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Paris, France

2 Institut Universitaire de France, F-75005 Paris, France
* toulouse@lct.jussieu.fr

April 29, 2021

Abstract1

A relativistic density-functional theory based on a Fock-space effective quantum-2

electrodynamics (QED) Hamiltonian using the Coulomb or Coulomb-Breit3

two-particle interaction is developed. This effective QED theory properly in-4

cludes the effects of vacuum polarization through the creation of electron-5

positron pairs but does not include explicitly the photon degrees of freedom.6

It is thus a more tractable alternative to full QED for atomic and molecular7

calculations. Using the constrained-search formalism, a Kohn-Sham scheme8

is formulated in a quite similar way to non-relativistic density-functional the-9

ory, and some exact properties of the involved density functionals are studied,10

namely charge-conjugation symmetry and uniform coordinate scaling. The11

usual no-pair Kohn-Sham scheme is obtained as a well-defined approximation12

to this relativistic density-functional theory.13
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1 Introduction36

The basic formulation of the relativistic extension of density-functional theory (DFT) was37

first laid down by generalizing the Hohenberg-Kohn theorem [1] to a Hamiltonian based38

on quantum electrodynamics (QED) with the internal quantized electromagnetic field and39

an external classical electromagnetic field [2–5]. These early works did not address the40

subtle issues of QED renormalization. These issues were studied by Engel, Dreizler, and41

coworkers [6–10] who put relativistic (current) density-functional theory (RDFT) on more42

rigorous grounds. In their works, they confirmed the validity of the relativistic extension43

of the Hohenberg-Kohn theorem using a charge-conjugation-symmetric form of the QED44

Hamiltonian written with commutators of field operators and appropriate renormalization45

counterterms. Eschrig et al. [11, 12] took another approach to RDFT based on Lieb’s46

Legendre transformation using a normal-ordered QED Hamiltonian. Ohsaku et al. [13]47

proposed a local-density-matrix functional theory based on a QED Hamiltonian with an48

one-photon-propagator fermion-fermion interaction. Despite these formal foundations of49

RDFT based on QED, in practice four-component RDFT is invariably applied in the50

Kohn-Sham (KS) scheme with a non-quantized electromagnetic field and in the no-pair51

approximation (i.e., neglecting contributions from electron-positron pairs) [14–21], most52

of the time using non-relativistic exchange-correlation density functionals.53

In this work, we examine an alternative RDFT based on a Fock-space effective QED54

Hamiltonian using the Coulomb or Coulomb-Breit two-particle interaction (see, e.g., Refs. [22–55

25]). This effective QED theory properly includes the effects of vacuum polarization56

through the creation of electron-positron pairs but does not include explicitly the photon57

degrees of freedom. It is thus a more tractable alternative to full QED for atomic and58

molecular calculations. This so-called no-photon QED has been the subject of a number59

of detailed mathematical studies [26–31], which in particular established the soundness60

of this approach at the Hartree-Fock (HF) level. This is thus a good QED level to base61

a RDFT on. We show that we can develop indeed a RDFT formalism based on this ef-62

fective QED theory using the constrained-search formalism [32,33] in a quite similar way63

to non-relativistic DFT. The usual no-pair KS scheme is then obtained as a well-defined64

approximation to this RDFT.65

The paper is organized as follows. In Section 2, we expose the effective QED theory66

considered in this work. We define the normal-ordered electron-positron Hamiltonian,67

we discuss how to define the polarized vacuum state and N -negative-charge states by a68

minimization formulation, and we introduce the no-pair approximation in this approach.69

In Section 3, we develop a RDFT based on this effective QED theory. We describe the70

KS scheme in this approach, we give the expression of the Hartree, exchange, and cor-71

relation density functionals, we study some exact properties of these functionals, and we72

discuss the local-density approximation (LDA). Section 4 contains conclusions and per-73

spectives. In the appendices, we prove some important and, to the best of our knowledge,74

seemingly unknown aspects of the effective QED theory. First, in Appendix A, we show75

that the electron-positron Hamiltonian expressed in terms of the normal ordering with76

respect to the free vacuum state has the correct charge-conjugation symmetry. Second,77
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in Appendix B, we show that the electron-positron Hamiltonian based on normal order-78

ing with respect to the free vacuum state is essentially equivalent to an electron-positron79

Hamiltonian based on commutators and anticommutators of Dirac field operators.80

In contrast to the quantum chemistry literature where often everything is formulated81

in a basis, here we prefer to use a real-space second-quantized formalism which is more82

adapted to DFT. Hartree atomic units (a.u.) are used throughout the paper.83

2 Effective quantum electrodynamics84

2.1 Free Dirac equation and quantized Dirac field85

We consider the time-independent free Dirac equation86

D(~r)ψp(~r) = εpψp(~r), (1)

with the usual first-quantized 4× 4 Dirac kinetic + rest mass operator87

D(~r) = c (~α · ~p) + β mc2, (2)

where ~p = −i~∇ is the momentum operator, c = 137.036 a.u. is the speed of light, m = 188

a.u. is the electron mass, and ~α and β are the 4× 4 Dirac matrices89

~α =

(

02 ~σ
~σ 02

)

and β =

(

I2 02
02 −I2

)

, (3)

where ~σ = (σx,σy,σz) is the 3-dimensional vector of the 2×2 Pauli matrices, and 02 and90

I2 are the 2× 2 zero and identity matrices, respectively.91

The eigenfunctions form a set of orthonormal 4-component-spinor orbitals {ψp} that92

we will assume as being discretized (by putting the system in a box with periodic boundary93

conditions). This set can be partitioned into a set of positive-energy orbitals (εp > 0) and94

a set of negative-energy orbitals (εp < 0), i.e. {ψp} = {ψp}p∈PS ∪ {ψp}p∈NS, where PS95

and NS designate the sets of “positive states” and “negative states”, respectively. The96

Dirac field is then quantized as97

ψ̂(~r) =
∑

p∈PS∪NS

âpψp(~r) =
∑

p∈PS

b̂pψp(~r) +
∑

p∈NS

d̂†pψp(~r), (4)

where the sum has been decomposed in a contribution involving electron annihilation op-98

erators b̂p ≡ âp for p ∈ PS and a second contribution involving positron creation operators99

d̂†p ≡ âp for p ∈ NS. The annihilation and creation operators obey the usual fermionic100

anticommutation rules101

{âp, â
†
q} = δpq and {âp, âq} = {â†p, â

†
q} = 0 for p, q ∈ PS ∪NS, (5)

and the corresponding free vacuum state |0〉 is defined such that102

b̂p|0〉 = 0 for p ∈ PS and d̂p|0〉 = 0 for p ∈ NS. (6)

2.2 Electron-positron Hamiltonian103

We then consider the normal-ordered electron-positron Hamiltonian in Fock space written104

with this quantized Dirac field introduced in Refs. [22,34] (see, also, Ref. [23]) that we can105

write as106

Ĥ = T̂D + Ŵ + V̂ , (7)
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where the Dirac kinetic + rest mass operator T̂D, the two-particle interaction operator Ŵ ,107

and the external potential-energy interaction operator V̂ are expressed as (using σ, ρ, τ ,108

υ as spinor indices ranging from 1 to 4)109

T̂D =

∫

Tr[D(~r)n̂1(~r, ~r
′)]~r ′=~r d~r ≡

∑

σρ

∫

[Dσρ(~r)n̂1,ρσ(~r, ~r
′)]~r ′=~r d~r, (8)

and110

Ŵ =
1

2

∫∫

Tr[w(~r1, ~r2)n̂2(~r1, ~r2)]d~r1d~r2

≡
1

2

∑

σρτυ

∫∫

wστρυ(~r1, ~r2)n̂2,ρυστ (~r1, ~r2) d~r1d~r2, (9)

and111

V̂ =

∫

v(~r)n̂(~r) d~r, (10)

where the one-particle density-matrix operator n̂1(~r, ~r
′) and the pair density-matrix op-112

erator n̂2(~r1, ~r2) are defined using creation and annihilation Dirac field operators with113

normal ordering N [...] of the elementary creation and annihilation operators b̂†p, b̂p, d̂
†
p, d̂p114

with respect to the free vacuum state |0〉115

n̂1,ρσ(~r, ~r
′) = N [ψ̂†

σ(~r
′)ψ̂ρ(~r)], (11)

116

n̂2,ρυστ (~r1, ~r2) = N [ψ̂†
τ (~r2)ψ̂

†
σ(~r1)ψ̂ρ(~r1)ψ̂υ(~r2)], (12)

and the opposite charge density operator is117

n̂(~r) = Tr[n̂(~r)] ≡
∑

σ

n̂σσ(~r), (13)

where n̂(~r) = n̂1(~r, ~r). Note that, in the non-relativistic theory, the opposite charge118

density operator reduces to the usual one-electron density operator, which is why we prefer119

to use the opposite charge density operator n̂(~r) and not the charge density operator120

ρ̂(~r) = −n̂(~r). The normal ordering in the definition of the Dirac kinetic + rest mass121

operator T̂D in Eq. (8) ensures that this operator is bounded from below with a nonnegative122

spectrum. In Eq. (9) w(~r1, ~r2) is a two-particle interaction matrix potential which could123

be for example the Coulomb (C) + Breit (B) interaction124

wστρυ(~r1, ~r2) = wC
στρυ(r12) + wB

στρυ(~r12), (14)

with ~r12 = ~r1 − ~r2 and r12 = |~r12|, and125

wC
στρυ(r12) = w(r12)δσρδτυ, (15)

126

wB
στρυ(~r12) = −

1

2
w(r12)

(

~ασρ · ~ατυ +
(~ασρ · ~r12) (~ατυ · ~r12)

r212

)

, (16)

where w(r12) = 1/r12. The Coulomb-Breit interaction corresponds to the single-photon127

exchange electron-electron scattering amplitude in QED evaluated with the zero-frequency128

limit of the photon propagator in the Coulomb electromagnetic gauge. More specifically,129
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the instantaneous Coulomb interaction corresponds to the longitudinal component of the130

photon propagator, whereas the Breit interaction is obtained from the zero-frequency131

transverse component of the photon propagator. The Breit interaction comprises the132

instantaneous magnetic Gaunt interaction, −w(r12)~ασρ · ~ατυ, and the remaining lowest-133

order retardation correction (see, e.g., Ref. [35]). In Eq. (10) v(~r) is an external scalar134

potential, e.g. the Coulomb potential generated by the nuclei. For simplicity and following135

the most common framework used for molecular calculations, we do not consider the case136

of an external vector potential. Due to the external potential [Eq. (10)] and Coulomb-137

Breit two-particle interaction [Eq. (9)], the present theory is not Lorentz invariant, which138

is in the spirit in which relativistic molecular calculations are carried out presently.139

The electron-positron Hamiltonian Ĥ does not commute separately with the electron140

and positron number operators,141

N̂e =
∑

p∈PS

b̂†pb̂p and N̂p =
∑

p∈NS

d̂†pd̂p, (17)

i.e., it does not conserve electron or positron numbers. However, the Hamiltonian Ĥ142

commutes with the opposite charge operator (or electron-excess number operator)143

N̂ = N̂e − N̂p, (18)

i.e., it conserves charge. As a consequence, the eigenstates of the Hamiltonian Ĥ belongs144

to the Fock space gathering together different particle-number sectors145

F =

(∞,∞)
⊕

(Ne,Np)=(0,0)

