦG/G. (Left) The choice of a gauge
fixing section σ : ΦG/G → ΦG. (Center) The generation of the equivariant horizontal foliation associated
to σ by means of field-independent gauge transformations. (Right) A change in gauge fixing through the
action of a field-dependent gauge transformation. The DF boundaries symmetries correspond to changes
of leaf in the gauge fixing foliation depicted in the central panel.

Here is an example. In electromagnetism (on a manifold without boundaries), a choice
of section is provided by the condition ∇iAi = 0. Acting on this condition by a field-
independent gauge transformation A 7→ A+ dλ one produces a family of conditions of the
type ∇iAi = Λ for Λ = ∆λ a field-independent function over R. Then, according to the
language introduced above, each function λ corresponds to a different leaf in the horizontal
foliation corresponding to the Coulomb gauge-fixing of A. To change the gauge fixing
(foliation), say from Coulomb to axial gauge, one needs instead to act on the condition
∇iAi with a field-dependent gauge transformation, which thus changes functional form
(right panel of fig. 1). Only field-independent gauge transformations, i.e. leaf changes,
are Hamiltonian in DF (c.f. the condition dη∂ = 0) and their boundary values correspond
to the DF boundary symmetries.

Now, note that the tangent space Hσ to a gauge fixing foliation defines a unique
connection $ = $σ through Hσ = ker$σ. Note that $σ encodes all the leaves associated
to the gauge fixings at once, and cannot tell them apart. This means that there is no
analogue of the DF boundary symmetry in a formulation based on $. More explicitly,
the Frobenius integrability of Hσ means that $σ is flat, i.e. $σ = h−1dh for some group
valued field-space function h; in this formulation, leaf changes are field-independent left
translations of h, i.e. h 7→ gh with dgg−1 = 0, which do not affect $σ at all. In this
regard, see [3, Sect.9] on the relation between flat connections, gauge fixings and dressings
(cf. also [46]).

Conversely, as noted above, “true” changes of gauge fixing, i.e. changes of the gauge
fixing foliation, can be obtained by acting on σ by a field-dependent translation. These
transformations however are not Hamiltonian symmetries of the DF framework. Indeed,
it is straightforward to check that the DF symplectic structure is not invariant under such
transformations.52 Therefore, the DF symplectic structure on the DF extended phase
space depends on an implicit choice of a (boundary) gauge-fixing as much as the reduced
symplectic structure on a CSSS depends on an explicit choice of a connection $.

(By an “implicit choice of a gauge fixing,” I mean that in the DF formalism there is no
place for specifying which gauge fixing one is using in expressing e.g. A up to boundary
gauge transformations G̊ in terms of the G-gauge classes (A, k) ∼ (Ag, g−1k). In this sense,
the boundary gauge is broken rather than fixed.)

In sum, although the DF symplectic structure is $ independent, it would be erroneous
to conclude that it is also gauge-fixing independent—even though its dependence on a
gauge fixing is implicit. In the DF framework, a new Hamiltonian boundary symmetry
arises which is not available in the CSSS framework and corresponds to changes of a leaf

52This relies on the fact that if dgg−1 6= 0 then dkk−1 6= d(kg)(kg)−1.
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within a gauge-fixing foliation. Importantly, changes in the choice of gauge fixing in the
DF framework fail to be Hamiltonian symmetry of the corresponding reduced phase space.

At the light of this, it is curious to note that the extension of the phase space by the
alternative Lie algebra-valued edge modes α—although dependent on $—does not suffer
of the same type of ambiguity afflicting the DF extension. But since a $ dependence is
also akin to a gauge-fixing dependence, ultimately both extensions suffer of very similar
issues.

5.9 A physical interpretation for the edge modes? A brief remark. The gauge-
breaking point of view developed above does not encompass possible “emergent” models
of physical edge dof similar to those which underpin e.g. the quantum Hall effect in the
effective Chern–Simons description,53 nor physical models of the edge modes in terms of
a physically coupled boundary system.

