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We uncover a new family of few-body topological phases in periodically driven fermionic systems
in two dimensions. These phases, which we term correlation-induced anomalous Floquet insulators
(CIAFIs), are characterized by quantized contributions to the bulk magnetization from multi-particle
correlations, and are classified by a family of integer-valued topological invariants. The CIAFI phases
do not require many-body localization, but arise in the generic situation of k-particle localization,
where the system is localized (due to disorder) for any finite number of particles up to a maximum
number, k. We moreover show that, when fully many-body localized, periodically driven systems
of interacting fermions in two dimensions are characterized by a quantized magnetization in the
bulk, thus confirming the quantization of magnetization of the anomalous Floquet insulator. We
demonstrate our results with numerical simulations.

In recent years, periodic driving has been studied as
a means for realizing topological phases of matter [1–
14]. An important result of this work has been the
discovery of a wide range of intrinsically nonequilib-
rium topological phases with no equilibrium counter-
parts [14–37]. These “anomalous” phases are character-
ized by robust properties of their micromotion (i.e., the
dynamics that takes place within a driving period), such
as frequency-locked oscillations in Floquet time crys-
tals [24–28], or quantized orbital magnetization density
in the two-dimensional anomalous Floquet-Anderson in-
sulator (AFAI) [16, 30, 31].

Disorder plays a crucial role for stabilizing Floquet
phases in closed systems. In particular, in the presence
of interactions, disorder-induced many-body localization
(MBL) provides a mechanism for the system to avoid un-
controllably absorbing energy from the driving field, and
thereby to retain nontrivial properties at long times [38–
40]. Importantly, the requirement of many-body local-
ization does not preclude the system from exhibiting a
variety of types of symmetry-breaking and topological
order [25, 26, 37].

In this paper we characterize the topological properties
of time-evolution in two-dimensional periodically driven
systems of fermions which exhibit either full many-body
localization, or a weaker form of “k-particle localization”
that we define below [37–40] (see Fig. 1). Recent results
suggest that this class of systems can support a nontriv-
ial topological phase, known as the Anomalous Floquet
Insulator [37] (AFI), which can be seen as the generaliza-
tion of the AFAI to interacting systems (see Refs. 30 and
31). Despite being localized and insulating, the AFI fea-
tures nontrivial circulating currents in the bulk, which in
the noninteracting case (the AFAI) give rise to quantized
orbital magnetization [30]. In a geometry with bound-
aries, the AFI supports thermalizing chiral edge states

coexisting with a localized bulk [31, 37]. The existence
AFI as a stable many-body state of matter rests on the
existence of MBL; even if MBL does hold out to infi-
nite times, the phenomenology of the AFI is expected to
persist for at least exponentially long times.

The motivation of our work is to determine the topo-
logical invariant(s) that characterize the AFI. Focusing
on the topological characterization of the micromotion of
particles in the bulk (i.e., the dynamics which take place
within each driving period), we uncover two main results.

As our first result, we confirm that, like the AFAI, the
AFI is characterized by a quantized magnetization den-
sity in regions of the bulk where all states are occupied, as
schematically depicted in Fig. 1a. Specifically, the mag-
netization density is quantized as µ1/T where T denotes
the driving period, and µ1 is an integer characterizing
the topological phase. This quantization is protected by
many-body localization, and µ1 cannot change under any
deformation of the system that preserves MBL.

As the second major finding of our work, we uncover a
rich new structure of topological invariants that emerges
in the interacting case: while periodically driven systems
of noninteracting fermions in two dimensions (such as
the AFAI) may be characterized by a single invariant
µ1, their interacting counterparts are characterized by a
family of integer-valued topological invariants µ1, µ2, . . ..
The invariant µ` encodes information about the contribu-
tion to the time-averaged magnetization from `-particle
correlations. Hence, interactions allow for a richer topo-
logical structure in the system.

The topological protection of the invariant µ` relies
on a less restrictive notion of localization than the con-
ventional notion of MBL. Specifically, µ` is well-defined
and topologically protected when all Floquet eigenstates
with up to k particles are localized for some k ≥ l. We
term this notion of localization “k-particle localization.”
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FIG. 1. (a) The anomalous Floquet insulator (AFI) is char-
acterized by drive-induced circulating motion of particles in
the bulk. Nontrivial topology is revealed in a quantized,
nonzero magnetization density within regions where all states
are filled, given by 〈m〉 = µ1

T
, where µ1 is a nonzero inte-

ger. (b) With sufficiently strong interactions, a new class
of interaction-induced topological phases can emerge, which
we term correlation-induced anomalous Floquet insulators
(CIAFI’s). CIAFI phases are characterized by a quantized,
nonzero contribution to the magnetization from `-particle cor-
relations. Such correlations can for example arise due to im-
mobilization of many-particle bound states, as depicted in
the figure. (c,d) Topological phase transition between the
AFI and a CIAFI phase with µ2 = 2 obtained from numerical
simulations of a driven Hubbard-like model (see Sec. IV for
details). (c) Contribution to the time-averaged magnetization
in the system due to two-particle correlations, S2 (see Sec. I
for definition and relationship with µ2), as a function of the
interaction strength V . (d) The correlation length ξ in the
system diverges for interaction strength V comparable to the
hopping J , indicating a topological transition between AFI
and CIAFI phases.

Many-body localization corresponds to k-particle local-
ization in the limit where k and the system size goes to
infinity, while allowing the particle density to be finite in
the thermodynamic limit. While the existence of MBL in
more than one dimension is still a subject of debate [41],
k-particle localization for finite k is well established in
any dimension [42]. It is likely that systems exhibiting
k-particle localization, even if not fully MBL, may still
display long-lived transient phenomena: delocalization in
such systems must be induced by k+1-particle correlated
processes, whose rates are expected to be exponentially
suppressed in k for sufficiently weak interactions.

Our results above show that k-particle localized Flo-
quet systems of interacting fermions in 2D are character-
ized by k independent topological invariants, µ1, . . . µk.
When one or more of the higher-order invariants are
nonzero, the system is in a new, strongly-correlated,
intrinsically nonequilibrium phase that is topologically
distinct from any noninteracting system, including the
(noninteracting) AFAI. We term this class of phases
Correlation-Induced AFIs (CIAFIs). Here we consider a
broader notion of the term “phase” than for equilibrium
systems; in the sense we consider here, a phase charac-

terizes the structure of the Hamiltonian of the isolated
system, independently of the particular state of the sys-
tem (and in particularly, independently of particle den-
sity and temperature).

We present a family of models which interpolate from
the AFI phase to a CIAFI phase with a nonzero value of
µ2, and demonstrate the existence of a nontrivial CIAFI
phase in the model through numerical simulations [see
Fig. 1(c)-(d)].

The arguments leading to the identification of the
higher-order invariants µ` can in principle also be applied
to bosonic systems where the total number of bosons is
conserved (e.g., as in systems of bosonic atoms in opti-
cal lattices). Hence AFI and CIAFI phases also exist for
k-particle localized bosonic systems. However, for sim-
plicity, in this paper, we consider fermionic systems only.

The rest of the paper is organized as follows. In Sec. I,
we summarize the main results of this paper. In Sec. II
we briefly review the structure of the Floquet operator in
many-body and k-particle localized systems, and of the
orbital magnetization operator. In Sec. III we use the
time-averaged magnetization density operator to iden-
tify a set of topological invariants {µ`} that characterize
the AFI phase, and show that nonzero values of the in-
variants give rise to a quantized magnetization density
in regions where all sites are occupied (Sec. III D). In
Sec. IV we present a family of models that realize both
the AFI and CIAFI phases, and support our conclusions
with numerical simulations of these models. We conclude
with a discussion in Sec. V.

I. SUMMARY OF MAIN RESULTS

We begin by summarizing the main results of this pa-
per. We consider a two-dimensional periodically driven
systems of interacting fermions, which is k-particle (or
many-body) localized due to disorder [43]. To charac-
terize the topology of the system, we quantify the circu-
lating motion of particles in the bulk. This circulating
motion can be captured through the time-averaged mag-
netization density operator of each plaquette p in the
Heisenberg picture, m̄p. The magnetization density m̄p

measures the total time-averaged current that circulates
around the plaquette; see Sec. II for a definition of this
operator and a review of its properties. From its intrin-
sic properties, we show that the trace of m̄p defines a
family of topological invariants for the system. Specifi-
cally, the trace of m̄p in the `-particle subspace, Tr` m̄p,
for each ` = 1, . . . k, must take the same value for each
plaquette in the system; this value cannot change under
any smooth deformation of the parameters of the system
that preserves k-particle localization. Hence Tr` m̄p for
each ` = 1, . . . k constitutes a topological invariant of the
system. The intrinsic invariants µ1 . . . µk described in the
introduction are constructed by forming system-size inde-
pendent, integer-valued combinations of the (system size
dependent) invariants Tr1 m̄p, . . .Trk m̄p; see Sec. III C
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for further details.
To illustrate the physical meaning of the invariants

{µ`}, consider first the case where the system holds a
single fermion, initially located on site i in the lattice
(we assume, without loss of generality, that each site
holds a single orbital). When all single-particle Floquet
eigenstates are localized, the particle will remain con-
fined near site i at all times. However, the driving field
may cause the particle to undergo circulating motion,
as schematically depicted in the bottom left of Fig. 1(b).
This circulating motion gives rise to a nonzero long-time-
averaged (orbital) moment, M̄i. For both single- and
many-particle systems (which we consider below), the to-
tal time-averaged magnetic moment can be computed as
the integral of magnetization density over the entire lat-
tice,

∑
p m̄pa

2. Ref. [31] showed that the sum of M̄i over

all single-particle states, S1 ≡
∑
i M̄i, is quantized as

an integer times A/T , where A denotes the area of the
system; this integer defines µ1. As an implication, mag-
netization density is quantized in the bulk of the system
in regions where all states are occupied.

We now consider the dynamics resulting from initial-
izing the system in a two-particle state where sites i
and j are occupied. We let M̄ij denote the total long-
time-averaged magnetization of the system resulting from
this initialization. In the absence of interactions, one
can verify that M̄ij = M̄i + M̄j . However, with inter-
actions present, M̄ij generically differs from M̄i + M̄j

when sites i and j are close to each other. The devia-
tion can be measured by the “magnetization cumulant”
Cij ≡ M̄ij − (M̄i + M̄j). In Sec. III below, we show
that, when all 1- and 2-particle states are localized, the
sum of Cij over all distinct two-particle configurations,
S2 ≡

∑
i<j Cij , must be quantized, as an integer µ2 times

A/T . The number µ2 cannot change under any pertur-
bation that preserves localization of states with 1 and 2
particles. Thus, µ2 is a topological invariant protected
by 2-particle localization, and characterizes the contri-
bution to the magnetization associated with 2-particle
correlations. The higher-order invariants, µ` for ` > 2,
are defined analogously to µ2 from higher-order “cumu-
lants” of the magnetization (see Sec. III C for details),
and µ` is protected under any perturbation that preserves
`-particle localization.

We term the class of phases characterized by nonzero
values of the higher-order invariants (i.e., µ` for ` >
1) as correlation-induced anomalous Floquet insulators
(CIAFIs). The AFI phase is the MBL extension of the
noninteracting AFAI, where all higher-order invariants
must be zero, and can thus only be characterized by a
nonzero value of µ1. Hence the CIAFI phases are dis-
tinct from the AFI.

In Sec. IV we present a model that realizes a CIAFI
phase with µ2 = −2. The model consists of spin-1/2
fermions on a bipartite square lattice with Hubbard-like
on-site interactions and disorder, subject to the 5-step
driving protocol of the canonical AFAI model [16, 30, 31]
[see Fig. 3(a)].

As discussed in Sec. IV, and shown numerically in
Fig. 1(c), the strength of the Hubbard-type interac-
tions, V , controls the topological phase of the model [see
Fig. 1(b)]: when interactions are absent (V = 0), the sys-
tem is in the AFAI phase with µ1 = 2, while all higher-
order invariants take value zero [31]. When interactions
are weak, but finite, our numerical results indicate that
many-body localization persists, and hence the system
remains in the AFI phase with µ1 = 2 (here the fac-
tor of 2 accounts for the two spin species). In particular,
the values of all higher-order invariants must remain zero
[S2 = 0, see Fig. 1(c)]. However, when interactions are
much stronger than the tunneling rate between the sites,
J , they act to block tunneling to or from doubly-occupied
sites, resulting in nonzero values of Cij for such configura-
tions. We demonstrate that this effect drives the model
into a CIAFI phase with µ2 = −2 (S2 = −2A/T ). In
Fig. 1(d), we confirm that the transition between the
AFI and CIAFI phases in this model is accompanied by
a divergence of the localization length of the two-particle
states of the system.

II. MANY-BODY AND k-PARTICLE
LOCALIZATION IN PERIODICALLY DRIVEN

SYSTEMS

The main result of this work is to characterize the topo-
logical properties of time-evolution in two-dimensional
periodically-driven k-particle (or many-body) localized
fermionic systems. As a preliminary step, in this section
we review the structure of the Floquet operator in such
systems.

The system we study is a two-dimensional lattice
systems of interacting fermions, of physical dimensions
L×L, subject to periodic driving. While our results ap-
ply to any type of lattice, below we assume for simplicity
that the system is defined on a square lattice with lattice
constant a and (time-dependent) nearest-neighbor tun-
neling. The time evolution of the system is described by
the time-periodic Hamiltonian H(t) = H(t + T ), where
T is the driving period. To avoid complications from the
coexistence of thermalizing chiral edge states and a lo-
calized bulk [37], we focus on the case where the system
is defined on a torus, such that no edges are present [44].

A. Structure of Floquet operator in many-body
localized systems

We first review the structure of the Floquet operator
when the system is many-body localized, i.e., when any
state of the system exhibits localized behavior in the ther-
modynamic limit. The concepts we introduce here also
form a basis for our discussion of the more general case
of k-particle localization (Sec. II B).

When the system is MBL, it has a complete set of emer-
gent local integrals of motion [39, 40, 45, 46] (LIOMs),
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{n̂a}. The LIOMs form a mutually commuting set of
quasilocal operators that are individually preserved by
the stroboscopic evolution of the system [47]. The num-
ber of independent LIOMs in the localized system is
given by the dimension D1 of the system’s single-particle
Hilbert space. For spinless fermions with one orbital per
site, we have D1 = L2/a2. The LIOMs {n̂α} may thus
be labelled by a single index α which runs from 1 to D1.

