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Abstract

We revisit ’t Hooft anomalies in (1+1)d non-spin quantum field theory, starting

from the consistency and locality conditions, and find that consistent U(1) and grav-

itational anomalies cannot always be canceled by properly quantized (2+1)d classi-

cal Chern-Simons actions. On the one hand, we prove that certain exotic anomalies

can only be realized by non-reflection-positive or non-compact theories; on the other

hand, without insisting on reflection-positivity, the exotic anomalies present a caveat

to the inflow paradigm. For the mixed U(1) gravitational anomaly, we propose an

inflow mechanism involving a mixed U(1)×SO(2) classical Chern-Simons action with a

boundary condition that matches the SO(2) gauge field with the (1+1)d spin connec-

tion. Furthermore, we show that this mixed anomaly gives rise to an isotopy anomaly

of U(1) topological defect lines. The isotopy anomaly can be canceled by an extrinsic

curvature improvement term, but at the cost of creating a periodicity anomaly. We

survey the holomorphic bc ghost system which realizes all the exotic consistent anoma-

lies, and end with comments on a subtlety regarding the anomalies of finite subgroups

of U(1).
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1 Introduction

An ’t Hooft anomaly is a controlled breaking of symmetries in quantum field theory (QFT).

Let Φ collectively denote the background gauge fields and metric, and Λ collectively denote

diffeomorphisms and background gauge transformations. Under Λ, the partition function on

Φ transforms as

Z[ΦΛ] = Z[Φ] eiα[Φ,Λ] , (1.1)
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The anomalous phase α[Φ,Λ] is a functional that must satisfy the consistency and locality

conditions. Consistency — or finite Wess-Zumino consistency [1] — of an ’t Hooft anomaly

requires the background gauge transformation (1.1) to respect the group multiplication law,

which amounts to the commutativity of the diagram

Z[Φ]

Λ1

Z[ΦΛ1 ]

Λ2

Z[ΦΛ2Λ1 ]
Λ2Λ1

(1.2)

The anomalous phases generated by the two routes can only differ by 2πZ. Locality of an

’t Hooft anomaly is expected because anomaly is a short distance effect, i.e. it originates

in the ultraviolet. The consistency and locality conditions led to the old cohomological

classification of perturbative anomalies – the ’t Hooft anomaly of a semi-simple Lie algebra

G in D spacetime dimensions is classified by the Lie algebra cohomology HD+1(G,R) through

the descent equations [2–13].

A more modern perspective on ’t Hooft anomalies is the inflow paradigm: aD-dimensional

anomalous QFT should be viewed as the boundary theory of a (D + 1)-dimensional bulk

classical action, also called a symmetry protected topological phase or an invertible field

theory, such that the coupled system exhibits no anomaly [14–28]. From this perspective,

the classification of boundary ’t Hooft anomalies amounts to the classification of bulk clas-

sical actions. One recent triumph has been the classification of reflection-positive invertible

topological field theories in D + 1 spacetime dimensions by cobordism groups [20,25,28].1

For a discrete internal symmetry group G in a (1+1)d non-spin QFT, the inflow paradigm

suggests that the ’t Hooft anomalies have the same H3(G,U(1)) classification as the (2+1)d

Dijkgraaf-Witten theories [29]. The same classification can also be deduced from a purely

(1+1)d perspective [30, 31].2 According to the inflow paradigm, the chiral central charge

c− ≡ c − c̄ of a (1+1)d non-spin CFT must be a multiple of eight, because only then can

the gravitational anomaly be canceled by a properly quantized (2+1)d gravitational Chern-

Simons action. Similarly, the level k− ≡ k−k̄ of a U(1) internal symmetry in a non-spin CFT

must be an even integer for the U(1) anomaly to be canceled by a (2+1)d U(1) Chern-Simons.

1Reflection-positivity of a QFT in Euclidean spacetime is equivalent to the unitarity of time evolutions

in Lorentzian spacetime. However, in this paper we always call this property reflection-positivity, to avoid

confusion of QFT unitarity with the unitarity of symmetry representations.
2The (1+1)d classification is achieved by the pentagon identity, which arises as the consistency condition

for the fusion category of symmetry defect lines, or equivalently from the finite Wess-Zumino consistency

condition applied to patch-wise background gauge transformations.
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The above quantization conditions are violated by the holomorphic bc ghost system.

Recall that b and c are left-moving anti-commuting free fields with weights λ and 1− λ. For

integer λ, the holomorphic bc ghost system is a non-spin CFT, but has c− = 1−3(2λ−1)2 ∈
2Z and k− = 1, suggesting that the gravitational and U(1) anomalies cannot be canceled by

inflow of familiar Chern-Simons actions. On the other hand, as will be seen in Section 2,

the consistency and locality conditions lead to weaker quantization conditions c− ∈ 2Z and

k− ∈ Z that are precisely satisfied by the holomorphic bc ghost system.

The bc ghost system has a U(1) ghost number symmetry that exhibits a mixed grav-

itational anomaly: On any Riemann surface, it is conserved up to a background charge

proportional to the Euler characteristic. In [32], it was pointed out that the mixed gravita-

tional anomaly, albeit consistent, cannot be canceled by the inflow of a relativistic classical

action if the boundary (1+1)d spin connection is to be matched with the bulk (2+1)d spin

connection. However, a non-relativistic inflow is possible using the renowned Wen-Zee topo-

logical term [33,34]. In this paper, we propose a relativistic inflow that matches the boundary

(1+1)d spin connection with a bulk SO(2) gauge field.

Another slightly bizarre feature of the mixed gravitational anomaly is the non-existence

of an improved stress tensor with covariant anomalous conservation. Recall that a consistent

anomaly requires the current to be defined via the variation of background fields, and the

resulting anomalous conservation equations are generally not gauge-covariant. By adding

Bardeen-Zumino currents [35], the consistent current can often be improved to a covariant

one, i.e. with covariant anomalous conservation equations, but the covariant currents are

no longer equal to the variation of background fields, and do not satisfy the Wess-Zumino

consistency condition. For the mixed gravitational anomaly at hand, we show that this

improvement is not possible, and only the consistent anomaly exists.

The rest of this paper is organized as follows. Section 1.1 introduces the consistency and

locality conditions. Section 2 concerns pure anomalies, by first reviewing the anomaly de-

scent and inflow of perturbative pure anomalies, and then examining the finite Wess-Zumino

condition for their global versions. Section 3 explores the mixed U(1)-gravitational anomaly

as well as its connection to the isotopy anomaly and periodicity anomaly of topological de-

fect lines. Section 4 surveys the holomorphic bc ghost system, and finds it to realize every

exotic consistent anomaly discussed in this paper. Section 5 discusses a key subtlety re-

garding the anomalies of finite subgroups of U(1). Section 6 ends with concluding remarks.

Appendix A reviews the Bardeen-Zumino counter-terms for pure gravitational anomaly, and

constructs its counterpart for the mixed anomaly. Appendix B proves that the consistent

mixed gravitational anomaly does not have a covariant counterpart.
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1.1 Consistency and locality

’t Hooft anomalies satisfy two conditions: (finite Wess-Zumino) consistency and locality.

Consistency amounts to the commutativity of the diagram (1.2) up to 2πZ phase differences.

Condition 1.1 (Consistency). For two arbitrary background diffeomorphism/gauge trans-

formations Λ1 and Λ2, the anomalous phases satisfy

α[Φ,Λ2Λ1]− α[ΦΛ1 ,Λ2]− α[Φ,Λ1] ∈ 2πZ . (1.3)

Locality amounts to the following two properties:

1. Under general background diffeomorphism/gauge transformations Λ, the anomalous

phase α[Φ,Λ] is a local functional of Φ.

2. Under infinitesimal background diffeomorphism/gauge transformations Λ, the anoma-

lous phase α[Φ,Λ] is a local functional of Φ and Λ, and vanishes when Φ = 0. For

the gravitational background, Φ = 0 means that the spin connection (or Levi-Civita

connection) vanishes, with no further constraint on the vielbein.