H(Ne,Np), (19)

where H(Ne,Np) is the Hilbert space for Ne electrons and Np positrons, and ⊕ designates146

the direct sum. The Fock space can also be decomposed into charge sectors147

F =

∞
⊕

q=−∞

Hq, (20)

where Hq is the Hilbert space for opposite charge q. For q ≥ 0, we have Hq = H(q,0) ⊕148

H(q+1,1) ⊕H(q+2,2) ⊕ · · · ⊕ H(q+∞,∞), and for q ≤ 0, we have Hq = H(0,|q|) ⊕H(1,|q|+1) ⊕149

H(2,|q|+2) ⊕ · · · ⊕ H(∞,|q|+∞).150

Importantly, due to the fact that the electron-positron Hamiltonian in Eq. (7) is ex-151

pressed with normal ordering with respect to the free vacuum state, it has the correct152

charge-conjugation symmetry, i.e. ĈĤ[v]Ĉ† = Ĥ[−v] where Ĥ[v] is the Hamiltonian in153

Eq. (7) with an arbitrary external potential v and Ĉ is the charge-conjugation operator154

in Fock space (see Appendix A).155

2.3 No-particle vacuum states156

By construction of the Hamiltonian Ĥ, the free vacuum state |0〉 has a zero energy, i.e.157

Efree
0 = 〈0|Ĥ|0〉 = 0. However, this is generally not the lowest-energy vacuum state. We158

can consider other no-particle vacuum states |0̃〉 (often referred to as polarized vacuum or159

dressed vacuum) parametrized as [23, 36] (see, also, Refs. [22, 34, 37, 38])160

|0̃〉 = eκ̂|0〉, (21)
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where eκ̂ performs an orbital rotation in Fock space (corresponding to a Bogoliubov161

transformation mixing electron annihilation operators b̂p and positron creation operators162

d̂†p [22]) with the anti-Hermitian operator κ̂163

κ̂ =
∑

p,q∈PS∪NS

κpqâ
†
pâq =

∑

p,q∈PS

κpq b̂
†
pb̂q +

∑

p∈PS

∑

q∈NS

κpq b̂
†
pd̂

†
q

+
∑

p∈NS

∑

q∈PS

κpqd̂pb̂q +
∑

p,q∈NS

κpqd̂pd̂
†
q, (22)

with the orbital rotation parameters κpq ∈ C being the elements of an anti-Hermitian164

matrix κ. Note that the second term in the last expression of Eq. (22) creates electron-165

positron pairs. This generates new creation and annihilation operators related to the166

original ones via the unitary matrix U = eκ167

ˆ̃a†p = eκ̂â†pe
−κ̂ =

∑

q∈PS∪NS

â†qUqp and ˆ̃ap = eκ̂âpe
−κ̂ =

∑

q∈PS∪NS

âqU
∗
qp for p ∈ PS ∪NS, (23)

and corresponding new orbitals168

ψ̃p(~r) =
∑

q∈PS∪NS

ψq(~r)Uqp for p ∈ PS ∪NS, (24)

such that the Dirac field operator in Eq. (4) can be rewritten as169

ψ̂(~r) =
∑

p∈PS∪NS

ˆ̃apψ̃p(~r) =
∑

p∈PS

ˆ̃
bpψ̃p(~r) +

∑

p∈NS

ˆ̃
d†pψ̃p(~r), (25)

with again
ˆ̃
bp ≡ ˆ̃ap for p ∈ PS and

ˆ̃
d†p ≡ ˆ̃ap for p ∈ NS. The new creation and annihilation170

operators still obey the fermionic anticommutation rules in Eq. (5). Moreover, even though171

this orbital rotation does not necessarily preserve the sign of the orbital energies, it does172

preserve the charge, i.e. we have [N̂ ,
ˆ̃
b†p] =

ˆ̃
b†p and [N̂ ,

ˆ̃
d†p] = − ˆ̃

d†p. So the new creation173

operators
ˆ̃
b†p and

ˆ̃
d†p can still be interpreted as creating electrons and positrons, respectively,174

and the partition into PS and NS sets should now be understood as a partition into175

positive and negative opposite charge states. As expected, the new electron and positron176

annihilation operators satisfy177

ˆ̃
bp|0̃〉 = 0 for p ∈ PS and

ˆ̃
dp|0̃〉 = 0 for p ∈ NS. (26)

The new vacuum state |0̃〉 contains electron-positron pairs associated with the original178

operators b̂†p and d̂†p but does not contain any particle associated with the new operators179

ˆ̃
b†p and

ˆ̃
d†p.180

We can then introduce a new one-particle density-matrix operator ˆ̃n1(~r, ~r
′) and a new181

pair density-matrix operator ˆ̃n2(~r1, ~r2) defined using normal ordering Ñ [...] of the new182

elementary creation and annihilation operators
ˆ̃
b†p,

ˆ̃
bp,

ˆ̃
d†p,

ˆ̃
dp with respect to the new183

vacuum state |0̃〉184

ˆ̃n1,ρσ(~r, ~r
′) = Ñ [ψ̂†

σ(~r
′)ψ̂ρ(~r)], (27)

and185

ˆ̃n2,ρυστ (~r1, ~r2) = Ñ [ψ̂†
τ (~r2)ψ̂

†
σ(~r1)ψ̂ρ(~r1)ψ̂υ(~r2)]. (28)

6



SciPost Submission

Using Wick’s theorem, the original one-particle density-matrix and pair density-matrix186

operators in Eq. (11) and (12) can be rewritten as [22]187

n̂1,ρσ(~r, ~r
′) = ˆ̃n1,ρσ(~r, ~r

′) + ñvp1,ρσ(~r, ~r
′), (29)

and188

n̂2,ρυστ (~r1, ~r2) = ˆ̃n2,ρυστ (~r1, ~r2) + ñvp1,υτ (~r2, ~r2)
ˆ̃n1,ρσ(~r1, ~r1) + ñvp1,ρσ(~r1, ~r1)

ˆ̃n1,υτ (~r2, ~r2)

−ñvp1,υσ(~r2, ~r1)
ˆ̃n1,ρτ (~r1, ~r2)− ñvp1,ρτ (~r1, ~r2)

ˆ̃n1,υσ(~r2, ~r1) + ñvp2,ρυστ (~r1, ~r2),

(30)

where ñvp
1 (~r, ~r ′) is the vacuum-polarization (vp) one-particle density matrix189

ñvp1,ρσ(~r, ~r
′) = 〈0̃|n̂1,ρσ(~r, ~r

′)|0̃〉

= 〈0̃|ψ̂†
σ(~r

′)ψ̂ρ(~r)|0̃〉 − 〈0|ψ̂†
σ(~r

′)ψ̂ρ(~r)|0〉

=
∑

p∈NS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r)−
∑

p∈NS

ψ∗
p,σ(~r

′)ψp,ρ(~r), (31)

and ñvp
2 (~r1, ~r2) is the vacuum-polarization pair-density matrix190

ñvp2,ρυστ (~r1, ~r2) = ñvp1,υτ (~r2, ~r2)ñ
vp
1,ρσ(~r1, ~r1)− ñvp1,ρτ (~r1, ~r2)ñ

vp
1,υσ(~r2, ~r1). (32)

The electron-positron Hamiltonian in Eq. (7) can then be rewritten as [22]191

Ĥ = ˆ̃TD + ˆ̃W + ˆ̃V + ˆ̃V vp + Ẽ0, (33)

with192

ˆ̃TD =

∫

Tr[D(~r)ˆ̃n1(~r, ~r
′)]~r ′=~r d~r, (34)

and193

ˆ̃W =
1

2

∫∫

Tr[w(~r1, ~r2)ˆ̃n2(~r1, ~r2)]d~r1d~r2, (35)

and194

ˆ̃V =

∫

v(~r)ˆ̃n(~r) d~r, (36)

with the new opposite charge density operator195

ˆ̃n(~r) = Tr[ˆ̃n(~r)], (37)

where ˆ̃n(~r) = ˆ̃n1(~r, ~r). In Eq. (33), the normal reordering with respect to the new vacuum196

state |0̃〉 [Eqs. (29) and (30)] has generated two new terms: the vacuum-polarization197

potential operator ˆ̃V vp and the new vacuum energy Ẽ0. The vacuum-polarization potential198

operator [22] can be written as199

ˆ̃V vp = ˆ̃V vp
H + ˆ̃V vp

x , (38)

with a Hartree (or direct) contribution200

ˆ̃V vp
H =

∫

Tr[ṽvp
H (~r)ˆ̃n(~r)]d~r ≡

∑

ρσ

∫

ṽvpH,σρ(~r)
ˆ̃nρσ(~r)d~r, (39)
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where ṽvpH,σρ(~r1) =
∑

τυ

∫

wστρυ(~r1, ~r2)ñ
vp
υτ (~r2)d~r2 and ñvpυτ (~r2) = ñvp1,υτ (~r2, ~r2), and an ex-201

change contribution202

ˆ̃V vp
x =

∫∫

Tr[ṽvp
x (~r1, ~r2)ˆ̃n1(~r1, ~r2)]d~r1d~r2, (40)

where ṽvpx,τρ(~r1, ~r2) = −
∑

συ wστρυ(~r1, ~r2)ñ
vp
1,υσ(~r2, ~r1). Note that in the literature the203

name “vacuum polarization” is often restricted to the direct term in Eq. (39) whereas the204

exchange term in Eq. (40) is often designated as “self-energy” (see, e.g., Ref. [25]). Here,205

we adopt the terminology of Ref. [22] where vacuum polarization designates both terms.206

Finally, the new no-particle vacuum energy [22] can be written as207

Ẽ0 = 〈0̃|Ĥ|0̃〉 =

∫

Tr[D(~r)ñvp
1 (~r, ~r ′)]~r ′=~r d~r +

∫

v(~r)ñvp(~r) d~r

+
1

2

∫∫

Tr[w(~r1, ~r2)ñ
vp
2 (~r1, ~r2)]d~r1d~r2. (41)

Throughout the paper, |0̃〉 will refer to an arbitrary vacuum state, often referred to as208

floating vacuum, and {ψ̃p} and Ẽ0 will refer to its associated orbitals and vacuum energy.209

The optimal HF vacuum state is defined as the vacuum state minimizing Ẽ0 with respect210

to the orbital rotation parameters κ211

EHF
0 = min

κ

Ẽ0. (42)

Clearly, if nvp
1 (~r, ~r ′) = 0 then Ẽ0 = 0, and thus EHF

0 is necessarily negative. It can212

in fact diverges to −∞ due to infrared (IR) and ultraviolet (UV) divergences. The IR213

divergences appear when taking the continuum limit of the sums in Eq. (31), but can214

simply be avoided by putting the system in a box with periodic boundary conditions and215

taking the thermodynamic limit of quantities per volume unit (see, e.g., Refs. [11,29,30]),216

similarly to what is done for the homogeneous electron gas. The UV divergences come217

from the unbound large-energy (or large index p) limit of each sum in Eq. (31), even if we218

expect a cancellation of these UV divergences to some extent between the two sums. A219

standard way of dealing with these UV divergences is to introduce a fixed UV momentum220

cutoff and to remove the cutoff dependence via renormalization of the electron charge and221

mass in the Hamiltonian [26–31, 39] (see also Ref. [40]). We leave for future work these222

subtle issues and simply assume in the rest of this work that a proper renormalization223

scheme is applied in order to keep everything finite.224

Finally, in Appendix B, we provide an alternative definition of the electron-positron225