To make the discussion more concrete, the LIOMs can
be identified from the system’s Floquet operator [39],
U(T ). The Floquet operator is defined as the evolution

operator of the system, U(t) ≡ T e−i
∫ t
0
dtH(t), evaluated

for a time interval corresponding to one complete driving
period T . Here T denotes the time-ordering operation,
and we work in units where ~ = 1 throughout. Anal-
ogously to nondriven systems, the stroboscopic time-
evolution (i.e., the time-evolution at integer multiples of
the driving period T ) is conveniently expressed in terms
of the eigenstates of the Floquet operator, {|ψn〉}, known
as Floquet eigenstates. These satisfy U(T )|ψn〉 = e−iεnT ,
where εn has units of energy and is known as quasienergy.
Note that each quasienergy εn is only defined modulo
the driving frequency Ω ≡ 2π/T . The stroboscopic time-
evolution is hence equivalent to that generated by the
static effective Hamiltonian, Heff ≡

∑
n εn|ψn〉〈ψn|, since

U(T ) = e−iHeffT .
In the many-body localized regime, the effective

Hamiltonian takes the form

Heff =
∑
α1

εα1
n̂α1

+
∑
α1,α2

εα1α2
n̂α1

n̂α2
+ · · · . (1)

Each coefficient εα1...a` (referred to as a quasienergy co-
efficient in the following) is associated with a particu-
lar combination n̂α1

. . . n̂αk formed from the D distinct
LIOMs, and has units of energy. Each sum

∑
α1...α`

in Eq. (1) runs over all
(
D
`

)
combinations of ` distinct

LIOMs, where
(
a
b

)
denotes the binomial coefficient. The

above form of the Floquet operator implies that each
LIOM n̂α is preserved by the stroboscopic evolution of
the system, and thus the operators {n̂α} are integrals of
motion.

We now review some important properties of the
LIOMs which we use in the following. Firstly, each
LIOM n̂α can be written in the form of a fermionic
counting operator: n̂α = f̂†αf̂α. Here f̂α is a (dressed)
quasilocal fermionic annihilation operator, constructed
from the original lattice annihilation and creation oper-

ators {ĉi} and {ĉ†i}, respectively, as: f̂α =
∑
i ψ

α
i ĉi +∑

ijk ψ
α
ijk ĉ
†
i ĉj ĉk+

∑
i...m ψ

α
ijklmĉ

†
i ĉ
†
j ĉk ĉlĉm+ · · · , where ĉi

annihilates a fermion on site i in the lattice. Through
the identification of the LIOMs with fermionic counting
operators, we note that

∑
α n̂α gives the total number of

fermions in the system.
Another crucial property of the LIOMs is that each

LIOM n̂α has its support localized around a particu-
lar location rα in the lattice. Specifically, the mag-
nitude of the coefficient ψαi1...i` decreases exponentially

with the distance s from any of the sites i1, . . . i` to rα:
ψαi1...i` ∼ e−s/ξf , where the length scale ξf sets the spa-
tial extent of the LIOMs. Similarly to the LIOMs, the
quasienergy coefficients {εα1...α`} also exhibit localized
behavior. Specifically, εα1...α` decays as e−d/ξε , where
d is the distance between any two of the LIOM centers
rα1

. . . rαk ; here ξε is another localization length scale
(not necessarily identical to ξf , see Ref. 48).

As is evident above, MBL systems may be character-
ized by several distinct localization lengths [48]. In par-
ticular, the LIOM expansion above establishes two length
scales, ξf and ξε. In the following, we will make use of
an additional relevant length scale, ξl, which character-
izes the spread of time-evolved operators.

B. k-particle localization

As we explained in the introduction, the topological
classification we develop in this work applies to a more
general class of systems than those exhibiting full MBL;
specifically, the invariants we identify can be defined for
any system that is k-particle localized for some nonzero
k. As defined in the introduction, k-particle localization
is understood as the situation where all Floquet eigen-
states holding ` particles for ` = 1, . . . k are localized. In
the remainder of this paper we will make use of similar
notation, such that ` always refers to a specific particle-
number sector, while k refers to the “degree of localiza-
tion” of the system: i.e., k is defined as the integer such
that Floquet eigenstates in the system with k or fewer
particles are localized, while at least one Floquet eigen-
state with k + 1 particles is delocalized.

For k-particle localized systems, we expect a LIOM de-
composition and effective Hamiltonian Heff as defined in
Eq. (1) can be written to describe the evolution in Fock
space of up to k particles, with the expansion truncated
to kth order. Full MBL can be seen as a special case of
k-particle localization; specifically, MBL can be under-
stood as the k →∞ limit of k-particle localization where
the localization length of the truncated LIOM expansion
described above remains bounded for all k.

III. TOPOLOGICAL INVARIANTS OF THE
TIME EVOLUTION

In this section, as the main result of our work, we char-
acterize the micromotion of k-particle localized systems
(which includes the case of MBL as described above).
We show that such systems may exhibit non-trivial mi-
cromotion, featuring steady-state circulating currents at
long times. We characterize these circulating currents by
analyzing the time-averaged magnetization density op-
erator of the system. From this analysis we identify a
set of topological invariants µ1 . . . µk that characterize
the steady-state circulating currents that the system may
support.



5

FIG. 2. a) Schematic depiction of the relationship between
current and magnetization density [Eq. (4)]. In many-body
localized systems, the time-averaged current passing through
a cut C is determined by the difference between the currents
circulating around the cut’s two end-points, p and q. The
currents circulating around plaquette p are measured by the
magnetization density operator m̄p. b) Ampere’s law on the
lattice. The difference in magnetization densities between two
adjacent plaquettes p and q gives the current Īpq on the bond
between them.

In a stepwise fashion, below we consider the dynam-
ics of a k-particle localized system in the `-particle sub-
space for each ` = 1, . . . k (allowing k to be infinite for
fully MBL systems). This approach ensures that our our
results do not rely on full MBL to be valid, while still
applying to this class of systems if such exist.

A. Characterization of micromotion

To characterize the micromotion of k-particle local-
ized systems, in this subsection we consider the dynam-
ics within the subspace of states holding ` particles,
where ` ≤ k. Naively, one might expect that the time-
averaged current density in this subspace always van-
ishes due to localization. Indeed, there can be no net
flow of charge across any closed curve. However, for
an open curve (or “cut”), as schematically depicted in
Fig. 2a, a nonzero time-averaged current may run across
the cut due to uncompensated local circulating currents
around the curve’s endpoints. The total current circulat-
ing around a point in a given plaquette is precisely the
magnetization density in this plaquette.

To establish this relationship in more rigorous terms,
we consider the total time-averaged current that passes
through a cut C between plaquettes p and q in the lattice,
as depicted in Fig. 2a. The operator IC(t) measuring the
current through the cut C is given by

IC(t) =
∑
b∈BC

Ib(t), (2)

where Ib denotes the bond current operator on bond b
(restricted to the `-particle subspace) [49], and the sum
runs over the set BC of all bonds that cross the cut C
[see Appendix A for an explicit definition of Ib(t)]. Note
that Ib(t), and thereby IC(t), depends on time in the
Schrödinger picture due to the explicit time-dependence
of the Hamiltonian H(t).

To characterize the circulating currents in the sys-
tem, we seek the long-time-averaged expectation value
of the current 〈〈IC〉〉 for an arbitrary initial `-particle
state, |ψ〉. Here we introduce the notation 〈〈O〉〉 ≡
limτ→∞

1
τ

∫ τ
0
dt 〈ψ(t)|O(t)|ψ(t)〉 to indicate the time-

averaged expectation value in the state |ψ(t)〉. The time-
averaged current 〈〈IC〉〉 may equivalently be computed in
the Heisenberg picture as 〈〈IC〉〉 = 〈ψ|ĪC |ψ〉, where |ψ〉
denotes the initial many-body state of the system, and
ĪC denotes the long-time-average of the current operator
IC in the Heisenberg picture:

ĪC = lim
τ→∞

1

τ

∫ τ

0

dt U†(t)IC(t)U(t), (3)

where U(t) denotes the system’s time-evolution oper-
ator as defined above. For later, we define O ≡
limτ→∞

1
τ

∫ τ
0
dtU†(t)O(t)U(t) for any operator O.

As argued above, the time-averaged current ĪC across
cut C can only have nonzero expectation value due to
localized circulating currents at the cut’s two endpoints,
p and q. This implies that ĪC only depends on the de-
tails of the system near plaquettes p and q. In Appendix
A we verify this intuition, by proving that the opera-
tor ĪC only has support near the two endpoints of the
cut C. Specifically, assuming only k-particle localization
and conservation of charge, we show that, within the `-
particle subspace, where ` ≤ k, ĪC must take the form

ĪC = m̄p − m̄q, (4)

where the operator m̄p has its full support (up to an expo-
nentially small correction) within a distance ξl from pla-
quette p, and similarly for m̄q. Here ξl is a finite, system-
size independent length scale measuring the spread of
operators in the system (within the `-particle subspace):
specifically, for any time-periodic operator A(t) with a fi-
nite region of support R, the long-time average Ā (when
restricted to the `-particle subspace) is a local integral of
motion with support within a finite distance ξl from R
(up to an exponentially small correction) [50].

Crucially, the operator m̄p in Eq. (4) is the same for
any cut with an endpoint in plaquette p. Thus, Eq. (4)
uniquely defines the operator m̄p for each plaquette p
in the system, up to a correction exponentially small in
system size. Specifically, let plaquette q be separated
from plaquette p by a distance d, of order the system
size, L. In this case, m̄p can be identified uniquely from
the terms of ĪC which have support nearest to plaquette
p, up to a correction of order O(e−d/ξl) ∼ O(e−L/ξl).

For each plaquette p, m̄p may be defined from Eq. (4)
as described above by considering a cut of length ∼ L
(up to an exponentially small correction). The set of op-
erators {m̄p} obtained in this way then obey Eq. (4) for
any two plaquettes in the lattice. In particular, when
the plaquettes p and q are adjacent, Eq. (4) implies that
m̄p − m̄q = Īpq, where Īpq measures the time-averaged
current on the bond separating plaquettes p and q, as
schematically depicted in Fig. 2b. This relationship is
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the time-averaged lattice version of Ampere’s law, which
relates the current density, j, to the magnetization den-
sity, m: j = ∇ ×m (see Ref. 30). We thus identify the
operator m̄p as the time-averaged magnetization density
in the system at plaquette p [51]. As the above discussion
shows, the time-averaged magnetization m̄p measures the
total current circulating around plaquette p.

B. Topological invariance of Trk m̄p

We now show that, for each value of ` = 1, . . . k, the
trace of m̄p in the `-particle subspace, Tr`m̄p, takes the
same value for all plaquettes in the system. Subsequently
(in Sec. III B 1) we show that this universal value is quan-
tized as an integer multiple of 1/T , z`. Periodically
driven k-particle localized systems of fermions in two di-
mensions are thus characterized by the k integer-valued
topological invariants z1 . . . zk.

We prove the topological invariance of Tr` m̄p through
a simple line of arguments. First, Eq. (4) implies:

Tr` m̄p − Tr` m̄q = Tr` ĪC . (5)

Using the cyclic property of the trace and U(t)U†(t) = 1,
we find Tr` ĪC = limτ→∞

1
τ

∫ τ
0
dtTr` IC(t). Recall from

Eq. (2) that the current operator IC(t) is given by a sum
of bond current operators. Noting that any bond current
operator Ib(t) is by construction traceless (see Appendix
A), we conclude that Tr` ĪC = 0. Hence we find:

Tr` m̄p = Tr` m̄q. (6)

This relation holds for any pair of plaquettes in the lat-
tice. Therefore, for a given disorder realization, Tr`mp

must take the same universal value for all plaquettes in
the system.

We now show that the universal value of Tr` m̄p is
a topological invariant of the system in the thermody-
namic limit (L → ∞) [52]. Consider perturbing H(t)
within some subregion R of the system (by a small but
finite amount), in such a way that `-particle localization
is preserved. Before and after the perturbation, Tr` m̄p

only depends on the details of the system around the pla-
quette p, up to an exponentially small correction (due to
the exponentially decaying tails of the LIOMs). Hence,
for a plaquette p located a distance of order L/2 from
the region R, Tr` m̄p0 may only change by an amount

of order e−L/2ξl due to the perturbation. Since Tr` m̄p

is given by the same value for all plaquettes in the sys-
tem, Tr` m̄p must remain unaffected by the perturbation
even for plaquettes within the region where the system
is perturbed, R. Thus, Tr` m̄p is unaffected by any lo-
cal perturbation that preserves `-particle localization, up
to a correction exponentially suppressed in system size.
We conclude that Tr` m̄p is a topological invariant of the
system, protected by `-particle localization.

In the following, it is convenient to parameterize the
topologically-invariant value of Tr` m̄p by a dimensionless

number; we hence let z` denote the value of Tr` m̄p in
units of the inverse driving period, such that Tr` m̄p =
z`/T .

1. Quantization of z`

Here we show that the dimensionless invariant z` must
take an integer value for each `. To do this, we use an
approach that generalizes the one employed for the non-
interacting case in Ref. 30. This subsection provides a
summary of the proof, while full details are given in Ap-
pendix B.

To begin, we consider the total time-averaged magne-
tization operator, M̄ ≡

∑
p m̄pa

2. Since Tr` m̄p takes the

value z`/T for all plaquettes in the system, we have

Tr`M̄ = z` L
2/T. (7)

To establish the quantization of z`, we proceed in two
steps. First, we obtain Tr`M̄ from the response of the
system to the insertion of the weak uniform magnetic
field B0 = 2π/L2 that corresponds to one flux quantum
piercing the torus (note that the flux quantum is given
by 2π in the units we employ): we show that, in the
thermodynamic limit,

e−iTr`(M̄)B0T = |Ũ(T )|`/|U(T )|`, (8)

where Ũ(T ) denotes the Floquet operator of the sys-
tem in the presence of the magnetic field B0, and | · |`
denotes the determinant within the `-particle subspace.
Subsequently, we show that the determinants |Ũ |` and
|U |` must be identical (see also Ref. 30); this implies
that Tr`(M̄)B0T equals an integer multiple of 2π. Using
B0 = 2π/L2 along with Eq. (7), we conclude that z` must
be an integer.

