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Abstract

Motivated by recent experimental progress in 2D magnetism, we theoretically
study spin transport in 2D easy-plane magnets at finite temperatures across
the Berezinskii-Kosterlitz-Thouless (BKT) phase transition, by developing a
duality mapping to the 2+1D electromagnetism with the full account of spin’s
finite lifetime. In particular, we find that the non-conservation of spin gives
rise to a distinct signature across the BKT transition, with the spin current
decaying with distance power-law (exponentially) below (above) the transition;
this is detectable in the proposed experiment with NiPS3 and CrCl3.
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1 Introduction

Progress in the experimental detection of the celebrated Brezinskii-Kosterlitz-Thouless
(BKT) phase transition has varied between the different types of physical systems. This
phase transition was one of the first example of the continuous phase transition outside
the Landau paradigm, involving not the symmetry breaking but rather the topological
defect pair unbinding. It was theoretically formulated for the 2D XY systems [1, 2], ex-
amples of which include the 2D easy-plane magnets and the thin films of superfluids /
superconductors. Experimental efforts have been devoted almost entirely to the latter,
e.g. Refs. [3–5], with only a few exceptions such as Ref. [6, 7]. By contrast, there has
been much less experimental study of the magnetic BKT transitions, not the least due
to the absence of good material candidate until the recent fabrication of the monolayer
van der Waals (vdW) material such as NiPS3 [8–10] and CrCl3 [11–14]; the latter in par-
ticular has been experimentally shown to combine a very strong easy-plane anisotropy
with a nearly perfect in-plane isotropy [12, 14]. However, experimental methods used so
far to probe 2D easy-axis magnetism such as the Kerr rotation [15, 16] and the Raman
spectroscopy [17,18] detects the long-range order parameter, making them unsuitable for
probing the BKT transition. Hence, to unambiguously detect the magnetic BKT transi-
tion in these materials, theoretical study of its phenomenology is required. For instance,
while the transport measurements have been often used to confirm the BKT transition in
2D superconductors, e.g. Refs. [4, 19, 20], the transport signature of the magnetic BKT
transition should be different as spin, unlike charge, is not conserved. However, this inter-
play of spin dissipation and the magnetic BKT transition has not been studied yet.

Related to the transport signature of the magnetic BKT transition is the issue of the
long-range spin transport in 2D magnetic insulators. The spin transport via collective
magnetic excitations may not show the exponential suppression in the long-distance limit
that characterize the single-electron spin transport in metals. One simple example of this
spin transport arises when there is a planar spiraling of the order parameter in magnetic
insulators with the easy-plane anisotropy [21–24]. Given that this order parameter requires
a spontaneously broken U(1) symmetry, a close analogy (summarized in Appendix A) can
be developed with the superfluid transport, which can be described by the gradient of the
U(1) phase of the condensate wavefunction [25,26]. While the realization of such superfluid
spin transport has been reported recently [27,28], there remains the question whether the
long-range spin ordering is a necessary condition. Given that the magnetic BKT transition,
unlike the three-dimensional magnet analyzed in Ref. [29], does not arise from the long-
range spin ordering, the answer to this question would determine the extent of both the
impact that the magnetic BKT can have on spin transport, and the applicability of the
2D magnetic atomic monolayer to spintronics [30,31].

In this work, we examine the possibility of the long-distance spin transport in prox-
imity to the magnetic BKT transition using the duality mapping from the 2D easy-plane
magnetism to the electromagnetism (EM) in the d = 2 + 1 spacetime [32–35]. This allows
us to both pursue close analogy to the current transport and pinpoint the difference that
arises when the phenomenological finite spin lifetime is inserted. We find that the super-
fluid spin transport, i.e. decaying algebraically with distance, persists below the BKT
temperature, while above the BKT temperature it decays exponentially with distance. In
particular, we identify the vortex-induced temperature dependence of the decaying behav-
ior of non-local spin-transport signal, which includes the previously known result for zero
temperature [22] as a special case. For the remainder, we will first review the dual d = 2+1
EM formalism and its application to the current transport near the BKT transition in the
thin superconducting film; then we will discuss how this transport result is modified for
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spin transport in 2D XY magnets near the magnetic BKT transition due to the finite spin
lifetime, together with the result for a realistic experimental setup.