In the latter case, the boundary system is physical, i.e. corresponds to an actual
“object” at the boundary of the region. In other words, the boundary is a physical
interface. From this perspective group- or Lie algebra-valued edge modes seem a natural
but by far non-unique choice of dof to be coupled at this interface.54 Still, in certain
cases, DF-like variables do emerge naturally. For example, one could couple the gauge
system in question (say Abelian) with a superconductor material (at its boundary): if
the superconductor is well-described through spontaneous symmetry breaking,55 then the
superconductor’s phase provides a physical model for the (Abelian) edge mode, so that
changes in k correspond to changes in the state of the superconductor relative to the gauge
fields [59] (see also the discussion of the Higgs connection in [3, Sect.7]).

Interpreting edge modes as models of a physical system living at the interface ∂R means
that edge modes in general do not “disappear” upon gluing of two complementary regions
along ∂R,56 a fact that might have consequences for the interpretation of the “entangling
(or fusion) product” procedure of gluing introduced in [26].

6 Gluing, briefly

Finally, a few words about gluing based on joint work with Gomes [5]. To talk about
gluing without introducing further complications of topological origin, consider a setting
where the gauge system lives over a topologically trivial Cauchy surface Σ ∼= RD or SD

viewed as the “gluing” of two complementary regions Σ = R+ ∪ R− across the interface
S = ±∂R±, with R± ∼= DD and S ∼= SD−1.

It has been argued that the introduction of edge modes as gauge reference frames is a
necessary step in the reconstruction of global gauge-invariant dof from regional ones.

It has also been argued that edge modes are necessary because without them the union
of the regional dof does not encompass all the global dof, i.e. there are more physical dof
in Σ than in the disjoint union of R±.57

53In these effective models, both the bulk and boundary dof emerge as collective modes from the same
set of underlying, or “fundamental,” dof—i.e. electrons and Maxwell fields. Also, recall that YM theories
have a very different symplectic structure compared to Chern–Simons theories. See the remark after (25).

54Group valued edge modes are possibly the most “natural” insofar the gauge group acts freely on them.
Also, see [57] for an example, among others, of a different kind of boundary dof.

55See e.g. [58].
56In Chern–Simons their disappearance relies on the chirality of the edge theory.
57This corresponds to the non-factorizability of the Hilbert space of lattice gauge theory upon subdivision

of the lattice. Also, a side note: in [26] it was also made clear that edge modes are an over parametrization
of the global dof, hence the authors’ “entangling product” (or “fusion product”)—that is a symplectic
reduction procedure that introduces both a new constraint identifying the fluxes on the two sides of the
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The second statement is correct, the first one is not. Contrary to what happens in
a non-gauge system, the reduced symplectic structures on the CSSS’s associated with
R± and Σ fail to be additive under the gluing (R+, R−) → Σ = R+ ∪ R−, i.e. Ωred

Σ 6=
Ω

red,[f ]
R+ + Ω

red,[−f ]
R− , even after unfreezing the flux dof f .58 The missing dof in Ωred

Σ are the
dof conjugate to the electric flux through the interface S = ±∂R±.

Despite this fact, it turns out that the missing term in Ωred
Σ can be reconstructed from

a combination of the dof present in the regional symplectic structures Ω
red,[±f ]
R± .

This result might be surprising and is discussed in great detail in [5]. The crucial
point is that the “missing” dof which spoil additivity are encoded in the mismatch of the
regional radiative/horizontal dof at the interface ∂R. This quantity is Σ-nonlocal and,
clearly, can be computed from the knowledge of the radiative/horizontal modes in both
regions, without being encoded in either region alone. I hold the appearance of these
mismatches as a neat example of the relational interpretation of gauge theories [1,60–62].

7 Conclusions

In this article I have studied the construction of a symplectic structure on the reduced
phase space of YM theory in the presence of boundaries. I have done so both within
covariant superselection sectors for the electric flux, and in a larger context where new
“edge-mode” dof conjugate to the fluxes are included in an extended phase space.