To obtain Eq. (8) (which forms the first step in our
derivation), we show that the magnetic moment of each
`-particle Floquet eigenstate, |ψn〉, gives the response of
its quasienergy, εn, to the addition of the weak magnetic
field B0. Letting ε̃n denote the perturbed quasienergy
level in the one-flux system associated with |ψn〉 (see the
following for details, and, in particular, for a discussion
of the perturbation-induced resonances), we show in Ap-
pendix B that

ε̃n − εn ≈ −〈ψn|M̄ |ψn〉B0. (9)

Specifically, the sum of ε̃n−εn over all `-particle Floquet
states satisfies∑

n

(ε̃n − εn) = −
∑
n

〈ψn|M̄ |ψn〉B0 +O(e−L/ξ), (10)

where O(e−L/ξ) denotes some (dimensionfull) correction
which goes to zero as e−L/ξ in the thermodynamic limit.
We obtain Eq. (8) from Eq. (10) by multiplying with
−iT , taking the exponentials on both sides and recalling
that |Ũ(T )|` = exp(−i

∑
n ε̃nT ) and likewise for U(T ).
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Eq. (10) can be obtained through first-order perturba-
tion theory in B0. In Appendix B, we provide a rigorous
derivation of this result, along with an exact definition
of the one-to-one relationship between the quasienergy
levels of the one- and zero-flux systems which Eq. (10)
implicitly requires. (In particular, we give the prescrip-
tion for uniquely identifying ε̃n for each “unperturbed”
quasienergy level εn.). Here we summarize the argu-
ments: near the region of support of |ψn〉 [53], the

Hamiltonian of the one-flux system, H̃(t), is given by
H(t) −

∑
b Ib(t)θb +O(θ2

b ), where θb denotes the Peierls
phase on bond b induced by the magnetic field B0, and
Ib(t) denotes the bond current operator (see Sec. III A
and Appendix A). Note that there is a gauge freedom
in choosing the Peierls phases; we choose them to be of
order 1/L2 near the region of support of |ψn〉 (such that

the subleading correction in the above expansion of H̃(t)
can be neglected in the thermodynamic limit).

In the thermodynamic limit L→∞, one may naively
expect that the quasienergy spectrum of the one-flux
system can be obtained through a first-order perturba-
tive expansion in δH(t) ≡ H̃(t) − H(t) (for each |ψn〉),
which is approximately identical to −

∑
b Ib(t)θb. How-

ever, note that the convergence of such an expansion
to first order is only ensured if the ratio between the
matrix elements of δH in the Floquet eigenstate ba-
sis and the corresponding quasienergy level spacings,
rmn ≡ 〈ψm|δH(t)|ψn〉/(εm − εn), is much smaller than
1 for all choices of `-particle Floquet eigenstates m and
n. While the perturbation δH(t) is of order L−2, the
many-body level spacing in the `-particle subspace is of
order Ω/(L2`), where Ω ≡ 2π/T denotes the angular
driving frequency. Hence, in the thermodynamic limit
rmn can potentially be much larger than 1 for certain
choices of m and n. However, in Appendix B we provide
a careful analysis that confirms our initial expectation:
with a probability that goes to 1 in the thermodynamic
limit (for each ` between 1 and k), rnm goes to zero
for all choices of m and n. This result arises because
states where 〈ψn|δH|ψm〉 is nonvanishing must be spa-
tially close, and hence experience local level repulsion.

The above discussion shows that the quasienergy level
corresponding to the state |ψn〉 in the one-flux system,
ε̃n, is captured by first-order perturbation theory with
respect to δH(t). Expanding the quasienergy ε̃n to first
order in δH(T ), we obtain

ε̃n − εn ≈
1

T

∫ T

0

dt 〈ψn|U†(t)δH(t)U(t)|ψn〉 (11)

(see Appendix B for proof). Using δH(t) ≈ −
∑
b θbIb(t)

along with the fact that in a Floquet eigenstate the time-
averaged expectation value over one period is identical to
the long-time average, we find

ε̃n − εn ≈ −
∑
b

θb〈ψn|Īb|ψn〉, (12)

where Īb denotes the long-time average of the bond cur-
rent Ib(t) in the Heisenberg picture (see Sec. III A).

Recall from Eq. (4) (see also Fig. 2b) that Īb =
m̄pb − m̄qb , where pb and qb denotes the two adjacent
plaquettes separated by the bond b, such that b is ori-
ented counterclockwise with respect to pb [49]. Inserting
this result into Eq. (12), we note that each plaquette in
the lattice appears four times exactly (namely once for
each of the four bonds bounding the plaquette). Rear-
ranging the terms from a sum over bonds to a sum over
plaquettes, we thus find

ε̃n − εn ≈ −
∑
p

〈ψn|m̄p|ψn〉(θbp,1 + θbp,2 + θbp,3 + θbp,4).

(13)
where bp,i denotes the lattice bond that constitutes the
ith edge of plaquette p (counted in clockwise order start-
ing from the positive x-direction), and θbpi gives the
Peierls phase acquired by traversing the bond counter-
clockwise with respect to p. The sum of Peierls phases
θbp,1 + θbp,2 + θbp,3 + θbp,4 hence gives the flux through

plaquette p, and hence yields exactly B0a
2 for each pla-

quette. Eq. (9) follows by using M̄ ≡
∑
p a

2m̄p.

The rigorous derivation in Appendix B shows that the
correction to the approximate equality in Eq. (9) scales
with system size as L−4, and hence is subleading in ther-
modynamic limit (recall that B0 ∼ L2). We subsequently
use the LIOM structure of the Floquet operator in Eq. (1)
to show that, remarkably, these individual corrections ap-
proximately cancel out when summed over all `-particle
states, yielding an exponentially suppressed net correc-
tion, which scales with system size as e−L/ξ. This estab-
lishes Eq. (10), and thereby also Eq. (8).

What remains to be shown is that U(T ) and Ũ(T )
have identical determinants in the `-particle subspace.
We show this using the approach from Ref. 30: the de-
terminant of any time-evolution operator can be found
from the time-integrated trace of the Hamiltonian [17]:

|U(T )|` = e−i
∫ T
0
dt′ Tr`H(t). This follows because

∑
n

εn = − i

T

∫ T

0

dtTr[U†(t)∂tU(t)]`, (14)

which can be straightforwardly verified using the spec-
tral decomposition of U(t). Identifying the integrand
in the right-hand side above as −iTr[H(t)]`, we find

|U(T )|` = exp(−i
∫ T

0
dtTr[H(t)]`). Since the insertion

of a magnetic flux only modifies off-diagonal elements of
the Hamiltonian (in the lattice site basis), the trace of
the Hamiltonian is unaffected by the magnetic field B0.
Thus |Ũ(T )|` = |U(T )|`. Hence, the right-hand side of
Eq. (8) equals 1 and therefore the argument in the expo-

nent of e−iTr`(M̄)B0T must be an integer multiple of 2π.
Combining this with Eq. (7) and using that B0 = 2π/L2,
we conclude that z` must be an integer.
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C. Cumulant basis of invariants

The above discussion shows that k-particle localized
systems are characterized by the k independent, integer-
valued topological invariants z1 . . . zk. Here z` gives the
trace of the magnetization density operator in the `-
particle subspace (in units of the inverse driving period).
However, each z` depends on the size of the system, and
thus is not an intrinsic property of the system. For in-
stance, in noninteracting systems, z` scales as L2(`−1),
where L is the physical dimension of the system [54]. In
this subsection we construct linear combinations of the
invariants z1 . . . zk that give an equivalent set of system
size independent invariants µ1 . . . µk that characterize the
intrinsic topological properties of the system.

The intrinsic invariants µ1 . . . µk can be expressed as
the cumulants of the magnetization operator, as dis-
cussed in Sec. I. To illustrate, consider the time-averaged
magnetic moment, M̄ ≡

∑
p a

2m̄p, of a state where two
particles are initialized on sites i and j, which we denote
M̄ij . The average of the total magnetic moment, taken
over all 2-particle states, is given by 1

D2
(z2L

2/T ), where
D` denotes the dimension of the `-particle subspace. For
each i and j, we write M̄ij = M̄i + M̄j + Cij , where, as
in Sec. I, M̄i denotes the time-averaged magnetization of
the system holding a single particle initially located at
site i. From this definition of Cij , we find

1

L2

∑
i<j

Cij =
z2 − 2(L2 − 1)z1

T
, (15)

where we used that Tr`M̄ = z`L
2/T for ` = 1, 2. The

right hand side is evidently an integer multiple of 1/T .
We take this integer to be our definition of the intrinsic
invariant µ2.

Note that µ2 gives the mean value of Si ≡
∑
j 6=i Cij

over all sites i (recall that Cij = Cji). Importantly,
due to the fact that the two particles only influence each
other’s motion when they are within a localization length
of one another, the cumulant Cij is only significant for
O(ξ2

l /a
2) choices of j for each i. The mean value of

Si is therefore an intrinsic quantity, which does not de-
pend on the system size; in particular, it remains finite
in the thermodynamic limit. In the noninteracting case,
Cij = 0, and µ2 = 0. Thus, µ2 gives the contribution to
the magnetization from 2-particle correlations.

We extend this definition to higher numbers of parti-
cles, by expanding M̄ in terms of the fermionic annihi-

lation and creation operators, {ĉi}, {ĉ†i}. Since M̄ pre-
serves the number of particles, we have

M̄ =
∑
i1j1

Mi1;j1 ĉ
†
i1
ĉj1 +

∑
i1i2,j1j2

Mi1i2;j1j2 ĉ
†
i1
ĉ†i2 ĉj1 ĉj2 + · · · .

(16)
Without loss of generality, we take Mi1...ik;j1...jk to be
nonzero only if i1 < i2 . . . < ik and j1 > j2 . . . > jk,
such that each independent combination of creation and
annihilation operators appears only once in the above

sum. We see that the expectation value of M̄ in a single-

particle state |i〉 ≡ ĉ†i |0〉 (where |0〉 denotes the vacuum
state) is given by Mi;i. We thus identify Mii = M̄i,
where M̄i was defined above. Likewise, in the two-

particle-state |ij〉 ≡ ĉ†i ĉ
†
j |0〉 (where i < j), the expec-

tation value of M̄ is given by Mi;i + Mj;j + Mij;ji.
We thus identify Mij;ji = Cij . The higher-order cu-
mulants can be defined in a similar fashion, such that
Ci1,...i` =Mi1...i`;i`...i1 . Note that the long-time average
of an operator in the Heisenberg picture, such as M̄ , must
be diagonal in the Floquet eigenstate basis; for example,
Mi;j is diagonal in the basis of single-particle Floquet
eigenstates.

Due to localization and the locality of interactions (see
above), the coefficient Ci1...i` can only be nonzero if all
sites i1 . . . i` are spatially close (on the scale of ξl). Thus,
through arguments analogous to those below Eq. (15), for
each ` = 1 . . . k, T

L2

∑
i1,...i`

Ci1...i` is a (dimensionless)
intrinsic quantity of the system. This motivates us to
define the `-th intrinsic invariant as:

µ` =
T

L2

∑
i1...i`

Ci1...i` . (17)

To relate µ` to the invariants z1 . . . zk, we take the `-

particle trace in Eq. (16). Using Tr`[ĉ
†
i1
. . . ĉ†iν ĉiν . . . ĉi1 ] =(

D1−ν
`−ν

)
(this can be verified from combinatorial argu-

ments), where D1 = L2 denotes the dimension of the
system’s single-particle subspace, we find

z` =
∑̀
ν=1

(
D1 − ν
`− ν

)
µν , (18)

where we used Tr`M̄ = z`L
2/T . By induction, one can

verify that each µ` is an integer. First, by the definition
above, µ1 equals z1, and hence is an integer. For ` >

1, µ` = z` −
∑`−1
ν=1

(
D1−ν
`−ν

)
µν . Thus, if µ1 . . . µ`−1 are

integers, µ` is also an integer (since z` is an integer).
To further elucidate the physical meaning of the intrin-

sic invariant µ`, we express it in terms of the LIOMs that
were introduced in Sec. II. Since the long-time average
of any Heisenberg picture operator is diagonal in the ba-
sis of Floquet eigenstates [55], the operator m̄p must be
an integral of motion [56]. This requires m̄p to take the
following form in terms of the of the LIOMs {n̂α} that
we introduced in Eq. (1):

m̄p =
∑
α1

mp
α1
n̂α1 +

∑
α1α2

mp
α1α2

n̂α1 n̂α2 + · · · . (19)

Here, for each term involving a products of ` LIOMs, the
sum

∑
α1...α`

runs over the
(
D1

`

)
distinct combinations

of ` LIOM indices α1 . . . α`. Due to the finite support
of the operator m̄p, we note that the coefficient mp

α1...α`

vanishes as e−d/ξl , where d is the distance from the pla-
quette p to the center of the most remote of the LIOMs
α1 . . . α`.
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Taking the `-particle trace in Eq. (19) and using

Tr`[n̂α1
. . . n̂αν ] =

(
D−ν
`−ν
)
, we find

z` =
∑̀
ν=1

(
D1 − ν
`− ν

) ∑
α1...αν

mp
α1...αν/T. (20)

Comparing with Eq. (18) for each ` = 1 . . . k, we find

µ` ≡
∑
α1...α`

mp
α1...α`

/T. (21)

Note that µ` is independent of the choice of plaquette p.
From the expression above, it is evident that µ` char-

acterizes the intrinsic topological properties of the sys-
tem. Since the magnetization coefficients {mp

α1...α`
} van-

ish when the distance from any of the LIOM centers
rα1

. . . rα` to plaquette p becomes large, the right-hand
side of Eq. (21) is independent of system size in the ther-
modynamic limit. In essence, µ` captures the contribu-
tion of `-body correlations to the magnetization density.

D. Quantized magnetization density in fully
occupied regions

As a final part of this section, we show that the values
of the invariants µ1 . . . µk can be measured directly from
the magnetization density within a region of the system
where all sites are occupied. In particular, for the AFI
(which is fully MBL and for which only µ1 takes nonzero
value), the magnetization density is given by µ1/T .

