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We investigate the behavior of higher-form symmetries at various quantum phase transitions. We
consider discrete 1-form symmetries, which can be either part of the generalized concept “categorical

symmetry” (labelled as Z̃
(1)
N ) introduced recently, or an explicit Z

(1)
N 1-form symmetry. We demon-

strate that for many quantum phase transitions involving a Z
(1)
N or Z̃

(1)
N symmetry, the following

expectation value 〈(log OC)2〉 takes the form 〈(log OC)2〉 ∼ −A
ǫ
P + b log P , where OC is an operator

defined associated with loop C (or its interior A), which reduces to the Wilson loop operator for cases

with an explicit Z
(1)
N 1-form symmetry. P is the perimeter of C, and the b log P term arises from

the sharp corners of the loop C, which is consistent with recent numerics on a particular example.
b is a universal microscopic-independent number, which in (2 + 1)d is related to the universal con-
ductivity at the quantum phase transition. b can be computed exactly for certain transitions using
the dualities between (2 + 1)d conformal field theories developed in recent years. We also compute
the “strange correlator” of OC : SC = 〈0|OC |1〉/〈0|1〉 where |0〉 and |1〉 are many-body states with
different topological nature.

PACS numbers:

I. INTRODUCTION

The concept of symmetry is the most fundamental con-
cept in physics, and has profound implications and con-
straints on physical phenomena. In recent years var-
ious generalizations of the concept of symmetry have
been explored. For example, ordinary symmetries in a
d−dimensional system are associated with the global con-
servation of the symmetry charges, and the symmetry
charges localized within a d−dimensional subsystem of
the space can only change through the Noether current
flowing across the surface of the subsystem. In recent
years the concept of 1-form symmetry (more generally
higher form symmetry) was proposed (see for example
Ref. 1–9), and the concept of 1-form symmetry is associ-
ated with conserved “flux” through a (d−1)−dimensional
subsystem; and the flux can only change through the
flowing of a 2-form symmetry current across the edge of
the (d − 1)−dimensional subsystem. The concept of 1-
form symmetry was proven highly useful when analyzing
gauge fields. Using this new concept of symmetry and its
’t Hooft anomaly, it was proven that gauge fields with cer-
tain topological term cannot be trivially gapped10, which
is an analogue of the Lieb-Shultz-Mattis theorem in con-
densed matter systems11,12.

Lagrangians are often used to describe a physical sys-
tem, and the form of the Lagrangian depends on one’s
choice of “local degrees of freedom” of the system, and
other degrees of freedom may become nonlocal topolog-
ical defects in the Lagrangian. When we select another
set of local degrees of freedom of the same system to
construct the Lagrangian, it will take a new form, and
the new form of Lagrangian is related to the original La-
grangian through a “duality transformation”. It was re-
alized in recent years that, in some examples, duality
transformation of the Lagrangian, along with the obvi-

ous symmetry of the Lagrangian, could be embedded into
a larger symmetry group13,14, which may only emerge in
the infrared limit, and is not explicit unless one takes
into account of all the dual forms of the Lagrangian.

Most recently a notion of “categorical symmetry” was
developed. For example the 1d quantum Ising model has
two sets of conservations laws: the conservation of Ising
spins, and also conservation of kinks of the Ising spins.
The conservation of the Ising spins correspond to an “ex-
plicit symmetry” in the Hamiltonian, while the conserva-
tion of kinks is governed by an “inexplicit symmetry” in
our current manuscript (for further explanation of these
notions please refer to the appendix). These two conser-
vation laws can be made both explicit symmetries by em-
bedding the 1d system as the boundary of a 2d toric code
model, and the conservation laws of the Ising spins and
kinks arise from the fusion rules of the e and m anyons in
the bulk. The notion of categorical symmetry unifies the
explicit symmetry of a model and the inexplicit symme-
try of its dual model, and treat them on an equal foot-
ing15. To diagnose the behavior of the categorical sym-
metries, and most importantly to diagnose the explicit
symmetry and the inexplicit dual symmetry on an equal
footing, a concept of “order diagnosis operator” (ODO)
was introduced, whose expectation value reduces to the
correlation function between order parameters for an ex-
plicit 0-form symmetry, and reduces to a Wilson loop
for an explicit 1-form symmetry16. The ODO was also
referred to as the “patch operator” in Ref. 15. For ex-
ample, the ODO for the Z2 symmetry of the 2d quantum
Ising model is Oij = σz

i σz
j , while the ODO for the dual

Z̃
(1)
2 1-form symmetry is ÕC =

∏

j∈A,∂A=C
σx

j , where σz

transforms under the explicit Z2 symmetry. ÕC creates
a domain wall of σz along a closed loop C by flipping
the sign of σz on a patch A, which is the interior of C83.
ODOs for systems with special symmetries such as sub-
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system symmetries may have special forms and behav-
iors, and examples with these special symmetries were
discussed in Ref. 16.

The expectation value of Oij and ÕC in the 2d quantum
Ising system characterizes different phases of the system.
In the two gapped phases, i.e. the ordered and disor-
dered phase of σz, the behavior of 〈Oij〉 and 〈ÕC〉 are
relatively easy to evaluate, since they can be computed
through perturbation17, which is protected by the gap
of the phases. In the ordered phase of σz, 〈Oij〉 satu-

rates to a constant when |i − j| → ∞, and 〈ÕC〉 decays
with an area law; in the disordered phase of σz, 〈Oij〉

decays exponentially with |i− j|, while 〈ÕC〉 decays with
a perimeter law. But at the critical point of the system,
i.e. the (2 + 1)d quantum Ising phase transition, the

behavior of the ODO ÕC is more difficult to evaluate.
Ref. 18 evaluated 〈ÕC〉 numerically, and the result indi-
cates that in addition to a leading term linear with the
perimeter of C, a subleading term which is logarithmic of
the perimeter arises for a rectangular shaped loop C. The
logarithmic subleading contribution may be a universal
feature of ODO at a critical point, and the Z2 ODO can
be mapped to the 2nd Renyi entanglement entropy of a
free boson/fermion system18. It is known that there is
a corner induced logarithmic contribution for the Renyi
entropy in a general conformal field theory19–23. How-
ever, for interacting systems the exact relation between
entanglement entropy and ODO is not clear yet.