An argument for the second locality property can be made as follows. For continuous sym-

metries, the divergence of the Noether current Jµ should vanish in correlation functions up

to contact terms,

〈∇µJ
µ(x) · · ·〉

∣∣∣
Φ=0

= contact terms . (1.4)

Had the second locality property been false, this contact structure would be violated by the

anomalous Ward identities. The first locality property can be viewed as an extension of the

second locality property to large background diffeomorphism/gauge transformations. The

two locality properties above can be stated in more precise terms by the following locality

condition.

Condition 1.2 (Locality). Let G be the space of all background differomorphism/gauge

transformations, with connected components Gn for n = 0, 1, 2, · · · , and with G0 containing

the trivial transformation. The anomalous phase α[Φ,Λ] takes the form

α[Φ,Λ] =
∑
i

κi(n)Ai[Φ,Λ] + θ(n) , (1.5)

where Ai[Φ,Λ] is a basis of independent local functionals that vanish in the trivial background

Φ = 0, and θ(0) = 0.
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2 Pure anomalies

This section first reviews the perturbative pure gravitational and U(1) anomalies in non-spin

QFT, and then examines the finite Wess-Zumino (fWZ) consistency condition for global

anomalies. We derive a weaker quantization condition on the anomaly coefficients than that

of inflow. A comparison can be found in Table 1.

2.1 Perturbative pure anomalies

We begin by reviewing the well-known perturbative pure anomalies. Consider a (1+1)d

non-spin QFT with U(1) internal symmetry coupled to a background metric gµν and a

background U(1) gauge field A. We parameterize the background metric by the zweibein

eaµ and write gµν = eaµe
b
νδab. We use µ, ν, . . . to denote spacetime indices, and a, b, . . . to

denote frame indices. Under diffeomorphisms (ξ), local frame rotations (θ), and U(1) gauge

transformations (λ) the background zweibein and the background U(1) gauge field transform

as

δea = −θabeb + Lξea , δA = dλ+ LξA , (2.1)

where Lξ denotes the Lie-derivative.

The effective action W [e, A] = − logZ[e, A] is a complex-valued functional of the back-

ground fields, and is in general non-local. The infinitesimal part of the anomalous phase is

a local functional linear in the gauge parameters,

α[e, A, θ, ξ, λ] = Aθ[e, A, θ] +Aξ[e, A, ξ] +Aλ[e, A, λ] . (2.2)

The effective action shifts by

W [e+ δe, A+ δA] = W [e, A]− i (Aθ[e, A, θ] +Aξ[e, A, ξ] +Aλ[e, A, λ]) . (2.3)

The anomalous phases Aθ, Aξ and Aλ are constrained by the Wess-Zumino consistency

condition [36]

δχ1Aχ2 − δχ2Aχ1 = A[χ2,χ1] , for χ = θ , ξ , λ . (2.4)

Descent equations

A large class of solutions to the Wess-Zumino consistency condition are obtained by the

descent equations

I(4) = dI(3) , δI(3) = dI(2) , A = 2π

∫
M2

I(2) , (2.5)
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where I(3) and I(4) are formal 3- and 4-forms. The 4-form anomaly polynomial responsible

for the pure gravitational and U(1) anomalies is

I(4) =
1

(2π)2

[κR2

48
tr (R ∧R) +

κF 2

2
F ∧ F

]
, (2.6)

where Rab = 1
2
eµae

ν
bRµνρσdx

ρdxσ and F = dA. The descent 3-form is

I(3) =
1

(2π)2

[κR2

48
CS(ω) +

κF 2

2
A ∧ F

]
, (2.7)

and the anomalous phases are

Aθ =
κR2

96π

∫
M2

θabRba , Aξ = 0 , Aλ =
κF 2

4π

∫
M2

λF . (2.8)

Inflow mechanism

An anomaly that solves the descent equations has a natural bulk classical action. Consider

Sbulk =
ikR2

192π

∫
M3

CS(ω) +
ikF 2

4π

∫
M3

CS(A) , (2.9)

which, to be well-defined, must have quantized levels3

kR2

8
, kF 2 ∈ 2Z . (2.11)

If M3 is a three-manifold with boundary ∂M3 = M2, then the classical action on M3

contributes the following amount of anomaly to the (1+1)d non-spin QFT on M2,

∆κR2 = −1

2
kR2 , ∆κF 2 = −kF 2 . (2.12)

For the coupled system to be free of anomalies, the quantization conditions (2.11) on the

Chern-Simons levels kR2 and kF 2 translate to

1

8
κR2 ,

1

2
κF 2 ∈ Z . (2.13)

3On a closed manifold M3, the Chern-Simons action (2.9) is required to be invariant under background

diffeomorphism and U(1) gauge transformations. One way to manifest the invariance property is to rewrite

the action as

S =
ikR2

192π

∫
M4

trR ∧R+
ikF 2

4π

∫
M4

F ∧ F , (2.10)

where M4 is a four manifold such that ∂M4 =M3. For (2.10) to be independent of the choice of M4, the

levels kR2 and kF 2 must be quantized as in (2.11).
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Bardeen-Zumino counter-term

The Bardeen-Zumino counter-term provides a trade-off between the frame rotation anomaly

and the diffeomorphism anomaly [37]. The conventional choice eliminates the former in favor

of the latter. The counter-term is constructed from the zwiebein eaµ, with the explicit form

given in (A.1). The modified effective action is

W ′[e, A] ≡ W [e, A] + SBZ[e] , (2.14)

such that under local frame rotations,

δθSBZ = iAθ . (2.15)

Hence, the new effective action W ′[e, A] transforms as

W ′[e+ δe, A+ δA] = W ′[e, A]− i
(
Aλ[e, A, λ] +A′ξ[e, A, ξ]

)
, (2.16)

with a nonzero anomalous phase A′ξ[e, A, ξ] under diffeomorphism,

A′ξ = iδξSBZ =
κR2

96π

∫
M2

∂µξ
νdΓµν . (2.17)

Anomalous conservation and covariant improvement

The anomalous phases (2.8) imply the anomalous conservation equations

〈∇µT
µν(x)〉 = −2πi

√
g

δA′ξ[e, A, ξ]
δξν

=
iκR2

48

1
√
g
gνλ∂µ (

√
gερσ∂ρΓ

µ
λσ) ,

〈∇µJµ(x)〉 = − 2π
√
g

δAλ[e, A, λ]

δλ(x)
= −κF

2

4
εµνFµν .

(2.18)

Note that the first equation is not covariant. In technical terms, these are consistent anoma-

lies and not covariant anomalies [35]. To arrive at the latter, the stress tensor T µν must be

improved by

T µν = T µν − iκR2

48
∇λ

(
Γ(µλ

σε
ν)σ − Γλ(µ

σε
ν)σ − Γ(µν)

σε
λσ
)
, (2.19)

The anomalous conservation equation for the improved stress tensor T µν takes the covariant

form

〈∇µT µν(x)〉 =
iκR2

48
∇µ(Rµν

ρσε
ρσ) . (2.20)
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Operator product in CFT

On flat space, the two-point functions of the stress tensor Tµν and the conserved current Jµ
are constrained by conformal symmetry to be

〈Tzz(z, z̄)Tzz(0)〉 =
c

2z4
, 〈Tz̄z̄(z, z̄)Tz̄z̄(0)〉 =

c̄

2z̄4
, (2.21)

and

〈Jz(z, z̄)Jz(0)〉 =
k

z2
, 〈Jz̄(z, z̄)Jz̄(0)〉 =

k̄

z̄2
. (2.22)

The remaining components

〈Tzz(z, z̄)Tzz̄(0)〉 , 〈Tz̄z̄(z, z̄)Tzz̄(0)〉 , 〈Tzz(z, z̄)Tz̄z̄(0)〉 , 〈Tzz̄(z, z̄)Tzz̄(0)〉 , 〈Jz(z, z̄)Jz̄(0)〉

are contact terms with coefficients related to the anomalies. The above two point functions

can be obtained from the Ward identities implied by the anomalous conservation equations

(3.14), giving

c− ≡ c− c̄ = κR2 , k− ≡ k − k̄ = κF 2 . (2.23)

The discussion of the 〈TJ〉 two-point functions is deferred to Section 3.1.