Consider preparing the system in an `-particle state
|ΨR〉 (where ` ≤ k) by filling all sites in some finite re-
gion of the lattice, R, of linear dimension d, with all
sites outside R remaining empty (here we assume this
requires fewer than k particles). For a plaquette p lo-
cated deep within the fully occupied region, we find the
time-averaged magnetization density as 〈〈mp〉〉 = 〈m̄p〉R,
where we introduced the shorthand 〈O〉R ≡ 〈ΨR|O|ΨR〉.
Using the expansion of m̄p in Eq. (19), we thus find:

〈〈mp〉〉 =
∑
α1

mp
α1
〈n̂α1〉R +

∑
α1α2

mp
α1α2
〈n̂α1 n̂α2〉R + · · · .

(22)
To analyze the sum, we note that, for a LIOM n̂a whose
center ra is located deep within the filled region R,
all sites where n̂a has its support are occupied. Thus
n̂α|ΨR〉 = |ΨR〉 + O(e−d/ξl) [57]. Here the correction
arises from the exponentially decaying tail of n̂α out-
side the filled region. For terms in the above equa-
tion where the centers of all the LIOMs α1 . . . αν are lo-
cated near the plaquette p, the above result implies that
〈n̂α1

. . . n̂αν 〉R = 1 + O(e−d/ξl), since all of the LIOMs
n̂α1

. . . n̂αν are located deep within the initially occu-
pied region. For all remaining terms in Eq. (22), one
or more LIOMs α1 . . . αν are located outside the filled
region, and thus reside at least a distance ∼ d from
the plaquette p. In this case, the coefficient mp

α1...αν

is exponentially small in d/ξl [see the discussion below
Eq. (19)]. For both categories of terms we can thus set
〈ΨR|mp

α1...αν n̂α1
. . . n̂αν |ΨR〉 = mp

α1...αν , at the cost of a

correction of order e−d/ξl . Doing so, we obtain

〈〈mp〉〉 =
∑
α1

mp
α1

+
∑
α1α2

mp
α1α2

+ . . .+O(e−d/ξl).

Using Eq. (21), we identify the `-th sum above as the
invariant µ`/T . Recalling that 〈ΨR|m̄p|ΨR〉 = 〈〈mp〉〉,
we thus find:

〈〈mp〉〉 =
1

T

∑̀
ν=1

µν +O(e−d/ξl). (23)

The above discussion thus shows that the magnetization
density deep within the filled region is given by the (con-
vergent [58]) sum of the invariants {µ`}. In particular,
for the AFI, where only µ1 is nonzero, 〈〈mp〉〉 = µ1/T .

We note that the individual invariants µ1 . . . µk may
be extracted from the dependence of the magnetization
density on the particle density in the system. Specifically,
for a random initial state with a uniform, finite particle
density ρ, the expectation value 〈n̂α1 . . . n̂αν 〉, averaged
over all choices of LIOMs, is given by ρν . Hence, at finite
particle density ρ, the average magnetization density in

the system is given by 〈〈mp〉〉 ≈ 1
T

∑`
ν=1 µνρ

ν . The values
of the individual invariants µν can thus be extracted from
a fit of 〈〈mp〉〉 as a function of ρ.

IV. SPECIFIC MODEL AND NUMERICAL
SIMULATIONS

In this section we present a simple model for a periodi-
cally driven system of interacting fermions in two dimen-
sions, which realizes either the AFI or a CIAFI phase.
The model was briefly discussed in Sec. I. We first con-
sider the limit of weak interaction. In this regime we ar-
gue that the system realizes the AFI phase with µ1 = 2.
Subsequently, we show that, in the limit of strong interac-
tions, the model is characterized by a quantized, nonzero
value of the “two-particle cumulant” of the magnetization
density, consistently with a CIAFI phase characterized by
µ2 = −2. To support our conclusions, we provide numer-
ical simulations of the model in the to above regimes.

The model we consider consists of fermions with spin-
1/2 living in a two-dimensional bipartite square lattice
with periodic boundary conditions. The Hamiltonian is
given by

H(t) = Hdr(t) +Hdis +Hint, (24)

where Hdr(t) describes piecewise-constant, time-
dependent hopping, Hdis denotes a disorder potential,
while Hint describes an on-site interaction between the
fermions. The driving protocol, which is contained in
Hdr(t), is divided into five segments, as depicted in
Fig. 2a. The first four segments each have duration



10

M
agnetization

D
ensity

1200

4.02
0

43.98

12

3 4

5

(a) (b)

(c) (d)

FIG. 3. Simulations of model studied in Sec. IV in the case of
weak interactions, where it realizes the AFI phase (see main
text for details). (a) Schematic depiction of the driving pro-
tocol. (b) Final particle density after 1000 driving periods
for initialization in a random on-site configuration of parti-
cles (initial configuration of particles marked by white). (c)
Histogram of magnetic moments of 246 randomly chosen ini-
tial states that are evolved for 1000 periods (see main text for
details). A single outlier at value 3.89 is not shown here. (d)
Time-averaged bond-current (red) and magnetization density
in the system (blue) for the realization depicted in panel (a).

ηT/4, while the fifth segment has duration (1− η)T ; the
parameter η is a number between 0 and 1 which controls
the localization properties of the model (see below). In
the first four segments, Hdr(t) turns hopping on for the
four different bond types in a counterclockwise fashion,
as indicated in Fig. 3a, while Hdr(t) = 0 in the fifth
segment. More specifically, in the j-th segment (where
j ≤ 4),

Hdr(t) = J
∑
r∈A

∑
s

(ĉ†r+bj ,s
ĉr,s + h.c.). (25)

Here ĉr,s annihilates a fermion on site r with spin s, and
the vectors {bj} are given by b1 = −b3 = (a, 0) and
b2 = −b4 = (0, a). The r-sum above runs over all sites
in sublattice A of the bipartite square lattice. We set the
tunneling strength to J = 2π

ηT , such that, in the absence

of disorder and interactions, Hdr would generate a per-
fect transfer of particles across the active bonds in each
of the first four segments. The parameter η controls how
rapidly the “hopping π-pulses” are applied (and thereby
how strong they are relative to the disorder and interac-
tion potentials), and thus controls the localization prop-
erties of the model; smaller η yields stronger localization
(see Ref. 37).

The disorder and interaction terms Hdis and Hint are
constant throughout the driving period and are given by

Hdis =
∑
r,s

wrρ̂r,s, Hint = V
∑
r

ρ̂r,↑ρ̂r,↓. (26)

For each site, wr takes a random value in the interval
[−W,W ], and ρ̂r,s ≡ ĉ†r,sĉr,s denotes the occupancy on

site r. The parameter V has units of energy and denotes
the strength of the interactions. Note that when V � J ,
tunneling is effectively blocked between doubly-occupied
and vacant sites. As we show below, this blocking leads
to a nonzero value of the higher-order invariant µ2.

To characterize the topological properties of the model,
we consider the dynamics of particles in the two limits
of weak and strong interactions. Below we demonstrate
how these two regimes drive the model into the AFI phase
with µ2 = 2 and a CIAFI phase with µ2 = −2, respec-
tively. We substantiate these conclusions with numerical
simulations in Sec. IV A.

In the absence of interactions, V = 0, the model in
Eq. (24) reduces to two decoupled copies of the AFAI
model from Ref. 31. When interactions are weak, but
nonzero, Ref. 37 suggests that the phase remains MBL
(i.e., non-thermalizing). Since the model should be con-
nected to the non-interacting AFAI, we hence expect the
system to be in the AFI phase [37] with winding number
µ1 = 2 (see also discussion in Sec. I). The factor of 2
arises from the extra species of fermions introduced due
to the spin-1/2 degree of freedom.

We now show that the model above is in a CIAFI phase
with µ2 = −2 in the limit of strong interactions, V →∞.
To see this, we consider the time-averaged magnetic mo-
ment M̄ij (see Sec. III C) that results when initially oc-
cupying two single-particle states i and j, where each
choice of i or j corresponds to a particular site and spin.
Recall that tunneling is blocked when the first particle is
located on, or tunnels to, a site occupied by the second
particle. Hence, doublons (i.e., states where two particles
occupy the same site) remain frozen in place, implying
that M̄ij = 0 if i and j correspond to the same site being
occupied. For all other initial configurations, interac-
tions effectively do not affect the dynamics, and one can
verify that M̄ij = M̄i + M̄j , where M̄i denotes the time-
averaged magnetic moment in the single-particle state i.
As a result, the “cumulant” Cij ≡ M̄ij − M̄i − M̄j takes
value −2a2/T when the initialization ij corresponds to
a doublon configuration, and value zero for all other
2-particle initializations (see Sec. III C for definition of
Cij). We recall from Sec. III C that µ2 = S2T/L

2, where
S2 ≡

∑
i<j CijT/L

2. Since there are L2/a2 distinct dou-
blon configurations, where L denotes the physical dimen-
sion of the lattice, we find that S2 = −2L2/T . Thus,
µ2 = −2 in the limit W = 0, V → ∞. From the dis-
cussion in Sec. III, we expect the quantization of µ2 to
persist for finite disorder, W , and finite (but large) values
of the interaction strength, V .

The discussion above shows that the model in Eq. (24)
is characterized by two distinct values of the invariant µ2

in the limits where V = 0 and V →∞, respectively. Due
to the robust quantization of µ2, which is protected by 2-
particle localization, we hence conclude that the system
supports two distinct topological phases that arise when
V � J and V � J , respectively. The transition between
the phases is separated by a critical point, Vc [42]: when
V is increased past Vc in the thermodynamic limit, the
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localization length in the two-particle sector should di-
verge at V = Vc, while µ2 changes abruptly from 0 to
−2.

A. Numerical simulations

Here we substantiate the discussion above through nu-
merical simulations of the model: we first consider the
limit of weak interactions, and show that the (quan-
tized) average magnetic moment per particle remains un-
affected by the nonzero interaction strength, as our ana-
lytical discussion predicts for an AFI phase with µ1 = 2.
Subsequently, we show that that the model is character-
ized by a quantized, nonzero value of the invariant µ2,
when V is large, demonstrating that the system is in a
CIAFI phase, distinct from the µ1 = 2, µ2 = 0 AFI phase.

1. Weak interactions: AFI phase with µ1 = 2

We first present data from simulations of the model
described above, in the limit of weak interactions. We
consider a single disorder realization of the model with
parameters W = 2π/T , V = 0.1W , and η = 1/16. From
Ref. 37, we expect the model is many-body localized with
these parameters. Since the model is obtained by adding
weak interactions to a model of the AFAI with winding
number 2 (see Refs. 30 and 31; here the factor of 2 arises
because of the spin degeneracy), we moreover expect the
system to be in the µ1 = 2 AFI phase (i.e., with µ` = 0
for ` > 1).

To probe the topology of the system, we compute
the mean magnetic moments of random time-evolved 4-
particle states in a lattice of 6 × 6 sites. The long-time
averaged magnetic moment, introduced in Sec. III, is de-
fined as M̄ =

∑
p a

2m̄p. The mean expectation value

of M̄ , averaged over randomly chosen `-particle states
(i.e., states chosen randomly from a given orthonormal

basis) is given by M0[`] ≡
(
D
`

)−1
Tr` M̄ , where the bi-

nomial coefficient
(
D
`

)
counts the number of possible `-

particle states in the system of D = 2L2 single-particle
states (here the factor of 2 arises due to the spin degen-
eracy, and L = 6 for the case we consider). Using that
Tr`M̄ = z`L

2/T , along with Eq. (18), we can express
M0[`] in terms of the topological invariants µ1 . . . µ`:

M0[`] = L2

T

∑`
ν=1Aνµν , where Aν =

(
D−ν
`−ν
)
/
(
D
`

)
. For

` = 4 particles, our expectation that µ1 = 2 while µ` = 0
for ` > 1 hence would lead to

M0 =
4a2

T
, (27)

corresponding to an average magnetic moment per par-
ticle of a2/T . This result was previously established for
the noninteracting limit of the model (where the system
is in the AFAI phase) [30]. The discussion above hence
shows that the quantized average magnetic moment per

particle in the AFAI is unaffected by interactions, as long
as the system remains in the AFI phase.

To compute M0 in the simulation, we pick as initial
states 1972 random configurations of four particles lo-
cated on individual sites. We evolve each initialization
for 5,000 driving periods with a fixed disorder realization
(the same for all initial states). Fig. 3b shows the particle
density in the resulting final state for one of the realiza-
tions, after evolution for 5,000 periods. White dots and
arrows indicate the corresponding initial configuration of
occupied sites and spins. Note that the particle density
remains non-uniform and confined near the initial loca-
tion of the particles, consistent with many-body localiza-
tion. We compute the time-averaged magnetic moment
〈M̄〉 for each of the 1972 states, using the time-averaged
bond-currents. The 1972 values of 〈M̄〉 we obtained in
this way are plotted in the histogram in Fig. 3c. Fig. 3d
shows the time-averaged bond currents and magnetiza-
tion density in the system for the same state used in
Fig. 3b, used to calculate the magnetization. The dis-
tribution of 〈M̄〉 obtained from these initializations was
found to have mean 3.999997 a2/T and standard devia-
tion δM = 0.001a2/T , resulting in a standard deviation

of the mean at δM/
√

1972 ≈ 0.00003a2/T . This result is
consistent with a µ1 = 2 AFI phase [see Eq. (27)].

2. Strong interactions: CIAFI phase with (µ1, µ2) = (2,−2)

We now demonstrate that strong interactions drive the
model into a CIAFI phase with µ2 = −2. These data
were briefly discussed in Sec. I. Here we present them in
further detail.

To show that large interaction strength drives the
model into the CIAFI phase, we keep W and η fixed,
but vary V . We moreover consider a single disorder real-
ization with 18×18 sites. For each value of V we consider,
we obtained the time-evolution over 1000 driving periods
for between 179 and 324 randomly chosen initializations
where the two particles were located on particular sites
and had distinct spins [59].