In this work we demonstrate that, for a 2d quantum

system with either an explicit 1-form symmetry Z
(1)
N , or

an inexplicit symmetry Z̃
(1)
N (which is dual to a 0-form or-

dinary ZN symmetry), the following quantity 〈(log OC)2〉

or 〈(log ÕC)2〉 take a universal form −A
ǫ
P + b log P at

many quantum critical points. Here P is the perimeter
of the loop C. b is a universal number which arises from a
sharp angle of the loop C; b is proportional to the univer-
sal conductivity of the 2d quantum critical point, and it is
a universal function of the angle θ. We demonstrate this
result for various examples of quantum critical points.
We also comment on the connection between ODO and
entanglement entropy in the end of the manuscript. A
logarithmic contribution from angle/cusp of a Wilson
loop was found before for (3 + 1)d gauge field (see for
instance Ref. 24). Our computation is for quantum crit-
ical points (QCP) in (2 + 1)d, and the coefficient of the
logarithmic contribution is related to a known universal
quantity associated to the QCP. Our result is exemplified
with multiple concrete examples, the desired quantity of
some of the examples can be computed exactly using re-
cently developed duality between (2 + 1)d QCPs.

We also compute a quantity called the “strange cor-
relator” of the 1-form ODO OC . The strange correlator
was introduced as a tool to diagnose the symmetry pro-
tected topological (SPT) states based on the bulk wave
function instead of the edge states25, and it was shown to
be effective in many examples26–34. In the current work
we study the strange correlator for one example of 1-

form SPT state, but we expect similar studies are worth
pursuing for more general cases.

II. SYSTEMS WITH DUAL Z̃
(1)
N 1-FORM

SYMMETRY

A. Example 1: ZN order-disorder transition

We first consider cases when the system has an ex-
plicit ZN (0-form) symmetry, and it has an inexplicit

dual Z̃
(1)
N 1-form symmetry. The simplest example of

quantum phase transition, is the order-disorder transi-
tion of the ZN symmetry. The lattice model with ZN

symmetry, can be embedded into an ordinary U(1) rotor
model:

H =
∑

<i,j>

−t cos(θ̂i − θ̂j) + V (n̂i) − 2u cos(Nθ̂i), (1)

where [n̂i, θ̂j ] = iδij , and θ̂j prefers to take values θ̂j =
2πk/N with k = 0, · · ·N − 1 due to the u-term. The
potential V (n̂) has a minimum at n̂ = 0. The order-
disorder transition of the ZN symmetry is described by
the Landau-Ginzburg action

S =

∫

d2xdτ |∂Φ|2 + r|Φ|2 + g|Φ|4 + u(ΦN + h.c.) ↔

Sd =

∫

d2xdτ |(∂ − ia)φ|2 + r̃|φ|2 + g̃|φ|4

+ u(MN + h.c.). (2)

Φ is the complex order parameter. The second line of the
equation is the well-known boson-vortex dual description
of the phase transition35–37, and r ∼ −r̃ is the tuning
parameter of the transition: r > 0 (r < 0) corresponds
to the gapped (condensed) phase of Φ and condensed
(gapped) phase of φ. The ΦN term is the ZN anisotropy
on Φ which breaks the U(1) symmetry of Φ to ZN . The
ΦN is dual to the N−fold monopole operator (MN ) in
the dual theory. It is known that when N ≥ 4, the
u term (ZN anisotropy) is an irrelevant perturbation at
the (2+1)d XY transition, and there will be an emergent
U(1) symmetry at the quantum phase transition.

As was discussed before, a system with ZN symmetry
has an inexplicit dual Z̃N 1-form symmetry. One can
embed this system to the boundary of a (3 + 1)d ZN

topological order, and the ZN and Z̃
(1)
N symmetry can

both be made explicit (as is defined the appendix), and
they together constitute the “categorical symmetry” of
the system15. In order to describe the behavior of the

Z̃
(1)
N symmetry, Ref. 16 introduced the “order diagnosis

operator” ÕC . Represented in terms of lattice operators,

the ODO for the dual Z
(1)
N symmetry reads

ÕC = exp



i
2π

N

∑

j∈A

n̂j



 , (3)
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where ∂A = C is a patch of the 2d lattice enclosed by
contractible loop C, and the ODO was also called patch
operator in Ref. 15. ÕC creates a ZN domain wall. In
the ordered and disordered phase of the ZN symmetry,
the expectation value of ÕC decays with an area law and
perimeter law respectively.

At the order-disorder phase transition, to extract
the universal feature of the ODO ÕC , we evaluate
〈(log ÕC)2〉84, which in the dual theory reduces to

〈(log ÕC)2〉 = −
1

N2

∫

C

dlµ
∫

C′

dl′ν〈aµ(x)aν(x′)〉. (4)

The relation between aµ and the original Landau-

Ginzburg theory is J = i
2π

∗da, where J is the current of
the emergent U(1) symmetry at the ZN order-disorder
transition85. The correlation of aµ is dictated by the
correlation of J whose scaling dimension does not renor-
malize at a general conformal field theory. The correla-
tion between currents J is proportional to the universal
conductivity at a (2 + 1)d conformal field theory:

〈Jµ(0)Jν(x)〉 = σ
Iµν(x)

|x|
4 , (5)

where the matrix Iµν(x) is given by Iµν(x) = δµν −

2xµxν/ |x|
2
, and σ is CJ in (for example) Ref. 38. The

universal conductivity at a (2 + 1)d XY transition was
predicted in Ref. 39, and it can be computed using var-
ious theoretical and numerical methods, and also mea-
sured experimentally (see for example Ref 40–48, the
universal conductivity in some of the references was com-
puted/measured with strong disorder).