2 Dual EM formulation of superconducting films

We first review the qualitative derivation of the transport near the BKT transition in the
superconducting films using the dual d = 2 + 1 EM theory [32–35]. We start with the
Lagrangian density,

L = 2π(−na0 + j · a) +
1

2K
(e2 − v2b2); (1)

n and j are the density and the current density, respectively, of superconducting vortices,
and v is the dual EM wave velocity. For L to be useful, the dual electric (e = −∇a0−∂ta)
and magnetic (b = ẑ ·∇ × a) fields together with the parameter K need to be defined.
The first step is to note the relation

n =
h̄

2πqK
ẑ · (∇× J) (2)

(where q = 2e is the charge of a single Cooper pair) between the Cooper charge current
J and the vorticity that holds at the long-wavelength limit (K is the phase stiffness).
Given that we want to map vortices to particles in this formulation, a natural course is to
figure out a way to make Eq. (2) equivalent to the Gauss’ law. This can be accomplished
by setting e = h̄

qJ × ẑ, i.e. taking the dual gauge field to originate from the Cooper
pair density and current density. This concisely expresses the equivalence between the
dual EM wave and the phase mode, e.g. the logarithmic vortex-vortex interaction that
Eq. (1) readily yields is identical to the integration of the Cooper pair current density
energy h̄2J2/2q2K between two vortices. The combination of the vorticity conservation
∂tn+∇ · j = 0 and the divergence of the London penetration in the thin film limit, which
leaves the phase mode gapless, we obtain for the vortex current

j =
h̄

2πqK
ẑ×

(
∂J

∂t
+ v2∇ρ

)
, (3)

which, by taking b = h̄
q ρ, is the equivalent of the Ampère-Maxwell law with ρ being the

charge density. 1 Lastly, the Cooper pair current conservation is the Bianchi identity for
constructing this dual theory, and therefore the Faraday’s law in the EM language:

0 = ∇× e +
∂b

∂t
=
h̄

q

(
∇ · J +

∂ρ

∂t

)
. (4)

Within the context of the dual d = 2 + 1 EM theory of Eq. (1), the effect of the
vortex-antivortex unbinding on the superconducting film transport is most clearly man-
ifest through the constitutive relation between j and e (that is, J). A single vortex is
phenomenologically known to have a finite mobility, i.e. v = wµe where w, µ, v are
the winding number, the mobility and the velocity, respectively, of the vortex [36, 37].
Hence, above the BKT temperature, where a finite density of free vortices is present, the
constitutive relation is

j = σduale =
h̄µ

q
nfJ× ẑ for T > TBKT , (5)

1From the fluid mechanic, the combination of the Euler equation and the gyrotropic effect ∂J/∂t =
−q∇P + 2πqKẑ× j, where P is the pressure, also gives us this result by noting v2 = q∂P/∂ρ.
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where σdual = µnf is the dual (or vortex) conductivity above TBKT, with nf being the
combined density of free vortices and free antivortices, that vanishes singularly on ap-
proaching TBKT as lnnf ∝ −1/

√
T/TBKT − 1 [36, 37]. By contrast, for T < TBKT, there

is no free vortex in absence of J, so j arises only through the vortex-antivortex unbind-
ing driven by J. In this case, one part of the vortex energy arises from the Cooper pair
current exerting the dual electric force, i.e. the J × ẑ Magnus force, on each vortex,
which pushes vortices and antivortices in the opposite directions with the strength pro-
portional to the Cooper pair current magnitude J = |J|. The other part is the attractive
vortex-antivortex logarithmic interaction, which is independent of J. Equating these two
energies give us the free energy barrier against the vortex-antivortex pair unbinding of
∆F ≈ πK ln(qK/h̄ξJ), where ξ is the vortex radius [38]. The resulting nf would be
proportional to exp(−∆F/kBT ) [36,37,39]. Combined, this gives us the low-temperature
constitutive relation of [36,37]

j =
h̄

q
σ̃dual

(
J

J0

)2TBKT/T

J× ẑ for T < TBKT , (6)

where σ̃dual and J0 are phenomenological parameters in units of the dual conductivity
and the 2D current density, respectively, below TBKT with the exponent coming from the
famous relation formula kBTBKT = πK/2. Through the DC Josephson relation E = h

q ẑ×j,
Eqs. (5) and (6) give rise to the experimentally observed [19, 20, 40] change in the DC
current-voltage relation at T = TBKT, i.e. the exponent in V ∝ Iα dropping from α = 3
to α = 1 [37,38,41].