The construction within covariant superselection sectors leads to a result that is com-
pletely canonical. In the non-Abelian case, this is achieved after one realizes that a canon-
ical completion of the “radiative” symplectic structure (ι∗ΩH) exists which equips the
Coulombic electric field with its own symplectic structure. This completion is based on
the Kirillov–Konstant–Sourieu construction and leads to non-commutative electric fluxes
whose boundary smearings generate—if $ is flat—physical transformations of the under-
lying system (flux rotations).

The second construction relies on the inclusion à la Donnelly and Freidel (DF) of new
edge dof to the phase space [26]. Although this construction seems at first sight canonical,
i.e. independent of any external choice, I argued that the result is nonetheless dependent
on an (implicit) choice of gauge at the boundary. This is related to the fact that DF edge-
modes can be constructed as would-be-gauge boundary dof originating in the incomplete
reduction of the phase space by bulk gauge transformations only.

Importantly, the implicit gauge-fixing dependence present in the edge mode descrip-
tion fails to be a Hamiltonian symmetry of the resulting reduced phase space. (The DF
boundary symmetries have a related, but more limited, interpretation.) In other words,
there is no residual “meta-symmetry” on the reduced phase space which allows one to
“physically” implement changes in the choice of the gauge fixing—a choice which there-
fore remains imprinted in the formalism. In sum, despite being the most natural choice in
a context not restricted by a choice of (covariant) superselection sector, the DF framework
includes new would-be-gauge dof by actually breaking gauge invariance at the boundary.

Compare this to what happens in a covariant superselection sector where (i) no new
dof need to be included and (ii) the resulting symplectic form is completely canonical,
i.e. independent from any external choice. Once again, the only surprising feature arising

interface and a quotienting procedure to mod-out the conjugate degree of freedom, i.e. “half” of the edge
modes.

58Notice that in summing the regional symplectic structures, the two KKS contributions for the fluxes
cancel each other. Indeed, for the gluing to be meaningful, the fluxes f± = u−1

± f±o u± must be equal and
opposite to each other, f+ = −f−, and therefore—choosing f+

o = −f−o as references—one has [u+] = [u−].
If the fluxes did not match, it would mean that a charged system were present at the interface.
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within a (non-Abelian) covariant superselection sector is the need to complete the symplec-
tic structure for the covariantly superselected fluxes—but then the completion provided
by the Kirillov–Konstant–Sourieu construction is fully canonical.

Edge modes are also not necessary for “gluing” the YM dof supported on adjacent
regions, a fact thoroughly discussed in [5]. There it is shown that a formulation of gluing
that does not rely on edge modes has the advantage of revealing the characteristically
nonlocal and relational features of the YM dof.

Finally, a word on the superselection of electric fluxes—which imply the superselection
of charges [16, 17].59 This concept has been put under scrutiny and criticized in the
past [24] (cf. [25]). In this regard, note that in the present context the superselection of the
fluxes is a consequence of restricting one’s analysis to a specific region R by deliberately
“tracing over” its complement R in a Cauchy surface Σ = R ∪ R.60 Thus, the flux
superselection is a consequence of this tracing, and not a property of the entire universe—
a distinction that might get muddled when considering idealized asymptotic boundaries.
Furthermore, the fact that covariant superselection sectors admit a canonical symplectic
structure, whereas the most natural way to go beyond flux superselection inherently breaks
the gauge symmetry at the boundary, provides—in my view—a strong argument in favour
of the viability of the notion of flux superselection as attached to finite regions.
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A Appendix

A.1 Uniqueness of ECoul

The goal of this appendix is to prove the uniqueness of ECoul as a solution to the Gauss
constraint Gf (31) at irreducible configurations of A.

Definition A.1 (Reducibility parameters). χ ∈ Lie(G) is said a reducibility parameter
for A if and only if it is such that Dχ := dχ+ [A,χ] = 0.

Reducibility parameters are to YM configurations what Killing vector fields are to
metrics in General Relativity: global symmetries. The set of reducibility parameters of
a configuration A forms a vector space (and in fact a Lie algebra) whose dimension is
necessarily finite and bounded by dim(G). This dimension is maxed out by vacuum
configurations with F [A] = 0.