It is straightforward to verify that the gauge field prop-
agator can be written as

〈aµ(0)aν(x)〉 = σπ2 δµν − ζIµν(x)

|x|
2 , (6)

The parameter ζ is introduced by a nonlocal gauge fixing
term

1

8π6σ

1

1 − ζ

∫

d3
xd3

y
∂µaµ(x)∂νaν(y)

|x − y|
2 , (7)

which contributes to a total derivative Iµν(x)/ |x|
2

=
1
2∂µ∂ν log |x|

2
in the gauge field propagator.

In the explicit calculation of Eq. 4, one should be very
careful about how to set the UV cut-off. A hard cut-off
on the integration interval |x− x

′| along C will spoil the
gauge invariance. To guarantee that C and C′ are both
complete loops in the integral (hence gauge invariance is
preserved), a good method is to set a small distance be-
tween C and C′ along the temporal direction by distance
τ = ǫ > 0, and this small splitting serves as a small
real-space UV cut-off. The integral is then performed
along the closed loop C (and its duplicate C′) in the x-y
plane. For a smooth loop C with perimeter P , the eval-
uation of 〈(log OC)

2
〉 simply yields a perimeter law, i.e.

proportional to P with a UV-dependent coefficient. For
example, when C is a circle with radius R, the integral in
Eq. 4 gives

−〈(log ÕC)2〉 =
σπ2

N2

(

2π2R

ǫ
− 2π2 +

3π2ǫ

4R

)

+ O(ǫ2).(8)

There are two observations. First, the final result is in-
dependent of the gauge choice ζ. Second, the large-R
scaling is only given by a linear term which depends on
the UV cut-off.

However, if the loop C has sharp corners, the situa-
tion is very different, and some universal feature that
does not depend on the UV cut-off emerges. Let us
first consider C being a spatial square with four corners
(0, 0) , (L, 0) , (L,L) , (0, L). There are three types of in-
tegrals that are involved. The linear contribution is from
the correlation along the same edge of C

∫ L

0

dx

∫ L

0

dx′ (1 + ζ)(x − x′)2 + (1 − ζ)ǫ2

((x − x′)2 + ǫ2)2

=
πL

ǫ
− 2(1 + ζ) log(L/ǫ) + O(1). (9)

It is important to notice that there is a log(L/ǫ) term,
which also shows up in the integral for two neighboring
edges that are perpendicular to each other

∫ L

0

dx

∫ L

0

dy′ 2ζxy′

(x2 + y′2 + ǫ2)2
= ζ log(L/ǫ). (10)

The integral from two parallel edges is a finite number
which does not grow with L
∫ L

0

dx

∫ L

0

dx′ (ζ + 1)(x − x′)2 + (1 − ζ)(L2 + ǫ2)

−(L2 + (x − x′)2 + ǫ2)2
= O(1)

(11)

Combining all contributions together, we find the gauge
invariant result

−〈(log ÕC)2〉 =
σπ2

N2

(

π4L

ǫ
− 8 log(L/ǫ)

)

+ O(1). (12)

The ζ-independence of the O(1) term has also been ver-
ified. This result is similar to the evaluation of a square
Wilson loop for free QED in (3 + 1) dimensions. In
both the two cases above, we find that the linear term in

−〈(log ÕC)2〉 is σπ2

N2

πP
ǫ

where P = 2πR for the circle and
P = 4L for the square.

Let us now generalize Eq. 10 to the case of two straight
lines with an arbitrary angle θ with 0 < θ < π. For
convenience, we choose the gauge ζ = 0 in the following
calculations. We could parametrize the two straight lines
by t(cos(θ/2),− sin(θ/2)) and s(cos(θ/2), sin(θ/2)) where
0 < s, t < L. To extract the angle-dependence of the
logarithmic divergence, we use the trick in Ref. 49,50

∫ L

0

ds

∫ L

0

dt
− cos θ

s2 + t2 − 2st cos θ + ǫ2
=

∫ L

0

dℓ

∫ 1

0

dλ

[

ℓ

ℓ2 + ǫ2
− cos θ

λ2 + (1 − λ)2 − 2λ(1 − λ) cos θ
+ O(ǫ2/ℓ3)

]

,
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FIG. 1: The shape of C with only one angle 0 < θ < π. As a
concrete example, we consider a circle with two tangent lines
that intersect at a point. Each tangent line has the length
L, the radius of the circle is therefore L tan(θ/2) and the
perimeter of C is given by P = (2 + (π + θ) tan(θ/2))L.

where we have changed the integration variables to s =
ℓλ, t = ℓ(1 − λ), and the O(ǫ2/ℓ3) part does not con-
tribute to any logarithmic divergence. The λ-integral
can be evaluated exactly, which gives −(π − θ) cot θ.
The log(L/ǫ) divergence then arises from the ℓ-integral.
There is another logarithmic contribution from correla-
tion within the same line. Combining all the contribu-
tions together, eventually we obtain

−〈(log ÕC)2〉 =
σπ2

N2

(

πP

ǫ
− f(θ) log P

)

+ O(1) (13)

f(θ) = 2(1 + (π − θ) cot(θ)) (14)

for any shape of C with a single corner, where P is the
perimeter of C. We observe that the universal logarithmic
term vanishes when θ = π, and only the linear term
remains, as expected. To double check the analytical
expression Eq. 13, we consider the shape of C as shown
in FIG. 1, and the numerical evaluation for −〈(log ÕC)2〉
for different angles are shown in FIG. 2. For fixed values
of L, ǫ, the angle dependence for both the linear and the
logarithmic terms agree with Eq. 13 and Eq. 14.