Hamiltonian based on commutators and anticommutators of Dirac field operators and226

we show that, after removing the vacuum energy, both Hamiltonians are equivalent to227

each other and also identical to the effective QED Hamiltonian of Refs. [25, 41–45] [see228

Eq. (176)].229

2.4 Correlated vacuum state230

More generally, the vacuum state can be defined beyond the HF approximation as the231

lowest-energy state with zero charge, which will refer to as the correlated vacuum state232

|Ψ0〉 ∈ H0. In a full configuration-interaction approach, the correlated vacuum state can be233

parametrized as a linear combination of states with arbitrary numbers of electron-positron234

8
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pairs235

|Ψ0〉 =

(

c0 +
∑

p1∈PS

∑

q1∈NS

cp1q1 b̂
†
p1 d̂

†
q1 +

∑

p1,p2∈PS

∑

q1,q2∈NS

cp1q1p2q2 b̂
†
p1 d̂

†
q1 b̂

†
p2 d̂

†
q2

+
∑

p1,p2,p3∈PS

∑

q1,q2,q3∈NS

cp1q1p2q2p3q3 b̂
†
p1 d̂

†
q1 b̂

†
p2 d̂

†
q2 b̂

†
p3 d̂

†
q3 + · · ·

)

|0〉, (43)

and minimizing the energy with respect to the coefficients leads to the correlated vacuum236

energy E0 = 〈Ψ0|Ĥ|Ψ0〉. Note that the particles inside this vacuum state cannot generally237

be absorbed into an orbital rotation because of the two-particle interaction in the Hamil-238

tonian. Therefore, the correlated vacuum state generally contains electron-positron pairs,239

in the same way as the non-relativistic ground state contains excited Slater determinants240

that cannot be absorbed into a redefinition of the orbitals. With the parametrization of241

the vacuum state in Eq. (43), there is no need to perform orbital rotations (i.e., orbital242

rotation parameters are redundant). The correlated vacuum state |Ψ0〉 and correlated243

vacuum energy E0 include all vacuum contributions (i.e., contributions from orbitals in244

the set NS) to all orders in the two-particle interaction.245

2.5 N-negative-charge states246

The ground-state energy for a net total amount of q = N negative charges (the equivalent247

of N electrons for the non-relativistic theory) is found as248

EN = min
|Ψ〉∈HN

〈Ψ|T̂D + Ŵ + V̂ |Ψ〉, (44)

where |Ψ〉 is constrained to have a net total amount ofN negative charges, i.e.
∫

〈Ψ|n̂(~r)|Ψ〉d~r =249

N . Note that we will always tacitly assume that |Ψ〉 is constrained to be normalized to 1,250

i.e. 〈Ψ|Ψ〉 = 1. A state |Ψ〉 ∈ HN has the form251

|Ψ〉 =

(

∑

p1,...,pN∈PS

cp1...pN b̂
†
p1 · · · b̂

†
pN

+
∑

p1,...,pN ,pN+1∈PS

∑

q1∈NS

cp1...pNpN+1q1 b̂
†
p1 · · · b̂

†
pN
b̂†pN+1

d̂†q1

+
∑

p1,...,pN ,pN+1,pN+2∈PS

∑

q1,q2∈NS

cp1...pNpN+1q1pN+2q2 b̂
†
p1 · · · b̂

†
pN
b̂†pN+1

d̂†q1 b̂
†
pN+2

d̂†q2 + · · ·

)

|0〉.

(45)

Again, vacuum contributions to all orders are included in the presence of N negative252

charges, and there is no need to perform orbital rotations. Obviously, in the special case253

N = 0, this reduces to the correlated vacuum state in Eq. (43).254

Since the number of particles is not fixed for the Fock state |Ψ〉 in Eq. (45), there is255

no concept of N -particle wave function (depending on N space coordinates) associated256

with the state |Ψ〉. Thus, one cannot study for example the wave function at electron-257

electron coalescence. However, one could study the small interparticle behavior of the258

pair-density matrix n2(~r1, ~r2) = 〈Ψ|n̂2(~r1, ~r2)|Ψ〉, which should ultimately control the259

convergence rate of the energy with respect to the one-particle basis used to expand the260

orbitals. So far, as far as we know, the electron-electron coalescence has been studied only261

for more approximate configuration-space-based relativistic theories where the concept of262

wave function is retained [46, 47]. How to extend in practice these studies to Fock-space263

approaches such as the one of the present work is an open question.264

Finally, let us mention that we can allow for negative N to describe the case of N -265

positive-charge states, i.e. states with a majority of positrons. We will however normally266

think of N as being positive and write the equations accordingly.267
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2.6 No-pair approximation268

Finally, we consider the no-pair (np) approximation [48,49]. In the context of the present269

theory, it is natural to first define what we will call here a “no-pair with vacuum-polarization”270

(npvp) approximation (see Ref. [22]) in which the ground-state energy for N electrons is271

expressed as272

Enpvp
N = min

|Ψ+〉∈H̃(N,0)
〈Ψ+|T̂D + Ŵ + V̂ |Ψ+〉, (46)

where the minimization is over normalized states in the set that we designate by H̃(N,0) ≡273

eκ̂H(N,0) which is the set of states generated by all orbital rotations of N -electron states.274

A state |Ψ+〉 ∈ H̃(N,0) has the form275

|Ψ+〉 = eκ̂
∑

p1,...,pN∈PS

cp1...pN b̂
†
p1 · · · b̂

†
pN

|0〉 =
∑

p1,...,pN∈PS

cp1...pN
ˆ̃
b†p1 · · ·

ˆ̃
b†pN |0̃〉. (47)

We can also write this state as276

|Ψ+〉 =
ˆ̃P+|Ψ〉, (48)

where |Ψ〉 is an arbitrary state constrained to have a net total amount of N negative277

charges, i.e. |Ψ〉 ∈ HN , and ˆ̃P+ is the projector onto the N -electron Hilbert space con-278

structed from the set of electron creation operators {ˆ̃b†p} associated with a floating vacuum279

state |0̃〉. The energy is not only minimized with respect to |Ψ〉 but also with respect to the280

projector ˆ̃P+ by performing orbital rotations between PS and NS orbitals. The optimal281

floating vacuum state |0̃〉 will of course depend on the number of electrons N considered.282

This npvp approximation thus restores the concept of the N -electron (4N -component283

spinor) wave function, i.e.284

Ψ+(~r1, ~r2, ..., ~rN ) =
∑

p1,...,pN∈PS

cp1...pN ψ̃p1(~r1) ∧ · · · ∧ ψ̃pN (~rN ), (49)

where ψ̃p1(~r1)∧ · · · ∧ ψ̃pN (~rN ) designates the normalized antisymmetrized tensor product285

of N orbitals, i.e. a Slater determinant. In this approximation, the vacuum contributions286

are taken into account at the mean-field level. Indeed, using the rewriting of the electron-287

positron Hamiltonian in Eq. (33), we have288

Enpvp
N = 〈Ψ+|

ˆ̃TD + ˆ̃W + ˆ̃V + ˆ̃V vp|Ψ+〉+ Ẽ0, (50)

which includes the vacuum-polarization potential operator [Eq. (38)] and the vacuum289

energy [Eq. (41)].290

The common no-pair (np) approximation corresponds to additionally neglecting all291

vacuum contributions292

Enp
N = min

|Ψ+〉∈H̃(N,0)
〈Ψ+|

ˆ̃TD + ˆ̃W + ˆ̃V |Ψ+〉, (51)

where we use now the Hamiltonian written with normal ordering with respect to a floating293

vacuum state |0̃〉. The no-pair approximation with optimized orbitals is analogous to294

the complete-active-space self-consistent-field method of quantum chemistry in which the295

wave function is expanded in the Hilbert space spanned by only a subset of orbitals (the296

equivalent of the PS set) and the orbitals are optimized by performing rotations with the297

complementary subset of orbitals (the equivalent of the NS set).298
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Note that in Eq. (46) or (51) one can minimize with respect to the projector ˆ̃P+ thanks299

to the use of the Fock-space normal-ordered electron-positron Hamiltonian. If one starts300

instead with the configuration-space Dirac-Coulomb or Dirac-Coulomb-Breit Hamiltonian,301

the same Enp
N can be obtained but using instead a minmax principle in which the energy302

is maximized with respect to the projector (see Refs. [23, 50–52]).303

3 Density-functional theory based on effective quantum elec-304

trodynamics305

We now formulate a RDFT based on the electron-positron Hamiltonian in Eq. (7). We306

will consider the simplest case of functionals of only the opposite charge density n(~r) =307

〈Ψ|n̂(~r)|Ψ〉, which is appropriate for closed-shell systems. More generally, one could con-308

sider functionals depending also on the opposite charge current ~j(~r) = 〈Ψ|~̂j(~r)|Ψ〉 with309

~̂j(~r) = Tr[c~α n̂(~r)]. Even more generally, one could consider functionals of the local310

density matrix n(~r) = 〈Ψ|n̂(~r)|Ψ〉, as proposed in Ref. [13]. For simplicity, in the follow-311

ing, the opposite charge density and opposite charge current will be referred to as charge312

density and charge current.313

3.1 Kohn-Sham scheme314

Using the constrained-search formalism [32,33], we define the universal density functional315

F [n] for N -representable charge densities n ∈ DN , i.e. charge densities that come from a316

state |Ψ〉 ∈ HN ,317

F [n] = min
|Ψ〉∈HN (n)

〈Ψ|T̂D + Ŵ |Ψ〉 = 〈Ψ[n]|T̂D + Ŵ |Ψ[n]〉, (52)

where HN (n) is the set of states |Ψ〉 ∈ HN constrained to yield the charge density n, and318

|Ψ[n]〉 designates a minimizing state. A N -representable charge density must of course319

contain a net total amount of N negative charges, i.e.
∫

n(~r)d~r = N , but other than320

that the set of N -representable charge densities DN is a priori unknown. This is unlike321

the non-relativistic case for which the mathematical set of N -representable densities is322

explicitly known [33]. The N -negative-charge ground-state energy can then be written as323

EN = min
n∈DN

[

F [n] +

∫

v(~r) n(~r) d~r

]

. (53)

Note that, in the special case N = 0 we obtain the correlated vacuum energy of Sec. 2.4.324

Also, as already indicated, we can allow for negative N to describe the case of N positive325

charges.326

To setup a KS scheme [53], we decompose F [n] as327

F [n] = Ts[n] + EHxc[n], (54)

where Ts[n] is the non-interacting kinetic + rest-mass density functional328

Ts[n] = min
|Φ〉∈S̃(N,0)(n)

〈Φ|T̂D|Φ〉 = 〈Φ[n]|T̂D|Φ[n]〉, (55)

where the minimization is over the set S̃(N,0)(n) of single-determinant states |Φ〉 = ˆ̃
b†1
ˆ̃
b†2 · · ·

ˆ̃
b†N |0̃〉329

with a fixed number of electrons N with respect to a floating vacuum state and yielding the330
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charge density n, and EHxc[n] is the Hartree-exchange-correlation density functional. The331

minimizing state (that we will assume unique up to a phase factor for simplicity) is the KS332

single-determinant state |Φ[n]〉. Note that in Eq. (55) we have tacitly assumed that any333

N -representable charge density n can be represented by a single-determinant state |Φ〉.334