3 Dual EM formulation of easy-plane magnets

Both the dual d = 2 + 1 EM theory of Eq. (1) and the constitutive relations Eqs. (5)
and (6) are applicable to the 2D easy-plane magnetic insulator [34,42] with the exception
for the finite spin lifetime, which we will show to be crucial in spin transport. As their
deconfinement drives the magntic BKT transition [2], merons are now the dual particles
of Eq. (1), i.e. n and j as the density and the current density, respectively, of merons,
with n 6= 0 only for T > TBKT. Starting from this identification, we will now explicitly list
as Eqs. (2a)-(6a) the spin analogues of the equations Eqs. (2)-(6) for the superconducting
films.

First, a meron represents the vortex spin-field configuration - an example being shown
in Fig. 1 (a) - and hence carries the quantized spin current vorticity [34, 43–45]. By
using the formal analogy (see Appendix A) between the charge current carried by the
Cooper pair condensate J = qK∇φ/h̄ (with K the phase stiffness and φ the Cooper-
pair wavefunction phase) and the spin current carried by the easy-plane order-parameter
texture Jsp

z = −K∇ϕ (with K the spin stiffness and ϕ the azimuthal angle of the magnetic
order parameter) and by considering that the vorticity is defined in terms of the gradient
of the dimensionless phase/angle variables (∇φ and ∇ϕ), we substitute on the right-hand
side of Eq. (2) h̄J/qK by Jsp

z /K to obtain

n =
1

2πK
ẑ · (∇× Jsp

z ) (2a)

(K is now the spin stiffness). Second, given that the dual EM wave from Eq. (1) now
should be identified with magnons and that the meron vorticity should be conserved due
to its topological nature, we now have a straightforward translation of Eq. (3) to

j =
1

2πK
ẑ×

(
∂Jsp

z

∂t
+ v2∇sz

)
, (3a)
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where the Cooper pair charge density ρ is replaced by the perpendicular spin density sz.
Similar analogy also holds for the constitutive relation as the average meron mobility is also
analogous to the vortex mobility, i.e. v = wµe [46,47]. While merons in ferromagnet have
transverse mobility arising from the core magnetization with a constant Hall angle [34],
their average effect cancels out in the absence of an external magnetic field which would
give us the zero average core magnetization [48–50]. We hence obtain the third equation for
the spin analogue - the Eq. (5) high-temperature constitutive relation in the 2D easy-plane
magnet language,

j = µnfJ
sp
z × ẑ for T > TBKT , (5a)

where nf is the combined density of free merons and free antimerons. Likewise, the fourth
equation is the Eq. (6) low-temperature constitutive relation,

j = σ̃dual

(
J sp
z

J sp
0

)2TBKT/T

Jsp
z × ẑ for T < TBKT , (6a)

as Jsp
z applies a purely Magnus force to each meron on average while the attractive meron-

antimeron interaction is logarithmic at long distance. Yet, the exact analogy between the
2D easy-plane magnet and the thin superconducting film stops here, for the spin in the
former is not conserved but has a finite lifetime τ in contrast to the charge in the latter.
This modifies the dual Faraday law into 2

−sz
τ

= ∇ · Jsp
z +

∂sz
∂t

. (4a)

4 Spin transport change at BKT transition

Due to this spin non-conservation, an analysis of the magnetic BKT transport needs to go
beyond the local relation between the spin current density and the spin torque gradient [51]
and compute the inhomogeneity of the spin current density and / or the spin density. Given
that leads are essential features of tranport experiments, Eq. (4a) means that, unlike in
the thin superconducting film, the inhomogeneity of both the spin current density and the
spin torque gradient is unavoidable. It determines the possibility of the long-distance spin
transport.

For the DC spin transport, a qualitative change in the spin current density inhomo-
geneity occurs at T = TBKT, 3 which limits the spin transport to a finite distance only
for T > TBKT but not for T < TBKT. We first note that when the T > TBKT finite dual
conductivity of Eq. (5a) is inserted into the dual Ampère-Maxwell law of Eq. (3a), the
DC terms give us the spin diffusion, Jsp

z = −(v2/µnf )∇sz. Diffusive transport, when
combined with the finite lifetime as in Eq. (4a), gives rise to the ‘mean free path’

λ0 =

√(
v2

µnf

)
τ = v

√
τ

µnf
, (7)

which in this case means the decay length for the DC spin current [57] from the following
equation

Jsp
z = λ2

0∇(∇ · Jsp
z ) for T > TBKT . (8)