To establish the existence of a phase transition between
the AFI and CIAFI phase, we considered the localization
length in the system. We measured this using the inverse
participation ratio of the density in the final state that
resulted from each of the initializations we considered,
P ≡ (

∑
r |ρr|2)−1, where ρr =

∑
s=↑,↓〈ĉ†r,sĉr,s〉 denotes

the particle density on site r in the final state. When
each particle is localized on a particular site, P takes
the value 1/4 (in the case of a doublon configuration) or
1/2. In contrast, P = L2/4 indicates full delocalization
(corresponding to ρr = 2/L2 for all r). More generally,
P can effectively be seen as 1/4 times the number of
sites where the final state has support. This motivates
us to define the effective localization length of the system,
ξIPR, as the average value of

√
4Pa2 obtained from the

initializations we probed.
In Fig. 1d, we plot the above localization length of
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the system, ξIPR, as a function of V . As is evident in
the figure, the localization length remains small for small
values of V . This indicates that the µ1 = 2 AFI phase
at V = 0 remains stable for finite values of the inter-
action strength, as was also suggested by the results in
Sec. IV A 1. In the range between V = J and V = 10J ,
the localization length diverges, consistent with a phase
transition. For V & 10J , the localization length becomes
small again, indicating the system has transitioned back
into a stable phase. The localization length appears to
remain small as V goes to ∞; we hence expect this new
phase to be the µ2 = −2 CIAFI phase.

To verify the existence of two distinct phases (namely
the µ1 = 2 AFI and the µ1, µ2 = 2,−2 CIAFI phases),
we computed the sum S2 ≡

∑
i<j Cij , where Cij =

M̄ij − M̄i − M̄j (see Sec. III C or I for definition of these
quantities). In Fig. 1c, we plot the value of this sum. The
data shows a clear transition between µ2 = 0 to µ2 = −2
in the range V = J to V = 10J , where the localiza-
tion length diverges. This further supports the existence
of a µ1, µ2 = 2,−2 CIAFI phase for strong interactions,
which is distinct from the AFI phase.

V. DISCUSSION

In this work, we characterized the topological proper-
ties of periodically driven systems of interacting fermions
in two dimensions. We established that the quan-
tized magnetization of the AFAI persists in its inter-
acting generalization, the anomalous Floquet insulator
(AFIs). As a second result, we identified a new class
of intrinsically-correlated nonequilibrium phases, namely
the correlation-induced anomalous Floquet insulators
(CIAFIs). The topological invariants characterizing the
CIAFIs are encoded in the multi-particle correlations
of the time-averaged magnetization density. While this
work focused on driven fermionic models and their bulk
topological invariants, our discussion can be readily ex-
tended to bosonic systems with particle number conser-
vation.

Importantly, the topological protection of the CIAFIs
does not require full many-body localization, but rather
relies on k-particle localization, where the system is local-
ized for any finite number of particles up to a maximum
number, k. The existence of k-particle localization is
well-established [42]. Since the existence of the CIAFI
does not rely on full many-body localization, we may
expect the behavior described above to be manifested
via experimental signatures in the prethermal dynam-
ics of systems which eventually thermalize at long times.
Searching for other models that give rise to nontrivial
values of these invariants and characterizing the physical
properties that they imply will be interesting directions
for future studies.

We demonstrated that CIAFIs may be realized in a
tight-binding model with Hubbard type-interactions sub-
ject to a stepwise driving protocol. Recently, a noninter-

acting version of such a model was experimentally real-
ized with ultracold atoms in optical lattices [60]. The
CIAFI phases may be achieved in a similar experiment
by adding Hubbard-type interactions to the system. We
expect this type of interactions is natural to implement
with ultracold atoms in optical lattices. Thus, we spec-
ulate that experimental realization of CIAFI phases is
feasible with current experimental platforms.

At this point it is not clear whether the CIAFI phases
are compatible with MBL, i.e., if they can exist in the
thermodynamic limit of L → ∞ and k → ∞. (For fi-
nite k, localization is possible, and the physics described
above is rigorously applicable.) In particular, we expect
that CIAFI phases will exhibit dynamics strongly depen-
dent on the initial state. In the model of Sec. IV, ini-
tial states where some large region R is doubly occupied
would support chiral edge states moving around such re-
gions. If the initial state contains such “internal edges,”
they may thermalize and serve as a weak heat bath for
the remainder of the system. Next, if the density of filled
regions R in the system is increased, we expect that at
some point thermalizing internal edges will form a con-
nected network, destroying localization. In contrast, ini-
tial states without filled, connected regions are expected
to be much more stable, since there are no direct ther-
malization processes which involve few nearby particles;
thermalization, if it occurs at all, will proceed either due
to rare thermal inclusions, or due to multi-particle tun-
neling into, e.g., a state with “internal edges.”

After the initial posting of this work, another preprint
independently classified the bulk topological properties
of two-dimensional MBL systems, when particle number
conservation was present [61]. Interestingly the classifi-
cation in Ref. 61 did not contain the CIAFI phases, sug-
gesting that CIAFI phases and MBL may be incompati-
ble. A definite answer for this question, however, remains
lacking, and will be an interesting direction for future
studies. In any case, the features above suggests that
CIAFI phases (rigorously established for finite particle
number) may provide a versatile playground for study-
ing the interplay of weak thermalizing baths and MBL
regions, which is expected to give new insights into the
stability of MBL in 2d.

The topological classification we developed in the
present work relied on particle number conservation.
Chiral phases of spins and bosons without particle num-
ber conservation, which are close relatives of the AFAI
(with higher-order invariants being zero, µ` = 0, ` > 2),
were considered in Ref. 29. It was shown that, when
many-body localized, such phases are characterized by a
quantized topological index which describes the pumping
of quantum information along the edge over one driv-
ing period. Such an index arises from the rigorous clas-
sification of anomalous local unitary operators in one-
dimensional systems, developed by Gross et al [62]. It
will be an interesting direction of future studies to inves-
tigate whether the bulk classification of the present work
can be generalized to systems where particle conservation
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is not present.
In the future, it will moreover be interesting to investi-

gate how thermalization is manifested in experimentally
realistic situations for the CIAFI phases, and what the
corresponding time scales are. With k-particle localiza-
tion present (for some large k), thermalization must be
driven by correlated processes involving more than k par-
ticles. It is natural to expect that such thermalizing pro-
cess will be parametrically slow, and therefore signatures
of the CIAFI phases (and the AFI), such as quantization
of magnetization, would be observable even if MBL is
eventually destroyed. A systematic study of such ther-
malization timescales will be an interesting question for
future studies, with significance beyond the context of

topological phases we considered here.
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Appendix A: Proof of Eq. (4)

In this appendix we establish that the time-averaged
current that passes through a cut C between two plaque-
ttes p and q is determined by two quasilocal operators,
m̄p and m̄q, with support centered at p and q, respec-
tively [see Eq. (4) and Fig. 4]. By considering two plaque-
ttes separated by a distance much longer than the local-
ization length, this provides a prescription for uniquely
identifying the magnetization density operator m̄p (up
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FIG. 4. a) Schematic depiction of the argument showing that
time-averaged current through a cut C between to plaquettes
p and q only depends on the cut’s two end-points. Specifically,
since there can be no accumulation of charge over time in the
region between the cuts C and C′, the same current must pass
through the two cuts, and thus ĪC = ĪC′ for any two cuts C
and C′ between the plaquettes p and q. b) The vanishing
divergence of current implies that ĪCpq + ĪCqr = ĪCpr .

to exponentially small corrections in the distance, which
can be of order the system size).

We recall from the main text that the operator corre-
sponding to current through the cut C is given by

IC(t) =
∑
b∈BC

Ib(t), (A1)

where Ib denotes the bond current operator on bond b,
and the sum runs over all bonds that cross the cut C.

The goal of this Appendix is to find the time-averaged
expectation value of the current, 〈〈IC〉〉, resulting from
some given initial state |ψ〉. As in the main text, we
use 〈〈O〉〉 ≡ limτ→∞

1
τ

∫ τ
0
dt 〈ψ(t)|O(t)|ψ(t)〉. The time-

averaged expectation value of the current IC may equiva-
lently be computed in the Heisenberg picture as 〈〈IC〉〉 =
〈ψ|ĪC |ψ〉, where |ψ〉 denotes the initial state of the sys-
tem. Here, as in the main text, for any Schrödinger pic-
ture operator O(t) [such as IC(t)], Ō denotes the time-
average of the current IC in the Heisenberg picture,

Ō ≡ lim
τ→∞

1

τ

∫ τ

0

dt U†(t)O(t)U(t). (A2)

The time-averaged current operator ĪC is thus obtained
by transforming the time-dependent operator IC(t) in
Eq. (A1) with evolution operator U(t), and integrating
over time as in Eq. (A2).

To explore the properties of ĪC , we consider the time-
averaged current for a different cut, C ′, between the
same two plaquettes p and q, see Fig. 4a. We note that
IC(t)− IC′(t) = ṄR(t), where NR measures the number
of particles in the region R between cut C and C ′ (shaded
region in Fig. 4). Importantly, since NR is bounded
by the number of sites in the region R, the long-time-
averaged value of 〈ṄR〉 must vanish. We thus conclude
that 〈〈IC〉〉 = 〈〈IC′〉〉. Since this holds for any initial state
|ψ〉, we conclude that

ĪC = ĪC′ . (A3)

As a next step, we note from Eqs. (A1)that ĪC =∑
b∈BC Īb, where Īb denotes the time-averaged current

on bond b [see Eq. (A2)]. We note that the operator
Ib(t) is local, with support only on the sites connected
by the bond b. For many-body localized systems, this
implies that the operator Īb is a localized integral of mo-
tion, with support within a distance ∼ ξl from the bond
b, up to an exponentially small correction [50]. Hence,
ĪC is given by a sum of terms, each of which only has
support within a region of radius ξl, centered at a point
along the cut C.

The requirements that ĪC is given by a sum of local
terms as described above, while at the same time taking
the same value for all cuts between plaquettes p and q
[Eq. (A3)], significantly constrains the form that ĪC can
take. In particular, this implies that ĪC = I(p, q), where
the operator I(p, q) only depends on the locations of the
two plaquettes p and q (and not on the details of the cut
C). Moreover, for any cut between plaquettes p and q,
I(p, q) is given by a sum of terms which only have sup-
port in a region of width ξl around the cut. For any site
located a distance larger than ξl from both plaquettes
p or q, we can find a cut that remains separated from
the site by a distance larger than ξl. Therefore the sup-
port of operator I(p, q) can only include sites within a
localization length of the endpoints p and q. Hence, we
write:

I(p, q) = A1(p, q) +A2(p, q), (A4)

where A1(p, q) has its full support within a region of
width ξl around plaquette p, and A2(p, q) has support
around plaquette q. The operators A1(p, q) and A2(p, q)
depend only on the locations of plaquettes p and q, re-
spectively.

By letting the cut from p to q go through an arbitrary
plaquette r on the torus (see Fig. 2b), we conclude from
the arguments above the I(p, r) + I(r, q) = I(p, q). This
implies

A1(p, r)+A2(p, r)+A1(r, q)+A2(r, q) = A1(p, q)+A2(p, q).
(A5)

The only terms on the left hand side with support near
plaquette r are the terms A2(p, r), and A2(r, q), while
none of the terms on the right-hand side have support
near plaquette r. We thus conclude that A2(p, r) =
−A1(r, q) for any choice of two plaquettes p and q. Hence
we may write A1(r, q) = A(r), and A2(p, r) = −A(r) for
some function A(r) which only depends on the location
of plaquette r and has its full support near plaquette r.
Using this in Eq. (A4), we find

I(p, q) = A(p)−A(q). (A6)

Identifying A(p) = m̄p, we thus conclude that Eq. (4)
holds.

Appendix B: Derivation of Eq. (10)

Here we derive Eq. (10), which is used to establish the
integer quantization of the topological invariant z`.
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To recapitulate, we consider a k-particle localized sys-
tem, where k may be infinite in the case of full MBL.
For a given ` ≤ k, we consider the `-particle Floquet
eigenstates of the system, {|ψn〉}, with corresponding
quasienergies {εn}, and let ε̃n denote the perturbed
quasienergy corresponding to εn when the weak uniform
magnetic field B0 = 2π/L2 is inserted that results in one
flux quantum piercing the torus (see below for details).
The goal of this Appendix is to establish two results.
First, we show that for each `-particle Floquet eigenstate,
|ψn〉,

ε̃n = εn −B0〈ψn|M̄ |ψn〉+O(L−5/2). (B1)

Here, and in the remainder of this Appendix, O(L−p)
indicates a correction which goes to zero at least as fast
as L−p [64]. (I.e, in the following, we only indicate how
rapidly corrections decrease with system size.) Secondly,
we show that, when summed over all `-particle Floquet
states, the corrections of order L−5/2 in Eq. (B1) ap-
proximately cancel out, yielding a net correction which
is exponentially suppressed in system size:∑

n

(ε̃n − εn) = −
∑
n

B0〈ψn|M̄ |ψn〉+O(e−L/ξ), (B2)

where O(e−L/ξ) likewise indicates a correction that goes
to zero as e−L/ξ in the thermodynamic limit.

Eqs. (B1) and (B2) implicitly require that, for each
quasienergy level εn of the (unperturbed) zero-flux
system, it should be possible to identify a unique
quasienergy level ε̃n of the (perturbed) one-flux system
which satisfies Eq. (B1). In Sec. B 4 below, we confirm
that such a complete one-to-one identification is possi-
ble for all but a set of disorder realizations which has
measure zero in the thermodynamic limit.

As noted in the main text, Eq. (B2) does not follow
trivially from first-order perturbation theory in the weak
magnetic field B0: under a continuous perturbation of
the system, the system’s quasienergy spectrum undergoes
exponentially many avoided crossings due to resonances
between many-body Floquet eigenstates separated by a
large distance in Fock space. Hence, first-order pertur-
bation theory breaks down for the system. Instead, we
establish Eq. (10) with an alternative approach, using
the localization properties of the many-particle Floquet
eigenstates.

In order to follow this approach, we use a succes-
sion of auxiliary results which are not discussed in de-
tail in the main text, but are crucial for the proof of
Eqs. (B1) and (B2). The line of arguments proceeds
as follows: we first show explicitly how the uniform
magnetic field B0 can be implemented in the system
(Sec. B 1). Subsequently, in Sec. B 2 we show that, for
a given finite region S of the lattice, it is always possi-
ble to choose a gauge where the Hamiltonian H̃ of the
one-flux system resembles the Hamiltonian H of the zero-
flux system locally within S, and likewise for the Flo-
quet operators Ũ and U (Sec. B 3). Using this result, we

demonstrate in Sec. B 4 that the Floquet eigenstates and
quasienergies, {|ψn〉} and {εn}, are robust to the pertur-
bation caused by inserting of the weak uniform magnetic
field B0, such that the one-to-one identification described
above is possible. From these auxilliary results, we prove
Eq. (B1) in Sec. B 5, and finally use Eq. (B1) along with
the LIOM structure of the system to establish Eq. (B2)
(Sec. B 6).