For the non-relativistic theory, this can be proved to be true by explicitly constructing335

a single determinant yielding any given N -representable density [33, 54, 55]. This proof336

does not apply to the present relativistic theory due to the more complicated form of the337

charge density n(~r) which includes the vacuum-polarization contribution [see Eqs. (62)338

and (63)]. In fact, due to the vacuum-polarization contribution, the charge density n(~r)339

may not generally have the same sign at all spatial points. This is particularly obvious for340

the case N = 0: the charge density integrates to zero
∫

n(~r)d~r = 0 and thus necessarily341

changes sign. Whether the proofs of Refs. [33,54,55] can be generalized to the relativistic342

case is an open question. We can then write the ground-state energy as343

EN = min
|Φ〉∈S̃(N,0)

[

〈Φ|T̂D + V̂ |Φ〉+ EHxc[n|Φ〉]
]

, (56)

where S̃(N,0) is the set of single-determinant states with a fixed number of electrons N344

with respect to a floating vacuum state. Note that, contrary to a general N -negative-345

charge state in Eq. (45), we can associate a wave function to a single-determinant state,346

i.e. Φ(~r1, ~r2, ..., ~rN ) = ψ̃1(~r1) ∧ · · · ∧ ψ̃N (~rN ).347

More explicitly, the expression of the energy in terms of the orbitals {ψ̃p} is348

EN [{ψ̃p}] =

∫

Tr[D(~r)nKS
1 (~r, ~r ′)]~r ′=~r d~r +

∫

v(~r) n(~r) d~r + EHxc[n], (57)

with the KS one-particle density matrix349

nKS
1 (~r, ~r ′) = ñKS

1 (~r, ~r ′) + ñvp
1 (~r, ~r ′), (58)

which includes the contribution from the electronic occupied orbitals350

ñKS
1 (~r, ~r ′) =

N
∑

i=1

ψ̃i(~r)ψ̃
†
i (~r

′), (59)

and from the vacuum polarization [see Eq. (31)]351

ñvp
1 (~r, ~r ′) =

∑

p∈NS

ψ̃p(~r)ψ̃
†
p(~r

′)−
∑

p∈NS

ψp(~r)ψ
†
p(~r

′), (60)

and with the corresponding charge density n(r) = Tr[nKS
1 (~r, ~r)]. Taking the functional352

derivative of EN [{ψp}] with respect to ψ̃†
p(~r) with the orbital orthonormalization con-353

straints, we arrive at the KS equations354

(D(~r) + v(~r) + vHxc(~r)) ψ̃p(~r) = ε̃pψ̃p(~r), (61)

where vHxc(~r) = δEHxc[n]/δn(~r) is the Hartree-exchange-correlation potential (assuming355

a form of differentiability of the functional EHxc[n]) and ε̃p are the KS orbital energies.356

The KS equations must be solved self-consistently with the density357

n(~r) =
N
∑

i=1

ψ̃
†
i (~r)ψ̃i(~r) + ñvp(~r), (62)
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where the vacuum-polarization density is358

ñvp(~r) =
∑

p∈NS

ψ̃†
p(~r)ψ̃p(~r)−

∑

p∈NS

ψ†
p(~r)ψp(~r)

=
1

2

(

∑

p∈NS

ψ̃†
p(~r)ψ̃p(~r)−

∑

p∈PS

ψ̃†
p(~r)ψ̃p(~r)

)

, (63)

where the last equality follows from Eqs. (168) and (172) (see also Ref. [56]). Equa-359

tions (61)-(63) have a similar form as for the KS scheme based on renormalized QED [7–10]360

except that we did not take into account any renormalization counterterms and that the361

present functional EHxc[n] is associated with the effective Coulomb or Coulomb+Breit362

two-particle interaction. The fact that EHxc[n] is a functional of the density makes the363

potential vHxc(~r) local in space and diagonal in terms of spinor indices. This is unlike364

in HF theory where the corresponding potential would be both nonlocal in space and365

non-diagonal in terms of spinor indices.366

3.2 Hartree-exchange-correlation density functional367

The Hartree-exchange-correlation density functional EHxc[n] can be decomposed as368

EHxc[n] = EHx[n] + Ec[n], (64)

where EHx[n] is the Hartree-exchange energy encompassing all first-order terms in the369

two-particle interaction370

EHx[n] = 〈Φ[n]|Ŵ |Φ[n]〉 =
1

2

∫∫

Tr[w(~r1, ~r2)n
KS
2 (~r1, ~r2)]d~r1d~r2, (65)

with the KS pair-density matrix nKS
2 (~r1, ~r2) = 〈Φ[n]|n̂2(~r1, ~r2)|Φ[n]〉, and Ec[n] is the371

correlation energy. The Hartree-exchange energy can be written more explicitly as372

EHx[n] = ẼHx[n] + Ẽvp
Hx[n], (66)

where ẼHx[n] is the main contribution373

ẼHx[n] =
1

2

∫∫

Tr[w(~r1, ~r2)ñ
KS
2 (~r1, ~r2)]d~r1d~r2, (67)

depending on the part of the KS pair-density matrix coming from the electronic occupied374

orbitals375

ñKS
2,ρυστ (~r1, ~r2) = ñKS

1,υτ (~r2, ~r2)ñ
KS
1,ρσ(~r1, ~r1)− ñKS

1,ρτ (~r1, ~r2)ñ
KS
1,υσ(~r2, ~r1), (68)

and Ẽvp
Hx[n] is the vacuum-polarization contribution376

Ẽvp
Hx[n] =

∫

Tr[ṽvp
H (~r)ñKS

1 (~r, ~r)]d~r +

∫∫

Tr[ṽvp
x (~r1, ~r2)ñ

KS
1 (~r1, ~r2)]d~r1d~r2

+
1

2

∫∫

Tr[w(~r1, ~r2)ñ
vp
2 (~r1, ~r2)]d~r1d~r2, (69)

where the vacuum-polarization potentials ṽvp
H (~r) and ṽvp

x (~r1, ~r2) were defined after Eqs. (39)377

and (40), respectively, and the vacuum-polarization pair-density matrix ñvp
2 (~r1, ~r2) was de-378

fined in Eq. (32).379
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We can further decompose the functional EHx[n] as380

EHx[n] = EH[n] + Ex[n]. (70)

where the Hartree functional EH[n] collects all direct terms and the exchange functional381

Ex[n] collects all exchange terms. The expression of the Hartree functional is382

EH[n] = ẼH[n] + Ẽvp
H [n], (71)

with383

ẼH[n] =
1

2

∫∫

Tr[w(~r1, ~r2)ñ
KS
2,H(~r1, ~r2)]d~r1d~r2, (72)

where ñKS
2,H(~r1, ~r2) is the Hartree contribution to ñKS

2 (~r1, ~r2) [the first term in the right-384

hand side of Eq. (68)], and385

Ẽvp
H [n] =

∫

Tr[ṽvp
H (~r)ñKS

1 (~r, ~r)]d~r +
1

2

∫∫

Tr[w(~r1, ~r2)ñ
vp
2,H(~r1, ~r2)]d~r1d~r2, (73)

where ñvp
2,H(~r1, ~r2) is the Hartree contribution to ñvp

2 (~r1, ~r2) [the first term in the right-hand386

side of Eq. (32)]. Similarly, the expression of the exchange functional is387

Ex[n] = Ẽx[n] + Ẽvp
x [n], (74)

with388

Ẽx[n] =
1

2

∫∫

Tr[w(~r1, ~r2)ñ
KS
2,x(~r1, ~r2)]d~r1d~r2, (75)

where ñKS
2,x(~r1, ~r2) is the exchange contribution to ñKS

2 (~r1, ~r2) [the second term in the right-389

hand side of Eq. (68)], and390

Ẽvp
x [n] =

∫∫

Tr[ṽvp
x (~r1, ~r2)ñ

KS
1 (~r1, ~r2)]d~r1d~r2 +

1

2

∫∫

Tr[w(~r1, ~r2)ñ
vp
2,x(~r1, ~r2)]d~r1d~r2,

(76)

where ñvp
2,x(~r1, ~r2) is the exchange contribution to ñvp

2 (~r1, ~r2) [the second term in the right-391

hand side of Eq. (32)].392

The Hartree energy can also be more compactly written as a sum of Coulomb and393

Breit contributions394

EH[n] = EC
H [n] + EB

H[n], (77)

where the Coulomb contribution has the same form as in non-relativistic DFT395

EC
H [n] =

1

2

∫∫

w(r12)n(~r1)n(~r2)d~r1d~r2, (78)

involving the charge density n(~r) [Eq. (62)], and the Breit contribution has the form396

EB
H[n] = −

1

4c2

∫∫

w(r12)

[

~j(~r1) ·~j(~r2) +
~j(~r1) · ~r12 ~j(~r2) · ~r12

r212

]

d~r1d~r2, (79)

involving the KS charge current density ~j(~r)397

~j(~r) = Tr[c~α nKS
1 (~r, ~r)] = c

N
∑

i=1

ψ̃
†
i (~r)~αψ̃i(~r) +

~̃jvp(~r), (80)
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where ~̃jvp(~r) is the vacuum-polarization current density398

~̃jvp(~r) = c





∑

p∈NS

ψ̃†
p(~r)~αψ̃p(~r)−

∑

p∈NS

ψ†
p(~r)~αψp(~r)



 . (81)

Since we did not consider any vector potential in the KS equations [Eq. (61)], the KS399

Hamiltonian has time-reversal symmetry and the KS orbitals {ψ̃p} come in degenerate400

Kramers pairs (see, e.g., Ref. [23]) with opposite current densities, and similarly for the401

orbitals {ψp} of the free Dirac equation. It seems then reasonable to conclude that the402

vacuum-polarization current density ~̃jvp(~r) vanishes in the present context, glossing over403

the fact that each sum in Eq. (81) is infinite. Moreover, for closed-shell systems, the404

contribution to the charge current density ~j(~r) coming from the occupied electronic states405

in Eq. (80) vanishes as well, and there is no Breit contribution to the Hartree energy.406

For open-shell systems, the charge current density does not vanish and there is a Breit407

contribution to the Hartree energy. Since the charge current density ~j(~r) is only an408

implicit functional of the charge density via the KS orbitals, the calculation of the Breit409

contribution to the Hartree potential would require to use the optimized-effective-potential410

method (see, e.g., Ref. [57]). A simpler alternative is to switch to functionals depending411

also explicitly on the charge current density ~j(~r).412

The correlation functional Ec[n] is conveniently expressed with the adiabatic-connection413

approach [58–60] which can be straightforwardly generalized to the present relativistic the-414

ory. For this, we define an universal density functional similarly to Eq. (52) but depending415

on a coupling constant λ ∈ [0,+∞[416

F λ[n] = min
|Ψ〉∈HN (n)

〈Ψ|T̂D + λŴ |Ψ〉 = 〈Ψλ[n]|T̂D + λŴ |Ψλ[n]〉, (82)

where |Ψλ[n]〉 denotes a minimizing state. This functional can be decomposed as417

F λ[n] = Ts[n] + λEHx[n] + Eλ
c [n], (83)

where the λ-dependent correlation contribution is418

Eλ
c [n] = 〈Ψλ[n]|T̂D + λŴ |Ψλ[n]〉 − 〈Φ[n]|T̂D + λŴ |Φ[n]〉. (84)

We will assume that F λ[n] is of class C1 as a function of λ for λ ∈ [0, 1] and that419