2This modification implies the existence of a Rayleigh dissipation power density P ∝ sz
2, which has

no counterpart in the superfluid / superconductor. To obtain Eq. (4a), we need to write the Lagrangian
density L of Eq. (1) in terms of ϕ and sz, from which the generalized equation of motion ∂tsz = − δL

δϕ
−∂szP

can be obtained.
3For CrCl3 with its extreme easy-plane anisotropy, TBKT should be around its estimated magnetic

interaction strength ∼0.8meV≈9.3K [13].
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Figure 1: (a) The top and (b) the side view of the proposed experimental setup for
spin transport in 2D XY magnets. Spin is transported through 2D XY magnets such as
NiPS3 and CrCl3 that are encapsulated by the hexagonal boron nitride (hBN), which is
an experimental setup akin to what has already been used for studying 2D Ising magnets,
e.g. for CrI3 in Refs. [52,53] and for CrBr3 in Ref. [54]. The injection and the detection of
a spin current J sp

z are performed by using a heavy metal such as Pt as spin-current source
and drain (via the spin Hall effect and the inverse spin Hall effect), which is analogous
to the experimental realization of the injection and the detection of charge current in
monolayer and bilayer graphene using Au e.g. Refs. [55, 56].

We can see here that for T > TBKT, the range of spin transport is limited to a length scale

that is proportional to the average distance between free merons ∝ n−1/2
f , which diverges

upon approaching TBKT due to the same singular vanishing of nf as in the superconducting
film [51]. By contrast, below the BKT temperature, we obtain by combining Eq. (6a) with
Eqs. (3a), (4a) and retaining only the DC terms,(

J sp
z

J sp
0

)2TBKT/T Jsp
z

J sp
0

= λ̃2∇
(
∇ · J

sp
z

J sp
0

)
for T < TBKT , (9)

where λ̃2 = v2τ/σ̃dual. That the power-law ansatz Jsp
z = c(x + x0)αx̂ gives us a solution

to this equation with α = −T/TBKT indicates that the spin current for T < TBKT decays
algebraically rather than exponentially with the distance, giving us the superfluid spin
transport. This represents one of the main results of our work: 2D easy-plane magnets
support the superfluid spin transport not only at zero temperature [22] but also at finite
temperatures despite the lack of the long-range order so long as free merons are absent.
The power-law asymptotic solutions of Eq. (9) that accounts for a realistic spin-current
boundary conditions will be discussed below with a concrete experimental setup.

For an experimental setup to detect the predicted behavior of spin transport at the
BKT transition, we propose to utilize two heavy-metal leads with strong spin-orbit cou-
pling such as Pt or W (separated by distance L) to inject and detect a spin current as
shown in Fig. 1; we note that this setup has already been fabricated for the transport
measurement of a monolayer vdW material [54]. In this setup, the uniform DC charge
current density Jc along the interface (parallel to ŷ) in the left lead exerts the interfacial
spin torque via the spin Hall effect [58], which gives rise to the spin current flowing in
the x direction: Jsp

z = x̂J sp
z (x) (spin-polarized in the z direction). The injected spin is

transported through the easy-plane magnet with finite dissipation rooted in the finite spin
lifetime as well as the vortex interference. The output spin current from the 2D magnet
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flowing into the right lead induces the electromotive force via the inverse spin Hall ef-
fect [58], which gives rise to the inverse spin Hall voltage signal in the right lead. 4 For the
DC case, we have the following boundary condition, which supplements the bulk equations
shown in Eq. (8) (for T > TBKT) or Eq. (9) (for T < TBKT):

J sp
z (0) =ϑJc −

h̄g↑↓

4π
φ̇(0) = ϑJc + g̃

dJ sp
z

dx

∣∣∣∣
x=0

,

J sp
z (L) =

h̄g↑↓

4π
φ̇(L) = −g̃ dJ

sp
z

dx

∣∣∣∣
x=L

, (10)

where ϑ is the effective spin Hall coefficient, g↑↓ is the effective interfacial spin-mixing
conductance, φ̇ is the local spin precession rate and g̃ ≡ (h̄g↑↓/4π)(v2/K)τ parametrizes
the spin pumping at the interface within the spin Hall phenomenology [58]. To connect
the spin precession rate to the spin current derivative, we used φ̇ = (v2/K)sz together
with Eq. (4a).

