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Abstract

We verify Standard Model Effective Field Theory Ward identities to one loop
order when background field gauge is used to quantize the theory. The results
we present lay the foundation of next to leading order automatic generation
of results in the SMEFT, in both the perturbative and non-perturbative ex-

pansion using the geoSMEFT formalism, and background field gauge.

Contents

(1__Introductionl
T SMEFT and geoSMEFT]|

13 Background Field Method, Gauge fixing and Ward identities|

4 Background Field Ward Identities|
4.1 SM results; Bosonic loops|
4.2 SM results; Fermion loops|
4.3 SMEFT results; Bosonic loops|
[4.3.1  Operator Q) gp|
[4.3.2  Operator Q) wl
[4.3.3  Operator Q) gwnsl
[4.3.4  Operator Qg p)
[4.3.5  Operator g0
[4.3.6  Operator Q)|
[4.3.7  Operator Qw|
4.4 SMEFT results; Fermion loops|
[4.4.1  Operator Q) gp|
[4.4.2  Operator Q) gwl
[4.4.3  Operator Q) gwp|
[4.4.4  Operator Qgp|
[4.4.5  Operator )y
4.4.6 Class 5 operators: )y pl
4.4.77 Class 6 operators: Q.5, Qin, Qusl
[4.4.8 Class 6 operators: Qew, Qaw, Quvl
4.4.9 Class 7 operators: Qire, QHu, Qird, & irudl
4.4.10 Class 7 operators: ng, Qg;

4.4.11 Class 7 operators: Qgi, Qg;

10
11
11
13
15
18
20
21
22
22
22
23
24
25
25
25
26
27
28
29

30



SciPost Physics

Di - 31
6 Conclusions| 31
[References] 32

1 Introduction

The Standard Model Effective Field Theory (SMEFT) [1,2] is a core theory for interpreting
many current and future experimental measurements in particle physics. The SMEFT is
defined by the field content of the Standard Model, including an SUp,(2) scalar Higgs
doublet (H), and a linear realization of SU(3) x SUL(2) x U(1)y symmetry. Operators
of mass dimension d are suppressed by powers of an unknown non-Standard Model scale
A4,

The SM treated as an EFT has both derivative and field expansions. The Higgs field
expansion plays an essential role as it can collapse terms in a composite operator onto
a target n-point interaction when the classical background field expectation value of the
Higgs is taken. This introduces modifications of low n-point functions, and the corre-
sponding Lagrangian parameters such as the masses, gauge couplings and mixing angles.
These modifications result in much of the interesting phenomenology of the SMEFT.

Actively organising the formulation of the SMEFT using field space geometry is ad-
vantageous. This approach is known as the geoSMEFT [3], and builds on the theoretical
foundation laid down in Refs. [4-10]. The geoSMEFT separates out the scalar field space
expansion (in a gauge independent manner) from the derivative expansion. This approach
naturally generalizes the SM Lagrangian parameters to their SMEFT counterparts, which
are understood to be the masses, gauge couplings and mixing angles on the curved back-
ground Higgs manifoldE The degree of curvature of the Higgs field spaces is dictated by
the ratio of the Electroweak scale v = /(2HTH) compared to the scale of new physics
A. The geoSMEFT enables all orders results in the v7/A expansion to be defined, due to
the constraints of a self consistent description of the geometry present in the theory, and
has already resulted in the first exact formulation of the SMEFT to O(v4/A%) [11].

Organizing the SMEFT using field space geometry can be done while background field
gauge invariance is maintained by using the Background Field Method (BFM). The BFM
is also advantageous, as then gauge fixing does not obscure naive and intuitive one loop
Ward-Takahashi identities [12}[13] (hereafter referred to as Ward identities for brevity)
that reflect the unbroken SUy,(2) x U(1)y global symmetries of the background fields. The
geoSMEFT approach was developed by first determining the BFM gauge fixing in the
SMEFT in Ref. [9]. The BEM Ward identities for the SMEFT were reported in Ref. [10].

Remarkably, the BEFM Ward identities are, for the most partE| the natural and direct
generalization of the SM BFM Ward identities; with the SM parameters generalized to
the curved field space Lagrangian terms in the geoSMEFT [10]. This supports the notion
that the use of the BFM in the SMEFT is of increased importance. When a field theory

!Generally the canonically normalised SMEFT parameters consistently defined on the curved back-
ground manifold of the Higgs are denoted in this work with a bar superscript, such as Mz — Mz, so — sg
etc..

2 An exception is the modification of the tadpole terms dependence in the SMEFT Ward identities, due
to the need to carefully treat two derivative operators involving the Higgs field.
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does not have a physical non-trivial background field configuration, the use of the BFM
is largely a choice of convenience in a calculation. In the SMEFT the physics is different,
as it is an EFT with a non-trivial background manifold, namely, the Higgs taking on
its vacuum expectation value (o7). As such, a BFM based approach to the SMEFT
naturally and efficiently organizes the physics that is present, at higher orders in the
power counting expansions, and the loop expansion. Considering the complexity of the
SMEFT, the cross checks afforded in this approach are quite valuable to validate results
and avoid subtle theoretical inconsistencies. Although subtle, such inconsistencies can
introduce violations of background field symmetries (i.e. make it impossible to consistently
incorporate the IR effect of the field space geometries) and dramatically impact conclusions
drawn from experimental constraints, which are S matrix elements that depend on a
consistent projection of the field space geometry. For a discussion on one such subtlety in
Electroweak precision data, with significant consequences to the SMEFT global fit effort,
see Ref. [14].