We computed −〈(log ÕC)2〉, which is the second order

expansion of 2〈ÕC〉. We have not proven whether higher

order expansion in 〈ÕC〉 leads to different corner con-

tribution from 〈(log ÕC)2〉 or not. We would also like to
mention that the entanglement entropy of a patch A with
corners in a (2 + 1)d CFT is related to another univer-
sal quantity CT from the correlation of the stress-energy
tensor Tµν . As discussed in Ref. 19–23, the entangle-

ment entropy takes the form S = B
ǫ
P −a(θ) log P +O(1),

where B/ǫ depends on the UV details, and the universal
coefficient a(θ) is given by the correlations of Tµν

86 The
function a(θ) proposed and computed for entanglement
entropy19,20 is also proportional to f(θ) in our result.

B. Example 2: ZN SPT-trivial transition

Now let us still assume the system has a ZN symme-
try, but the system undergoes a transition between a 2d

FIG. 2: The numerical results of −〈(log ÕC)2〉 (in the unit of
σπ2/N2) for the shape in FIG. 1 with different angles. The
UV cut-off is set to be ǫ = 1. The large-L scaling is fitted by
the function −〈(log ÕC)2〉 = aL/ǫ+ b log L+ c/L+ d, and the
fitting parameters a, b agree with the analytical expressions
Eq. 13 and Eq. 14.

ZN symmetry protected topological (SPT) state and a
trivial state. Both states are disordered states of the ZN

symmetry, hence in both states the ODO ÕC should obey
a perimeter law. Our main interest focuses on the trivial-
SPT phase transition, especially the universal features of
ÕC at this transition. This example, and the next few
examples will be described by a class of similar theories:

S =

∫

d2xdτ

Nf
∑

α=1

ψ̄αγ · (∂ − ina)ψα

+ mψ̄ψ +
ik

4π
ada + · · · (15)

with integer Nf and n, and in general these theories
will be labelled as QED(Nf ,n,k). The trivial-SPT tran-
sition corresponds to QED(2,1,0), i.e. Nf = 2, n = 1

and k = 051,52, plus Chern-Simons terms of background
gauge fields which are not written explicitly in Eq. 15.
The trivial-SPT transition needs certain fine-tuning to
reach the critical point described by this field theory,
hence this field theory is a multi-critical point between
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the two states. This multi-critical point is self-dual53–55

and also dual to the easy-plane deconfined quantum crit-
ical point13,14,56,57. The Dirac fermion mass term m in
Eq. 15 is the tuning parameter between the trivial and
SPT phases.

In the theory QED(2,1,0), the current of the U(1) sym-
metry in which the microscopic ZN symmetry is embed-
ded, is J = i

2π
∗ da, and the ODO of the system is given

by Eq. 3. The angle dependence of the ODO is still give
by Eq. 14, with σ replaced by the counterpart at the
trivial-SPT (multi-)critical point QED(2,1,0). The univer-
sal conductivity can be computed using various methods
such as 1/Nf expansion.

III. SYSTEMS WITH EXPLICIT Z
(1)
N

SYMMETRY

A. Topological transition at the boundary of a 3d

SPT with Z
(1)
N × U(1)(0) symmetry

Here we consider an example with an explicit Z
(1)
N 1-

form symmetry. The infrared of this example is described
by QED(1,2N,0) of Eq. 15, i.e. it is a single massless Dirac
fermion ψ with charge−2N coupled with a U(1) gauge
field. In our construction of theory QED(1,2N,0) we also
need a charge−N fermion ψ′ in the background, hence

the system only has a Z
(1)
N 1-form symmetry, i.e. the

electric flux of the gauge field through any closed surface
is conserved mod ZN . We also demand that the magnetic
flux of the QED(1,2N,0) is conserved, which corresponds

to another U(1)(0) symmetry. There is a mixed anomaly

between the Z
(1)
N and U(1)(0) symmetries. Hence the field

theory QED(1,2N,0) can be realized at the boundary of a

3d SPT state with Z
(1)
N and U(1)(0) symmetry58. In the

following paragraphs we spell out this construction of the
3d bulk SPT state.87

To construct the boundary theory QED(1,2N,0), we
first consider a 3d bulk with an ordinary photon phase
of gauge field aµ, and only charge−N and charge−2N
fermionic matter field is dynamical, although all the
integer-charge Wilson loops are allowed in the theory.

Hence the system has a Z
(1)
N 1-form symmetry. All

the fermionic matters are in a topologically trivial band
structure in 3d. Then we bind the Dirac monopole of
~a with another gauge neutral boson with global U(1)(0)

conservation, and condense the bound state. The 3d bulk

is a SPT state with Z
(1)
N ×U(1)(0) symmetry58. The natu-

ral 2d boundary of the system is a (2+1)d photon phase.
To create a gauge flux at the 2d boundary, one needs to
move a Dirac monopole from outside of the system, into
the 3d bulk; since in the 3d bulk the bound state between
the Dirac monopole and the U(1)(0) boson is condensed,
the 2π magnetic flux at the boundary must also carry the
U(1)(0) boson. Hence the photons at the 2d boundary is
the dual of the Goldstone modes of the U(1)(0) symme-

try. Notice that the bulk is fully gapped and has no
spontaneous breaking of the U(1)(0) symmetry, because
the condensed bound state in the bulk is coupled to the
dual gauge field while carrying the U(1)(0) charge. The
condensate is still gapped due to the Higgs mechanism.