F λ=0[ρ] = Ts[ρ] (which should be valid when the KS single-determinant state |Φ[n]〉420

is non-degenerate). Taking the derivative of Eq. (84) with respect to λ and using the421

Hellmann-Feynman theorem for the state |Ψλ[n]〉, we obtain422

∂Eλ
c [n]

∂λ
= 〈Ψλ[n]|Ŵ |Ψλ[n]〉 − 〈Φ[n]|Ŵ |Φ[n]〉. (85)

Integrating over λ from 0 to 1, and using Eλ=1
c [n] = Ec[n] and E

λ=0
c [n] = 0, we arrive at423

the adiabatic-connection formula for the correlation functional424

Ec[n] =

∫ 1

0
dλ 〈Ψλ[n]|Ŵ |Ψλ[n]〉 − 〈Φ[n]|Ŵ |Φ[n]〉

=
1

2

∫ 1

0
dλ

∫∫

Tr[w(~r1, ~r2)n
λ
2,c(~r1, ~r2)]d~r1d~r2, (86)

with the correlation contribution to the λ-dependent pair-density matrix nλ
2,c(~r1, ~r2) =425

〈Ψλ[n]|n̂2(~r1, ~r2)|Ψ
λ[n]〉 − nKS

2 (~r1, ~r2). More explicitly, the correlation functional has the426

expression427

Ec[n] = Ẽc[n] + Ẽvp
c [n], (87)
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where Ẽc[n] is the main contribution428

Ẽc[n] =
1

2

∫ 1

0
dλ

∫∫

Tr[w(~r1, ~r2)ñ
λ
2,c(~r1, ~r2)]d~r1d~r2, (88)

with ñλ
2,c(~r1, ~r2) = 〈Ψλ[n]|ˆ̃n2(~r1, ~r2)|Ψ

λ[n]〉−ñKS
2 (~r1, ~r2), and Ẽ

vp
c [n] is the vacuum-polarization429

contribution coming from the variation of the one-particle density matrix with λ430

Ẽvp
c [n] =

∫ 1

0
dλ

∫

Tr[ṽvp
H (~r)ñλ

1,c(~r, ~r)]d~r +

∫ 1

0
dλ

∫∫

Tr[ṽvp
x (~r1, ~r2)ñ

λ
1,c(~r1, ~r2)]d~r1d~r2,

(89)

with ñλ
1,c(~r1, ~r2) = 〈Ψλ[n]|ˆ̃n1(~r1, ~r2)|Ψ

λ[n]〉 − ñKS
1 (~r1, ~r2). Note that both ñλ

2,c(~r1, ~r2) and431

ñλ
1,c(~r1, ~r2) include contributions from orbitals ψ̃p with p ∈ NS, which generate vacuum432

contributions to the correlation energy beyond first order in the two-particle interaction.433

Mirroring the decomposition of the energy functional EHxc[n] into Hartree, exchange,434

and correlation contributions, the associated potential in Eq. (61) has of course a similar435

decomposition436

vHxc(r) = vH(r) + vx(r) + vc(r), (90)

and each potential is itself a sum of a main contribution and a vacuum-polarization contri-437

bution. Note in particular that the vacuum-polarization contributions in the Hartree and438

exchange potentials are both local in space and diagonal in terms of spinor indices and439

thus are not identical to the vacuum-polarization potentials ṽvp
H (~r) and ṽvp

x (~r1, ~r2) defined440

after Eqs. (39) and (40), respectively. The latter potentials are the vacuum-polarization441

potentials that would be directly involved in HF theory. We leave for future work the442

study of the properties of the potentials in Eq. (90).443

3.3 No-pair approximation444

In the npvp approximation introduced in Eq. (46), the universal density functional becomes445

F npvp[n] = min
|Ψ+〉∈H̃(N,0)(n)

〈Ψ+|T̂D + Ŵ |Ψ+〉 (91)

where H̃(N,0)(n) is the set of states in H̃(N,0) yielding the charge density n. In this446

approximation, the definition of Ts[n] in Eq. (55) is left unchanged and consequently the447

KS determinant state |Φ[n]〉 and the Hartree and exchange functionals EH[n] and Ex[n]448

are also left unchanged. We thus have the decomposition449

F npvp[n] = Ts[n] + EHx[n] + Enpvp
c [n], (92)

where Enpvp
c [n] is the new correlation functional in this approximation. In this npvp KS450

scheme, the ground-state energy is then obtained as451

Enpvp
N = min

|Φ〉∈S̃(N,0)

[

〈Φ|T̂D + V̂ |Φ〉+ EHx[n|Φ〉] + Enpvp
c [n|Φ〉]

]

. (93)

Hence, this approximation affects only the correlation functional, namely Enpvp
c [n] has the452

same expression as Ec[n] but in Eqs. (88) and (89) ñλ
2,c(~r1, ~r2) and ñλ

1,c(~r1, ~r2) are now453

calculated with a state |Ψλ
+[n]〉 ∈ H̃(N,0)(n) and thus do not contain any contributions454

coming from orbitals ψ̃p with p ∈ NS. However, vacuum contributions are still included455

at the mean-field level with the potentials ṽvp
H (~r) and ṽvp

x (~r1, ~r2).456
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In the more common no-pair approximation of Eq. (51), the universal functional is457

defined as458

F np[n] = min
|Ψ+〉∈H̃(N,0)(n)

〈Ψ+|
ˆ̃TD + ˆ̃W |Ψ+〉, (94)

where we use now the operators written with normal ordering with respect to a floating459

vacuum state |0̃〉, and the non-interacting kinetic + rest-mass density functional is defined460

as461

T np
s [n] = min

|Φ〉∈S̃(N,0)(n)
〈Φ| ˆ̃TD|Φ〉 = 〈Φnp[n]| ˆ̃TD|Φ

np[n]〉, (95)

where |Φnp[n]〉 is the KS determinant state in this approximation (again, assumed to be462

unique up to a phase factor for simplicity). The functional F np[n] can then be decomposed463

as464

F np[n] = T np
s [n] + Enp

Hx[n] + Enp
c [n], (96)

where Enp
Hx[n] is the no-pair Hartree-exchange functional465

Enp
Hx[n] = 〈Φnp[n]| ˆ̃W |Φnp[n]〉 =

1

2

∫∫

Tr[w(~r1, ~r2)ñ
KS,np
2 (~r1, ~r2)]d~r1d~r2, (97)

with the no-pair KS pair-density matrix ñKS,np
2 (~r1, ~r2) = 〈Φnp[n]|ˆ̃n2(~r1, ~r2)|Φ

np[n]〉 (which,466

as before, can be trivially separated into Hartree and exchange contributions), and Enp
c [n]467

is the no-pair correlation functional468

Enp
c [n] =

1

2

∫ 1

0
dλ

∫∫

Tr[w(~r1, ~r2)ñ
λ,np
2,c (~r1, ~r2)]d~r1d~r2, (98)

with ñλ,np
2,c (~r1, ~r2) = 〈Ψλ

+[n]|ˆ̃n2(~r1, ~r2)|Ψ
λ
+[n]〉− ñKS,np

2 (~r1, ~r2) and |Ψλ
+[n]〉 is a λ-dependent469

no-pair minimizing state for the charge density n. Finally, the no-pair ground-state energy470

is obtained as471

Enp
N = min

|Φ〉∈S̃(N,0)

[

〈Φ| ˆ̃TD + ˆ̃V |Φ〉+ Enp
Hx[n|Φ〉] + Enp

c [n|Φ〉]
]

, (99)

and the no-pair charge density is simply n(~r) =
∑N

i=1 ψ̃
†
i (~r)ψ̃i(~r).472

This constitutes a no-pair KS RDFT with well-defined universal exchange and correla-473

tion functionals Enp
x [n] and Enp

c [n]. This contrasts with the RDFT based on the relativistic474

extension of the Hohenberg-Kohn theorem of Refs. [7–10] for which the no-pair approx-475

imation is only introduced a posteriori without giving an unambiguous definition of the476

involved functionals. Indeed, the no-pair approximation involves the projector ˆ̃P+ onto477

the subspace of electronic states [Eq. (48)] which depends on the separation of the or-478

bitals into PS and NS sets, and therefore depends on the potential used to generate these479

orbitals. If the projector is applied to the Hamiltonian, the whole resulting projected480

Hamiltonian is thus dependent on this potential, and one cannot isolate, as normally done481

in DFT, an universal part of the Hamiltonian, and one thus cannot define universal den-482

sity functionals. In the present work, instead of thinking of the projector ˆ̃P+ as being483

applied to the Hamiltonian, we equivalently think of the projector as being applied to the484

state, i.e. |Ψ+〉 =
ˆ̃P+|Ψ〉, and optimize the projector simultaneously with the state |Ψ〉.485

In this way, we can introduce universal density functionals, similarly to non-relativistic486

DFT, defined such that for a given density a constrained-search optimization in Eq. (94)487

or (95) of the projected state |Ψ+〉 determines alone the optimal projector without the488

need of pre-choosing a particular potential, at least for systems for which orbitals can489

be unambiguously separated into PS and NS sets. The same view can be taken in the490

configuration-space approach using a minmax principle [52].491
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3.4 Exact properties of the density functionals492

Charge-conjugation symmetry493

A state |Ψ[n]〉 in Eq. (52) yields the charge density n and minimizes 〈Ψ|T̂D + Ŵ |Ψ〉. The494

charge-conjugated state Ĉ|Ψ[n]〉, where Ĉ is the charge-conjugation operator in Fock space495

(see Appendix A), yields the charge density −n since496

〈Ψ[n]|Ĉ†n̂(~r)Ĉ|Ψ[n]〉 = −〈Ψ[n]|n̂(~r)|Ψ[n]〉 = −n(~r), (100)

where we have used the antisymmetry of the density operator under charge conjugation,497

Ĉ†n̂(~r)Ĉ = −n̂(~r) [Eq. (144)]. Moreover, the charge-conjugated state Ĉ|Ψ[n]〉 minimizes498

〈Ψ|T̂D + Ŵ |Ψ〉 since499

〈Ψ[n]|Ĉ†(T̂D + Ŵ )Ĉ|Ψ[n]〉 = 〈Ψ[n]|T̂D + Ŵ |Ψ[n]〉, (101)

since both T̂D and Ŵ are symmetric under charge conjugation [Eqs. (143) and (148)]. We500

thus conclude that501

Ĉ|Ψ[n]〉 = |Ψ[−n]〉, (102)

and that the universal density functional is symmetric under charge conjugation502

F [n] = F [−n]. (103)

Similarly, the KS determinant state in Eq. (55) transforms as503

Ĉ|Φ[n]〉 = |Φ[−n]〉, (104)

and the functionals Ts[n], EH[n], Ex[n], and Ec[n] are all symmetric under charge conju-504

gation505

Ts[n] = Ts[−n], (105)

506

EH[n] = EH[−n], (106)

507

Ex[n] = Ex[−n], (107)

508

Ec[n] = Ec[−n]. (108)

In other words, these functionals must be even functionals of the charge density. Conse-509

quently, their functional derivatives with respect to n(~r) must be odd functionals of the510

charge density. This is particularly obvious for the Coulomb contribution to the Hartree511

energy in Eq. (78).512

Uniform coordinate scaling relations513

In non-relativistic DFT, the uniform coordinate scaling relations [61–63] are important514

constraints on the density functionals. We show how to generalize them for the present515