The BFM Ward identities constrain n-point functions and the SMEFT masses, gauge
couplings and mixing angles. As the higher dimensional operators in the SMEFT also
obey the SU(3) x SUL(2) x U(1)y symmetry of the SM, the one loop Ward identities
formulated in the BFM are respected operator by operator in the SMEFT. In this paper,
we demonstrate this is indeed the case. We explicitly verify a set of these identities
(relating one and two point functions) to one loop order, and demonstrate the manner in
which various contributions combine to satisfy the BFM Ward identities of the SMEFT
operator by operator, in a consistent formulation of this theory to O(v7./A? g%,,/1672).

2 SMEFT and geoSMEFT

The SMEFT Lagrangian is defined as

(d)
Lsvert = Lsm + LD, LD = Z 1&_4 di) for d > 4. (1)

The SM Lagrangian and conventions are consistent with Ref. [3,/15,16]. The operators di)
are labelled with a mass dimension d superscript and multiply unknown Wilson coefficients
C’i(d). Conventionally we define C’i(d) = Cl-(d)z_)%_4 JA9=%. The parameter o7 = \/(2HTH)
in the SMEFT is defined as the minimum of the potential, including corrections due
to higher-dimensional operators. We use the Warsaw basis [2] for £(®) and otherwise
geoSMEFT [3] for operator conventions. GeoSMEFT organizes the theory in terms of field-
space connections G; multiplying composite operator forms f;, represented schematically

by

Lsvprr = Y Gi(I,A,¢...) fi, (2)

where G; depend on the group indices I, A of the (non-spacetime) symmetry groups, and
the scalar field coordinates of the composite operators, except powers of D*H, which
are grouped into f;. The field-space connections depend on the coordinates of the Higgs
scalar doublet expressed in terms of real scalar field coordinates, ¢; = {¢1, P2, #3, ¢4},
with normalization

_ 1 |2 +igy

w
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The gauge boson field coordinates are defined as WA = {W!, W2 W3 B} with A =
{1,2,3,4}. The corresponding general coupling in the SM is a4 = {g2,92,92,91}. The
mass eigenstate field coordinates are A4 = {W+ W~ 2, A}.

The geometric Lagrangian parameters that appear in the Ward identities are functions
of the field-space connections. Of particular importance are the field space connections
hrj,94p which we refer to as metrics in this work. These metrics are defined at all orders
in the geoSMEFT organization of the SMEFT operator expansion as

y 02
his(6) = 9u LSMEFT

"0 5(D,0) 6(D, ) ’ @)

L(a,B)—0

and

_2guug¢7p 62£SMEFT
948(9) = — SWA WS

()

L(a,B:+)—0,CP-even

The notation L(«a,f---) corresponds to non-trivial Lorentz-index-carrying Lagrangian
terms and spin connections, e.g. (D*®)X and Wlf‘y. The explicit form of the metrics
are given in Ref. [3]. Here d is the spacetime dimension. The matrix square roots of
these field space connections are \/g ,, = (9ap)'/?, and Vhr; = (hy;)"/?. The SMEFT
perturbations are small corrections to the SM, so the field-space connections are positive
semi-definite matrices, with unique positive semi-definite square rootsE|

The transformation of the gauge fields, gauge parameters and scalar fields into mass
eigenstates in the SMEFT is given at all orders in the vp/A expansion by

WA,V — \/‘aABUBCAC,V’ (6
ot = \/g*PURSC, (7
& = Vi v b, (8

~—

ES

with A® = WHT W, 2, A), &L = {&+, &, x, H}. B¢ is obtained directly from o
(defined above) and Upc. The transformation of the quantum fields is of the same form.
The matrices U,V are unitary, and given by

1 1 —1 i

vz v 00 7z o 00

4 = 0 0 L L 0 o0
Upc = V2 V2 s Vik = V2 V2

0 0 cg  Sg 0 0O -1 0

0 0 —s5 ¢ 0 0 0 1

These matricies U, V are rotations; i.e. orthogonal matricies whose transpose is equal to
the matrix inverse. The short hand combinations

Ufj‘ = \/§ABUBC’7 (Z’{_l)? = UDE\/gEFa
A
V& =vh BVBC» VHE =VPEVhgp,

are useful to define as they perform the mass eigenstate rotation for the vector and scalar
fields, and bring the corresponding kinetic term to canonical form, including higher-
dimensional-operator corrections. As can be directly verified, the combined operation
is not an orthogonal matrix whose transpose is equal to the matrix inverse; i.e. leé, Vé
are not rotations. Although the transformation between mass and canonically normalized
weak eigenstates are properly and formally rotations in the SM, this is no longer the case
in the SMEFT.

3Note that \/§AB\/§BC =64 and \/HU\/EJK = L.

4
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3 Background Field Method, Gauge fixing and Ward iden-
tities

The BFM [17H19] is a theoretical approach to gauge fixing a quantum field theory in a
manner that leaves the effective action invariant under background field gauge transfor-
mations. To this end, the fields are split into quantum (un-hated) and classical (hatted)
background fields: F' — F' + F. The classical fields are associated with the external states
of the S-matrix in an LSZ procedure [20], and a gauge fixing term is defined so that the
effective action is unchanged under a local gauge transformation of the background fields
in conjunction with a linear change of variables on the quantum fields, see Ref. [19].