At the 2d boundary, the charge−2N fermion ψ is tuned
close to the transition between a trivial insulator and
a Chern insulator with Chern number +1. Due to the
fermi-doubling in 2d, there must be another massive
Dirac cone of ψ in the band structure that affects the
dynamics of aµ. Hence we need to design a background
band structure of the charge−N fermion ψ′ with Chern
number −2. The Chern-Simons term of aµ generated
from ψ′ will cancel the Chern-Simons term generated by
the band structure of fermion ψ.

Now we have arrived at the theory QED(1,2N,0). The
QED(1,2N,0) is a transition between two different topo-
logical states tuned by the mass of the Dirac fermion ψ,
these two topological orders are described by the CS term

for aµ with level k = ±2N2, which is free of Z
(1)
N 1-form

symmetry anomaly. The ODO for the Z
(1)
N symmetry is

the charge-1 Wilson loop OC = exp(i
∫

d~l ·~a). In this case
the quantity 〈(log OC)2〉 at the critical point m = 0 can
be evaluated exactly, based on the fermion-vortex duality
developed recently59–63:

QED(1,2N,0) ↔

χ̄γ · ∂χ coupled to ZN gauge theory + · · · (16)

The detailed and exact form of the duality can be found
in Ref. 63. The right hand side of the duality is a Dirac
fermion coupled with a ZN gauge field. The duality re-
lation we will exploit is

Jχ = i
2N

4π
∗ da, (17)

where Jχ is the current carried by χ. Although χ is
coupled with a ZN gauge field, since the ZN gauge field
is gapped, in the infrared the correlation of Jχ is identical
to that of the free Dirac fermion, and can be computed
exactly:

〈Jχ,µ(0)Jχ,ν(x)〉 =
1

8π2

Iµν(x)

|x|
4 . (18)

One can determine the propagator of the dual gauge field
accordingly. Considering again the C in FIG. 1, we find

−〈(log OC)2〉 =
1

8N2

(

πP

ǫ
− f(θ) log P

)

+ O(1), (19)

where f(θ) is given in Eq. 14.

B. QED(Nf ,N,k) with explicit Z
(1)
N symmetry and

Chern-Simons term

We consider the theory QEDNf ,N,k with large−Nf and

level k = qN2, where q is an integer at the order of Nf .
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QED(Nf ,N,k) with even integer Nf , and a CS term with

level k being integer multiple of N2 can be constructed

in 2d with Z
(1)
N 1-form symmetry88. At low energy, the

dynamics of gauge field is significantly modified by the
one-loop polarization diagram of fermion ψ. In the mo-
mentum space, the loop diagram integral gives

|aµ(~p)|2
NfN2

16

|p|
2
δµν − pµpν

|p|
(20)

which gives an order Nf contribution to the gauge field
self-energy. To the leading order in 1/Nf , the gauge field
propagator in the momentum space is given by

16

NfN2

1

|p|

(

cos K̂

|K|

(

δµν − ζ
pµpν

|p|
2

)

+
sin K̂

|K|

εµνσpσ

|p|

)

,

(21)

where |K| , K̂ denote the magnitude and the angle of the
two-dimensional vector K = (1, −16k

2πNf N2 ). The Fourier

transformation to real space gives

〈aµ(0)aν(x)〉 =
8

NfN2

1

π2 |x|
2 (22)

×

(

cos K̂

|K|

δµν − ζIµν(x)

|x|
2 +

sin K̂

|K|

iπ

2

εµνσxσ

|x|

)

,

which has an imaginary part due to the Chern-Simons
term. The parameter ζ is introduced by gauge fixing.

The ODO for the Z
(1)
N symmetry is still the charge-1

Wilson loop OC = exp(i
∫

d~l · ~a). As for the shape of C
with a sharp corner in FIG. 1, our calculation leads to
the gauge invariant result

−〈(log OC)2〉 =
8N2Nf

64k2 + π2N4N2
f

(

πP

ǫ
− f(θ) log P

)

+ O(1),

(23)

where f(θ) is given in Eq. 14. The imaginary antisym-
metric part of 〈aµaν〉 does not contribute, and the final
result has the similar form as before. In the large−Nf

limit the universal conductivity of the current J = 1
2π

∗da
can be computed exactly.

IV. THE “STRANGE CORRELATOR” OF ODO

Following the argument from Ref. 64, if a state |Ω〉
is the ground state described by a Lagrangian L(Φ(x)),
the matrix elements between |Ω〉 and two different field
configurations |Φ(x)〉 and |Φ′(x)〉 is given by the path
integral:

〈Φ(x)|Ω〉〈Ω|Φ′(x)〉 ∼

∫ Φ(x,τ=+∞)=Φ(x)

Φ(x,τ=−∞)=Φ′(x)

DΦ(x, τ)

× exp

(

−

∫ +∞

−∞

dτddx L(Φ(x, τ))

)

, (24)

knowing the matrix element, Ref. 64 was able to derive
the ground state wave function based on the Lagrangian
description of various SPT states.

Based on the information of the ground state wave
function of SPT state derived from its Lagrangian, the
quantity “strange correlator” was introduced and de-
signed to diagnose a SPT state based on its bulk wave
function25. Let us assume that |0〉 and |1〉 are the triv-
ial state and SPT state defined within the same bosonic
Hilbert space in a two dimensional real space, and both
systems have the same symmetry. The strange correlator
is the quantity S(x,x′) = 〈0|Φ(x)Φ(x′)|1〉/〈0|1〉, where
Φ(x) is the order parameter of the symmetry that defines
the systems.