For the sake of brevity, throughout this Appendix we
will work with a fixed degree of localization and particle
number, unless otherwise noted. Thus, in the following,
k and ` are fixed constants that refer to the system’s
degree of localization and to the number of particles in
the system, respectively. We take ` ≤ k in the discussion
below.

1. Implementation of magnetic flux

Here we discuss how the magnetic flux is implemented.
The system we consider consists of interacting fermions
on a lattice with the geometry of a torus, of dimensions
L×L. The Hamiltonian of the system (in the absence of
a flux) takes the form

H(t) =
∑
ij

Jij(t)ĉ
†
i ĉj +Hint(t), (B3)

where ĉi annihilates a fermion on site i in the lattice.
Here the first term contains both hopping and on-site
potentials, including disorder, with Jij(t) = J∗ji(t), while
the term Hint accounts for interactions. We allow both
parts of the Hamiltonian to be time-dependent, with pe-
riodicity T . To simplify the discussion, we consider the
case of a square lattice model with nearest-neighbour
hoppings, and a density-density interaction described by

Hint = 1
2

∑
i,j ρ̂iρ̂jVij(t), where ρ̂i = ĉ†i ĉj and Vij(t) =

Vji(t) is real. In the general case of a quasilocal Hamilto-
nian, the results below can also be derived using similar
arguments.

In this subsection we are interested in finding the
Hamiltonian H̃(t) of the system when the uniform mag-
netic field B0 = 2π

L2 is inserted, corresponding to one flux
quantum through the surface of torus. Having assumed
Hint(t) to consist of density-density interactions, only the
first term in Eq. (B3) is affected by the magnetic flux.

The Hamiltonian H̃(t) thus takes the form:

H̃(t) =
∑
ij

eiθijJij(t)ĉ
†
i ĉj +Hint(t). (B4)

Here, the Peierls phases {θij}, with θij = −θji, must en-
sure that the total phase acquired by traversing a closed
loop on the torus is given by B0AS (mod 2π), where AS
is the area enclosed by the loop [65].

There are (infinitely) many distinct configurations of
the phases {θij} that satisfy this condition, correspond-
ing to different choices of gauge for the one-flux Hamilto-
nian H̃(t). As the starting point for the following discus-
sion, we consider the following Landau-type gauge: let θxi
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denote the Peierls phase for hopping along the bond in
the positive x-direction from site i (and similarly let θyi be
the Peierls phase for hopping in the positive y-direction),
and give them the values:

θyi = B0xia θxi = B0Lyiδxi,L. (B5)

Here xi and yi denote the coordinates of site i (defined
with branch cut outside S0), and δij denotes the Kro-
necker delta symbol, such that δxi,L takes the value 1 if
xi = L, while δxi,L = 0 for all other values of xi. Recall
that a is the lattice constant. The phases θyi ensure that
a trajectory encircling a plaquette acquires a phase of
B0a

2, if the trajectory does not cross the branch cut of
the x-position operator between x = L and x = 0. The
phase θxi , which does not appear in the Landau gauge in
an open geometry, is necessary to ensure that the phase
is also given by B0a

2 (mod 2π) for trajectories encircling
plaquettes across the branch cut.

The goal of the following is to show that we can choose
another gauge where B0 only weakly perturbs the Hamil-
tonian within a particular finite region of the lattice,
S, which consists of one or more non-overlapping disk-
shaped regions, S1, . . . SN , whose combined area, AS , is
much smaller than L2. We reach such a gauge through
the following transformation to the one-flux Hamilto-
nian with the gauge choice as prescribed in Eq. (B4):

ĉi → e−iφi ĉi, where φi = B0x
(n)
0 yi for sites i within sub-

region Sn, and (x
(n)
0 , y

(n)
0 ) denotes the center of subre-

gion Sn. In this case, one can verify that, for sites within
subregion n the Peierls phases resulting from this trans-
formation take the following values:,

θyi = B0(xi − x(n)
0 ), θxi = 0. (B6)

The later holds since the branch cut of the x-coordinate
does not intersect S. Since Sn has disk geometry and is

centered around (x
(n)
0 , y

(n)
0 ), we thus find |xi − x(n)

0 | ≤√
AS for sites i within subregion Sn. Hence we con-

firm that the Peierls phases are all of order
√
ASa/L

2

for bonds within S, and thus much smaller than 1 in the
limit AS � L2 specified above.

2. Response of the Hamiltonian

An important result we will use extensively in the fol-
lowing is that, for large systems, the insertion of the uni-
form field B0 only weakly perturbs the system, up to a
gauge transformation. To see this, we consider the action
of the perturbation induced by B0, δH(t) ≡ H̃(t)−H(t)
(in the particular gauge we consider), on a state |ψ〉 with
an arbitrary number of particles, where all particles are
located in the finite region S that was introduced in the
previous subsection.

As a first step, we note that δH(t)|ψ〉 = δH(t)PS |ψ〉,
where PS projects into the subspace where all particles
are located within S. Using that ĉiPS = 0 if site i is

located outside S, we find

δH(t)PS =
∑
j∈S

∑
i

Jij(t)ĉ
†
i ĉj(e

iθij − 1). (B7)

The Peierls phases {θij} are as given in Eq. (B5) above.
Below, we establish an upper bound for the spectral
norm [66] of δH(t)PS , ‖δH(t)PS‖. To do this, we use

that ‖M‖ ≤
√

Tr(M†M), such that

‖δHPS‖2 ≤
∑

j1,j2∈S

∑
i1,i2

K∗i1j1Ki2j2Tr(ĉ†j1 ĉi1 ĉ
†
i2
ĉj2),

where Kij ≡ Jij(e
iθij − 1), and we suppressed time-

dependence for brevity. Since θij = 0 for i = j, terms
above are only nonzero when i1 = i2 and j1 = j2. Thus,

‖δHPS‖2 ≤
∑
j∈R

∑
i

|Jij |2|eiθij − 1|2. (B8)

We now estimate the maximal scale of the right hand
side above. We recall from the discussion in the end of
Subsection B 1 that the Peierls phases {θij}, as given in
Eq. (B5), are of order

√
ASa/L

2 or smaller for bonds
within the region S. This implies that the value of
each non-vanishing term in the sum in Eq. (B8) is of
order J2ASa

2/L4 or less, where J denotes the typical
scale of the (off-diagonal) tunneling coefficients {Jij}.
To estimate the number of non-vanishing terms in the
sum we recall, from the assumptions made in the be-
ginning of subsection B 1, that the tunneling coefficients
Jij only couple nearest-neighbor pairs of sites in the lat-
tice. Hence, for each choice of the index j, Jij may only
be non-vanishing for four choices of the index j. These
considerations show that there are only of order AR/a

2

non-vanishing terms in the sum above. Using that each
non-vanishing term has norm of order . J2ARa

2/L4, we
find that ‖δHPS‖2 . A2

SJ
2L−4. Here a . b indicates

that a is smaller than b, or of order b. Thus we conclude
that

‖δHPS‖ . JAS/L
2. (B9)

In the sense of the operator norm, the difference between
the Hamiltonians with and without one flux quantum
uniformly piercing the entire torus decays to zero with
the inverse of the total system area, when acting on states
confined to the region S, and with a judicious choice of
gauge.

a. Action on a localized state

Using the above result, we now show that a gauge ex-
ists where δH is small when acting on states which are
not strictly confined to the region S of the lattice, but
rather only exponentially localized. Specifically, we con-
sider a state |ψ〉, whose full support is exponentially con-
fined to a region S which consists of one or more disk-
shaped subregions of radius r, with the probability of
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finding a particle a distance s from the center of the near-
est subregion decaying as e−s/ξl when s > r.

To conveniently quantify the extent to which particles
are confined within a subregion of the lattice, for each
j = 1, 2 . . ., we let |ψj〉 denote the component of the wave-
function |ψ〉 where the outermost particle is located in the
distance interval between (j − 1)a and ja from the near-
est subregion of S. Specifically, |ψj〉 ≡ (Pj − Pj−1)|ψ〉,
where Pj denotes the projector onto the states where all
particles are located within a distance ja from the cen-
ter of the nearest subregion of S. From this definition
one can verify that |ψ〉 =

∑∞
j=1 |ψj〉. Moreover, the us-

ing that PjPk = Pmin(j,k), it follows that the components
are mutually orthogonal: 〈ψj |ψk〉 = 0 for j 6= k. From
the definitions above, the probability for finding finding
a particle more than a distance ja from the center of R
is given by 〈ψ|(1−Pj)|ψ〉 =

∑∞
j′=j+1〈ψj′ |ψj′〉. Since the

left hand side must be of order e−ja/ξ for ja > r, and
each term in the right hand side is positive, we must have

〈ψj |ψj〉 . e−ja/ξl for j > r/a. (B10)

We now use the above result to obtain a bound for
the state δH|ψ〉. Inserting |ψ〉 =

∑∞
j=1 |ψj〉, and us-

ing Pj |ψj〉 = |ψj〉 one can verify that |ψ〉 = PR|ψ〉 +∑
j>r/a Pj |ψj〉, where PS ≡ Pr/a denotes the projector

into the subspace where all particles are located within
the region S (for convenience we assume r to be an in-
teger multiple of the lattice constant a). Using this re-
sult along with the triangle inequality and Eq. (B10), we
hence obtain:

‖δH|ψ〉‖ . ‖δHPR‖+
∑
j>r/a

‖δHPj‖e−
ja
2ξl .

The considerations from Sec. B 2 show that we may
choose a gauge for H̃ such that ‖δHPS‖ . JAS/L

2,
and ‖δHPj‖ . A2

Sj
J/L2 for any choice of j, where

ASj ∼ (ja)2 denotes the area of the region projected

into by Pj . Using that
∑
j>j0

j2e−j/k ∼ j2
0e
−j0/k when

j0 � k, one can then verify that∑
j>r/a

‖δHPj‖e−
ja
2ξl . ASJ/L

2e−r/2ξl , (B11)

where AS ∼ r2 denotes the area of the region S. Thus,
since r � ξl, we find

‖δH|ψ〉‖ . JAS/L
2. (B12)

3. Response of the Floquet operator

We now show that, for any region S in the lattice
that consists of one or more disk-shaped subregions, it
is possible to find a gauge, the Floquet operators of
the one- and zero-flux systems, Ũ(T ) and U(T ), have
nearly identical actions states |ψ〉 localized within S:

Ũ(T )|ψ〉 ≈ U(T )|ψ〉. Here the state is said to be lo-
calized within S if the probability of finding a particle a
distance s from the center of the nearest subregion os S
decays as e−s/ξl for s > r, where r denotes the radius of
S.

First, we note that ‖(U − Ũ)|ψ〉‖ = ‖(Ũ†U − 1)|ψ〉‖.
This follows from the unitarity of Ũ , since for any
state |Ψ〉, ‖|Ψ〉‖ = ‖Ũ†|Ψ〉‖. Using that Ũ†U − 1 =∫ T

0
dt ∂t[Ũ

†(t)U(t)], along with δH(t) ≡ H̃(t) −H(t), we
find

(U − Ũ)|ψ〉 = −i
∫ T

0

dt Ũ†(t)δH(t)U(t)|ψ〉. (B13)

Using that ‖|Ψ〉‖ = ‖Ũ†|Ψ〉‖ along with the triangle in-
equality, we thus find

‖(U − Ũ)|ψ〉‖ ≤
∫ T

0

dt ‖δH(t)U(t)|ψ〉‖. (B14)

We now use that U(t) is local at all times 0 ≤ t ≤ T ,
due to the finite Lieb-Robinson velocity v of the system.
The locality implies that, for the state U(t)|ψ〉, the prob-
ability of finding a particle a distance s from the center
of S decays exponentially when s & r. Using the result
in Eq. (B12) from the previous subsection, we thus find

‖δH(t)U(t)|ψ〉‖ . JAS/L
2. (B15)

Using this in the inequality in Eq. (B14), we conclude

‖(U†Ũ − 1)|ψ〉‖ . JTAS/L
2. (B16)

Thus, ‖(Ũ − U)|ψ〉‖ . JTAS/L
2.

The result in Eq. (B16) shows that, with a judicious
choice of gauge, the Floquet operators of the one- and
zero flux systems give nearly identical results when act-
ing on a localized state. In this sense, the insertion of a
uniform magnetic field B0 only weakly modifies the Flo-
quet operator for large systems.

4. Response of Floquet eigenstates and
quasienergy spectrum

We now show that, in the subspace with k or fewer par-
ticles, the quasienergy spectrum and Floquet eigenstates
of k-particle localized systems are robust to perturba-
tions, and only weakly affected by the insertion of the
uniform magnetic field B0.

In this subsection, it is useful to use notation that re-
lates the quasienergies and Floquet eigenstates to the
LIOM decomposition in Eq. (1) (which is valid in the
subspace of up to k particles, which we consider): in the

following we thus let |Ψα1...α`〉 ≡ f̂†α1
. . . f̂†α` |0〉 denote the

Floquet eigenstate of the system for which only LIOMs

α1 . . . α` take value 1 (see Sec. II A for definition of f̂†α),
and let Eα1...α` denote the corresponding quasienergy.
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Using this cutoff length, we show below that for each
finite ` ≤ k, where k denotes the system’s degree of local-
ization (which is infinite for MBL systems), the `-particle

Floquet eigenstates {|Ψ̃α1...α`〉} of Ũ can be labeled such
that, for each choice of LIOMs (identified by the LIOM
indices α1 . . . α`),

|Ψ̃α1...α`〉 = |Ψα1...α`〉+O
(
L−1/2

)
, (B17)

and

Ẽα1...α` = Eα1...α` +O
(
L−2

)
. (B18)

Eq. (B17) thus shows that, in the thermodynamic limit,

each eigenstate of Ũ is identical to an eigenstate of
U , up to gauge transformation and a vanishingly small
correction, while Eq. (B18) shows that their associated
quasienergies similarly are identical up to a vanishing cor-
rection. This establishes the one-to-one correspondence
of the quasienergy levels of the zero- and one-flux systems
that we summarized below Eq. (B2).