In the BFM, relationships between Lagrangian parameters due to unbroken background
SUL(2) x U(1)y symmetry then follow a “naive” (classical) expectation when quantizing
the theory. These are the BFM Ward identities. In the case of the SMEFT, the naive BFM
Ward identities of the SM are upgraded to involve the canonically normalized Lagrangian
parameters (i.e. barred parameters) defined in the geoSMEFT by using the field space
connections.

The BFM generating functional of the SMEFT is given by

Z[F, J] _ /DF det |:AgA:| 61’fdr4(S[F+F}+CGF+sourceterms)‘
AaB
The generating functional is integrated over the quantum field configurations via DF,
with F' field coordinates describing all long-distance propagating states. The sources J
only couple to the quantum fields [21]. The issue of gauge fixing the SMEFT in the BFM
was discussed as a novel challenge in Ref. [22] (see also Refs. [23}25]). The core issue
to utilizing the BFM in the SMEFT (to calculate complete dependence on IR quantities
such as masses) is to define a gauge fixing procedure in the presence of higher dimensional
operators, while preserving background field gauge invariance. Ref. [9] reported that such
a gauge fixing term is uniquely
£

[’GF = —géAing gB, gX = 8MWX“M - g)éDWEWD“u + 5 AXC(bI il[K ’?gJQZ)J. (9)

Here g and h are the background field values of the metrics, as indicated with the hat
superscript. See Ref. [9] for more details. This approach to gauge fixing has an intuitive
interpretation. The fields are gauge fixed on the curved Higgs field space defined by the
SMEFT (field) power counting expansion (i.e. in o7/A). This is done by upgrading the
naive squares of fields in the gauge fixing term, to less-naive contractions of fields through
the Higgs field space metrics gap, hrx. Such contractions characterize the curved Higgs
field space geometry the theory is being quantized on to define the correlation functions.
When the field space metrics are trivialized to their values in the SM: hr; = 677 and
gap = 6ap. The field space manifold is no longer curved due to SMEFT corrections
in this vp/A — 0 limit. The gauge fixing term in the Background Field Method then
simplifies to that in the SM, as given in Ref. [26-28].
The Faddeev-Popov ghost term, derived from Eqn. [9]is [9]

— - o
Lyp = — gapu” |=0%00 — 0 &pcWPH + WPH) + & WD g (10)
—&p R WD (WK + WEH) — ZQAD(W + 0N s bk A0 67) | uC.

Our notation is such that the covariant derivative acting on the bosonic fields of the
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SM in the doublet and real representations respectively is [9]

D'H = (O +19gW*"0,/2+1ig1ynBY)H, (11)
1
(D) = (or6h — §WA’”%{1,J)¢J, (12)
with symmetry generators for the real scalar manifold '71{17 j (see Ref. [3,9] for the explicit

forms of the generators). Here o, are the Pauli matricies and a = {1,2,3}, yp is the

Hypercharge of the Higgs field. The structure constants (that absorb gauge coupling
parameters) are

E‘%C = g9 6ABC, with 6123 = g9,
1 {ggfyij, for A=1,2,3

= 13
’VA,J 9171]47(], for A — 4. ( )
For infinitesimal local gauge parameters 0é.4(z) the BF gauge transformations are
Yha
5 i1 _5AA o 1T
¢ = —oat 24,
WA = —(06; + & WHH)sa",
) .osarAk L satAk
Ohry = hrky % + hik %,
3948 = doB Epa 68" + dac Epp 567,
6G* = —&%504G5,
Sfi =Ny 8’ f,
0fi =" [N, (14)

The BFM Ward identities follow from the invariance of I'[F’, 0] under background-field
gauge transformations,

ST[F,0]
o =0 (15)

In position space, the identities are |9

6T
Sl

0T b

SWh 2

o . _ . 6T or
J

The structure constants and generators, transformed to those corresponding to the
mass eigenstates, are defined using bold text as

1
c —1\C~ D /E I ~ A
eqy = U )a€ppUs Uy, YG,L = §7A,L Ug,
. —
Y= N Uy
The background-field gauge transformations in the mass eigenstates are
BACH = — |65 + € Gy AV 55C,

5K = — (VKL vEaNspY. (17)
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The Ward identities are then expressed compactly as |9

ar
§BG°

(18)

- 6T 5T A ;T .
- udAXuJFZ(fJ X’ch AXvJ'fj>_5A ey A = (VT kY eT.

ofi ACH SDK

In this manner, the “naive” form of the Ward identities is maintained. The descending
relationships between n-point functions encode the constraints of the unbroken (but non-
manifest in the mass eigenstates) SU(2);, x U(1)y symmetry that each operator in the

SMEFT respects.