For a class of Langrangians L, using the derived wave
functions for both the SPT state |1〉 and trivial state |0〉,
one would see that the strange correlator S(x,x′) cannot
have a trivial short range correlation at least for d = 2.
Another picture to see this is that, if the Lagrangian
L has an emergent Lorentz invariant description, after
the space-time rotation, the strange correlator which was
purely defined in space, becomes a space-time correlation
function at the one dimensional spatial interface between
|0〉 and |1〉. This picture is similar to the construction
of fractional quantum Hall wave function using confor-
mal blocks65. Because the spatial interface between |0〉
and |1〉 cannot be trivially gapped, the strange correlator
S(x,x′) must be either long ranged, or have a power-law.
Hence the strange correlator can be viewed as a tool to
diagnose a SPT state based on its bulk wave function,
and it has been shown to be effective for many exam-
ples26–34.

ODO is the generalization of correlation functions of
0-form symmetries. Here we generalize the strange cor-
relator to the ODO of 1-form symmetry i.e. we evaluate
the following quantity

S(C) = 〈0|OC |1〉/〈0|1〉, (25)

where |0〉 and |1〉 are trivial state and SPT state with
1-form symmetry respectively. SPT states protected by
1-form symmetries have attracted great interests in the
last few years7,9,58,66–75, we expect this general question
of evaluating strange correlator of ODO to be a new di-
rection that is worth a deep exploration. In the current
work we consider a typical 3d SPT state protected by the

Z
(1)
N 1-form symmetry as an example. This SPT state can

be described by the following Lagrangian76

L =
1

g
tr[FµνFµν ] +

iΘ

8π2
tr[F ∧ F ]. (26)

F is the curvature tensor of the SU(N) gauge field. To

guarantee there is a Z
(1)
N 1-form symmetry, we only al-

low dynamical (but massive) matter fields of the SU(N)
gauge field which carries an adjoint representation of the
gauge field, while closed Wilson loops with other repre-
sentations of the gauge field are still allowed. The SPT
state corresponds to Θ = 2π, while the trivial state cor-
responds to Θ = 0 in the Lagrangian. The interface
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between Θ = 0 and Θ = 2π is a 2d topological order
described by SU(N)1 Chern-Simons theory with topo-
logical degeneracy. For both Θ = 0 or 2π, the coupling
constant g in the Lagrangian is expected to flow to in-
finity under renormalization group, hence the Θ−term
is what remains in the infrared limit. The Θ−term is a
total derivative, hence

〈A(x)|1〉〈1|A′(x)〉 ∼

∫ A(x,τ=+∞)=A(x)

A(x,τ=−∞)=A′(x)

DA(x, τ)

× exp

(

−

∫ +∞

−∞

dτd3x L(A)g→+∞

)

∼ exp

(∫

d3x
i

4π
CS[A] −

i

4π
CS[A′]

)

, (27)

Hence the wave function of the SPT state |1〉, and the
trivial state |0〉 (corresponds to Θ = 0) in the limit g →
+∞ are schematically

|0〉 ∼

∫

DA|A〉,

|1〉 ∼

∫

DA exp

(∫

d3x
i

4π
CS[A]

)

|A〉. (28)

Now the evaluation of the strange correlator of ODO,
which is a purely 3d spatial quantity, is mathematically
equivalent to evaluating world lines of anyons in (2+1)d
SU(N)1 CS field theory:

S(C) ∼

∫

DA tr[e
i
∫

C
d~l· ~A

] exp

(∫

d3x
i

4π
CS[A]

)

. (29)

Then if the ODO is a Wilson loop with the fundamental
representation of the gauge group, and C contains two
loops with a link, then this evaluation is identical to the
braiding process of two anyons of the SU(N)1 topological
order, and it yields phase exp(i2π/N2) for S(C).

V. DISCUSSION

In this work we studied the behavior of the “order di-
agnosis operator” of 1-form symmetries (for either ex-
plicit 1-form symmetry, or inexplicit 1-form symmetry as

a dual of a 0-form symmetry) at various (2 + 1)d quan-
tum phase transitions. We demonstrate that for a class of
transitions there is a universal logarithmic contribution
to the ODO arising from the corners of the loop upon
which the ODO is defined. For this class of transitions,
the universal logarithmic contribution is related to the
universal conductivity at the critical points, and in some
cases can be computed exactly using the duality between
conformal field theories.

This logarithmic contribution is similar to the corner
contribution to the entanglement entropy, in fact this
relation can be made exact for free boson/fermion sys-
tems18. For general systems, the ODO associated with
certain 1-form symmetry and the entanglement entropy
can be studied in a unified framework. To study the
Renyi entropy, one needs to use the replica trick, and
duplicate n−copies of the system. Then the system is
granted an extra “swapping symmetry” between replica
indices. The Renyi entropy reduces to evaluating the
ODO of the 1-form dual of the swapping symmetry77,78.
Hence we can start with the duplicated system, and just
study the ODO of all the symmetries of the duplicated
system, to extract the information of both the intrin-
sic symmetries, and the entanglement entropy simulta-
neously. One remark worth making is that, when com-
puting Renyi entropy for ordinary systems with a Hamil-
tonian and translation invariance, there is no interaction
between different duplicated systems, hence each dupli-
cated copy has its own conservation laws.89

In this work we also computed the strange correlator
of the 1-form ODO for a particular example. SPT states
protected by 1-form symmetries have attracted great ef-
forts and interests in the last few years, and we believe
the strange correlator of the 1-form ODO can be applied
to many related systems. We will leave the more general
discussion of this topic to future studies.

The authors thank Wenjie Ji and Yi-Zhuang You for
very helpful discussions. This work is supported by NSF
Grant No. DMR-1920434, the David and Lucile Packard
Foundation, and the Simons Foundation.