Definition A.2 (Irreducible configurations of A). A configuration of the gauge potential
A ∈ A is said irreducible if and only if its only reducibility parameter is the vanishing
one, χ = 0.

59See also: [18–20] as well as [21]. Moreover, for recent results on a residual gauge-fixing dependence
of QED in the presence of (asymptotic) boundaries and flux superselection, see [22] (and also [23]). At
present it is unclear how these recent results square with the classical treatment presented here.

60This language is borrowed from the literature on entanglement entropy, where superselection sectors
do play a role [63,64].
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In Abelian theories all configurations are reducible (consider χ = const). In non-
Abelian theories, on the other hand, irreducible configurations constitute a dense set in
A. See footnote 12.

Definition A.3 (SdW boundary value problem—cf. section 2.2). Given a region R, the
following elliptic boundary value problem for the Lie(G)-valued function ξ{

D2ξ = α in R,

Dsξ = β at ∂R,

is called a Singer–DeWitt (SdW) boundary value problem with bulk source α and boundary
condition β (both valued in Lie(G)).

Lemma A.1 (Kernel of the SdW boundary value problem). The kernel of the SdW
boundary value problem at A ∈ A is given by the irreducibility parameters of A.

Proof. First notice that, by definition, a Lie(G)-valued variable ξ is in the kernel of the
SdW boundary value problem if and only if{

D2ξ = 0 in R,

Dsξ = 0 at ∂R.

Clearly any ξ which is a reducibility parameter of A satisfies this condition. To see why
the converse is also true notice that from this equation one deduces

0 = −
∫
√
gTr(ξD2ξ) +

∮ √
hTr(ξDsξ) =

∫
√
g gijTr(DiξDjξ) = G(ξ], ξ]),

which vanishes if and only if Dξ = 0, i.e. if and only if ξ is a reducibility parameter of the
configuration A.

Proposition A.1 (Uniqueness of ECoul). Suppose that A ∈ A is an irreducible. Then,
for any choice of functional connection $ and electric flux f , the Gauss constraint Gf = 0
has one and only one solution ECoul = ECoul(A, ρ, f).

Proof. The proof of this statement proceeds in two steps. In the first step I prove the
existence and uniqueness of the solution to the Gauss constraint for the SdW choice of
connection, i.e. $ = $SdW. In the second step, I show that this result can be used to
prove existence and uniqueness for any other choice of connection.

Part 1. For the SdW choice of connection EiCoul = gijDjϕ, the Gauss constraint
becomes a SdW boundary value problem:{

D2ϕ = ρ in R,

Dsϕ = f at ∂R
(SdW).

From the invertibility of the SdW boundary value problem at irreducible configurations
(Lemma A.1), we deduce existence and uniqueness of ϕ.

Part 2. Consider now an arbitrary connection $′ = $SdW + ν where ν is a horizontal
and covariant 1-form in Ω1(A,Lie(G)), i.e. for any field-dependent ξ, iξ]ν = 0 and Lξ]ν =
[ν, ξ] (see (4)).

Denoting with a prime (e.g. E′Coul) the quantities constructed from $′ rather than
$SdW, solving the Gauss constraint for E′Coul means solving the following system of equa-
tions: 

Di(E
′
Coul)

i = ρ in R,

si(E
′
Coul)

i = f at ∂R,∫ √
gTr((E′Coul)

idH′Ai) = 0.

(A1)
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where the last equation is a rewriting of (27).
Now, decompose E = E′Coul into its SdW-radiative (εrad) and SdW-Coulombic (Dγ)

componets, that is (E′Coul)
i = εirad + gijDjγ. Also, observe that dH′A = d⊥A − Dν ≡

d⊥A−Dν(ĤSdW(·)), where the last equality follows from iξ]ν = 0. Inserting these formulas
in the system of equations above, and using (28) for εrad, one obtains:

D2γ = ρ in R,

Dsγ = f at ∂R,∫ √
gTr(εiradd⊥Ai) =

∫ √
gTr(DiγDiν(ĤSdW(·))).