4 Background Field Ward Identities

The results of this work are the SMEFT extension of the treatment of the Electroweak
Standard Model in the BFM, as developed in Refs. [26H33]. Our results (with appropriate
notational redefinitions) simplify to those reported in these past works in the limit o7 /A —
0. The background Higgs field H takes on this vacuum expectation value, while the
quantum Higgs field has vanishing expectation value

1[ @52jri¢31A} H(@):l[‘f’?“‘f“]
V2 (01 + ¢4 —ig3]’ V2 (91— ids
In the remainder of this paper we verify that a set of the Ward identities hold at

one loop order. This requires some notation. Our convention is that all momentum are
incoming (here denoted with k#*) and we define short hand notation as in Refs. [28-33]

H(¢r) =

7 Y7/ — Va ¥4 kj ,I{jy 7 Y7/ kl/ YA VA
—ilyV (k) = (—g,wk:2 + kyk, + g,wM?/) YV (—g,w + 22) AL 57 ¢Y9)
2F .
o ikHSAX (K2, (20)
S A D3
2 N
o ik SAT (K2, (21)
SAMSD4
§5°T 5°T . 54
— = - = k¥ |i Mz + 22X (k?)] 22
5B36 A3 5 A 553 322 )] 22)
_or ik? 4 i (k) (23)
SD35P3 ’
52P — HEVTF
5(1):‘:(”/\):‘:” vk [ w + (k >:|7 ( )
§°T v v WESF ;.2
SWEGHF ik [JF My + % (k )], (25)
°T 292 | s dTD 2
SD+5D-
T i(k2 — ) + o TH (k2). (27)
SHSH "
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The two point function mass eigenstate SMEFT Ward identities in the BFM are [10]

2
O — auA(;iFA, (28)
SAmEAY v
2
r
O — 8“#, (29)
SASD!
2 2
= aﬂﬁili — Mgz L (30)
SA3MGAYV I3y AYY
and
2 2
0= 0" fSFA — Mg fSFA : (31)
SA3RSD! JP35d!
Gz oI 3,3] 4,3] 3,4] [4,4]
I a0 (B Ry ) ],
2 2
SWERSAY Y dDEFAYY
52T 8T gy oT
0 0 5Wiu5q)1 2 W6<I>i6(131 + 4 P! (\[[4’4] + Z\[[4,3]) X (33)

[(\/E“’” VAR 2o/t 1 i\/ﬁp’”)ajf + (VAP VAP LRt 4 z’\/ﬁp’”)éﬂ .

To utilize these definitions, note that sign dependence of k* being always incoming in the
case of charged fields leads to several implicit sign conventions that must be respected to
establish the Ward identities. From these identities, it follows that

SEAR?) =0, n#4(0) = 0, (34)

S1 2 (k%) =0, £72(0) =0, (35)
and

SAX(k2) = 0, SAR(k2) = 0. (36)

Limiting the evaluation of the field space metrics to £(%) corrections in the Warsaw basis [2],
further identities that directly follow are

0= SZZ(K2) — iMzS2X(k2), (37)
0 = K2RZX(k2) — iNz SN (R2) + i %ZTH (1 - OHD) : (38)
and
0 = SV 12y £ Ny 2T (12), (39)
0 = K227 (k2) £ My SPFET (k2) £ %TH (1 — Cpo + Cff) . (40)

Note the appearance of the two derivative operators involving the Higgs field modifying the
tadpole terms TH = —ioT'/ 6H fixing the vev. It is important to include such corrections,
which are a consistency condition due to the background field geometry the SMEFT is
quantized on.
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Several of the remaining two point functions vanish exactly, and the corresponding
Ward identities are trivially satisfied. The geometric SMEFT Lagrangian parameters to
L) appearing in the Ward identities are the geometric SMEFT masses [15]

2.9
iy = 2L, (41)
S DU P PPN L o _ =
Mz = (9" +957) + 01 (91" +927) Cup + 50791 92 Crw s, (42)
C - C
mp =223 |1 —3=2 42 Cpyn — 22 )|, (43)
2\ 4
and the geometric SMEFT couplings
€= 7%9272 [ —‘319220HWB] ; gz = ?12+§22+%6HWB’
V91~ + 92 91” + 92 91° + 9o
(44)
91 =911+ Cup), 92 = 92(1+ Crw). (45)

These parameters are defined at all orders in the v7/A expansion in Ref. [3,/11], and we
stress the Ward identities hold at all orders in the v7/A expansion, and also hold for cross
terms in the perturbative expansion and v7/A expansion. As such, the Ward identities
provide a powerful and important cross check of non-perturbative and perturbative results
in the SMEFT.

4.1 SM results; Bosonic loops

We verify the Ward identities at the level of divergent one-loop contributions to the various
n-point functions. In the case of the SM, we confirm the results of Refs. [28-33] and
reiterate these results here for a common notation and due to their contributions to the
SMEFT Ward identities. We focus on two point functions involving the gauge fields due to
the role that the scalar and gauge boson field space metrics have as the field space geometry
modifies the Ward identities into those of the SMEFT. The results (using d = 4 — 2¢ in
dim. reg.) are

el - e (k)
s = o (47)
el - e ().
2w = o (19)




SciPost Physics

and
{22@ . 8k* (g — 4393) + 3(£ +3)v7 (g7 + 93)° (97 + 393) (50)
r Tsm 76872 € (93 + g3) ’
[Efz(kQ)_ y _ ( )0 ( 21567r 5)(91 2)7 (51)
szegy | _ &+ 3)ory/ 9t + 93 (g7 + 393)
( ). sM 12872¢ ' (52)
ek ~div g5(3(€ + 3)02(g3 + 393) — 344Kk?)
[EYW W]F(kz)_ s : T76é7r26 ; ’ (53)
13 1div 95 (€ + 3)v7(97 + 393)
[EEV Wqﬁ(k’%. sMo } 256T7r el ) (54)
S N div (& +3)ir(gi +393)
) IARA _ T WE (1.2 _ 9 1 5
[ ( ) SM [ (k )} SM 12872¢ ’ (55)
" 1 div I div
[EXX(kQ)_ s [E® * (kQ)} sM’ (56)
_ 1 [TH]di” &+ 3)k*(g1 + 393)
U SM 647m2e ’
(57)
) div  Un(3g} + 995 + 9677 + 12g2X¢ + g3 (693 + 4/\5)) (58)
SM 256 72 €

Reducing to the SM limit the SMEFT Ward ID (A — oo, vy — v) yields the correspond-
ing SM Ward ID, consistent with Refs. [28-33]. These expressions satisfy the SM Ward
identities. The fermion self energies in the SM, and the fermionic contributions to the
bosonic two point functions are suppressed here.