2.2 Global gravitational anomaly

Let us now examine the pure anomaly of large diffeomorphisms.4 Since we do not assume

time-reversal symmetry, orientation-reversing operations such as reflections are excluded.

For concreteness, consider a (1+1)d non-spin CFT on a torus with complex moduli τ and a

flat metric

ds2 = |dx1 + τdx2|2 , xµ ∼= xµ + 2πZ . (2.24)

The orientation-preserving large diffeomorphisms that respect the periodicity of the coordi-

nates xµ are(
x1

x2

)
→
(
x′1

x′2

)
=

(
a −b
−c d

)(
x1

x2

)
for ad− bc = 1 and a, b, c, d ∈ Z , (2.25)

and form the mapping class group SL(2,Z). It is generated by

S =

(
0 1

−1 0

)
, T =

(
1 −1

0 1

)
, (2.26)

4Essentially the same analysis as this subsection was done in [38] and generalized to arbitrary genera,

using the language of conformal field theory as analytic geometric on the universal moduli space of Riemann

surfaces [39].
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which satisfy the relations

S4 = 1, (ST )3 = S2 . (2.27)

The form of the metric (2.24) is preserved, modulo Weyl transformations, by SL(2,Z), with

the complex moduli τ and the complex coordinate w = x1 + τx2 transformed as

τ → τ ′ =
aτ + b

cτ + d
, w → w′ = x′1 + τ ′x′2 =

w

cτ + d
. (2.28)

Torus partition function

Suppose the partition function on a flat torus does not vanish identically over all moduli.5

Under SL(2,Z), the only possible dependence on the flat background geometry that is com-

patible with locality is through the volume integral
∫
d2x
√
g. However, an anomalous phase

proportional to the volume violates the fWZ consistency condition 1.1, with Λ1 an SL(2,Z)

transformation, and Λ2 a Weyl transformation. Hence, the torus partition function must be

invariant under SL(2,Z) up to τ -independent anomalous phases6

Z

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
= Z(τ, τ̄) eiθ(a,b,c,d) . (2.30)

By the fWZ consistency condition 1.1, the general phases θ(a, b, c, d) are determined from

the phases θS and θT of the S and T generators, i.e.

Z

(
−1

τ
,−1

τ̄

)
= Z(τ, τ̄) eiθS , Z (τ + 1, τ̄ + 1) = Z(τ, τ̄) eiθT . (2.31)

The chiral central charge is related to the T anomalous phase by 2πc− = −24 θT . Under the

relations (2.27), fWZ constrains7

2θS ∈ 2πZ , θS + 3θT ∈ 2πZ . (2.33)

5The usual reason for a partition function to vanish identically is the existence of anti-commuting zero

modes.
6On the flat torus (in Cartesian coordinates (2.24)) where the Christoffel symbols all vanish, no local

integral term can contribute. Therefore, the fWZ consistency condition 1.1 modulo phase redefinitions defines

the first group cohomology with U(1) coefficients. This subsection is essentially an exercise computing

H1(PSL(2,Z),U(1)) = Z6 , H1(SL(2,Z),U(1)) = Z12 . (2.29)

7Note that the anomalous phases form a representations of PSL(2,Z), defined by the relations

S2 = (ST )3 = 1 . (2.32)

This is physically expected because S2 is charge conjugation, and acts trivially on a torus with no operator

insertions.
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There are two scenarios:

(i) θS, 3θT ∈ 2πZ ⇒ Z(τ, τ̄) = Z(−1/τ,−1/τ̄) , c− ∈ 8Z ,

(ii) θS, 3θT ∈ 2π

(
Z +

1

2

)
⇒ Z(τ, τ̄) = −Z(−1/τ,−1/τ̄) , c− ∈ 8Z + 4 .

(2.34)

In scenario (ii), Z(τ = i, τ̄ = −i) on the square torus must either blow up or vanish. The

former means that the spectrum exhibits Hagedorn growth, which violates our expectation

of QFT in finite volume.8 The latter violates reflection-positivity. See Figure 1. Hence, a

reflection-positive CFT must fall into scenario (i).9

More generally, an ST n transformation produces a phase factor

ei(θS+nθT ) =


1 c− ∈ 24Z ,
ω±n c− ∈ 24Z± 8 ,

−(−)n c− ∈ 24Z + 12 ,

−(−ω)±n c− ∈ 24Z± 4 ,

(2.35)

where ω = e
2
3
πi. An immediate consequence is that the partition function Z(τ, τ̄) must vanish

at the S-invariant point τ = i and/or the ST -invariant point τ = ω whenever c− 6∈ 24Z.

More specifically, the vanishing points in the standard fundamental domain are

τ =


ω c− ∈ 24Z± 8 ,

i c− ∈ 24Z + 12 .

i, ω c− ∈ 24Z± 4 .

(2.36)

As a check, the chiral half of the (E8)1 WZW model has c− = 8, and its torus partition

function Z(τ) = J(τ)
1
3 indeed vanishes at τ = ω.

Torus one-point function

One can derive similar conditions by looking at the torus one-point function

G(τ, τ̄) = 〈Oh,h̄(w, w̄)〉T 2
τ
. (2.37)

of a local operator Oh,h̄ that has definite holomorphic and anti-holomorphic weights h and h̄

but is not required to be a primary. By translational invariance, the torus one-point function

8See [40] for a discussion. In the following we always assume that the torus partition function (for

non-compact CFTs normalized by the volume) does not blow up.
9Many non-reflection-positive CFTs such as the c < 0 minimal models still have positive torus partition

functions. They must also fall into scenario (i).
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S

Figure 1: The square torus τ = i, τ̄ = −1 is symmetric under 90 degree rotations (modular

S) and reflections. The partition function on the square torus transforms with a phase θS
under the former, and must be positive in a reflection-positive theory due to the later.

does not depend on the coordinate w of the operator insertion. Under S, it transforms as

〈Oh,h̄(w, w̄)〉T 2
τ

= e−iθS〈Oh,h̄(w, w̄)〉T 2
−1/τ

= e−iθSτ−hτ̄−h̃〈O′h,h̄(w/τ, w̄/τ̄)〉T 2
−1/τ

. (2.38)

Under T , there is no conformal factor. In summary,

G

(
−1

τ
,−1

τ̄

)
= eiθSτhτ̄ h̄G(τ, τ̄) , G(τ + 1, τ̄ + 1) = eiθT G(τ, τ̄) . (2.39)

The anomalous phases θS and θT satisfy the quantization conditions

2θS ∈ 2π

(
Z +

`

2

)
, θS + 3θT ∈ 2πZ , (2.40)

where ` = h− h̄ is the spin of the operator O.

In a given theory, the torus one-point functions for different operators can have different

θS, but they must have the same θT , which is related to the chiral central charge by 2πc− =

−24 θT . A CFT with a non-vanishing torus one-point function of an operator operator Oh,h̄
of odd spin necessary contains anti-commuting fields, i.e. ghosts if the QFT is non-spin.

This is because Oh,h̄ must appear in the OPE of some real operator Oh′,h̄′ with itself,

Oh′,h̄′(z1, z̄1)Oh′,h̄′(z2, z̄2) 3 C(z1 − z2)h−2h′(z̄1 − z̄2)h̄−2h̄′Oh,h̄
(
z1 + z2

2
,
z̄1 + z̄2

2

)
. (2.41)

Exchanging z1 and z2 produces a sign since

(−)h−h̄−2(h′−h̄′) = −1 . (2.42)

For the OPE coefficient C to be non-zero, the operator Oh′,h̄′ must therefore be anti-

commuting (Grassmann-valued) to produce a compensating sign.

• If the torus one-point function for at least one operator of even spin does not vanish

identically over all torus moduli, then we recover the previous condition (2.34), hence

c− ∈ 4Z.
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• If the torus one-point functions for at least one operator of odd spin does not vanish

identically over all torus moduli — which can only happen in the presence of anti-

commuting fields, i.e. ghosts if the CFT is non-spin — then (2.40) leads to c− ∈ 4Z+2.

Quantization of the chiral central charge

The preceding results can be summarized as follows.