10 20 30 40

0.025

Figure 2: The numerical solution of the differential equations for the bulk spin current
spatial variation Eqs. (8) and (9) and the boundary conditions of Eq. (10) for J sp

z (L)
and the sample length L; the black, the blue, the red, the green, and the orange curves
are for the temperatures T = 0, T = 0.9TBKT,, T = 1.1TBKT,, T = 1.2TBKT, and
T = 1.3TBKT respectively; we have set λ̃ = 0.1λ0 exp

[
π
2 (T/TBKT − 1)−1/2

]
(shown to

fit well with numerical calculation for TBKT < T ≤ 1.33TBKT) following Ref. [51] for
temperatures above TBKT.

The transition in the spin transport across TBKT can be seen in Fig. 2, which shows
our numerical calculation of the spin current J sp

z as a function of the distance L [Eqs. (8)
and (9)] with the boundary conditions of Eq. (10). Note that the decaying behavior of
J sp
z (L) does not look strikingly different between the T = 0 case and the T = 0.7TBKT

case, despite the long-range spin ordering that is present in the former but absent in the
latter. This result can be supported analytically, as the exact solution for the outgoing
spin current at T = 0 comes out to be J sp

z (L) = ϑJcg̃/(L + 2g̃) [22], while the general
asymptotic behavior below the BKT temperature for the outgoing spin current is

J sp
z (L) ∼ g̃

L
L−T/TBKT for T < TBKT , (11)

which we shall derive in Appendix. However, once the temperature is above TBKT, Eq. (8)

4Note that the relation between the interface spin torque and the spin current in heavy-metal / textbar
magnet junction is analogous to the relation between the interface voltage and the current in metal /
textbar superconductor junction [59].
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gives us a qualitatively different asymptotic behavior, an exponential decay

J sp
z (L) ∼ exp(−L/λ0) for T > TBKT . (12)

This should be readily detectable by the inverse spin Hall voltage in the right lead of
Fig. 1, which is proportional to J sp

z (L). The divergence of λ0 just above TBKT, as shown
in Eq. (7), should allow us to distinguish the meron contribution obtain here from the
thermal magnon contribution.

5 Conclusion

Transport signature of a BKT transition should arise from the presence (for T > TBKT)
or the absence (for T < TBKT) of the finite density nf of topological defects in any 2D
XY systems, yet we have shown that its manifestation would be different in 2D easy-
plane magnets due to the spin non-conservation of Eq. (4a), which contrasts with thin
superconductor / superfluid films possessing the charge / mass conservation of Eq. (4).
For the 2D easy-plane magnet, the main impact at TBKT lies in the transport range rather
than the disspation, which is present even at the low temperature and is the cause of the
spin non-conservation.

We expect our results to be relevant in any systems where the BKT transition occurs
but the analogue of the charge conservation does not hold. Recently, the spin superfluidity
in the spin-triplet superconductor has been analyzed with the effect of the spin lifetime
included [60]. Given the recent advance in fabricating the thin film samples [61–63], this
may provide us with yet another venue for detecting the spin transport described in this
work.

Lastly, it would be worthwhile to derive a more general dual theory for spin transport
which can include the breaking of the U(1) in-plane spin rotational symmetry that has been
assumed in this work. Physically, such symmetry breaking may arise from the additional
anisotropy within the easy plane, which may give rise to the critical barrier for superfluid
spin transport [21, 22] 5, or from the random anisotropy [66]. Such approach may benefit
from taking an alternative perspective within topological hydrodynamics, relying on the
conservation of topological charges rather than spins [67].
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A Analogy between 2D superconductors and 2D easy-plane
magnets

In this section, we discuss the analogous structure between the low-energy dynamics of 2D
superconductors and those of 2D easy-plane magnets by closely following the discussion
in Ref. [26]. The effective Hamiltonian describing a smooth change of the Cooper pair
wavefunction ψ =

√
ρ exp(iφ) is given by

Hc =

∫
dxdy

[
Kc(∇φ)2

2
+

(ρ− ρeq)2

2C

]
, (13)

where ρeq is the equilibrium Cooper pair density, Kc is the phase stiffness and C is the
capacitance. Here, we truncated the expansion at the leading, quadratic order in the
deviations from the equilibrium. The phase and the density are a pair of canonically
conjugate variables, and their Hamilton equations are given by

h̄
∂φ

∂t
= −δH

δρ
= −ρ− ρeq

C
, (14)

∂ρ

∂t
=

δH

h̄δφ
= −Kc∇2φ

h̄
. (15)

The first equation is the Josephson relation with the identification of (ρ − ρeq)/C as
the local non-equilibrium voltage. The second equation is the particle-number continuity
equation, from which the expression for the number current can be identified: Kc∇φ/h̄.
The corresponding charge current is given by Jc = qKc∇φ/h̄, where q = 2e is the charge
of a single Cooper pair.