4.2 SM results; Fermion loops

Unlike the contributions to the bosonic one and two point functions discussed in the
previous section, the contributions from fermion loops depend on the number of fermion
generations. We discuss these contributions in a factorized fashion in the SM and the
SMEFT for this reason. The bosonic one and two point functions contributions in the SM
from fermion loops are shown in Fig. [I, which give the results

- 2 div 2 .2 32 k2
AA (1.2 _ 91 92
S (k) = T3, (9) 16727% (59)
- S SM (g1 +93) o€
roa = 1 div
SR, = O (60)
(¢ Az 2y] % 209792 — 129193 K°
YAZ (1.2 _ 1 2 61
RG] Y 9(g1% + g22)  16n% (61)
r s 1 div
S22 (k2 = 0 62
S| = o (62)
) P, 2 2
ARy 7 div 492 k2 Ncm 95
SWHW (.2 _ 29 NG w2
{ r o )y RRTEPD D vu (63)
ZW+W_ k2 'di’U qu mw g2 64
=) <>_SM——Z o (64)
[22’5’(1@2)' div 5gi+3gy K S m3, (91 + g3) (65)
T lsm — gi+ g3 36m2 ¢ 3272

10
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s, div N¢m (g2 + g3)
22,12 . ¥ \91 2
DA G —Z e, (66)
5 7 div 2 2
25012 . , Vo2 - VI T 95
[2 WA= - %: NEY o VIS, (67)
I 1 div A n div
2OV (12 = [V =3 NEYRer B 68
{ ( )_SM ( )SM %: ¢ wUT327r267 ( )
[zfd(kz?)_ weo_ K S ONLYE - o Y NGvE (69)
lsm 1672 ¢ " CY " 16r2e " c v
5676 (32)] K g2 Ut NEYE 7
[ ( ).SM - 167726%: T 26 ¥ (70)
. —3
H div . UT Wy A
[T }SM - _1671'26 NC Yl/J' (71)

Here Y, is the fermion 1) Yukawa coupling, and Ng = (3,3,1) for up quarks, down quarks
and leptons respectively. n sums over the generations and colours in each generation.
These expressions, consistent with those in Ref. [28-33] satisfy the SM limit BFM Ward
identities.

4.3 SMEFT results; Bosonic loops

Directly evaluating the diagrams in Fig.[1] with a full set of all possible higher dimensional
operator insertions, we find the following for the SMEFT. The results have been deter-
mined automatically using a new code package for BFM based SMEFT calculations to
one loop order. This code package is reported on in a companion paper [34]. The results
have also been directly calculated by hand independently in a cross check and verification
of the automated generation of results. In many cases, consistently modifying the SM
parameters into those of the geoSMEFT leads to some intricate cancelations in Wilson
coefficient dependence in a Feynman diagram, through modified Feynman rules in the
BFM, and subsequently in the summation of the diagrams into the two point functions.
Further cancelations, and non-trivial combinations of Wilson coefficient dependence, oc-
curs combining the full two point functions, with the geoSMEFT lagrangian parameters
that feed into the Ward identities. Such intricate cancelations follow from the unbroken
background field symmetries.

4.3.1 Operator Qyp

Defining the combinations of coupling which occur frequently for this operator as

(g1 +395)E+497 g5 (E—T)+8(91 +93)N)

Pé*HB = 3972¢ ’ (72)
Py = GOl 73)
Peup = wa (74)
. ™

11
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the two point functions in the SMEFT are

[ AA7.2y] % ~ 2 95 Pus
Y57 (kT)| = Cppk® 55—, 76
e, (97 + 93)° (70
roaa 1 div
EE) |, =0, (77)
[@AZ 20] 4 ~ Pt g1 92 P
sAZ 12" — _Cupk? [91 92 "CcHB CHE | 78
e, (97 + 932 "~ 2(91 +93) (7%)
25 7 div
T, =0, (79)
Foa A < div - 2 731 gQ 7)3 92 7)2
»22(x2)]" = Cun [kz 91 7cuB 291 7°CHB | 52 91 CHB] : (80)
I e (Gi+93)?  (gi+e) T 2
N 2 div _ 2 732
SEER)|, = Cupoh HELHE, (81)
léus = HB \/W 128 72
VET 2] 5 5 9195 (§+3)
SV, = Caprr TSR (83)
JEVF 74w X 50193 (E+3)
=), = Coe g (84
A 7 div [ div ~ 2 (£+3)
AR _ [E¢ W (1.2 } _ ~ 9192
[ ( )_ OHB ( ) OHB CHB or 647'('26 ’ (85)
N 7 div I div ~ £+ 3 3
[EXX(kQ)_ Gon = [Z‘D ¢ (kQ)}éHB =Cup gt [—kQ 392 T vTPéHB] ,
(86)
div S _
[TH] éuy — CHB 9t U7 Pems; (87)
O div PN div
[Ef““(kz)} . and [E“L“Z (k2)] _are exactly vanishing in the BFM, consistent with the
Cup CuB