(A2)

From Part 1, γ is uniquely determined by A, ρ and f . To finish the uniqueness proof for
E′Coul, the component εirad must also be shown unique from the last equation of (A2).

From the existence and uniqueness of γ, the right hand side of that equation yields a
well-determined SdW-horizontal one-form α⊥ :=

∫ √
gTr(DiγDiν(ĤSdW(·)) ∈ T∗Φ.

Since εrad is by construction radiative (i.e. satisfies (28)), one sees that∫
√
gTr(εiradd⊥Ai) ≡

∫
√
gTr(εiraddAi)

and therefore from the last of (A2) it follows that εirad is nothing but the “component”
description of the 1-form α⊥. Since α⊥ is uniquely defined, so must be εirad.

Thus, having uniquely determined γ and εrad in terms of (A, ρ, f), we have uniquely
determined (E′Coul)

i = εirad + gijDjγ as well. This concludes the proof.

Note that, from (A1) and (A2), γ = ϕ and therefore the difference between the
Coulombic modes associated to two different functional connections is always radiative,
i.e. E′Coul − ECoul = εrad.

A.2 The kernel of ι∗ωH : proof of (40)

The goal of this appendix is to prove (40) which states that

ker(ι∗ΩH) = V [f ] ⊕ Y [f ].

(In this appendix, as in the main body of this article, I neglect reducible configurations;
cf. appendix A.1, footnote 12, and the comment at the end of section 4.9.)

Lemma A.2. Given a choice of functional connection $, let φ be an on-shell configuration
φ ∈ {Gf = 0} and X ∈ ι∗(TφΦ[f ]) a variation tangent to a CSSS (i.e. X this preserves
the validity of the Gauss constraint but only the equivalence class of the flux f). Denote
η := $(X) and δXf := X(f). Suppose that X acts on all field components61 except ECoul as
the gauge transformation η would: that is X(•) = η](•) for • ∈ {A,Erad, ψ, ψ}. Then, X
is uniquely determined by η and its own action on f , according to the formula X = η] + Y
where

(i) Y is a functional of (δXf + adη|∂Rf), i.e. Y := Y[ δXf + adη|∂Rf ];

(ii) Y = 0 if and only if δXf = [f, η|∂R];

(iii) Y is tangent to Φ[f ] ⊂ Φ;

(iv) Y is $-horizontal, i.e. $(Y) = 0;

61Seen as (coordinate) functions on field space, so that e.g. X(A) = XA for X =
∫
XA

δ
δA

+ . . . .
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(v) Finally, if $ = $SdW, then

Y(SdW) =

∫
ζ
δ

δϕ
where

{
D2ζ = 0 in R,

Dsζ = δXf − [f, η|∂R] at ∂R
(SdW). (A3)

Proof. Note that X is uniquely determined if so is its action on on the remaining coordinate
on Φ, i.e. ECoul. Therefore, the uniqueness of X as a functional of η and δXf is a corollary
of proposition A.1 which states the uniqueness of the solution of the Gauss constraint
ECoul. Indeed, if (A, ρ, f) determine ECoul uniquely then these quantities and their first
order variations, that is (X(A),X(ρ),X(f)), uniquely determine the first order variation of
ECoul.

Therefore, let me prove that X(ECoul) is uniquely determined in terms of η and δXf .
For this, consider first the variation of62 (A1) along an arbitrary direction X:

DiX(EiCoul) = X(ρ)− [X(Ai), E
i
Coul] in R,

siX(EiCoul) = X(f) at ∂R,

LX
∫ √

gTr(EiCouldHAi) = 0.

The last equation states that variations along X do not alter the fact that ECoul satisfies
its defining functional property, that is

∫ √
gTr(EiCouldHAi) = 0 (see the proof of (A.1)).