Due to the possibility that the field B0 induces a res-
onance between two Floquet eigenstates of U , disorder
realizations do exist where one (or more) of the eigen-

states of Ũ is a significantly hybridized combination of
two eigenstates of U . In this case, Eq. (B17) will hold
for most but not all Floquet eigenstates of the system.
However, as we show here, the set of disorder realization
where such a resonance-induced breakdown of Eq. (B17)
occurs has measure zero in the thermodynamic limit. In
this way, Eqs. (B17) and (B18) hold for almost all disor-
der realizations, in the thermodynamic limit.

To establish Eqs. (B17) and (B18), we first consider
the case ` = 1 (i.e., we establish the relationships for
each single-particle Floquet eigenstate). Subsequently,
in a stepwise fashion, we generalize this result to states
with ` particles, for each ` = 2, . . . k.

a. Single-particle eigenstates

Here we establish the relationships in
Eqs. (B17) and (B18) for the single-particle case.
We assume that k-particle localization is robust to
perturbations, and thus Ũ also describes a k-particle
localized system (we assume k ≥ 1). Thus, in particular,

each single-particle eigenstate |Ψ̃〉 of Ũ has its full
support within a finite disk-shaped region S of linear
dimension d, with the probability of finding the particle
a distance s outside S decaying as e−s/ξl .

Due to its finite region of support, each single-particle
eigenstate of Ũ , |Ψ̃〉, may only overlap significantly with
Floquet eigenstates whose corresponding LIOM centers
are located within a distance ∼ ξl from S. To exploit this
fact, we introduce a system-size dependent length scale
d � ξl, which acts as an effective length cutoff for the
region of support of a LIOM. The length d must be much
smaller than L, but can otherwise be taken to be arbitrar-
ily large, as long as d/L vanishes in the thermodynamic

limit. From the considerations above it follows that |Ψ̃〉
only overlaps with the finite number Floquet eigenstates,
|Ψα1〉 . . . |ΨαN1

〉, whose LIOM centers are located within

a distance d from S, (up to a correction exponentially
small in d/ξl:

N1∑
n=1

|〈Ψαn |Ψ̃〉|2 = 1 +O(e−d/ξl). (B19)

For the purposes of the following, it is convenient to order
the indices n according to the value of the overlap, such
that |〈Ψα1

|Ψ̃〉|2 ≥ |〈Ψα2
|Ψ̃〉|2 ≥ . . . ≥ |〈ΨαN1

|Ψ̃〉|2. Note
that the sequence of LIOM indices α1 . . . αN1

depends on

the choice of |Ψ̃〉; this dependence is taken to be implicit
below, for the sake of brevity.

We now show that |Ψ̃〉 only overlaps significantly with
one of the eigenstates |Ψα1

〉 . . . |ΨαN1
〉, while the total

weight from all other eigenstates gives a negligible con-
tribution. To show this, note that |Ψαn〉 and |Ψ̃〉 are

eigenstates of U and Ũ , respectively, and hence

〈Ψαn |Ψ̃〉 =
〈Ψαn |U†Ũ − 1|Ψ̃〉
e−i(Ẽ−Eαn )T − 1

, (B20)

where Ẽ is the quasienergy associated with |Ψ̃〉. Since

|Ψ̃〉 is exponentially well localized within S, Eq. (B16)

implies that |〈Ψαn |U†Ũ − 1|Ψ̃〉| . JTAS/L
2. Moreover,

|e−i(Ẽ−Eαn )T − 1| ≤ |Ẽ − En|T , where the norm | · |
is defined modulo 2π/T , i.e. |E| ≡ minz |E + 2πz/T |.
Combining these two inequalities with Eq. (B20), we find

|〈Ψαn |Ψ̃〉| .
JAS/L

2T

|Ẽ − Eαn |
. (B21)

We now consider two implications of the above in-
equality. Firstly, Eq. (B19) implies |〈Ψα1 |Ψ̃〉|2 & 1/N1 −
O(e−d/ξl) (c.f. the labelling of the states {|Ψαn〉}). Thus,

|Ẽ − Eα1 | .
√
N1JAS/L

2T . (B22)

Secondly, we note that, for a random choice of |Ψ̃〉, the
typical spacing between the N1 quasienergy levels {En}
is of order ∆E ∼ W/N1, where W denotes the width
of the single-particle quasienergy spectrum (when the
quasienergy spectrum has no gaps, W = 2π/T ). In this
case, only one of the quasienergies {Eαn} (namely Eα1)

is close enough to Ẽ for Eq. (B21) to allow a significant

value of 〈Ψn|Ψ̃〉. Thus, |Ψ̃〉 ≈ |Ψ1〉 for a typical choice of

|Ψ̃〉.
We now prove that |Ψ̃〉 ≈ |Ψ1〉 for any choice of |Ψ̃〉

in the system (except for a measure-zero set of disorder
realizations in the thermodynamic limit). To establish
this result, we first note

|En − Ẽ| ≥ |Eαn − Eα1 | − |Ẽ − Eα1 |. (B23)

We now establish a lower bound for |Eαn − Eα1
|, us-

ing the fact the quasienergy levels of nearby states Eα1
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and Eαn repel each other, and that |Ẽ − Eα1
| satis-

fies the bound of Eq. (B22). Specifically, note that the
Floquet eigenstates |Ψ1〉 and |Ψn〉 have their support
within a distance . d from each other. The quasiener-
gies Eα1

and Eαn are hence subject to local level repul-
sion when the quasienergy difference δE ≡ |En − E1| is
much smaller than the scale of matrix elements between
them with respect to the kinetic part of the Hamiltonian
(i.e. δE � Je−d/ξl). In the limit where δE � Je−d/ξl ,
the probability distribution p(δE) for δE should thus re-
semble the Wigner-Dyson distribution for the Circular
unitary ensemble (CUE) [67]:

p(δE) =
T 3

π
δE2 +O(δE4). (B24)

Using the above result, we now compute the ex-
pected number of pairs of nearby single-particle eigen-
states |Ψαi〉 and |Ψαj 〉 in the entire system, for which
|Eαi − Eαj | is smaller than some given (small) value
δE0. Here “nearby” refers to the eigenstates |Ψαi〉 and
|Ψαj 〉 having their centers located within a distance ∼ d
from each other, such that they may potentially overlap
with the same eigenstate of Ũ . Noting that there are
O(L2N1/2a

2) distinct pairs of nearby eigenstates (where
a denotes the lattice constant), we have

N(δE0) =
L2d2

2a4

∫ δE0

0

dδE p(δE). (B25)

where we used N1 ∼ (d/a)2. Thus, in the limit where
δE0 � Je−d/ξl ,

N(δE0) =
L2d2(δE0T )3

6πa4
. (B26)

We recall we may take d arbitrarily large as long as
d/L → 0 in the thermodynamic limit. In the following,
it is convenient to let d scale with system-size as d ∼
1
2ξ` log(L/a) such that O(e−d/ξl) ∼ O(L−1/2). (Note
that this choice is not unique; other scaling behaviors
of d can be used in the discussion below). Since with
this choice of d, Je−d/ξ � a/LT in the thermodynamic
limit [such that Eq. (B26) applies to δE0 = a/LT ], we
conclude that

lim
L→∞

N(a/LT ) = 0. (B27)

We conclude that, in the thermodynamic limit, there are
zero pairs of Floquet eigenstates |Ψαi〉 and |Ψαj 〉 with

LIOM centers within a distance d ∼ 1
2ξ` log(L/a) from

each other whose quasienergies differ by less than a
LT

(except for in a measure zero set of disorder realizations).
We conclude, in the thermodynamic limit, and for any
choice of |Ψ̃〉,

|Eα1 − Eαn | >
a

LT
(B28)

for all but a measure zero set of disorder realizations.

Using Eq. (B23) along with the fact that |Ẽ − Eα1
| is

subleading in L compared to the above bound for |Eαn−
Eα1
|, we find, for n ≥ 2, |Ẽ − Eαn | > a

LT . Thus, for all
but a measure zero set of disorder realizations, it holds
that, for each choice of |Ψ̃〉,

|〈Ψαn |Ψ̃〉| <
ASJT

aL
for n ≥ 2. (B29)

Using this result in Eq. (B19), we find

1− |〈Ψα1
|Ψ̃〉|2 < N1A

2
SJ

2T 2

a2L2
+O(e−d/ξl). (B30)

Recall that we take d ∼ 1
2ξl log(L/a). Hence the first

term above is subleading in the thermodynamic limit,
and we obtain

|〈Ψα1
|Ψ̃〉|2 = 1 +O(L−1/2). (B31)

(See Footnote 64). This concludes the proof of Eq. (B17)
for the single-particle case, when we assign the label α1

to |Ψ̃〉.
To establish Eq. (B18) for the single-particle case, we

note from Eq. (B21) [with the labelling for |Ψ̃〉 introduced
above] that, for each choice of α,

|Ẽα − Eα| .
JAS/L

2

|〈Ψ̃α|Ψα〉|
. (B32)

Since |〈Ψ̃α|Ψα〉| ≈ 1, and AS ∼ d2, we conclude |Ẽα −
Eα| . Jd2/L2 ∼ O(L−2) (see Footnote [64]). This is
what we wanted to show.

b. Two-particle eigenstates

Having established Eq. (B17) for single-particle Flo-
quet eigenstates, we now show that it also holds for
all two-particle eigenstates (provided the system is k-
particle localized for some k ≥ 2). In order to do this,

we consider a two-particle Floquet eigenstate |ψ̃〉 of the

one-flux system, with quasienergy Ẽ. Since the one-flux
system is k-particle localized (for k ≥ 2), the two-particle

eigenstates of Ũ possess a LIOM structure. In the Flo-
quet eigenstate |ψ̃〉, two of the LIOMs of Ũ , ñ1 and ñ2,

are thus “excited” (i.e. ñα|ψ̃〉 = |ψ̃〉 for α = 1, 2, while

ñα|ψ̃〉 = 0 for α 6= 1, 2). In the following, we divide our
argumentation into two cases, depending on whether or
not the LIOMs ñ1 and ñ2 are located within a distance
d from each other, where d denotes the arbitrary length
scale cutoff for each LIOM’s region of support introduced
in Sec. B 4 a.

Nearby LIOMs — When the centers of the two “ex-
cited” LIOMs ñ1 and ñ2 in the state |ψ̃〉 are separated by
a distance less than d, a two-particle Floquet eigenstate
|Ψαβ〉 of the zero-flux system may only significantly over-

lap with |Ψ̃〉 if the corresponding excited (nonperturbed)
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LIOMs n̂α and n̂β are located within a distance d from
the centers of ñ1 and ñ2. As a result, there are only of

order N2 ∼
(

2d2/a2

2

)
choices of distinct LIOMs α, β for

which |Ψαβ〉 can significantly overlap with |Ψ̃〉.
Using the same arguments as for the single particle case

(Sec. B 4 a) one can show that, for all but a measure-zero
set of disorder realizations in the thermodynamic limit,
there exists a unique two-particle eigenstate |Ψαβ〉 of U

for each two-particle eigenstate |Ψ̃〉 of Ũ such that (up
to a gauge transformation)

|Ψ̃〉 = |Ψαβ〉+O
(
L−1/2

)
, (B33)

and

Ẽ = Eαβ +O
(
L−2

)
. (B34)

Separated LIOMs — Next, we consider the case
where the two excited LIOMs ñ1 and ñ2 are separated by
a distance ∆r larger than d. In this case, the LIOM struc-
ture of the Floquet operator Ũ [Eq. (1) in the main text]
implies that, up to an exponentially small correction in
the distance ∆r/ξl, |Ψ̃〉 may be written as a direct prod-

uct of two single-particle eigenstates |Ψ̃α〉 and |Ψ̃β〉. Here
α and β refer to the labeling of the single-particle eigen-
states of Ũ that was established in the previous subsec-
tion. Letting Sα and Sβ denote the two non-overlapping

regions of linear dimension d where the states |Ψ̃α〉 and

|Ψ̃β〉 respectively have their support (up to a correction
exponentially small in d/ξl), we have [68]:

|Ψ̃〉 = |Ψ̃α〉Sα ⊗ |Ψ̃β〉Sβ ⊗ |0〉+O(e−d/ξl). (B35)

where we used ∆r > d. Here |Ψ〉S denotes the restriction
of the state |Ψ〉 to the Fock space of the region S (de-
fined from the projection of |Ψ〉 into the subspace with
no particles outside region S). The state |0〉 refers to
the vacuum in the complementary region to Sα and Sβ .

Since the two particles in the state |Ψ̃〉 are separated by
a distance much larger than d, the regions Sα and Sβ do
not overlap.

We recall that Eq. (B17) was already proven to hold for

the single-particle case. Thus |Ψ̃α〉 (the eigenstate in the
presence of one flux quantum piercing the system) is ap-
proximately identical to a single-particle eigenstate |Ψα〉
of the zero-flux system’s Floquet operator U (for all but a
measure zero set of disorder realizations). Specifically, up

to a gauge transformation, |Ψ̃α〉 = |Ψα〉 +O(L−2). The
eigenstate |Ψα〉 moreover has its full support in the same

region Sα as |Ψ̃α〉, up to a correction exponentially small
in d/ξl. Letting Vα be the unitary operator that gener-
ates the transformation to the gauge in which Eq. (B17)

holds for |Ψ̃α〉, we have

|Ψ̃α〉Sα = Vα|Ψα〉Sα +O(L−1/2), (B36)

where we used that we may take d ∼ 1
2ξl log(L/a),

such that the correction O(e−d/ξ) scales with system size

as L−1/2 in the thermodynamic limit. Using the rela-
tion (B36) for the states |Ψ̃α〉Sα and |Ψ̃β〉Sβ in Eq. (B35),
we hence obtain

|Ψ̃〉 = VαVβ |Ψα〉Sα ⊗ |Ψβ〉Sβ ⊗ |0〉+O(L−1/2). (B37)

Due to the LIOM structure of the Floquet operator
U (Eq. (1) in the main text), |Ψα〉Sα ⊗ |Ψβ〉Sβ ⊗ |0〉 is
identical to the Floquet eigenstate |Ψαβ〉 of the zero-flux

system, up to a correction of order e−d/ξl . Since the
product of the two gauge transformations Vα and Vβ is
itself a gauge transformation, we thus conclude that, up
to a gauge transformation:

|Ψ̃〉 = |Ψαβ〉+O(L−1/2). (B38)

The two cases we considered above show that, in the
thermodynamic limit, and for all but a measure zero set
of disorder realizations, each two-particle eigenstate |Ψ̃〉
of Ũ is identical to a unique eigenstate of U , up to a gauge
transformation, and a correction of order O(L−1/2). We

may thus label the two-particle eigenstates of Ũ such that
Eqs. (B17) and (B18) hold with ` = 2, and for each choice
of the LIOM indices α1 and α2.

c. `-particle-eigenstates

We finally consider the general case of an `-particle
eigenstate |Ψ̃〉 of Ũ , where ` is smaller than or equal
to the system’s degree of localization, k. For this situa-
tion, we can apply the same structure of arguments as for
the two-particle case: due to the LIOM structure of the
one-flux Floquet operator Ũ , each `-particle state is con-
structed by “exciting” ` LIOMs ñ1 . . . ñ`. We split our
line of arguments into two cases, depending on whether
or not the LIOMs ñ1 . . . ñ` can be divided into clusters
separated from each other by distances greater than d.