PN div P div
BFM Ward identities. Conversely [E%A(kQ)]é and [Z%A(kz)]é
HB HB
k2, and only vanish as k> — 0. This is also consistent with the SMEFT BFM Ward
identities.
The remaining Ward identities are maintained in a more intricate and interesting
fashion. For example

are proportional to

_ 5 2 25 s di 200nT .. di
—'LMZEZX(kz) = — 91 + g3 vt [sz(k2)1| ~Z’U —3 g1 CHB ur [ng(k2):| s ,
2 Cug 2 g% —|—g§ SM
29 2 2 2/ 2 2
= gi (391 +593) | 91 (97 +393)
= —Cupvy(€+3
npr (§43) [ 256 72 € 25672 |’
2/ 9 2
S +2
— _Cyg v% (§+3)91(91 93) (88)

647m2e

div

which exactly cancels [Efz (k2)] c establishing the corresponding BFM Ward identity.
HB

Here we have not expanded out v, simply for compact notation. Expanding o7 out in
terms of the SM vev and corrections does not change the Ward identity for this operator.
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The manner in which the Ward identities are maintained in the SMEFT involves a non-
trivial combination of the appearance of the SMEFT geometric Lagrangian parameters in
the Ward identities, in conjunction with the direct evaluation of the one loop diagrams
in the BFM. In the later, one must expand out the dependence on corresponding Wilson

coefficient in the geometric SMEFT pole masses diagram by diagram.
Similarly, the following Z identity has the individual contributions

div

2 U1 g7 (E+3) (391 +593)

K | 02X (k2 = —iCupk

=K )]CHB iCrp Vet 1282

Sty [ i VIR i gy _giCnpur [z
z 2 Cusp 2 g%—i—g%

(89)

div
M

SM

— 9 2 2 ~
- 7 +3)(3¢2+5 Cup 5
— iCypk? IO (€13 B 92)—1 HBQ%U%\/9%+9%P§IB,

97 + 9312872 2
o CHBQ% [H]div
S )
2\/9i +93 .
.9z Cup o _ - Cupd? div
Z?TH = iy g%v?p\/g%+g%73§3+172 L [1T7]¢,,

VIi+ 93

that combine to satisfy the corresponding Ward Identity.
The charged field Ward identies are satisfied directly for this operator, as

Cus

SV I [ )] T =g
HB

and

K [ZW%‘(M)}M 42T [z‘f"@”(k?)}di” ~ L pHd g,

OHB 2 CiHB 2

4.3.2 Operator Qyw

Defining the combinations of coupling which occur frequently for this operator as

(g1 +395)E+497g5(E—T)+8(9i +93) N

1 _
Ponw = 3272¢ ’
P2 B+O2g1+39)
CHW 3272¢ ’
p3 _ 59t =376
CHW 487['26 3
i _ (997 +27g3) +12)¢
CHW 12872¢ ’
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Submission

the two point functions in the SMEFT are

S| 2 Gy i S PCm (98)
I o R+ g
rooa o 1 div
SPAR L =0, (99)
L 1Cuw
[wAZ 2\ ] % = Pt 9192 P¢
wAZ 2" — O k2 [91 92 Focrw CHE | 100
P 0o = O E @ v e T @) oo
A ~di
SRS = o, (101)
L 1Crw
L div : 2 pl 213 2 12
S22 = Cuw [/& 922PCHZWQ 2 g2fCH§V + o5 22 PCHW} , (102)
L 1Crw (91 + 93) (91 + 93) 2
A < div _ 2 7)2
SPERY)| . = Cawop %2 70w SHW, (103)
L 1Crw
5o o 4 - orgs (E+3)(Tgi +943)
ZX(1.2 _ T 92 91 92
{2 (k )_ G i Cuaw NI T (104)
- div N Pl P3 (g7 + 693) 95 (£ + 3)
Ewimﬁ )| - O |:k,2 T CHW_ 2.2 cHW | 52 Il 2) Y92 % 5
[ T ( )_ Crw AL R 2+ g3 12872 (105)
VA 1div 9 (g7 +693) 95 (£+3)
Ewiy\ﬁ k:2 _ 2 1 2/ 92 1
{ v W), = Cawor 12872 ! (106)
e adiv N div N (97 +993) 92 (€ +3)
W (52 - - [w Wt iﬂ — Cyy op A9 107
{ 5] e ), W or 12872 ¢ - (107)
“ 1 div S s div - § +3
K (12 _ [Eqﬁ@ 12 } _ 2 | _g3228 79 | 2 1
[ ( )_ G (k%) o Caw 95 |—3 392 T VT Pouw | > (108)
div = _
[T = Cuw 63 0 Plpw: (109)
PO div POgs div PO div PO div
[EfA(kP)} L= [Efz(k?)} . =0and [E%A(k@)} N [E%A(k:?)} _ have the same
CHW CHW C'HW CHW

dependence on k2 as in the case of Czg. The corresponding SMEFT BFM Ward identities

are satisfied in the same manner. Further, we find

. 2 25 . ; 24 = . ;
LiNRERRY) = VYit+g0r [Ezg(k%]df” .9 Craw r [ng(kg)r“’ ’
2 Caw 2 g% + g% SM
2 (7 2 2 2 (2 2
5 95 (Tgi +9935) | 95 (91 +393)
= —Cuwvp(§+3 110
W o (€ +3) [ 256 12 € 256m2¢ |’ (110)
- 2 9 2+3 2
= v (¢ + 320 30) (111)
6414 €
S div
which exactly cancels [Efz (kQ)} L
Caw
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In the case of Cgyy, the remaining Z identity has the individual contributions