RDFT.516

Since there is generally no concept of wave function in the present relativistic theory,517

we cannot define coordinate scaling on wave functions, as normally done. Instead, we must518
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work in Fock space and we thus define an unitary uniform coordinate scaling operator Ŝγ519

which transforms the Dirac field operator as520

Ŝ†
γψ̂(~r)Ŝγ = γ3/2ψ̂(γ~r), (109)

where γ ∈]0,+∞[ is a scaling factor, and similarly for the separate electron and positron521

field operators in Eq. (137), i.e. Ŝ†
γψ̂+(~r)Ŝγ = γ3/2ψ̂+(γ~r) and Ŝ

†
γψ̂−(~r)Ŝγ = γ3/2ψ̂−(γ~r).522

The one-particle density-matrix and density operators transform as523

Ŝ†
γ n̂1(~r, ~r

′) Ŝγ = γ3n̂1(γ~r, γ~r
′), (110)

and524

Ŝ†
γ n̂(~r) Ŝγ = γ3n̂(γ~r), (111)

while the pair density-matrix operator transforms as525

Ŝ†
γ n̂2(~r1, ~r2) Ŝγ = γ6n̂2(γ~r1, γ~r2). (112)

Since the scaling relations involve scaling the speed of light c, we will explicitly indicate526

in this section the dependence on c. A state |Ψλ,c[n]〉 in Eq. (82) for any coupling constant527

λ and speed of light c yields the charge density n and minimizes 〈Ψ|T̂ c
D + λŴ |Ψ〉. The528

scaled state529

|Ψλ,c
γ [n]〉 = Ŝγ |Ψ

λ,c[n]〉, (113)

yields the scaled charge density [see Eq. (111)]530

nγ(~r) = γ3n(γ~r), (114)

and minimizes 〈Ψ|T̂ cγ
D + λγŴ |Ψ〉 since531

〈Ψλ,c
γ [n]|T̂ cγ

D + λγŴ |Ψλ,c
γ [n]〉 = γ2〈Ψλ,c[n]|T̂ c

D + λŴ |Ψλ,c[n]〉, (115)

where we have used Eqs. (110) and (112). We thus conclude that the scaled state |Ψλ,c
γ [n]〉532

at coupling constant λ and speed of light c corresponds to the state at scaled density nγ ,533

scaled coupling constant λγ, and scaled speed of light cγ534

|Ψλ,c
γ [n]〉 = |Ψλγ,cγ [nγ ]〉, (116)

or, equivalently,535

|Ψλ/γ,c/γ
γ [n]〉 = |Ψλ,c[nγ ]〉, (117)

and that the universal density functional satisfies the scaling relation536

F λγ,cγ [nγ ] = γ2F λ,c[n], (118)

or, equivalently,537

F λ,c[nγ ] = γ2F λ/γ,c/γ [n]. (119)

At λ = 0, we find the scaling relation of the KS single-determinant state538

|Φc/γ
γ [n]〉 = |Φc[nγ ]〉, (120)
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which directly leads to the scaling relation for the non-interacting kinetic density functional539

T c
s [nγ ] = γ2T c/γ

s [n], (121)

and for the Hartree and exchange density functionals540

Ec
H[nγ ] = γE

c/γ
H [n] and Ec

x[nγ ] = γEc/γ
x [n]. (122)

The correlation density functional has the same scaling as F λ,c[n]541

Eλ,c
c [nγ ] = γ2Eλ/γ,c/γ

c [n], (123)

and, in particular, for λ = 1542

Ec
c [nγ ] = γ2E1/γ,c/γ

c [n]. (124)

These scaling relations imply that the low-density limit (γ → 0) corresponds to the non-543

relativistic limit (c → ∞), while the high-density limit (γ → ∞) corresponds to the544

ultra-relativistic limit (m→ 0 where m is the electron mass).545

In the low-density limit, we indeed recover the well-known behaviors of the non-546

relativistic density functionals. After removing the rest-mass energy of N electrons, Nmc2,547

the non-interacting kinetic-energy functional scales quadratically as γ → 0548

T c
s [nγ ]−Nmc2 ∼

γ→0
γ2TNR

s [n], (125)

where TNR
s [n] = limc→∞(T c

s [n]−Nmc
2) is the non-relativistic (NR) non-interacting kinetic-549

energy functional. The Hartree and exchange functionals scale linearly as γ → 0550

Ec
H[nγ ] ∼

γ→0
γENR

H [n] and Ec
x[nγ ] ∼

γ→0
γENR

x [n], (126)

where ENR
H [n] = limc→∞Ec

H[n] = EC
H[n] [Eq. (78)] and ENR

x [n] = limc→∞Ec
x[n] are the551

non-relativistic Hartree and exchange functionals. The correlation functional also scales552

linearly as γ → 0553

Ec
c [nγ ] ∼

γ→0
γWNR,SCE

c [n], (127)

whereWNR,SCE
c [n] = limλ→∞ENR,λ

c [n]/λ is the non-relativistic strictly-correlated-electron554

(SCE) correlation functional [64–67] obtained from the non-relativistic correlation func-555

tional along the adiabatic connection ENR,λ
c [n] = limc→∞Ec,λ

c [n] [see Eq. (84)] in the limit556

of infinite coupling constant λ → ∞. The low-density limit is also called the strong-557

interaction limit since in this limit the Hartree, exchange, and correlation energies domi-558

nate over the non-interacting kinetic energy.559

The high-density limit of the relativistic density functionals is more exotic. In this560

limit, the rest-mass term in the Dirac operator becomes negligible in comparison to the561

kinetic term, i.e. Dc/γ(~r) = (c/γ)(~α · ~p) + β mc2/γ2 ∼
γ→∞

(c/γ)(~α · ~p), and consequently562

the non-interacting kinetic-energy functional scales linearly as γ → ∞563

T c
s [nγ ] ∼

γ→∞
γT c,UR

s [n], (128)

where T c,UR
s [n] = limm→0 T

c
s [n] is the ultra-relativistic (UR) non-interacting kinetic-energy564

functional obtained by letting the electron mass going to zero in the Dirac operator. This565

is in contrast with the quadratic scaling of the non-relativistic kinetic-energy functional,566
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i.e. TNR
s [nγ ] = γ2TNR

s [n]. The Hartree and exchange functionals also scale linearly as567

γ → ∞568

Ec
H[nγ ] ∼

γ→∞
γEc,UR

H [n] and Ec
x[nγ ] ∼

γ→∞
γEc,UR

x [n], (129)

where Ec,UR
H [n] = limm→0E

c
H[n] and Ec,UR

x [n] = limm→0E
c
x[n] are the ultra-relativistic569

Hartree and exchange functionals. This is similar to the linear scaling of the non-relativistic570

Hartree and exchange functionals ENR
H [nγ ] = γENR

H [n] and ENR
x [nγ ] = γENR

x [n]. Finally,571

the correlation functional scales linearly as γ → ∞572

Ec
c [nγ ] ∼

γ→∞
γEc,UR

c [n], (130)

where Ec,UR
c [n] = limm→0E

c
c [n] is the ultra-relativistic correlation functional. This is573

again in contrast with the non-relativistic case where the correlation functional goes574

to a constant as γ → ∞, for a KS Hamiltonian with a non-degenerate ground state,575

limγ→∞ENR
c [nγ ] = ENR,GL2

c [n], where ENR,GL2
c [n] is the second-order Görling-Levy (GL2)576

correlation energy [68,69]. Hence, in the relativistic case, the high-density limit is no longer577

a weak-interaction or weak-correlation limit since T c
s [nγ ], E

c
H[nγ ], E

c
x[nγ ], and E

c
c [nγ ] all578

scale linearly in γ. In particular, the divergence of the relativistic correlation functional in579

the high-density limit has important implications for relativistic functional development.580

Indeed, many non-relativistic correlation functionals, such as the Perdew-Burke-Ernzerhof581

(PBE) one [70], have been designed to saturate in the high-density limit. Hence, these582

non-relativistic correlation functionals should be rethought so as to satisfy Eq. (130).583

The same scaling relations apply in the no-pair approximation, as well as in the npvp584

variant of Eq. (91). In the configuration-space approach of the no-pair approximation,585

these scaling relations could be obtained using the minmax principle (see Ref. [52]).586

In the non-relativistic theory, the high-density limit is realized in atomic ions in the587

limit of large nuclear charge, Z → ∞, at fixed electron number N (see Refs. [71,72]). In a588

relativistic setting, the relation between the high-density limit and the large nuclear-charge589

limit is more complicated due to the scaling of the speed of light [50]. However, we note that590

numerical studies show that relativistic no-pair and beyond-no-pair correlation energies591

(calculated with respect to HF) of two-electron atoms diverge as Z increases [50,73], which592

is in line with the divergence of Ec
c [nγ ] as γ → ∞ [Eq. (130)].593

Finally, for γ = λ, the scaling relation in Eq. (123) gives an expression for the corre-594

lation functional along the adiabatic connection at coupling constant λ595

Eλ,c
c [n] = λ2Ec/λ

c [n1/λ], (131)

which could be useful for analyzing approximate correlation functionals and for developing596

a relativistic extension of the multideterminant KS scheme of Refs. [74, 75].597

3.5 Local-density approximation598

The LDA is usually the first approximation considered in DFT. In the present relativistic599

theory, the LDA exchange-correlation functional may be written as600

ELDA
xc [n] =

∫

|n(~r)|ǫRHEG
xc (|n(~r)|)d~r, (132)

where ǫRHEG
xc (n) is the exchange-correlation energy per particle of the relativistic homo-601

geneous electron gas (RHEG) of constant charge density n ∈ [0,+∞[. To deal with the602
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possibility of having negative charge densities n(~r) at some points of space in the inhomo-603

geneous system [see discussion in the paragraph after Eq. (55)], we have used the absolute604

value of the charge density. On the one hand, this permits to satisfy charge-conjugation605

symmetry [Eqs. (107) and (108)], but, on the other hand, it introduces discontinuities in606

the corresponding potential at the points of space where n(~r) changes sign. Whether using607

the absolute value of the charge density is the right thing to do is thus unsure and should608

be further studied.609

Since the RHEG has a spatially constant charge density, its KS potential v + vHxc610

in Eq. (61) must necessarily be a spatial constant as well. Since the KS potential does611

not depend on spinor indices either (contrary to the HF potential), the KS orbitals of612

the RHEG are thus simply the eigenfunctions of the free Dirac equation. In other words,613

due to translational symmetry, the KS vacuum state |0̃〉 of the RHEG is equal to the free614

vacuum state |0〉. Consequently, the vacuum-polarization one-particle density matrix in615

Eq. (60) vanishes for the RHEG and the LDA exchange functional does not contain any616

vacuum-polarization contribution, i.e. ELDA
x [n] = ẼLDA

x [n] [Eq. (75)] or Ẽvp,LDA
x [n] = 0617

[Eq. (76)]. Similarly, for the LDA correlation functional, we have ELDA
c [n] = ẼLDA

c [n]618

[Eq. (88)] or Ẽvp,LDA
c [n] = 0 [Eq. (89)], but ELDA

c [n] still contains vacuum contributions619

via the correlation pair-density matrix ñλ
2,c(~r1, ~r2) of the RHEG.620

Moreover, for the same reason, the KS orbitals of the RHEG obtained in the no-pair621

approximation [Eq. (95)] are also necessarily the eigenfunctions of the free Dirac equa-622

tion, and thus the no-pair approximation has no impact on the LDA exchange functional,623

i.e. ELDA
x [n] = Enp,LDA

x [n]. By contrast, the no-pair approximation or its npvp vari-624

ant [Eq. (92)] do have an impact of the LDA correlation functional, i.e. ELDA
c [n] 6=625