Now, specializing to a configuration φ ∈ ΦG that satisfies the Gauss constraint and X that
satisfies the hypothesis of the proposition, the above simplifies to

DiX(EiCoul) = [ρ, η]− [Diη,E
i
Coul] = Di[E

i
Coul, η] in R,

siX(EiCoul) = δXf at ∂R,∫ √
gTr

(
X(EiCoul)dHAi) +

∫ √
gEiCoul[dHAi, η]

)
= 0.

where I used that $ is defined as a pullback from A and that Lη]dHA = [dHA, η]. Intro-
ducing

δYE
i
Coul := X(EiCoul)− [EiCoul, η]

the above system of equations can be rewritten as
DiδYE

i
Coul = 0 in R

siδYE
i
Coul = δXf − [f, η|∂R] at ∂R∫ √

gTr(δYE
i
CouldHAi) = 0

To conclude, refer to proposition A.1 (cf. (A1)) to deduce that δYE
i
Coul is uniquely

determined by δXf and η|∂R. Thus, whereas X acts on (A,Erad, ψ, ψ) as a pure gauge
transformation η (by hypothesis), its action on ECoul is fully determined by the boundary
value of η and the action of X on the electric flux f . Therefore, one can write X = η] + Y
where the vector Y is defined by: Y(•) = 0 for • ∈ {A,Erad, ψ, ψ} and Y(ECoul) = δYECoul

as determined above.
The vector Y is tangent to Φ[f ] ⊂ Φ because both X and η] are.63 Moreover, Y is

horizontal because the connection $ ∈ Ω1(Φ,Lie(G)) is defined as a pullback to Φ of a
connection onA: indeed, from this it follows that $(Y) = $(X)−$(ξ]) = $((X)A)−ξ = 0.

62Here we suppress the prime, E′Coul  ECoul.
63Note, however, that nowhere in the proof of the lemma δXf was required to be of the form [f, ζ′∂ ].

Indeed, the lemma would work in precisely the same way for the more general vectors tangent to ΦG rather
than Φ[f ].
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Finally, Y vanishes if and only if δXf = [f, ξ|∂R], i.e. δXf = [f,$(X)|∂R], that is if and only
if f also transforms by the same gauge transformation as every other field.

Since X stays within the tangent of the covariant superselection sector, its action on
f must also be of the form δXf = [f, ζ ′∂ ], for some ζ ′∂ ∈ Lie(G|∂R), where G|∂R := {u∂ ∈
C∞(∂R,G)|∃g ∈ G such that u∂ = g|∂R}. But importantly, in general ζ ′∂ 6= $(X)|∂R ≡
η|∂R; e.g. ζ ′∂ can be non-zero even if $(X) ≡ η = 0. Thus, the result of the previous
paragraph can be rephrased as stating that Y vanishes if and only if ζ ′∂ = η|∂R.

Let me now specialize to $ = $SdW. In this case EiCoul = Diϕ and the above system
of equations becomes:

DiδYE
i
Coul = 0 in R,

siδYE
i
Coul = δXf − [f, η|∂R] at ∂R,∫ √

gTr(δYE
i
Could⊥Ai) = 0

(SdW).

From the last equation, and the properties of the SdW split, it follows that δYE
i
Coul = Diζ

is a pure gradient. Plugging this relationship back into the first two equations one obtains
a SdW boundary value problem for ζ. Now, a vector Y annihilating (A,Erad, ψ, ψ), but
not annihilating ECoul, is proportional in the SdW basis to δ

δϕ . From Diζ = Y(EiCoul) =

Y(Diϕ) = DiY(ϕ), one finally deduces that Y =
∫
ζ δ
δϕ as in (A3).

The main outcome of this lemma is the characterization of the vectors Y which we
shall refer to as “flux rotations:”

Definition A.4 (Flux rotations). Given a functional connection $ and a covariant su-
perselection sector Φ[f ], call flux rotations Yζ∂ ∈ Y [f ] ⊂ TΦ[f ] vectors Yζ∂ ∈ TφΦ[f ] defined
by the following action on the coordinate functions {A,Erad, ψ, ψ, f} on Φ[f ]:

Yζ∂ (•) = 0 for • ∈ {A,Erad, ψ, ψ}, and


DiYζ∂ (EiCoul) = 0 in R,

siYζ∂ (EiCoul) = −[f, ζ∂ ] at ∂R,∫ √
gTr

(
Yζ∂ (EiCoul)dHAi

)
= 0.