5 . div
]{,’2 |:ZZX(]€2):| ) _ —ZC k,2 UTQQ (g + 3) (791 + 992) (112)
Cuaw g7 + 931282 €
_ . di 21 25 . 20 o o di
o [ ] = VLT [ Bt o
1 2

= 2 7 2 9 2 S
- A v 3 .CHW _ /
iC k2 T 95 (5 )( g1 92) i %U3 % §P4 ’

Vi + 951282 e 2

. C'ngg Hdiv
- | —— [ ] , (113)
2 g%+g§ SM
.97 H CHW 2 HWQQ [ div
=T = \/gl+g273HW+z (T ¢\, (114)
2 /g1 -1-92 SM

that combine to satisfy the corresponding Ward Identity.
A charged field Ward identities is satisfied directly, as

PO div div D PO div
WHW= 12 20T [« ¢+ 1.2 92vT ~ W= ot 12 _
ZETV B EYOw)] E O [BY )] =0, (115)

the remaining identity also requires the redefinition of the W mass into the geoSMEFT
mass to be established as

i div . ?+9g3 +3
52 [Ewﬂp (kQ)}C — Cuw k2 or h 19228)7.5226(5 )’ (116)
HW
_ A 2 ] P div Vo~ A sy div
Mo 282712y = 92U [ynd- &t ;2 g2 vt 2o ot 2
W[ ( )} 2 [ ( )}CHW + 2 Crw [ ( )}SM7
_ 924 mydiv | 92 rp _~ o (97 +993) g2 (£ +3)
- 2 CHW [T ]SM + [T ] CHWk vr 1287‘(26 ’
§2 H g2 ~ Hdiv 92 div
) ] = —5 Cuw [T ]SM—g[T ]OHW' (117)

4.3.3 Operator Qywn

The Wilson coefficient of the operator @ w p modifies the Weinberg angle of the SM into
the appropriate rotation to mass eigenstates in the SMEFT, given in Eqn. (@ The same
Wilson coefficient shifts the definition of the Z mass in Mz, modifies g7 to gz etc. The
various contributions to the BFM Ward identities combine in the following (somewhat
intricate) fashion. Again defining combinations of coupling which occur frequently as

(g1 +393)E+ 1295+ 492 g3 (£ —4) +8 (g} + g3) \)

Péaws = 3972 ; (118)
Péawp = B+ 5;(;52:— 293) ; (119)
Penwe = “(]%32_735%7 (120)
Pénws = Aot ;@i Ll (121)
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/'\\
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Figure 1: Two point function diagrams evaluated in the SMEFT. In each diagram, all
possible operator insertions are implied in the one and two point functions. Here long
dashed lines are scalar fields, including Goldstone boson fields, and short dashed lines are
ghost fields.
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the two point functions in the SMEFT are

rag 1 div - pl
ZA.A I{Z2 ) — _CHWB k2 g1 92 CHWB7 122
T s (97 + 93)° 122
ro~a 1 div
R 123
v R (g3 — ¢2) P
EAZ k2 ) - C k? |:_ 2 1 CHWB + 7)3 ’ 124
27 (k)] oo HWB 20 1 22 CHW B (124)
s o qdi
217 (k) é:WB =0, (125)
- - div N 731 k2 732
$2202]" _ ¢ [Jrkz CHWB 42 CHWB] ’ 196
277 (k) G HWB 91 92 R AT (126)
ross 1 div ~ 772
_Efz(k2)_ Cn Crrwp vy P27 CHWE QCHWB ; (127)
A 1 div ~ 5 2 2
[sz(kz) i — Gy L9192 (25 + 32) (391 + 592)’ (128)
1Cuwn \/gl—l—g212871'26
o 2] : K 0765 (E+3)
EWiW:F ]{72 _ T I2 12
{ UL E T ri s DTy (129)
VEWF () 2019 - 3 (£+3)
EWiWI 2 _ -2 9193 1
)] oy CHWEUT T (130)
T iy 1div P div ~ 2(6+3)
SV (12 = [V = Cawper T 131
{ 5 s F) HWBUT g  2e (131)
N 1 div AL a div - § +3
SO (k2 - =] -c — k2 b2 P
), ()|, = Cuwsgrg |~ K 55+ 0h Plu(f2)
div = _
[T, . = Crnwsg19207Pnw s (133)
Once again
PN div s div
)] =[] = (134)
HW B Cuwa
and the fact that
P div P div
[zév“(k?)} ok, [2%3 (k2)] ok
HWB HWB

directly establish the SMEFT BFM Ward identities involving the photon. Due to the
modification of the mass parameter of the Z to Mz one finds