Note: We would like to draw the readers attention to
a closely related work by Yan-Cheng Wang, Meng Cheng
and Zi Yang Meng79 to appear in the same arXiv listing.
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the “disordered operator”80. The evaluation of the behav-
ior of the loop object is evaluated in an IR field theory
with an emergent U(1) symmetry, but when a system does
have a U(1) symmetry on the lattice, the disordered phase
is driven by the condensation of vortices, rather than a
loop object. The physical meaning of ODO with discrete
symmetry is most clear when the lattice symmetry is dis-
crete. Generalization of categorical symmetries to continu-
ous symmetry is possible, but we leave this to more careful
future study.

86 The leading order contribution to a(θ) is given by CT ; con-
tribution from higher order correlations between Tµν was
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87 This is one possible construction of the 3d bulk, the field
theory QED(1,2N,0) maybe realized as the boundary theory
of other 3d 1-form SPT states too.

88 We can verify that the absence of the anomaly associated
to the ZN 1-form symmetry in this QED theory by consid-
ering the its massive phases. For example, when a positive
mass of the Dirac fermion is turned on, one obtains a U(1)
CS theory of level (q + Nf/2)N2. In this massive phase,
the ZN 1-form symmetry is generated by the anyon line
operator carrying U(1) charge (q + Nf/2)N . When N is
odd, we should in fact view the U(1) gauge field a as a
spinc gauge field. Consequently, this charge-(q + Nf/2)N
anyon always has bosonic self-statistics, which indicates
the absence of anomaly associated with the ZN 1-form
symmetry. When N is even, the QED (and its massive
phases) intrinsically resides in a fermionic Hilbert space.
The gauge field a is now a regular U(1) gauge field. In
this case, the charge-(q + Nf/2)N anyon can have either
bosonic or fermionic self-statistics depending on the value
of (q+Nf/2)N . However, neither case leads to any anomaly
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associated to the ZN 1-form symmetry because the self-
statistics of the charge-(q + Nf/2)N anyon can be made
bosonic by attaching extra neutral fermions in the Hilbert
space.

89 The authors note that a more recent work Ref. 81 demon-
strated the corner contribution for correlation functions
integrated over an area is very universal, which bridged
the ODO considered here and the entanglement entropy
on general grounds.

APPENDIX A: CLARIFICATION OF CONCEPTS

The purpose of this appendix is not to discuss new
physics or new quantity, but to clarify the rudimentary
concepts used in this manuscript. The standard defini-
tion of a global symmetry of a quantum system is associ-
ated with a global conserved quantity Ĝ that commutes
with the entire Hamiltonian of the system. Normally
when we say a system has a global symmetry, it implies
the following two qualities of the system:

(1) the dynamics allowed by the symmetry, for example
the evolution generated by the Hamiltonian of the system
does not change the quantum number of quantity Ĝ;

(2) states with different quantum numbers of Ĝ are all
present in the Hilbert space.

To exemplify these two qualities, let us still start with
the basic example of 1d quantum Ising model with a
transverse field: H =

∑

j −Kσz
j σz

j+1 − hσx
j . Here the

conserved quantity of the Z2 Ising spin symmetry is
Ĝ =

∏

j σx
j , and any physical process allowed by the

symmetry does not change the quantum number of Ĝ
(only processes that flip even number of spins σx

j are al-

lowed); but states with Ĝ = ±1 all exist in the Hilbert
space. Hence both qualities (1) and (2) mentioned above
are perfectly satisfied by the Z2 spin symmetry.

It is often stated that the 1d quantum Ising model is
“self-dual” under the Kramers-Wannier duality, namely
if we introduce dual operators τz,x

j̄
as σz

j σz
j+1 = τx

j̄
,

σx
j = τz

j̄−1
τz
j̄
, the Hamiltonian of the dual model formally

takes the form H =
∑

j̄ −Kτx
j̄
− hτz

j̄
τz
j̄+1

. Physically τx

is the kink of the original operator σz. There appears
to be another dual Z̃2 symmetry, whose conserved quan-

tity
˜̂
G is formally

∏

j̄ τx
j̄
. However, if we take a periodic

boundary condition of the original quantum Ising model,
˜̂
G is a trivial quantity in the original Ising spin Hilbert

space, because
˜̂
G always equals to +1, or in other words

within the original Ising spin Hilbert space, only states
with even number of kinks are allowed. Hence although
the “Z̃2 symmetry” satisfies quality (1) above, it does
NOT meet quality (2).

The dual “Z̃2 symmetry”, though does not meet qual-
ity (2), still leads to nontrivial conservation law of kinks
of σz: the kink number is unchanged under any physical
process for the Ising model with periodic boundary con-
dition. As was pointed out by previous references such

as Ref. 15, both the Z2 and Z̃2 can be made real symme-
tries (meaning they both satisfy qualities (1) and (2)) if
we embed the 1d quantum Ising model as the boundary of
a 2d toric code model (of course, there were other previ-
ously known ways such as introducing different boundary
conditions to interpret the Z̃2 symmetry, but introducing
the bulk as Ref. 15 has the most natural generalizations
to higher dimensions and higher form dimensions). The
Ising spin excitation corresponds to the e anyon of the
toric code, and the kink corresponds to the m anyon.
The two sets of conservation laws (quality (1)) of the
Ising spins and kinks arise from the fusion rules of the
anyons: e × e = I, m × m = I; now both the Z2 and Z̃2

symmetries also satisfy quality (2): both the Ising spin
number and the kink number can be either even or odd
at the 1d boundary , because one can create a pair of e
(or m) anyons, and move only one anyon of the pair to
the 1d boundary.

Since the original quantum Ising model has conserva-
tion laws for dynamics of both the Ising spins and the
kinks, in our main text we call the original Z2 spin sym-
metry of the quantum Ising model as an explicit sym-
metry (meaning quality (1) and (2) are both satisfied),

while the Z̃2 symmetry is called an “inexplicit symme-
try”, as only quality (1) is satisfied. As we mentioned in

the last paragraph, both Z2 and Z̃2 symmetries can be
made explicit by embedding the system to the boundary
of a 2d toric code model.