Enpvp,LDA
c [n] = Enp,LDA

c [n], since the vacuum contributions are now suppressed from626

ñλ
2,c(~r1, ~r2).627

The exchange energy per particle of the RHEG for the Coulomb interaction of Eq. (15)628

is [4, 76] (see, also, Ref. [51])629

ǫRHEG,C
x (n) = −

3 kF
4π

[

5

6
+

1

3
c̃2 +

2

3

√

1 + c̃2 arcsinh

(

1

c̃

)

−
1

3

(

1 + c̃2

)2

ln

(

1 +
1

c̃2

)

−
1

2

(

√

1 + c̃2 − c̃2arcsinh

(

1

c̃

))2
]

, (133)

where kF = (3π2n)1/3 is the Fermi wave vector and c̃ = mc/kF is a relativistic parameter.630

The exchange energy per particle for the Breit interaction of Eq. (16) has a similar form [77]631

(see, also, Ref. [51])632

ǫRHEG,B
x (n) =

3 kF
4π

[

1− 2
(

1 + c̃2
)

(

1− c̃2

(

− 2 ln (c̃) + ln
(

1 + c̃2
)

))

+2

(

√

1 + c̃2 − c̃2arcsinh

(

1

c̃

))2
]

. (134)

Note that these expressions are valid for an arbitrary speed of light c. The dependence633

on c via the adimensional parameter c̃ is necessary for the LDA exchange functional to634

satisfy the scaling relation of Eq. (122). Note that the Breit exchange energy per particle635

is an approximation to the exchange energy per particle obtained with the transverse636

component of the full QED photon propagator [3,4,76]. The exchange energy per particle637

obtained with the full QED photon propagator has in fact a simpler expression than the638

Coulomb-Breit one, thanks to the cancellation of many terms between the Coulomb and639
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transverse components,640

ǫQED
x (n) = −

3 kF
4π

[

1−
3

2

(

√

1 + c̃2 − c̃2arcsinh

(

1

c̃

))2
]

. (135)

The Coulomb-Breit exchange energy per particle is a good approximation to the exchange641

energy per particle obtained with the full QED photon propagator for kF . c [51]. In642

any case, the LDA exchange functional corresponding to the present RDFT is given by643

Eqs. (133) and (134), and not by Eq. (135).644

Contrary to the case of exchange, the correlation energy per particle of the RHEG645

cannot be calculated analytically. It has been estimated numerically at the level of the646

relativistic random-phase approximation, using either the no-sea approximation (which647

includes parts of the vacuum contributions) or the no-pair approximation, and the full648

QED photon propagator or the Coulomb-Breit interaction [78,79] (see also Refs. [7–9,14,649

80–82]). However, to the best of our knowledge, these calculations were done for the fixed650

physical value of the speed of light. Therefore, we do not have the dependence on c and651

we cannot apply the scaling relation of Eq. (124) or (131). More work seems necessary to652

construct the LDA correlation functional including the dependence on c with or without653

the no-pair approximation.654

4 Conclusions655

In this work, we have examined a RDFT based on an effective QED without the photon656

degrees of freedom. The formalism is appealing since it is simpler than RDFT based on657

full QED. We have used this formalism to unambiguously define density functionals in the658

no-pair approximation, thus making a closer contact with calculations done in practice,659

and to study some exact properties of the involved functionals, namely charge-conjugation660

symmetry and uniform coordinate scaling. The formalism has also the advantage to be661

easily extended to multideterminant KS schemes which combine wave-function methods662

with density functionals based on a decomposition the electron-electron interaction (see,663

e.g., Refs. [74, 83, 84]).664

In possible future works on the present RDFT, one may study whether this approach665

can be made mathematically rigorous, one may develop density-functional approximations666

for this approach, one may examine the extension to functionals of the charge current667

density or of the one-particle density matrix, and one may implement this approach for668

example for calculations of vacuum-polarization effects in heavy atoms. This last goal669

would require the development of practical regularization/renormalization procedures.670
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A Charge-conjugation symmetry of the electron-positron674

Hamiltonian675

Under charge conjugation, the Dirac field operator transforms as (see, e.g., Refs. [9,43,45,676

85])677

Ĉψ̂(~r)Ĉ† = Cψ̂†T(~r), (136)

with the unitary charge-conjugation symmetry operator in Fock space Ĉ, the unitary678

matrix C = −iαyβ defined up to an unimportant phase factor, and T designating the679

matrix transposition. If we decompose the Dirac field operator into free electron and680

positron field contributions681

ψ̂(~r) = ψ̂+(~r) + ψ̂−(~r), (137)

with ψ̂+(~r) =
∑

p∈PS b̂pψp(~r) and ψ̂−(~r) =
∑

p∈NS d̂
†
pψp(~r) in which {ψp} is the set682

of eigenfunctions of the free Dirac equation, then charge conjugation interchanges these683

contributions as684

Ĉψ̂+(~r)Ĉ
† = Cψ̂†T

− (~r), (138)

685

Ĉψ̂−(~r)Ĉ
† = Cψ̂†T

+ (~r), (139)

or, writing explicitly the spinor components, Ĉψ̂+,σ(~r)Ĉ
† =

∑

σ′ Cσσ′ψ̂
†
−,σ′(~r) and686

Ĉψ̂−,σ(~r)Ĉ
† =

∑

σ′ Cσσ′ψ̂
†
+,σ′(~r). Let us stress that Eqs. (138) and (139) are only valid687

when using the orbitals of the free Dirac equation {ψp} and not arbitrary orbitals {ψ̃p}.688

These equations allow us to find the transformation under charge conjugation of the689

electron-positron Hamiltonian in Eq. (7) expressed with normal ordering with respect690

to the free vacuum state.691

In terms of the free electron and positron field operators, the one-particle density-692

matrix operator in Eq. (11) has the expression693

n̂1,ρσ(~r, ~r
′) = ψ̂†

+,σ(~r
′)ψ̂+,ρ(~r) + ψ̂†

+,σ(~r
′)ψ̂−,ρ(~r) + ψ̂†

−,σ(~r
′)ψ̂+,ρ(~r)− ψ̂−,ρ(~r)ψ̂

†
−,σ(~r

′),

(140)

which becomes under charge conjugation694

Ĉn̂1,ρσ(~r, ~r
′)Ĉ† =

∑

ρ′σ′

Cρρ′ [ψ̂−,σ′(~r ′)ψ̂†
−,ρ′(~r) + ψ̂−,σ′(~r ′)ψ̂†

+,ρ′(~r)

+ψ̂+,σ′(~r ′)ψ̂†
−,ρ′(~r)− ψ̂†

+,ρ′(~r)ψ̂+,σ′(~r ′)]C†
σ′σ

= −
∑

ρ′σ′

Cρρ′ n̂1,σ′ρ′(~r
′, ~r)C†

σ′σ, (141)

or, in matrix form,695

Ĉn̂1(~r, ~r
′)Ĉ† = −Cn̂T

1 (~r
′, ~r)C†. (142)
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From this, we deduce that the Dirac kinetic + rest mass operator T̂D in Eq. (8) is symmetric696

under charge conjugation697

ĈT̂DĈ
† = −

∫

Tr[D(~r)Cn̂T
1 (~r

′, ~r)C†]~r ′=~r d~r

= −

∫

Tr[C†D(~r)Cn̂T
1 (~r

′, ~r)]~r ′=~r d~r

=

∫

Tr[D(~r)n̂1(~r, ~r
′)]~r ′=~r d~r

= T̂D, (143)

where we have used C†D(~r)C = −D∗(~r) = −c (~α∗ · ~p ∗) − β mc2 and the third equality698

in Eq. (143) comes from the hermiticity of ~α, i.e. ~α∗ = ~αT, and the self-adjointness of699

~p. Moreover, from Eq. (142), we find the expected antisymmetry of the opposite charge700

density operator under charge conjugation701

Ĉn̂(~r)Ĉ† = −n̂(~r), (144)

which immediately shows that the external potential operator V̂ in Eq. (10) is also anti-702

symmetric703

ĈV̂ Ĉ† = −V̂ . (145)

A similar calculation gives the transformation of the pair density-matrix operator in704

Eq. (12) under charge conjugation705

Ĉn̂2,ρυστ (~r1, ~r2)Ĉ
† =

∑

ρ′υ′τ ′σ′

Cρρ′Cυυ′ n̂2,τ ′σ′υ′ρ′(~r2, ~r1)C
†
τ ′τC

†
σ′σ, (146)

or, in matrix notation,706

Ĉn̂2(~r1, ~r2)Ĉ
† = (C⊗C)n̂T

2 (~r2, ~r1)(C⊗C)†, (147)

where ⊗ is the matrix tensor product. This shows that the two-particle interaction oper-707

ator Ŵ in Eq. (10) is symmetric under charge conjugation708

ĈŴ Ĉ† =
1

2

∫∫

Tr[w(~r1, ~r2)(C⊗C)n̂T
2 (~r2, ~r1)(C⊗C)†]d~r1d~r2

=
1

2

∫∫

Tr[(C⊗C)†w(~r1, ~r2)(C⊗C)n̂T
2 (~r2, ~r1)]d~r1d~r2

=
1

2

∫∫

Tr[w(~r1, ~r2)n̂2(~r2, ~r1)]d~r1d~r2

= Ŵ , (148)

where we have used (C ⊗C)†w(~r1, ~r2)(C ⊗C) = w(~r1, ~r2) = wT(~r1, ~r2) and w(~r1, ~r2) =709

w(~r2, ~r1).710

In conclusion, we thus have found the expected transformation of the electron-positron711

Hamiltonian under charge conjugation712

ĈĤ[v]Ĉ† = Ĥ[−v]. (149)
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B Alternative definition of the electron-positron Hamilto-713

nian714

As an alternative to the definition of the electron-positron Hamiltonian based on normal715

ordering with respect to the free vacuum state in Eq. (7), an electron-positron Hamiltonian716

based on commutators and anticommutators (which we indicate by using the superscript717

c) of Dirac field operators can be defined as718

Ĥc = T̂ c
D + Ŵ c + V̂ c, (150)

with719

T̂ c
D =

∫

Tr[D(~r)n̂c
1(~r, ~r

′)]~r ′=~r d~r, (151)

and720

Ŵ c =
1

2

∫∫

Tr[w(~r1, ~r2)n̂
c
2(~r1, ~r2)]d~r1d~r2, (152)

and721

V̂ c =

∫

v(~r)n̂c(~r) d~r. (153)

In these expressions, n̂c
1(~r, ~r

′) is an one-particle density matrix operator defined as a722

commutator of Dirac field operators723

n̂c1,ρσ(~r, ~r
′) =

1

2

[

ψ̂†
σ(~r

′) , ψ̂ρ(~r)
]

, (154)

n̂c(~r) = Tr[n̂c
1(~r, ~r)] is the associated opposite charge density operator, and similarly724

n̂c
2(~r1, ~r2) is a pair density-matrix operator defined as an anticommutator of products725

of Dirac field operators726

n̂c2,ρυστ (~r1, ~r2) =
1

2

{

ψ̂†
τ (~r2)ψ̂

†
σ(~r1) , ψ̂ρ(~r1)ψ̂υ(~r2)

}

. (155)

Whereas the commutator form in Eq. (154) is well known in the literature (see, e.g.,727