In the case where the excited LIOMs can be divided
into clusters in the way above, |ψ̃〉 can be written as

a direct product of eigenstates of Ũ with fewer than k
particles, up to a correction of order e−d/ξl . Following
the same line of arguments as for the analogous two-
particle case, the relationships (B17) and (B18) can then
be demonstrated to hold for this class of eigenstates using
the fact that Eq. (B17) and (B18) hold for eigenstates
with fewer than ` particles.

In the case where all LIOMs are located in the same
cluster, we note that |ψ̃〉 only significantly overlaps
with eigenstates {|Ψα1...α`〉} where the centers of all the
LIOMs n̂α1

. . . n̂α` are located in the region S, consist-
ing of all sites with a distance d from any of the ex-
cited LIOM’s ñ1 . . . ñ`. There only exist a finite num-
ber of eigenstates N` with this property. Specifically,

N` .
(
`d2/a2

`

)
counts the number of distinct configura-

tions of k LIOMs n̂α1
. . . n̂α` whose centers are located

within S. Crucially, N` only depends on the number of
particles, `, and d, and is independent of system size.
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Using the same arguments as for the single-particle
case, we then find that, for all but a measure zero set of
disorder realizations in the thermodynamic limit, there
exists a unique eigenstate |Ψα1...α`〉 of U such that (up
to a gauge transformation),

|Ψ̃〉 = |Ψα1...α`〉+O(L−1/2), (B39)

where, as we described in the beginning of this Appendix,
O(L−p) denotes term scaling with system size as L−p in
the thermodynamic limit (see Footnote [64]). In addition,
when the LIOMs are located within a distance d from the
same point,

Ẽ = Eα1...α` +O
(
L−2

)
. (B40)

Thus, Eqs. (B17) and (B18) hold for the `-particle case
in the thermodynamic limit, for any ` = 1, . . . k.

5. Relationship between magnetization density and
quasienergy

Having established the auxiliary results in Secs. B 1-
B 4, we are now ready to prove Eq. (B1), which is the
first main goal of this appendix. To recapitulate, we seek
to show that, for each `-particle Floquet eigenstate, |ψn〉
with quasienergy εn, the associated quasienergy for the
one-flux system, ε̃n (see Sec. B 4 for details), satisfies

ε̃n = εn +B0〈ψn|M̄ |ψn〉+O(L−5/2), (B41)

where M̄ denotes the time-averaged magnetization oper-
ator (see Sec. III B 1 of the main text), and, as in Sec. B 4
above, O(L−p) denotes a correction of order λL−p or less,
where λ is some system-size independent energy scale
that does not play a role for our discussion.

In this step of the derivation it is useful to define a
region of support, Sn, for each Floquet eigenstate |ψn〉.
Specifically, for each Floquet eigenstate, |ψn〉, and for
some length scale d � L, we let Sn denote the smallest
region of the lattice that ensures the centers of all nonzero
LIOMs in the state |ψn〉, α1 . . . α`, are located within a
distance d from the boundary of Sn. The region of sup-
port Sn may consist of one or several disconnected disk-
shaped subregions of linear dimension d, and has area
ASn ≤ π`d2. As in Sec. B 4, when taking the thermody-
namic limit L → ∞ in the following, we let d increase
logarithmically with system size as d ∼ 1

2ξl log(L/a).
To establish Eq. (B41), for a given Floquet eigenstate

|ψn〉, we let Ũ be the one-flux Floquet operator in a gauge

where Eq. (B16) holds within Sn, and let |ψ̃n〉 denote the

eigenstate of Ũ corresponding to |ψn〉 through Eq. (B17).

Noting that |ψn〉 and |ψ̃n〉 are eigenstates of U and Ũ ,
respectively, we have

〈ψn|U†Ũ |ψ̃n〉 = e−i(ε̃n−εn)T 〈ψn|ψ̃n〉. (B42)

At the same time, the left-hand side above can be written
[see Eq. (B13)],

〈ψn|U†Ũ |ψ̃n〉 = 〈ψn|ψ̃n〉

− i
∫ T

0

dt〈ψn|U†(t)δH(t)Ũ(t)|ψ̃n〉. (B43)

We now seek to rewrite the second term above to a
form which only relies quantities of the (unperturbed)

zero-flux system. Using that |ψ̃n〉 = |ψn〉 + O(L−1/2)

[Eq. (B17)], and that U |ψ〉 = Ũ |ψ〉+O(L−2) for normal-
ized states |ψ〉 that are exponentially localized within Sn
(such as |ψn〉), we find

Ũ(t)|ψ̃n〉 = U(t)|ψn〉+O(L−1/2). (B44)

We recall from Eq. (B15) that ‖|δH(t)U(t)|ψn〉‖ ∼
O(L−2), such that, for any state |ψ〉,
|〈ψn|U†(t)δH(t)|ψ〉| . O(L−2)‖|ψ〉‖. Combining
this with Eqs. (B43) and (B44), we find

e−i(ε̃n−εn)T 〈ψn|ψ̃n〉 = 〈ψn|ψ̃n〉

− i
∫ T

0

dt〈ψn|U†(t)δH(t)U(t)|ψn〉+O(L−5/2). (B45)

We finally note that 〈ψn|ψ̃n〉 = 1 + O(L−2). Dividing

through with a factor of 〈ψn|ψ̃n〉, and again using that
‖〈ψn|U†(t)δH(t)‖ ∼ O(L−2), we hence obtain

e−i(ε̃n−εn)T = 1− i
∫ T

0

dt〈ψn|U†(t)δH(t)U(t)|ψn〉

+O(L−5/2). (B46)

Expanding the left-hand side to first order in ε̃n − εn,
and using ε̃n − εn ∼ O(L−2) [see Eq. (B40)], we obtain

ε̃n − εn =
1

T

∫ T

0

dt〈ψn|U†(t)δH(t)U(t)|ψn〉+O(L−5/2).

(B47)

Having expressed ε̃n− εn purely in terms of quantities
of the zero-flux system, we now relate the first term on
the right-hand side above to the time-averaged magneti-
zation in the state |ψn〉. To this end, we use the explicit
form of H(t) we assumed in Eq. (B3) (similar arguments
apply to more general Hamiltonians), finding

δH(t) = i
∑
ij

θijJij(t)ĉ
†
i ĉj + δH(2)(t), (B48)

where δH(2)(t) =
∑
ij [e

iθij − 1− iθij ]Jij(t)ĉ†i ĉj and {θij}
denote the Peierls phases induced by the uniform mag-

netic field B0. We identify −i[Jij(t)ĉ†i ĉj − Jji(t)ĉ
†
j ĉi] as

the bond current operator on the bond from site j to site
i, Îb(t), and θij as the associated Peierls phase (see also

Footnote 49). Hence, i
∑
ij θijJij(t)ĉ

†
i ĉj = −

∑
b θbIb(t).

To establish a bound for the term in Eq. (B47) origi-
nating from δH(2)(t), we note that θij ∼ O(L−2) within
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the region of support of the state |ψn〉, Sn. Hence
[e−iθij − (1 − iθij)] ∼ O(L−4) for sites i, j within Sn.

As a result, ‖δH(2)(t)|ψn〉‖ ∼ O(L−4). Thus, we obtain

ε̃n − εn =−
∑
b

θb

∫ T

0

dt

T
〈ψn|U†(t)Îb(t)U(t)|ψn〉

+O(L−5/2). (B49)

Using that in a Floquet eigenstate the time-averaged ex-
pectation value over one period equals the long-time av-
erage, we obtain

ε̃n − εn = −
∑
b

θb〈ψn|Īb|ψn〉+O(L−5/2), (B50)

where Ō denotes the long-time average in the Heisenberg
picture [see Eq. (3)]. Retracing the arguments in the
main text that lead from Eq. (12) to Eq. (13), we find∑
b θbĪb = M̄B0. Thus, we conclude

ε̃n − εn = −〈ψn|M̄ |ψn〉B0 +O(L−5/2). (B51)

This establishes Eq. (B41), which was the first goal of
this Appendix.

6. Vanishing sum of corrections

As the final step of this Appendix, we now show that
the corrections to Eq. (B51) (which individually scale
with system size, L, as L−4), approximately cancel out
when summed over all quasienergy levels in the `-particle
subspace, yielding an exponentially suppressed correc-
tion:∑
n

(ε̃n − εn) = −
∑
n

B0〈ψn|M̄ |ψn〉+O(e−L/ξl), (B52)

To establish Eq. (B52), it is convenient to first express
Eq. (B51) in terms of the magnetization densities on each
plaquette, {m̄p} by using M̄ =

∑
p a

2m̄p:

ε̃n − εn = −
∑
p

a2B0〈ψn|m̄p|ψn〉+O(L−5/2). (B53)

To obtain Eq. (B52) from the above result, we exploit the
LIOM decomposition of the quasienergy levels in terms
of the quasienergy coefficients εα1 , εα1α2 , . . . [Eq. (1)],
and the analogous decomposition time-averaged magne-
tization density in term of the magnetization coefficients
m̄p
α1
, m̄p

α1α2
, . . . [Eq. (19)]. By inserting these expansions

into Eq. (B53) and using that Eq. (B53) holds for each
Floquet eigenstate with up to ` particles (i.e., for each
combination of up to ` excited LIOMs), one can verify
that, for each choice of ` LIOMs, α1 . . . α`,

ε̃α1...α` − εα1...α` = −B0

∑
p

a2m̄p
α1...α`

+O(L−5/2).

(B54)

We now seek to compute the sum the left hand side
above over all

(
D1

`

)
distinct combinations of ` LIOMs,

where
(
a
b

)
denotes the binomial coefficient and D1 =

L2/a2 the dimension of the system’s single-particle sub-
space. Specifically, we seek to compute

κ` ≡
∑
α1...α`

(ε̃α1...α` − εα1...α`). (B55)

Since m̄p
α1...α`

and εα1...α` may only be nonzero when the
LIOMs α1 . . . α` are located within a distance ∼ ξl from
each other, there are of order L2/a2 combinations of `
LIOMs for which m̄p

α1...α`
and εα1...α` may be significant.

Summing Eq. (B54) over these O(L2) combinations, we
obtain

κ` = −B0

∑
p

∑
α1...α`

a2m̄p
α1...α`

+O(L−1/2). (B56)

To obtain κ`, we use κ1, . . . κ` to express the sum of ε̃n−
εn over all `-particle quasienergy levels. An argument
similar to the one made in Sec. III C shows that the sum
of ε̃n − εn over all `-particle quasienergy levels yields

∑
n

(ε̃n − εn) =
∑̀
`′=1

(
D1 − `′

`− `′

) ∑
α1...α`′

κ` (B57)

Note, in particular, that the sum of ε̃n−εn over all single-
particle quasienergy levels is identical to κ1. Using that∑
n(ε̃n − εn) must be quantized an integer multiple of

2π/T (see Sec. III B 1 in the main text) along with an
inductive argument similar to the one below Eq. (18) in
the main text, we conclude that κ` must be an integer
multiple of 2π/T for each ` ≤ k.

Using inductive arguments similar to the ones em-
ployed above, using that Tr`′m̄p = Tr`′m̄q for any two
plaquettes p, q in the lattice, for any `′ = 1, . . . `, it fol-
lows that, ∑

α1...α`

m̄p
α1...αk

=
∑
α1...α`

m̄q
α1...α`

. (B58)

Using this result in Eq. (B56) along with L2B0 = 2π, we
thus find, for any given plaquette p0 in the lattice,

κ` = 2π
∑
α1...α`

m̄p0
α1...α`

+O(L−1/2). (B59)

We now consider how the right- and left-hand sides dif-
fer from their values in the thermodynamic limit, L→∞.
Firstly, m̄p0

α1...α`
is exponentially suppressed for all but

the
(
ξ2l /a

2

`

)
choices of ` LIOMs where all LIOM cen-

ters are all located within a distance ∼ ξl from plaque-
tte p0. Hence

∑
α1...α`

m̄p0
α1...α`

only depends on the de-
tails of the system near plaquette p, and therefore can
only differ from its value in the thermodynamic limit by
an amount of order e−L/ξl . From below Eq. (B57) we
recall that κ` is exactly quantized as an integer multi-
ple of 2π/T . Moreover, Eq. (B59) shows that κ` can
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only differ from
∑
α1...α`

m̄p0
α1...α`

by an amount of order

O(L−2). Hence, when L � ξl, κ` must be exactly iden-
tical to its value in thermodynamic limit. We conclude
that δ` ≡ κ` − 2π

∑
α1...α`

m̄p0
α1...α`

can only differ from
its value in the thermodynamic limit by an amount of
order e−L/ξl . Since δ` = 0 in the thermodynamic limit,
we find, for each plaquette in the system, p0,∑

α1...α`

(εα1...α` − 2πm̄p0
α1...α`

) = O(e−L/ξl). (B60)

Using M̄ =
∑
p a

2m̄p along with the LIOM decomposi-

tions in Eqs. (1) and (19), we conclude that Eq. (B52)
holds. This was the goal of this subsection, and concludes
this Appendix.