Lesson 2.1. The chiral central charge of a non-spin CFT satisfies c− ∈ 2Z if at least one

torus one-point function does not vanish identically over all moduli of the torus. If the torus

partition function itself does not vanish identically, then c− ∈ 4Z. If the partition function

is positive on the square torus (true if reflection-positive), then c− ∈ 8Z.10

Note that a (2+1)d bulk gravitational Chern-Simons action can cancel the global grav-

itational anomaly if c− ∈ 8Z, which is guaranteed for reflection-positive CFTs. If not

reflection-positive and c− 6∈ 8Z, then the global gravitational anomaly is consistent but more

exotic. The holomorphic bc ghost system realizes c− ∈ −2 + 24Z.

2.3 Global U(1) anomaly

Consider a (1+1)d non-spin QFT with U(1) global symmetry on a genus-g Riemann surface

Σ. Let Ci for i = 1, · · · , 2g be a basis of non-contractable cycles on the Riemann surface Σ,

with intersection matrix Ω. The winding numbers of the gauge transformation λ are

~m[λ] =
1

2π

∫
~C
dλ . (2.43)

The locality condition 1.2 dictates that the anomalous phase takes the form

α[A, λ] = −κ(~m[λ])

4π

∫
Σ

dλA+
∑
i

κ′i(~m[λ])

2π

∫
Σ

fi(λ)F + θ(~m[λ]) , (2.44)

where fi is a basis of periodic functions,

fi(λ+ 2π) = fi(λ) , (2.45)

and κ, κ′i, θ are functions that satisfy

κ(0) = κF 2 , θ(0) = 0 . (2.46)

10The condition c− ∈ 2Z was also found in the classification of (2+1)d non-spin invertible topological

orders by BF categories [41]. There is no known non-spin invertible topological order that realizes the

minimal chiral central charge c− = ±2. We thank Xiao-Gang Wen for pointing this out to us.
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Let us focus on background gauge orbits that are flat, so that κ′i does not appear. Con-

sider two large background gauge transformations λ1 and λ2 with nontrivial windings. For

shorthand, we write

~m1 ≡ ~m[λ1] , ~m2 ≡ ~m[λ2] , ~m12 ≡ ~m[λ1 + λ2] = ~m1 + ~m2 . (2.47)

The fWZ consistency condition 1.1 requires that[
−κ(~m12)

4π

∫
Σ

d(λ1 + λ2)A+ θ(~m12)

]
−
[
κ(~m2)

4π

∫
Σ

dλ2(A+ dλ2) + θ(~m2)

]
−
[
κ(~m1)

4π

∫
Σ

dλ1A+ θ(~m1)

]
≡ 0 mod 2π .

(2.48)

The above can be reorganized into

[−πκ(~m2) ~m1 · Ω · ~m2 + θ(~m12)− θ(~m1)− θ(~m2)]−
[
κ(~m12)− κ(~m1)

4π

∫
Σ

dλ1A

]
−
[
κ(~m12)− κ(~m2)

4π

∫
Σ

dλ2A

]
≡ 0 mod 2π ,

(2.49)

where we used
1

4π2

∫
Σ

dλ1dλ2 = ~m1 · Ω · ~m2 . (2.50)

Because A is an arbitrary flat connection and λ1, λ2 are independent and arbitrary, the

coefficients in second and third brackets must separately vanish. Hence,

κ(~m[λ]) = κ(0) = κF 2 (2.51)

is a constant.

We left with

− πκF 2 ~m1 · Ω · ~m2 + θ(~m12)− θ(~m1)− θ(~m2) ≡ 0 mod 2π , (2.52)

For concreteness, let Σ be a torus, and choose a basis of cycles Ci with intersection matrix

Ω =

(
0 1

−1 0

)
. (2.53)

With

~m1 = (1, 0) ~m2 = (−1, 0) , (2.54)

and separately

~m1 = (0, 1) , ~m2 = (0,−1) , (2.55)

13



together with (2.46), we find

θ(1, 0) + θ(−1, 0) ≡ θ(0, 1) + θ(0,−1) ≡ 0 mod 2π . (2.56)

With

~m1 = (m− 1, n) , ~m2 = (1, 0) , (2.57)

and separately

~m1 = (m,n− 1) , ~m2 = (0, 1) , (2.58)

we find recurrence relations on θ(m,n) for (m,n) in the first quadrant,

θ(m,n) ≡ θ(m− 1, n) + θ(1, 0)− πκF 2n mod 2π ,

θ(m,n) ≡ θ(m,n− 1) + θ(0, 1) + πκF 2m mod 2π .
(2.59)

Similarly, there are recurrence relations for (m,n) in the three other quadrants. The solution

in all quadrants is

θ(m,n) = θ(1, 0)m+ θ(0, 1)n− πκF 2mn . (2.60)

Plugging this solution back into (2.52), we find the quantization condition

κF 2 ∈ Z . (2.61)

The quantization condition (2.61) is weaker than the quantization condition (2.13) expected

from the inflow of (2+1)d bulk U(1) Chern-Simons.

Mixing with the modular transforms

Let Pm,n denote a background U(1) gauge transformation with winding numbers (m,n).

From the fWZ consistency condition 1.1 for the relations

P1,0 S = S P0,1 , T P1,0 = P1,1 T , (2.62)

one deduces

θ(1, 0) = θ(0, 1) = πκF 2 . (2.63)

Quantization of the level

In CFT, the anomaly coefficient and the level are related by κF 2 = k−.

Lesson 2.2. The level k− of a U(1) current algebra in a non-spin CFT must satisfy k− ∈ Z
if the flavored torus partition function does not vanish identically over all moduli of the torus

and all flat gauge backgrounds.

Note that a (2+1)d bulk U(1) Chern-Simons action can cancel the anomaly if k− is even.

The holomorphic bc ghost system realizes k− = 1.
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3 Mixed U(1)-gravitational anomaly

This section examines the mixed U(1)-gravitational anomaly a (1+1)d non-spin QFT. In

the first part of this section, we characterize the mixed gravitational anomaly by descent

and inflow, examine the possibility of a covariant improvement, and study the imprint of

the anomaly on local operator products in CFT. In the second part, we study the mixed

gravitational anomaly from the perspective of topological defects, and show that the mixed

gravitational anomaly gives rise to an isotopy anomaly.

3.1 Perturbative mixed U(1)-gravitational anomaly

In the following, A and F denote the U(1) connection and field strength, and ω denotes the

spin connection, with R its field strength. We use a, b, . . . to denote frame indices.

Descent equations

The mixed gravitational anomaly is described by the anomaly polynomial,

I(4) =
κFR

(2π)2
F ∧

(
εabRba

)
. (3.1)

The descent 3-form is11

I(3) =
1

(2π)2

[κFR
2
A ∧ εabRba +

κFR
2
F ∧ εabωba + sd

(
A ∧ εabωba

) ]
, (3.2)

where the ambiguity s is related to the freedom of adding the Bardeen counter-term

SB = − is
′

2π

∫
A ∧

(
εabωba

)
. (3.3)

Its addition to the action shifts the ambiguity s to s+ s′. The anomalous phases are

Aλ =
1

2π

(κFR
2
− s
)∫
M2

λεabRba , Aθ =
1

2π

(κFR
2

+ s
)∫
M2

θabεbaF , Aξ = 0 . (3.4)

Inflow mechanism

Can the mixed gravitational anomaly of a (1+1)d non-spin QFT be canceled by coupling to

a (2+1)d classical action? When the (2+1)d spacetime is a product manifold M3 =M2 ×
11The descent equation I(4) = dI(3) is insensitive to the addition of exact terms (total derivatives).
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[0,∞), one could consider the (2+1)d classical action of the renowned Wen-Zee topological

term [33, 34] relevant for the Hall viscosity in non-relativistic quantum Hall systems (see

[42–44] for the connection)
ikFR
16π

∫
M2×[0,∞)

εabωab ∧ F , (3.5)

where M2 is the spatial manifold, and the anomaly coefficient kFR is also called the spin

vector.12 The above inflow action explicitly breaks (2+1)d Lorentz invariance, and thus

requires non-relativistic geometry to generalize to non-product manifolds.