These definitions and notions can be generalized to
higher dimensions with higher form discrete symme-
tries. As a practice let us also consider the 2d quan-
tum Z2 gauge theory, which is often stated to be dual
to a 2d quantum Ising model, though these two mod-
els have different symmetries. To clarify what this du-
ality means exactly, we consider the standard Hamilto-
nian for the 2d quantum Z2 gauge theory on a 2d torus:
H =

∑

¤
−K

∏

<ij>∈¤
σz

ij −
∑

<ij> hσx
ij , where < ij >

is a link of a square lattice; σz,x
ij is a qubit defined on the

link.
∏

<ij>∈¤
σz

ij is a product of σz
ij on the four links

around each square plaquette. The Hilbert space of the
quantum Z2 gauge theory is subject to a local constraint
∏

<ij>∈v σx
ij = +1, where < ij >∈ v represent four links

around a vertex/site of the square lattice. This model

has a Z
(1)
2 1-form symmetry, which corresponds to the

Z2 conservation of Z2 electric field penetrating any con-
tractible loop C: ĜC =

∏

<ij>⊥C
σx

ij (< ij >⊥ C cor-
responds to all the links on loop C and orthogonal to
C locally). But if the system is a torus, then ĜC for a
noncontractible loop C can take values ±1, which can be
interpreted as either the topological sector, or the ground

state degeneracy of spontaneous breaking of the Z
(1)
2 1-

form symmetry. Hence the Z
(1)
2 1-form symmetry is an

explicit symmetry that satisfies both (1) and (2) men-
tioned previously.

The dual 2d quantum Ising model can be formally de-
rived by introducing the dual operators on the dual lat-
tice sites ī and j̄, which are located on the center of the
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plaquette squares of the original square lattice: τx
ī

=
∏

<ij>around ī σz
ij , τz

ī
τz
j̄

= σx
ij for < īj̄ >⊥< ij >. The

dual Hamiltonian reads H =
∑

ī −Kτx
ī
−

∑

<īj̄> hτz
ī
τz
j̄
.

However, the conserved quantity of the dual Ising model
˜̂
G =

∏

ī τx
ī

is always +1 in the original Hilbert space of
the Z2 gauge theory, although a physical process can only
create even number of τx

ī
(which corresponds to the m

anyon of the original quantum Z2 gauge theory) hence
there is a Z2 conservation of τx. Therefore the dual Ising
model has a Z̃2 symmetry that satisfies quality (1) but
not (2), hence according to our convention it is an inex-
plicit symmetry.

Let us also discuss the converse example, and start
with a real 2d quantum Ising spin model on a square
lattice: H =

∑

<i,j> −Kσz
i σz

j −
∑

j hσx
j , which is for-

mally dual to a 2d quantum Z2 gauge theory, with the
electric field defined on the dual link < īj̄ >⊥< ij > as
τx
īj̄

= σz
i σz

j . The 2d quantum Ising model also has two

sets of conservation laws: the conservation of the original
Ising spin, and the conservation law of the Ising domain

walls. The latter corresponds to a Z̃
(1)
2 1-form “inexplicit

symmetry”: there is a conservation law of the dynamics
of Ising domain wall, namely the Ising domain walls al-
ways penetrate any closed contractible loop even times
(quality (1)); but within the Ising spin Hilbert space the
product of τx

īj̄
= σz

i σz
j with < ij >⊥< īj̄ > is always +1

along a noncontractible cycle C orthogonal to the dual
lattice link < īj̄ >. But for a real 2d Z2 gauge theory, as
we discussed above, the corresponding product of electric
field can take value ±1, which can be either interpreted
as different topological sectors, or as ground state degen-

eracy caused by spontaneous breaking of the Z
(1)
2 1-form

symmetry. Hence in the Ising spin Hilbert space, only
the Z2 symmetry satisfies qualities (1) and (2) together,

while Z̃
(1)
2 satisfies (1) only. But both Z2 and Z̃

(1)
2 can

be made explicit symmetries, i.e. they can satisfy both
(1) and (2) when the quantum Ising model is embedded
as the boundary of a 3d topological order.

The quantity order diagnosis operator (ODO) was in-
troduced in Ref. 82 to characterize the behavior of the ex-
plicit and inexplicit symmetries, especially the notion of
spontaneous symmetry breaking of both the explicit and
the inexplicit symmetries defined above. The ODO re-
duces to previously introduced concepts in specific cases.
For example, for the Ising models, the ODO of the dual
inexplicit symmetry is the disorder operator discussed in
Ref. 80. But the phrase “disorder operator” implies that
when it condenses, the original symmetry would be re-
stored or the system should enter a disordered phase of
the original symmetry. This is indeed true for the Ising
spin models. But in some cases that involve higher form
symmetries both the symmetry and the dual symme-
try can be spontaneously broken simultaneously, namely
both the explicit symmetry and its dual inexplicit sym-
metry can enter the ordered phase simultaneously un-
der proper generalizations. For example, a (3 + 1)d sys-
tem with Z

(1)
2 1-form symmetry can enter a gapless pho-

ton phase where the Wilson loop and the corresponding

“disorder operator” of the Z
(1)
2 1-form symmetry both

have perimeter laws, which is the criterion of sponta-
neous symmetry breaking of 1-form symmetries. Hence
we feel a generalized notion is necessary. In fact, a no-
tion of “patch operator” was introduced in Ref. 15 as a
generalization of the the disorder operator to higher form
symmetries. The notion of order diagnosis operator used
in this manuscript also reduces to the “patch operator” in
Ref. 15 for systems without subsystem symmetries. But
for systems with a more exotic subsystem symmetries82

the proper form of the ODO is not always defined on a
simple patch of the lattice.