Now, let us turn to the easy-plane magnets. The effective Hamiltonian for the low-
energy dynamics of the 2D easy-plane magnet is given by

H =

∫
dxdy

[
Ks(∇ϕ)2

2
+
s2
z

2χ

]
, (16)

where ϕ is the azimuthal angle of the order parameter within the xy plane, sz is the z-
component of the spin density, Ks is the spin stiffness, and χ parametrizes the magnetic
susceptibility. In quantum mechanics, the spin density sz is the generator of the spin
rotations within the xy plane, which, in the Hamiltonian formalism, corresponds to that
the angle ϕ and the spin density sz are a pair of canonically conjugate variables. Their
Hamilton equations are given by

∂ϕ

∂t
=

δH

δsz
=
sz
χ
, (17)

∂sz
∂t

= −δH
δϕ

= K∇2ϕ , (18)

where the spin dissipation is neglected. The first equation describes the spin precession
induced by the non-equilibrium spin density, resembling the Josephson relation. The
second equation is the spin continuity equation, from which the expression of the spin
current is obtained: Jsp

z = −K∇ϕ. Note that analogous structure between Eqs. (14, 15)
for 2D superconductors and Eqs. (17, 18) for 2D easy-plane magnets. In real magnets,
there is always finite spin dissipation and, at the simplest level, it can be accounted for by
adding −sz/τ to the right-hand side of the second equation, where τ is the spin lifetime.

By using this analogy between 2D superconductors and 2D easy-plane magnets, a
theoretical study of spin transport with the account of the finite spin life time has been
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undertaken in Refs. [22,23,59], but with no consideration of thermal vortices. A non-local
spin transport signal over a distance L between a spin-current source and a spin-current
detector is shown to decay algebraically |Jsp

z | ∝ 1/L at sufficiently low temperatures much
below the BKT transition [22]. In this work, we study spin transport at finite temperatures
with full account of thermal vortices, by extending the previous works.

B Analytic approximation of the spin current spatial vari-
ation

For T > TBKT, Eq. (7) with the boundary condition Eq. (9) of the main text can be solved
analytically as

J sp
z (L) =

4g̃

λ0
ϑJc

[
(1 + g̃/λ0)2eL/λ0 + (1− g̃/λ0)2e−L/λ0

]−1
, (19)

clearly giving us an exponential decay with L for L� λ0.
Meanwhile, for T < TBKT, we may use g̃/L as a small parameter and consider the

first-order expansion J sp
z = J̄ sp

z + (g̃/L)δJ sp
z , where J̄ sp

z is the solution of Eq. (8) with the
boundary condition Eq. (9) of the main text modified by g̃ = 0, i.e. J̄ sp

z (0) = ϑJc and
J̄ sp
z (L) = 0. This small g̃ limit then would give us

J sp
z (L) = −g̃ dJ̄

sp
z

dx

∣∣∣∣
x=L

. (20)

To obtain d
dx J̄

sp
z (L), we note that assuming ϑJc > 0, we can take d2J̄ sp

z /dx2 > 0 and
dJ̄ sp

z /dx < 0 for 0 ≤ x ≤ L, and so, by integrating Eq. (8) of the main text, we obtain

λ̃
d

dx

J̄ sp
z

J sp
0

= −

√√√√ 1

1 + TBKT/T

(
J̄ sp
z

J sp
0

)2+2TBKT/T

+

∣∣∣∣∣ λ̃ d
dx J̄

sp
z (L)

J sp
0

∣∣∣∣∣
2

.

We use
∫∞

0 dx/
√
xα + 1 = Γ(1/2− 1/α)Γ(1 + 1/α)/

√
π for α > 2 to derive

lim
L/λ̃→∞

L

λ̃

∣∣∣∣∣ λ̃ d
dx J̄

sp
z (L)

J sp
0

∣∣∣∣∣
1

1+T/TBKT

=
1√
π

(
1 +

TBKT

T

) 1
2+2TBKT/T

Γ

(
1

2 + 2T/TBKT

)
Γ

(
2 + 3T/TBKT

2 + 2T/TBKT

)
.

(21)
Eqs. (20) and (21) together gives us Eq. (11) of the main text.
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