We propose a slightly different inflow mechanism that preserves (2+1)d Lorentz invari-

ance. Consider the mixed Chern-Simons term

ikFR
4π

∫
M3

A ∧ FR , (3.6)

whereM3 is a three-dimensional manifold whose boundary isM2, and FR = dAR is the field

strength of a background SO(2) gauge field onM3. The matching condition at ∂M3 =M2

is such that the normal component of AR vanishes, and the tangent components of AR are

identified with the boundary (1+1)d spin connection by

AR
∣∣
M2

=
1

ζ
εabωba , (3.7)

with a proportionality constant ζ to be fixed by flux quantization. The flux of εabωba can be

computed as ∫
M2

εabRba = −
∫
M2

d2x
√
gR = −4πχ . (3.8)

Depending on whether the theory is defined only on orientable Riemann surfaces, for in-

stance when there is no time-reversal symmetry, or on general Riemann surfaces, the Euler

characteristic is quantized as χ ∈ 2Z or χ ∈ Z, respectively. Hence, flux quantization

determines

ζ =

{
4 M2 orientable ,

2 M2 general .
(3.9)

To cancel the mixed gravitational anomaly of the (1+1)d QFT, the Chern-Simons level is

chosen to be

kFR = 2ζκFR . (3.10)

The quantization condition for the Chern-Simons level is

kFR ∈ 2Z (3.11)

12We thank Xiao-Gang Wen and Juven Wang for bringing our attention to [33] and [34].
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translates to a quantization condition on the mixed gravitational anomaly coefficient

κFR ∈

{
1
4
Z M2 orientable ,

1
2
Z M2 general .

(3.12)

We will see in Section 4 that the holomorphic bc ghost system realizes κFR ∈ 1
4

+ 1
2
Z. It is

in principle possible to derive a quantization condition on κFR from fWZ alone without the

need of inflow. However, to probe κFR requires considering curved Riemann surfaces and is

beyond the scope of this paper.

Bardeen-Zumino counter-terms

By adding a mixed Bardeen-Zumino counter-term Smixed
BZ which we construct in Appendix A.2,

the anomalous phase Aθ under frame rotations can be completely canceled, while generating

an extra contribution to the anomalous phase A′ξ under diffeomorphisms. In summary, the

new anomalous phases are

A′θ = Aθ + iδθS
mixed
BZ = 0 ,

A′ξ = iδξS
mixed
BZ =

1

2π

(κFR
2

+ s
)∫
M2

∂µξ
νd(εµνA) ,

A′λ = Aλ + iδλS
mixed
BZ =

1

2π

∫
M2

λ
[
κFRε

abRba −
(κFR

2
+ s
)
d(ενµΓµν)

]
.

(3.13)

Anomalous conservation and covariant improvement

The anomalous phases (3.13) give the non-covariant anomalous conservation equations for

the consistent currents,

〈∇µT
µν(x)〉 = −2πi

√
g

δA′ξ[e, A, ξ]
δξν

= i
(κFR

2
+ s
) 1
√
g
gνλ∂µ [

√
gερσ∂ρ(ε

µ
λAσ)] ,

〈∇µJµ(x)〉 = − 2π
√
g

δA′λ[e, A, λ]

δλ(x)
= κFRR +

(κFR
2

+ s
)
∇ρ(ε

ρσενµΓµνσ) .

(3.14)

The conservation of U(1) can be covariantized by improving the consistent current Jµ with

Bardeen-Zumino currents, which are terms that depend only on the background fields and

vanish when Aµ = 0 and gµν = δµν . More precisely, the improved current is

J µ = Jµ − (
κFR

2
+ s)εµνερσΓσρν , (3.15)

which has a covariant form of the anomalous conservation equation

〈∇µJµ(x)〉 = −κF
2

4
εµνFµν + κFRR . (3.16)
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However, by an explicit computation in Appendix B, we show that no covariant improvement

of the stress tensor exists.

Operator product in CFT

In flat space CFT, the two-point functions between the U(1) current Jµ and the stress tensor

Tµν must take the form

〈Tzz(z)Jz(0)〉 =
α

z3
, 〈Tz̄z̄(z̄)Jz̄(0)〉 =

ᾱ

z̄3
, (3.17)

which imply the commutation relations13

[Lm, Jn] = −nJm+n +
m(m+ 1)

2
αδm+n , [L̄m, J̄n] = −nJ̄m+n +

m(m+ 1)

2
ᾱδm+n . (3.18)

One also has the contact terms

〈Tzz(z, z̄)Jz̄(0)〉 = 2πβ∂δ(2)(z, z̄) , 〈Tz̄z̄(z, z̄)Jz(0)〉 = 2πβ̄∂̄δ(2)(z, z̄) ,

〈Tzz̄(z, z̄)Jz̄(0)〉 = 2πγ∂̄δ(2)(z, z̄) , 〈Tzz̄(z, z̄)Jz(0)〉 = 2πγ̄∂δ(2)(z, z̄) .
(3.19)

Matching the above with the anomalous Ward identities implied by the anomalous con-

servation equations (3.14), we arrive at the relations

α + 2β = 4(
κFR

2
− s) , ᾱ + 2β̄ = 4(

κFR
2
− s) , γ + γ̄ = −2(

κFR
2
− s) ,

β + γ = −(
κFR

2
+ s) , β̄ + γ̄ = −(

κFR
2

+ s) ,

α + 2γ̄ = 2(
κFR

2
+ s) , ᾱ + 2γ = 2(

κFR
2

+ s) .

(3.20)

In particular,

α + ᾱ = 4κFR (3.21)

is insensitive to the coefficient s of the Bardeen counter-term.

When α or ᾱ is nonzero, the operator Jz or Jz̄ is not a Virasoro primary operator,

respectively. In a compact reflection-positive CFT, an operator must be either primary or

descendent (see for example [46]). Therefore, there must exist an operator O of dimension

(h, h̄) = (0, 0) such that L−1O = Jz or L̄−1O = Jz̄. However, in a compact reflection-positive

CFT, the only dimension zero operator is the identity which is annihilated by the Virasoro

generators L−1 and L̄−1. We have learned the following.

Lesson 3.1. A (1+1)d CFT with mixed U(1)-gravitational anomaly cannot be compact and

reflection-positive.
13In particular, [L0, J0] = α. In the vertex operator algebra (VOA) language, [L1, J(0)] 6= 0 means that

the VOA is “not of strong CFT type”. For a strongly rational holomorphic VOA (which requires it to be of

strong CFT type), it was proven by [45] that the central charge must be a multiple of 8.
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C D C ′

Figure 2: Deforming a symmetry defect line from the curve C across the domain D to the

new curve C ′.

3.2 Topological defects and isotopy anomaly

An invertible topological defect line (TDL) can be constructed from a covariant current Jµ
that is conserved up to covariant anomalies,

Lη(C) = : exp

[
iη

∮
C
ds nµJ µ

]
: , (3.22)

where nµ is the normal vector to the curve C. The defect is topological up to an isotopy

anomaly: When the curve C is deformed across a domain D, as shown in Figure 2, the defect

Lη is modified by a phase factor determined by the divergence theorem,

: exp

[
iη

∮
∂D
ds nµJ µ

]
: = : exp

[
iη

∫
D
d2x
√
g∇µJ µ

]
: = exp

[
iηκFR

∫
D
d2x
√
gR

]
. (3.23)

The isotopy anomaly generalizes the mixed gravitational anomaly to discrete groups and

non-invertible topological defects [47]. For discrete groups, there is no analog of Lesson 3.1.

In particular, an anomalous Z2 symmetry defect line in compact reflection-positive CFTs

has isotopy anomaly. Note that a defect line defined using the consistent current Jµ is

not topological. Even on flat space, its anomalous conservation depends on the choice of

coordinate system. The consistent and covariant currents agree only in Cartesian coordinates

on flat space.