Refs. [9,25]), the anticommutator form in Eq. (155) is, to the best of our knowledge, original728

to the present work. The commutator and the anticommutator in these definitions impose729

the correct transformation under charge conjugation without having to use normal ordering730

with respect to the free vacuum state. Indeed, using Eq. (136), it is straightforward to see731

that n̂c
1(~r, ~r

′) correctly transforms as in Eq. (142)732

Ĉn̂c
1(~r, ~r

′)Ĉ† = −Cn̂cT
1 (~r ′, ~r)C†, (156)

and, similarly, n̂c
2(~r1, ~r2) correctly transforms as in Eq. (147)733

Ĉn̂c
2(~r1, ~r2)Ĉ

† = (C⊗C)n̂cT
2 (~r2, ~r1)(C⊗C)†. (157)

Using Wick’s theorem, we can express n̂c
1(~r, ~r

′) in terms of the one-particle density-matrix734

operator ˆ̃n1(~r, ~r
′) defined with normal ordering with respect to the alternative no-particle735

vacuum state |0̃〉 in Eq. (27)736

n̂c1,ρσ(~r, ~r
′) = ˆ̃n1,ρσ(~r, ~r

′) + ñc,vp1,ρσ(~r, ~r
′), (158)
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with the associated vacuum-polarization one-particle density matrix737

ñc,vp1,ρσ(~r, ~r
′) = 〈0̃|n̂c1,ρσ(~r, ~r

′)|0̃〉

=
1

2

(

〈0̃|ψ̂†
σ(~r

′)ψ̂ρ(~r)|0̃〉 − 〈0̃|ψ̂ρ(~r)ψ̂
†
σ(~r

′)|0̃〉
)

=
1

2

(

∑

p∈NS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r)−
∑

p∈PS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r)

)

. (159)

Similarly, we can express n̂c
2(~r1, ~r2) in terms of the pair density-matrix operator ˆ̃n2(~r1, ~r2)738

defined with normal ordering with respect to the vacuum state |0̃〉 in Eq. (28)739

n̂c2,ρυστ (~r1, ~r2) = ˆ̃n2,ρυστ (~r1, ~r2) + ñc,vp1,υτ (~r2, ~r2)
ˆ̃n1,ρσ(~r1, ~r1) + ñc,vp1,ρσ(~r1, ~r1)

ˆ̃n1,υτ (~r2, ~r2)

−ñc,vp1,υσ(~r2, ~r1)
ˆ̃n1,ρτ (~r1, ~r2)− ñc,vp1,ρτ (~r1, ~r2)

ˆ̃n1,υσ(~r2, ~r1) + ñc,vp2,ρυστ (~r1, ~r2),

(160)

with the associated vacuum-polarization pair density matrix740

ñc,vp2,ρυστ (~r1, ~r2) = 〈0̃|n̂c2,ρυστ (~r1, ~r2)|0̃〉

=
1

2

(

〈0̃|ψ̂†
τ (~r2)ψ̂υ(~r2)|0̃〉〈0̃|ψ̂

†
σ(~r1)ψ̂ρ(~r1)|0̃〉 − 〈0̃|ψ̂†

τ (~r2)ψ̂ρ(~r1)|0̃〉〈0̃|ψ̂
†
σ(~r1)ψ̂υ(~r2)|0̃〉

+ 〈0̃|ψ̂υ(~r2)ψ̂
†
τ (~r2)|0̃〉〈0̃|ψ̂ρ(~r1)ψ̂

†
σ(~r1)|0̃〉 − 〈0̃|ψ̂ρ(~r1)ψ̂

†
τ (~r2)|0̃〉〈0̃|ψ̂υ(~r2)ψ̂

†
σ(~r1)|0̃〉

)

=
1

2

(

∑

p,q∈NS

ψ̃∗
p,τ (~r2)ψ̃p,υ(~r2)ψ̃

∗
q,σ(~r1)ψ̃q,ρ(~r1)−

∑

p,q∈NS

ψ̃∗
p,τ (~r2)ψ̃p,ρ(~r1)ψ̃

∗
q,σ(~r1)ψ̃q,υ(~r2)

+
∑

p,q∈PS

ψ̃∗
p,τ (~r2)ψ̃p,υ(~r2)ψ̃

∗
q,σ(~r1)ψ̃q,ρ(~r1)−

∑

p,q∈PS

ψ̃∗
p,τ (~r2)ψ̃p,ρ(~r1)ψ̃

∗
q,σ(~r1)ψ̃q,υ(~r2)

)

.

(161)

Similarly to what was done in Eq. (33), the electron-positron Hamiltonian in Eq. (150)741

can then be rewritten as742

Ĥc = ˆ̃TD + ˆ̃W + ˆ̃V + ˆ̃V vp + Ẽc
0, (162)

where ˆ̃TD,
ˆ̃W , and ˆ̃V have been already defined in Eqs. (34)-(36), and ˆ̃V vp and Ẽc

0 are743

the vacuum-polarization potential and no-particle vacuum energy associated with this744

Hamiltonian. Similarly to Eq. (38), the vacuum-polarization potential can be written as745

ˆ̃V vp = ˆ̃V vp
d + ˆ̃V vp

x , (163)

with a direct contribution746

ˆ̃V vp
d =

∫

Tr[ṽc,vp
d (~r1)ˆ̃n(~r1)]d~r1, (164)

where ṽc,vpd,σρ(~r1) =
∑

τυ

∫

wστρυ(~r1, ~r2)ñ
c,vp
υτ (~r2)d~r2 and ñc,vpυτ (~r2) = ñc,vp1,υτ (~r2, ~r2), and an747

exchange contribution748

ˆ̃V vp
x =

∫∫

Tr[ṽc,vp
x (~r1, ~r2)ˆ̃n1(~r1, ~r2)]d~r1d~r2, (165)
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where ṽc,vpx,τρ(~r1, ~r2) = −
∑

συ wστρυ(~r1, ~r2)ñ
c,vp
1,υσ(~r2, ~r1). Finally, the associated no-particle749

vacuum energy can be written as750

Ẽc
0 = 〈0̃|Ĥc|0̃〉

=

∫

Tr[D(~r)ñc,vp
1 (~r, ~r ′)]~r ′=~r d~r +

∫

v(~r)ñc,vp(~r) d~r

+
1

2

∫∫

Tr[w(~r1, ~r2)ñ
c,vp
2 (~r1, ~r2)]d~r1d~r2. (166)

As suggested by the fact that we used the same notation, it turns out that both the751

direct and exchange contributions to the vacuum-polarization potential in Eq. (163) are752

identical to the ones introduced in Eq. (38). This can be shown as follows. First, using the753

fact that the orbital rotation in Eq. (24) leaves invariant the following sum over orbitals754

∑

p∈PS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r) +
∑

p∈NS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r) =
∑

p∈PS

ψ∗
p,σ(~r

′)ψp,ρ(~r) +
∑

p∈NS

ψ∗
p,σ(~r

′)ψp,ρ(~r),

(167)

the vacuum-polarization one-particle density matrix in Eq. (159) can be expressed in terms755

of the vacuum-polarization one-particle density matrix introduced in Eq. (31) as756

ñc,vp1,ρσ(~r, ~r
′) = ñvp1,ρσ(~r, ~r

′) + nc,vp1,ρσ(~r, ~r
′), (168)

where we have introduced757

nc,vp1,ρσ(~r, ~r
′) =

1

2

(

∑

p∈NS

ψ∗
p,σ(~r

′)ψp,ρ(~r)−
∑

p∈PS

ψ∗
p,σ(~r

′)ψp,ρ(~r)

)

, (169)

which is the vacuum-polarization one-particle density matrix associated with the operator758

in Eq. (154) but over the free vacuum state, i.e. nc,vp
1 (~r, ~r ′) = 〈0|n̂c

1(~r, ~r
′)|0〉. Using759

charge-conjugation symmetry on the set of eigenfunctions {ψp} of the free Dirac equation,760

we have761

nc,vp1,ρσ(~r, ~r
′) =

1

2

(

∑

p∈NS

ψ∗
p,σ(~r

′)ψp,ρ(~r)−
∑

p∈NS

∑

ρ′σ′

Cρρ′ψp,σ′(~r ′)ψ∗
p,ρ′(~r)C

†
σ′σ

)

, (170)

or, in matrix form,762

nc,vp
1 (~r, ~r ′) = nc,vp

1,− (~r, ~r ′)−Cnc,vpT
1,− (~r ′, ~r)C†, (171)

where nc,vp1,−,ρσ(~r, ~r
′) = (1/2)

∑

p∈NS ψ
∗
p,σ(~r

′)ψp,ρ(~r). We then immediately see that the763

density associated with nc,vp
1 (~r, ~r ′) vanishes764

nc,vp(~r) = Tr[nc,vp
1 (~r, ~r)] = 0, (172)

i.e., the free electron vacuum density and the free positron vacuum density are identical,765

as already known [25,56]. Now, using C†αC = αT, it can be checked that766

∑

τυ

wστρυ(~r1, ~r2)n
c,vp
υτ (~r2) = 0, (173)

and therefore the contribution of nc,vp
1 (~r, ~r ′) to the direct vacuum-polarization potential767

in Eq. (164) vanishes. Finally, even tough ˆ̃n1(~r1, ~r2) does not satisfy charge-conjugation768

symmetry in the sense of Eq. (142), it does satisfy the following relation769

ˆ̃n1(~r1, ~r2) = Cˆ̃nT
1 (~r2, ~r1)C

†, (174)
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and, together with the symmetry properties of wστρυ(~r1, ~r2), it can be used to check that770

∫∫

∑

τρσυ

wστρυ(~r1, ~r2)n
c,vp
1,υσ(~r2, ~r1)

ˆ̃n1,ρτ (~r1, ~r2)d~r1d~r2 = 0, (175)

and therefore the contribution of nc,vp
1 (~r, ~r ′) to the exchange vacuum-polarization potential771

in Eq. (165) vanishes as well. This establishes the equivalence between the vacuum-772

polarization potential in Eq. (38) and in Eq. (163).773

The no-particle vacuum energies Ẽ0 in Eq. (41) and Ẽc
0 in Eq. (166) are different774

however. In particular, in comparison to the situation for Ẽ0 discussed after Eq. (41),775

the UV divergences are more serious for Ẽc
0 since the sums in Eq. (166) tend to give776

cumulative negative energies rather than cancelling energies. For this reason, it might777

be preferable to work with the electron-positron Hamiltonian Ĥ in Eq. (7). The form778

of the electron-positron Hamiltonian Ĥc in Eq. (150) remains useful however to establish779

links with the literature. In particular, by writing explicitly Ĥc in Eq. (162) in terms of780

elementary creation and annihilation operators corresponding to the orbital basis {ψ̃p},781

and after removing the vacuum energy Ẽc
0, it can be checked that one exactly recovers the782

effective QED (eQED) Hamiltonian of Refs. [25, 41–45]. So we have783

ĤeQED = Ĥc − Ẽc
0 = Ĥ − Ẽ0, (176)

where ĤeQED is the Hamiltonian in Eq. (46) of Ref. [25]. Whereas this eQED Hamiltonian784

was obtained in Ref. [25] via a “charge-conjugated contraction” of the fermion operators,785

here it is obtained via the commutator and anticommutator in Eqs. (154) and (155), or786

equivalently via the normal ordering with respect to the free vacuum state in Eqs. (11)787

and (12).788
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