With an slight abuse of language and notation, call also flux rotations vector fields over
Φ[f ] which are sections of Y [f ]:

Yζ∂ ∈ Y
[f ] := Γ(Φ[f ], Y [f ]) ⊂ X1(Φ[f ]).

Note that the last of the equations defining Yζ∂ states that Yζ∂ (ECoul) is itself Coulom-
bic. Therefore the defining equation for flux rotations has a unique solution for the very
same reason that the Gauss constraint does—see Proposition A.1.

Note also that, as vector fields, flux rotation admit parameters ζ∂ which are themseleves
field-dependent parameters valued in Lie(G∂R), i.e. ζ∂ ∈ Γ(Φ[f ],Φ[f ] × Lie(G∂R)).

Let me now collect two important properties enjoyed by flux rotations in the following
proposition (whose proof is trivial at the light of Lemma A.2 and Definition A.4):

Proposition A.2. Flux rotations Y ∈ Y [f ] ⊂ X1(Φ[f ]) satisfy the following properties:

(i) they are horizontal, $(Yζ∂ ) = 0, and

(ii) if G is Abelian, flux rotations are trivial, Y [f ] = {0}.

Now, thanks to the above lemma and definition, it is possible to finally characterize
the degeneracy properties of ΩH in a covariant superselection sector. As expected gauge
transformations (i.e. vertical vectors) are in the kernel of ι∗ΩH . But so are flux rotations,
which indeed constitute the most interesting part of this kernel:
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Proposition A.3 (The kernel of ι∗ΩH). Given a choice of functional connection $, in
the covariant superselection sector Φ[f ] one has

ker(ι∗ΩH) = V [f ] ⊕ Y [f ],

where V [f ] =
⋃
φ∈Φ[f ] TOφ is the space of vertical vector fields in TΦ[f ], and Y [f ] ⊂ TΦ[f ]

is the space of flux rotations over Φ[f ].

Proof. A vector X ∈ TφΦ[f ] is in the kernel of ι∗ΩH if and only if (iff) ι∗ΩH(X) = 0, i.e.
iff ι∗(ΩH(ι∗X)) = 0, i.e. iff (see (37))

ι∗
∫
√
g Tr

(
− hAdHErad + hraddHA

)
+ ι∗

∫
√
g
(
dHψγ

0hψ − hψγ
0dHψ

)
= 0,

where we set h• := iι∗XdH• ≡ i
Ĥ(ι∗X)

d• ≡ (Ĥ(ι∗X))• for • ∈ {A,Erad, ψ, ψ}.
Since ι∗dHA, ι∗dHErad, ι∗dHψ, ι∗dHψ are all independent from each other, this ex-

pression vanishes identically iff h• = 0 for all • as above. Therefore the only horizontal
component of ι∗X that can survive is hCoul := iι∗XdHECoul.

In view of the horizontal/vertical decomposition of ι∗X, the statement that h• = 0
is equivalent to demanding (ι∗X)• = (ξ])• or equivalently that (ι∗X)(•) = ξ](•), for • as
above and ξ := $(ι∗X) = $((ι∗X)A)—the last equality follows from the fact that the
functional connection $ ∈ Ω1(Φ,Lie(G)) is defined by pullback of a functional connection
on A.

This means that ι∗X satisfies the conditions under which Lemma A.2 holds. Thus, from
Lemma A.2, Definition A.4, and the arguments above, it follows that if X ∈ ker(ι∗ΩH)
then ι∗X = η] + Yζ∂ for ζ∂ = η|∂R − ζ ′∂ in the notation of the lemma. Hence, ker(ι∗ΩH) ⊂
V [f ] ⊕ Y [f ]

To conclude the proof, it is enough to observe that any vector in V [f ] or in Y [f ] is
in the kernel of ΩH : the first case is obvious, the second follows from the fact that flux
rotations Yζ∂ ∈ Y [f ] only act on the Coulombic component of the electric field which is
not featured in ΩH (cf. (37)).