Isotopy anomaly as contact term

On flat space, the isotopy anomaly can be detected by the contact terms in the OPE between

the stress tensor and the symmetry defect Lη. Using the two-point functions (3.17) and
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(3.19), we find

〈Tzz(z, z̄)Lη〉 = η

〈
:

∮
C

[ α

(z − w)3
dw − 2πβ∂zδ

(2)(z − w, z̄ − w̄)dw̄
]
Lη :

〉
= −iπ(α + 2β)η∂2

zθ(z ∈ D)〈Lη〉 ,
(3.24)

where we have assumed that TDL Lη is located on the boundary of a compact region D, i.e.

C = ∂D. Similarly, we also have

〈Tz̄z̄(z, z̄)Lη〉 = −iπ(ᾱ + 2β̄)α∂2
z̄θ(z ∈ D)〈Lη〉 ,

〈Tzz̄(z, z̄)Lη〉 = −2πi(γ + γ̄)α∂z∂z̄θ(z ∈ D)〈Lη〉 .
(3.25)

3.3 Periodicity anomaly

On flat space, for every each η ∈ Z, the defect Lη commutes with all local operators and is

therefore identified with the trivial line, reflecting the periodicity of U(1). On curved space,

this family of lines differ by their isotopy anomaly, and the periodicity of U(1) is ruined.14

A remedy is to modify the topological defect by a local improvement term15

L̃η(C) = Lη(C) exp

[
−iηκFR

∮
C
dsK

]
, (3.26)

such that the isotopy anomaly is precisely canceled via the Gauss-Bonnet theorem. However,

only when κFR ∈ Z
2

does this fully restore the periodicity of U(1). Otherwise, the distinction

between L̃η=0 and L̃η=1 can be detected by the loop expectation value on the plane,16

〈L̃η(C)〉R2 = exp [−4πiηκFR] . (3.28)

The phase signals a periodicity anomaly, analogous to the orientation reversal anomaly

of a Z2 symmetry defect line [47]. There, if one insists on cancelling the isotopy anomaly

of the anomalous Z2 symmetry defect line, then orientation reversal (which represents the

group inverse operation) turns the Z2 symmetry defect line into one with a different extrinsic

curvature improvement term. Here, the action of η → η + 1 changes the extrinsic curvature

14In particular, a point of localized curvature can carry an arbitrary real amount of charge.
15In [47], this term was called an extrinsic curvature “counter-term” by the present authors. However,

from a purely (1+1)d point of view, it is more appropriately regarded as an improvement term for a defect

operator.
16The loop expectation value of a TDL L on the plane was denoted by R(L) in [47]. If C is the unit circle

on flat space, then ∮
C
dsK = 4π . (3.27)
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improvement term. If the quantization condition κFR ∈ Z
4

in (3.12) obtained from inflow

considerations is universally true, then the anomalous phase in (3.26) is at most a sign.

Let us compare the merits of Lη and L̃η. If the mixed gravitational anomaly is such that

κFR ∈ Z
2
, then L̃η implements the same U(1) symmetry action as Lη (without periodicity

anomaly) on flat space, and is free of isotopy anomaly on curved manifolds, unlike Lη. Hence

L̃η is in all respects better than Lη. However, if κFR 6∈ Z
2
, then we are faced with a dilemma.

Lesson 3.2. If the mixed gravitational anomaly is such that κFR 6∈ Z
2
, then

1. The topological defect line Lη has no periodicity anomaly on flat space, but has isotopy

anomaly on curved background.

2. The topological defect line L̃η has periodicity anomaly on flat space, but is free from

isotopy anomaly on curved background.

4 Holomorphic bc ghost system

The anomalies of the previous sections will now find life in a specific theory — the holomor-

phic bc ghost system, which is a CFT of anti-commuting complex free fields b and c, with

weights

hb = λ , hc = 1− λ (4.1)

and OPE

b(z)c(0) ∼ 1

z
. (4.2)

The stress tensor and the U(1) current for the ghost number symmetry that assigns charges

±1 to c and b are

Tzz = (1− λ) : (∂b)c : −λ : b∂c : , Jz =: bc : . (4.3)

The anomalies coefficients, computed from the TT , jj, and Tj OPEs, are

c− = κR2 = 1− 3(2λ− 1)2 , k− = κF 2 = 1 , κFR =
2λ− 1

4
. (4.4)

To be a non-spin CFT, the spins of b and c must be integers, hence

λ ∈ Z . (4.5)

The U(1) anomaly coefficient κ2
F is not an even integer, so it cannot be canceled by a bulk

(2+1)d U(1) Chern-Simons. Likewise, the gravitational anomaly coefficient κR2 ∈ 8Z−2 is an

even integer but not a multiple of eight. Hence, the gravitational anomaly cannot be canceled

by a bulk (2+1)d gravitational Chern-Simons. They do, however, satisfy and saturate the

quantization conditions derived form the finite Wess-Zumino consistency conditions.
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Torus one-point function of the ghost number current

Let us consider the holomorphic bc ghost system on a flat torus with complex moduli τ , with

periodic boundary conditions around both the space and Euclidean time cycles. The torus

partition function vanishes due to the zero modes of the b and c fields. Consider instead the

torus one-point function of the current Jz,

G(τ, τ̄) = 〈Jz(0)〉T 2
τ

= η(τ)2. (4.6)

Under modular S and T transformations, the anomalous phases are

θS =
3π

2
, θT =

π

6
, (4.7)

which satisfy the quantization condition (2.40) for ` = 1.

Flavored torus partition function

Consider a flat torus with metric17

ds2 = (dσ1)2 + (dσ2)2 , σ1 ∼= σ1 + 2πZ , σ2 ∼= σ2 + 2πZ , (4.8)

where τ = τ1 + iτ2 is the complex moduli, and let us compute the partition function of the

bc system on this torus with constant background gauge field

A = A1dσ
1 + A2dσ

2 . (4.9)

A natural thing to evaluate is the trace

ZH(τ, z) = Tr
(
qL0− c

24 e2πi(z− 1
2

)J0
)

=
θ1(τ |z)

η(τ)
, (4.10)

where the chemical potential z is related to the constant background gauge field A by

z = −iτ2(A1 + iA2) . (4.11)

However, ZH(τ, z) does not satisfy the transformation law (1.1). The resolution is an ex-

tra term B that comes from carefully taking the Legendre transformation that relates the

Lagrangian to the Hamiltonian [48,49], resulting in

Z(τ, τ̄ , z, z̄) = ZH(τ, z) eπB(τ,τ̄ ,z,z̄) . (4.12)

17This is a different coordinate system from (2.24).
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The function B a quadratic function in z and z̄ (by nature of the Legendre transform), that

vanishes when A1 = 0, and transforms under SL(2,Z) as

B

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d
,

z

cτ + d
,

z̄

cτ̄ + d

)
= B(τ, τ̄ , z, z̄)− icz2

cτ + d
(4.13)

so that the flavored partition function Z(τ, τ̄ , z, z̄) is invariant under SL(2,Z) up to anoma-

lous phases. It is fixed to be

B(τ, τ̄ , z, z̄) =
z(z − z̄)

2τ2

. (4.14)

Under the modular S and T transformations, the flavored partition function transforms

as
Z(τ + 1, τ̄ + 1, z, z̄) = e

πi
6 Z(τ, τ̄ , z, z̄) ,

Z

(
−1

τ
,−1

τ̄
,
z

τ
,
z̄

τ

)
= e

3πi
2 Z(τ, τ̄ , z, z̄) ,

(4.15)

which agrees with the anomalous phases (4.7). Under a large gauge transformation

A→ A+ dλ, λ = m

(
σ1 − τ1

τ2

σ2

)
+ n

σ2

τ2

, (4.16)

the flavored partition function transforms as

Z(τ, τ̄ , A+ dλ) = Z(τ, τ̄ , A) exp [−πi(mτ2A2 − (n−mτ1)A1)− (mn+m+ n)πi]

= Z(τ, τ̄ , A) exp

(
− i

4π

∫
dλA− (mn+m+ n)πi

)
,

(4.17)

which also agrees with (2.44) with κF 2 = 1.

5 On the “embedding” of anomalies of finite subgroups

The quantization of the pure anomaly coefficient κF 2 ∈ Z as opposed to 2Z for the U(1)

internal symmetry (quantized such that the local operators span integer charges) makes the

mapping of the anomaly to discrete subgroups subtle and confusing. When κF 2 ∈ 2Z, the

ZN subgroup of the U(1) has anomaly

κF 2

2
mod N ∈ H3(ZN ,U(1)) . (5.1)

However, when κF 2 ∈ 2Z + 1, the anomaly of the ZN subgroup does not fall into the

classification by above group cohomology.
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In order to resolve this puzzle, we need to first discuss certain subtleties regarding the

winding number of the background gauge transformations. Consider the winding number

associated to a non-contractible cycle of the spacetime manifold, parametrized by the coor-

dinate x ∼= x+ 2π. The formula (2.43) for the winding number can be rewritten as

m[g] =
1

2πi

∫ 2π

0

g(x)−1g′(x)dx , (5.2)

where g(x) = eiλ(x) is a G-valued function with G = ZN or U(1). When g(x) has discontinu-

ities, both the integrand g(x)−1g′(x) and the winding number are ill-defined. Let us examine

the consequences of this for background ZN and U(1) gauge transformations.

• ZN : For a nontrivial background ZN gauge transformation, g(x) always has disconti-

nuities, so the winding number is ill-defined. Consider the example of a background Z3

gauge transformation on a torus given by

g(x) =


1 0 ≤ x < x1 ,

e
2πi
3 x1 ≤ x < x2 ,

e
4πi
3 x2 ≤ x < x3 ,

1 x3 ≤ x < 2π ,

(5.3)

where x ∼= x+2π is the coordinate parametrizing the spatial circle, and the Z3 elements

are represented by {1, e 2πi
3 , e

4πi
3 }. While it is already clear that the integral (5.2) does

not have a well-defined evaluation on (5.3), this problem can be elucidated further. We

can rewrite (5.3) as g(x) = eiλ(x) where

λ(n1,n2,n3)(x) = 2π

[(
1

3
+ n1

)
θ(x− x1) +

(
1

3
+ n2

)
θ(x− x2)

+

(
1

3
+ n3

)
θ(x− x3)

]
,

(5.4)

with ni ∈ Z arbitrary. If we evaluate the winding number using (2.43), we find that

the background gauge transformation (5.4) has arbitrary integer winding number n1 +

n2 + n3 + 1 depending on the choice of (n1, n2, n3).

• U(1) : In the case of U(1), the winding number integral (5.2) is only well-defined for

continuous background gauge transformations. For a piecewise continuous background

U(1) gauge transformation such as (5.3), it is possible to render the winding number

well-defined by deforming the discontinuity, but as we explain, the deformation requires

extra information. One can always find a one-parameter continuous family of continuous

functions Fg = {gξ(x) | ξ ∈ [0,∞)} that converges to the piecewise continuous function
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g(x) in the ξ →∞ limit. The winding number is the same for all the functions in the

family Fg as the winding number integral is invariant under continuous deformations.

But there can be families with different winding numbers that converge to the same

piecewise continuous function g(x). Hence, instead of defining the background U(1)

gauge transformation by merely the function g(x), we should define it by a pair (g,Fg),
up to an equivalence relation: (g,Fg) ∼= (g,F ′g) if Fg and F ′g are homotopic.18 In

particular, the winding number of g alone is ambiguous, and becomes well-defined only

if we specify the pair (g,Fg).
Let us illustrate this point in the example (5.3), which can be regarded as a background

U(1) gauge transformation. Consider the family

Fg,(n1,n2,n3) =
{
gξ,(n1,n2,n3)(x) = exp

[
iλξ,(n1,n2,n3)(x)

]
| ξ ∈ [0,∞)

}
,

λξ,(n1,n2,n3)(x) = 2π
3∑
i=1

(
1

3
+ ni

)
(2π − xi)ξxξ

(2π − xi)ξxξ + (2π − x)ξxξi
,

(5.5)

where ni ∈ Z. Since in the ξ →∞ limit, λξ,(n1,n2,n3)(x) converges to λ(n1,n2,n3)(x) given

by (5.4), the pair (g,Fg,(n1,n2,n3)) has winding number n1 + n2 + n3 + 1.

Having understood the subtle issues concerning the winding number, let us discuss the

“embedding” of background ZN gauge transformations into background U(1) gauge transfor-

mations. Given a function gZN : M2 → ZN , there is a corresponding piecewise continuous

function gU(1) = ι ◦ gZN : M2 → U(1) induced by the embedding ι : ZN ↪→ U(1). As

explained, one must further supplement gU(1) with a choice of the family FgU(1)
. In fact,

some choices may be in conflict with the fusion rule of the ZN symmetry defect lines, as we

presently illustrate. Let us go back to our previous example of the background Z3 gauge

transformation (5.3), which corresponds to three identical and parallel Z3 symmetry defect

lines wrapping the temporal circle of the torus.19 One could choose the family Fg,(n1,n2,n3)

in (5.5), and embed it as a background U(1) gauge transformation. Now, consider fusing

the three identical ZN symmetry defect lines, which corresponds to the limit x2, x3 → x1.

In such a limit, the background U(1) gauge transformation (g,Fg,(n1,n2,n3)) is trivial only

if the winding number n1 + n2 + n3 + 1 is zero. This is in contrast to the fact that the

fusion of three identical ZN symmetry defect lines is the trivial line. In particular, when

the anomaly coefficient κF 2 is odd, the pure U(1) anomaly of (g,Fg,(n1,n2,n3)) is sensitive to

the winding number, which is simply not captured within the framework of background Z3

gauge transformations alone.

18If g(x) is continuous, Fg could be simply chosen to be just {gξ(x) = g(x) | ξ ∈ [0,∞)}.
19There is a one-to-one correspondence between the background ZN gauge field configurations and the

configurations of ZN symmetry defect lines [30,31].
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6 Concluding remarks

Starting with the finite Wess-Zumino consistency condition (1.3), we derived quantization

conditions on the pure gravitational and U(1) anomaly coefficients κR2 and κF 2 in (1+1)d

non-spin quantum field theory. The quantization conditions turned out to be weaker than

those predicted by the inflow of properly quantized classical Chern-Simons actions. We also

examined the mixed U(1)-gravitational anomaly, proposed an inflow mechanism, and from

inflow derived a quantization condition on κFR. It may be possible to derive a quantization

condition on κFR from the finite Wess-Zumino consistency alone without invoking inflow,

but this requires going beyond the flat torus background to e.g. a genus-two Riemann

surface, and is beyond the scope of this paper. The quantization conditions are summarized

in Table 1. A survey of the holomorphic bc ghost system found the theory to realize the

minimal quantization condition for all three anomalies.

Inflow fWZ

κR2 = c− 8Z 2Z
κF 2 = k− 2Z Z
κFR

1
4
Z ?

Table 1: Quantization of anomaly coefficients predicted by inflow of classical Chern-Simons

actions versus the finite Wess-Zumino consistency condition (1.3).

We called an anomaly exotic if the corresponding anomaly coefficient

κR2 6∈ 8Z , κF 2 6∈ 2Z , κFR 6= 0 , (6.1)

and proved that certain exotic anomalies cannot be realized in any compact reflection-positive

non-spin conformal field theory. The lack of reflective-positivity is no reason to dismiss these

exotic anomalies.20 Besides the central role Faddeev-Popov ghosts play in gauge theories,

ghost fields also appear in interesting holographic contexts, including a purported holographic

dual of dS4 higher spin gravity [53–55], and supergroup gauge theories [56–58].

The mixed gravitational anomaly discussed in Section 3 has a natural even D-dimensional

generalization, described by an anomalous phase Aλ that involves the D-dimensional Euler

form ED,

Aλ = κFR

∫
MD

λED, ED =
1

(2π)
D
2

εa1,··· ,aDRa1a2 ∧ · · · ∧RaD−1aD , (6.2)

20Lattice models at criticality need not be reflection-positive. Non-reflection-positive CFTs are known to

be important landmarks in RG space that in fact influence reflection-positive RG flows [50, 51]. Quantum

field theory realizing non-integer “O(N)” symmetry is necessarily non-reflection-positive [52].
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where we ignored the ambiguity from the Bardeen counter-terms. An inflow mechanism of

this anomaly involves a mixed classical Chern-Simons action of a background U(1) gauge field

and a background SO(D) gauge field that matches with the D-dimensional spin-connection

by a boundary matching condition analogous to (3.7).21 On product manifolds MD × [0, 1)

with a distinguished time direction, a higher-dimensional generalization of the Wen-Zee

topological term [33,34] can also provide the inflow. Further study of the higher-dimensional

mixed gravitational anomaly is left for future work.