Corollary A.3.1. Suppose the hypotheses of proposition A.3 hold. If moreover G is
Abelian or f is trivial (either because f = 0 or because ∂R 6= ∅), then ker(ι∗ΩH) = V .

Proof. If G is Abelian or f is trivial, then it is immediate to see (e.g. from lemma A.2)
that Y ≡ 0. Hence Y [f ] = {0} is trivial and ker(ι∗ΩH) = V .

A.3 The kernel of Ω
H,[f ]
ext : proof of (63)

The goal of this appendix is to prove (63) which states that

ker(Ω
H,[f ]
ext ) = Vext.

Proposition A.4 (The kernel of Ω
H,[f ]
ext ). In the covariant superselection sector [f ], one

has
ker(ΩH,[f ]) = Vext,

where Vext = Span
{

(ξ], σ§o)} ⊂ TΦ
[f ]
ext is the space of vertical vector fields in (Φ

[f ]
ext,Π);

i.e. Vext = Lie(G)] ⊕ Lie(Go|∂R)§ is the direct sum of pure gauge transformations and flux-

reference stabilizer transformations. (Cf. section 4.8.)
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Proof. Recall (61) and (68):

Ω
H,[f ]
ext = π∗oι

∗ΩH + ω
H,[f ]
ext = π∗oι

∗Ω + ω[f ].

One can easily check that V ext ⊂ ker(ΩH,[f ]) because by construction both π∗oι
∗ΩH and

ω
H,[f ]
ext are gauge-horizontal, and both π∗oι

∗Ω and ω[f ] are flux-reference-stabilizer horizon-
tal.

One is left to prove that ker(ΩH,[f ]) ⊂ Vext. This can be done by adapting the argument
put forward in the proof to Proposition A.3. Using the same notation as there: X ∈
ker(ΩH,[f ]) iff

0 = Ω
H,[f ]
ext (X) =ι∗

∫
√
g Tr

(
− hAdHErad + hraddHA

)
+ ι∗

∫
√
g
(
dHψγ

0hψ − hψγ
0dHψ

)
+

∮ √
hTr

(
[hu, fo]u

−1dHu+ fou
−1F(ι∗X)u

)
(A4)

where hu := u−1iXdHu ≡ u−1i
Ĥ(X)

du ≡ u−1Ĥ(X)u. Notice that dHf = Adu[u−1dHu, fo].

Therefore, if X ∈ ker(ΩH,[f ]), the above expression must vanish when contracted with

any vector X′ ∈ TφΦ
[f ]
ext.

First, consider the vector X1 defined by X1(Erad) = X1
rad and X1(•) = 0 for • ∈

{A,ψ, ψ, u}. Notice that, since Erad does not participate to the Gauss constraint, this

vector is indeed tangent to Φ
[f ]
ext. Moreover, since (X1)A = 0 this vector is also horizontal.

Therefore, 0 = Ω
H,[f ]
ext (X,X1) = ι∗

∫ √
gTr(−hAX1

rad). From the arbitrariness of X1
rad, one

concludes that hA vanishes.
Since ι∗X(A) = hA = 0, F(ι∗X) = 0 too. Hence, equation (A4) reduces to

0 = Ω
H,[f ]
ext (X) =ι∗

∫
√
g Tr

(
hraddHA

)
+ ι∗

∫
√
g
(
dHψγ

0hψ − hψγ
0dHψ

)
+

∮ √
hTr

(
[hu, fo]u

−1dHu
)

(A5)

From the independence of dHA, dHψ and dHψ one similarly concludes that hrad, hψ
and hψ also vanish.

Finally, for the last term in (A5) to vanish identically, one must demand that [hu, fo] =
0 i.e. that hu ∈ Lie(Go|∂R).

Therefore one concludes that if X ∈ ker(ΩH,[f ]), then Ĥ(X) ∈ Lie(Go|∂R)§ i.e. that X is
either vertical or a flux-stabilizer transformations. In formulas, X ∈ Vext.
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