Acknowledgements

We are grateful to Po-Shen Hsin, Chao-Ming Jian, Shu-Heng Shao, Ryan Thorngren, Yifan

Wang and Xiao-Gang Wen for helpful discussions and comments. CC thanks the hospitality

of National Taiwan University. YL is supported by the Sherman Fairchild Foundation, by the

U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award

Number DE-SC0011632, and by the Simons Collaboration Grant on the Non-Perturbative

Bootstrap.

A Bardeen-Zumino counter-terms

In this appendix, we review the pure Bardeen-Zumino counter-term of [37], and construct a

mixed Bardeen-Zumino counter-term for the mixed U(1)-gravitational anomaly of Section 3.

A.1 Pure gravitational

Let us treat the vielbein eaµ as a matrix and denote it by E. The two-dimensional pure

Bardeen-Zumino term is

SBZ = − i

2π

∫
M2

∫ 1

0

dt
κR2

48
tr (HdΓt) = − i

2π

∫
M2

∫ 1

0

dτ
κR2

48
tr (Hdωτ ) , (A.1)

where the H is

E = eH , (A.2)

and the Γt and the ωt are defined by

Γt = EtΓE−t + EtdE−t = E−1+tωE1−t + E−1+tdE1−t = ωτ , (A.3)

21This inflow mechanism suggests that the classification of anomalies in non-reflection-positive quantum

field theory requires unstable homotopy theory. We thank the anonymous referee for this comment.
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where τ = 1− t. The matrix valued Christoffel one-form Γ and spin connection ω are defined

by

Γµν ≡ Γµνρdx
ρ , ωab ≡ ωabµdx

µ . (A.4)

In the matrix notation, diffeomorphisms and local frame rotations act on the viebein E,

Christoffel one-form Γ, and spin connection ω as

δξE = (Lξ + TΛ)E , δξΓ = (Lξ + TΛ)Γ ,

TΛE ≡ EΛ , TΛΓ ≡ dΛ + [Γ,Λ] ,

δθE = −θE , δθω = dθ + [ω, θ] .

(A.5)

where Lξ is the Lie derivative.22 The gauge parameter Λ is related to the diffeomorphism

parameter ξ by

Λρ
µ = ∂µξ

ρ. (A.7)

The Γt transforms under TΛ as

TΛΓt = dΛt + [Γt,Λt] ≡ TΛtΓt, Λt ≡ EtΛE−t + Et(TΛE
−t) . (A.8)

We also have the identities
∂Λt

∂t
= [H,Λt]− TΛH ,

∂Γt
∂t

= −dH + [H,Γt] .

(A.9)

Using the above, we compute the diffeomorprhism variation of the Bardeen-Zumino action

to be

δξSBZ = − i

2π

∫
M2

κR2

48
tr (ΛdΓ) . (A.10)

By a similar computation, we find

δθSBZ =
i

2π

∫
M2

κR2

48
tr (θdω) . (A.11)

Hence, adding the Bardeen-Zumino counter-term SBZ to the effective action W [e, A], we

cancel the pure frame rotation anomaly, i.e. Aθ in (2.8), while introducing a pure diffeomor-

phism anomaly (2.17).

22An useful identity between the Lie derivative Lξ, exterior derivative d and interior product ιξ is

Lξ = dιξ + ιξd. (A.6)
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A.2 Mixed gravitational

We introduce a mixed Bardeen-Zumino action

Smixed
BZ = − i

2π

∫ 1

0

dt

∫
M2

(κFR
2

+ s
)

tr (Hd(EtA)) . (A.12)

The matrix Et is defined by

Et = EtEE−t , (A.13)

where the matrix E is the (1+1)d Levi-Civita tensor εµν . Note that the matrix E ≡ E1 is

the Levi-Civita symbol εab with local Lorentz indices. The Et transforms under TΛ as

TΛEt = [Et,Λt] . (A.14)

We also have identity

∂Et
∂t

= HEtEE−t − EtEE−tH = [H, Et] . (A.15)

Using the above, we obtain the diffeomorprhism variation of the mixed Bardeen-Zumino

action to be

δξS
mixed
BZ = − i

2π

∫
M2

(κFR
2

+ s
)

tr (Λd(EA)) . (A.16)

Similarly, we have the variation of the mixed Bardeen-Zumino term under local frame rota-

tions,

δθS
mixed
BZ =

i

2π

∫
M2

(κFR
2

+ s
)

tr (θE )dA . (A.17)

To derive the variation of the mixed Bardeen-Zumino term under the background U(1) gauge

transformation, let us first rewrite the mixed Bardeen-Zumino term by integrating out the

auxiliary variable t in (A.12) as

Smixed
BZ = − i

2π

∫
M2

(κFR
2

+ s
)

tr (ωE − ΓE)A. (A.18)

Under background U(1) gauge transformations, the mixed Bardeen-Zumino term becomes

δλS
mixed
BZ = − i

2π

∫
M2

(κFR
2

+ s
)
λtr (E dω − d(ΓE)) . (A.19)

B No covariant stress tensor for mixed anomaly

Let us examine the possibility of improving the stress tensor such that the mixed gravitational

anomaly becomes covariant. The most general improvement terms linear in derivatives and
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linear in A come in two forms, ∂A and ΓA. For the first form, it is clear that there are two

possibilities

∂(µAν) , gµν∂σAσ . (B.1)

For the second form, if A takes a µ, ν index, then we have

gρσΓµρσA
ν , gµρΓσρσA

ν , (B.2)

and if A takes a dummy index that is contracted, then we have

gµρΓνρσA
σ , gµρgνσΓτρσAτ , gµνΓρρσA

σ , gµνgρσΓτρσAτ . (B.3)

Hence, the most general improvement takes the form

Y µν
2 = c1Γ(µν)ρAρ + c2ΓρµνAρ + c3Γ(µρσgρσA

ν) + c4gρσΓρσ(µAν)

+ c5g
µνΓσσρA

ρ + c6g
µνgσλΓ

ρσλAρ + c7g
(µρgν)σ∂ρAσ + c8g

µνgρσ∂ρAσ .
(B.4)

The only possible covariant form of the conservation equation is

〈∇µT µν(x)〉 ⊃ ∇µF
µν . (B.5)

Using the MathGR package [59], it is straightforward to evaluate ∇µY
µν

2 , ∇µF
µν and the

consistent mixed gravitational anomaly in ∇µT
µν in conformal gauge. The results can be

decomposed with respect to a basis (with the overall conformal factor e−4w stripped off)

(A∂)w∂νw , Aν∂
2w , (A∂)∂νw , ∂νw(∂A) ,

(∂νAρ)∂ρw , ∂ν(∂A) , ∂ρw∂ρAν , ∂2Aν ,
(B.6)

where ∂A = ∂ρAρ and A∂ = Aρ∂ρ. In this basis, the eight terms in∇µY
µν

2 can be represented

by a coefficient matrix 

2 −1 −1 −2 0 1
2
−1 1

2

4 0 −2 −2 −2 1 0 0

0 0 0 0 0 0 0 0

−2 1 1 1 0 0 1 0

−2 0 1 0 1 0 0 0

0 1 0 1 −1 0 1 0

−4 0 2 0 2 0 0 0

0 0 0 0 0 0 0 0


. (B.7)

The covariant anomaly ∇µF
µν is represented by(

0 0 0 0 −2 1 2 −1
)
, (B.8)

and the consistent anomaly in ∇µT
µν is represented by(
0 0 0 0 0 −1 0 1

)
. (B.9)

No combination of (B.8) with the rows of (B.7) produces (B.9). Hence, no covariant stress

tensor exists.
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