3 2 25 . ; 2 _ ) .
SRR = - AR (=22 w919 Crwpor [525(:2) v
2 Crwnp 249 + 95 SM
ST 9192397 +5935) 9192 (97 + 393)
#wp r (6 +3) [ 256 2 € + 25672¢ )
2 2
A ) 9192(97 + 293)
frnd — JLJa\J]l ' =I2) 1
Crw o7 (& +3) =g (135)
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SN div
This combined result cancels [Efz(k@)} & exactly. A similar modification of gz to gz
in the SMEFT Ward identities in the BFf/leizsults in

5. div . 5 3 (3 2 5 2
2 [sz(kﬂ " — i Oy k2 LI (2€+ 2)( 91;' 93) (136)
Cawn Vo1 + 95128 €
_ . di 2 25 di C 0 di
i s - VTR [t ot (o)
179

. = o1 g192 (E+3) (362 +592) . Cuws ~
= iCywpk? ( ) 897 2)—1 91920%\/9%+9%7)?{W37

Vgi+93128n2¢ 2

. éHWB g1 92 1 div
— PR , (137)
291+ 93 T s
g C di
ZQZTH _ HW39192 /gl +g2 PHB‘H HWBgl 92 [T ] v (138)
2 2 91 + 92

The remaining two point function Ward identities are trivially satisfied for this operator.

4.3.4 Operator Qup

For all operators in the SMEFT, a consistent analysis of the effects of an operator is
essential to avoid introducing a hard breaking of a symmetry that defines the theory. The
two derivative Higgs operators in L) satisfy the Ward identities in a manner that involves
a direct modification of tadpole contributions. Including such effects in a formulation of the
SMEFT is essential, even at tree level, for the background field gauge invariance encoding
unbroken but non manifest SU(2);, x U(1)y symmetry of the theory to be maintained.
These symmetry constraints are the Ward identities.
We define for Cyp the short hand notation

2(93 +393) €+ (997 + 21 g3) +24 A

1 —
Peup = P19 , (139)
p2  _ 1591 +30g7 g5 +9gs — 608A — 4EA(g7 + 393) (140
CHD = 1024 w2 € ' )
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The one and two point functions dependence on Crp at one loop is

rosa 1 div
), =0, (141)
ro.oa 7 div
TR, =0, (142)
r .4 7 div ~
SAZ (12 — _Cypk?- 99 143
RG] Cun AD™ 799 72¢’ (143)
r .4 7 div
TR, =0, (144)
(22 ,.0y] = 2 g% 2 /2 2\ pl
SFEW)L = Cup Koy 6+ ) Phun) . (145
S 1 div -
_Efz(kz)_ eun Cup vt (97 + 93) Pbaup: (146)
5o o ]div . 3(g? +392) € + 1597 + 3392 + 48\
Z2%/1.2 _ 2 2 1 2 1 2
RRICOI iCup or\/g? + 63 o (147)
Y 1 div PO div . @2 (92 _ 92)
FWEWT (1.2 _ [ZWinF k2] — 3¢ 207 \92 — 91 148
{ (). v ) HD92 =956 72¢ (148)
T 1 div PO div - (92 _ 92)
nOTWT (2 — [2¢ W kﬂ — 3Cypop 29291 149
|: ( )_ C’HD ( ) GHD HDUT 1287['26 ’ ( )
A 1 div ~ 2 3 2 6 2 2 2 24\
[EXX(kQ) . — _k2Cup (97 +395)§ ‘;28(9; +2g5) + 7
-CHD <€
o~ 3g% (g% +292) — 2X\ (g7 + 3g3)¢ — 17672
2 1 1 2 1 2
C 150
+ vrtap 2567 2¢ (150)
SN L = 3(95—91) | o~ 9(gF+g5)° — 2560
S| = WO 2 L% 151
[ e, 6inZe | UrCHD 51272€ - (150)
di =~ _
[T, . = Cup v} Pépyp; (152)
N di
The photon Ward identities are trivially satisfied for this operator. As {E%Z (k:z)] éw x k2
HD

the remaining identity for EAZ directly follows. Further, Mz is modified by C up in the
geoSMEFT, and one finds the expected relationship

_ 5. 2 25 5. div C~’ v 5 div
iz = - VILTRI I g fgr 4 gD 2]

= —Cup 07 (91 + 93) Péups (153)

Cup

SN div
leading to the cancelation of [Efz(k:?)] &
HD
The remaining Z identity has individual contributions

_ . di a2 25 o di ~ 7 - di
—iNtz [SO(R?)| - _1'79“;92”7’ [ZXX(H)};’ —iy/g? + gchg’”T [EXX(kQ)]SZL,
HD
2 2 , - div
NIT Tt 95 oy div 2[2* 2}
= Y=z T~ — k2 | 2°X(k 154
VIS [t R (151)
. gZ H _ -V g% +g% H1div

that combine to satisfy the corresponding Ward Identity. The BFM Ward identity:
EEWW— + My SV 2" = 0, is directly satisfied for this operator. More interesting is
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the modified Tadpole contribution in the identity

0= kS 4 i, o® <1>+_%2TH <1_|_ZD)' (156)

The individual terms of this Ward identity, dependent on Crp expand out as

Ryvre g2 {Eww—}djv 7
Cup
s (g3}
= —3k? 1
3k*vr Cup 198 72¢ (157)
2 _ 2 2 232 2
_ - . - 5 9(97 +93)° — 256
M. ECP ot — C 3k2 (92 gl) 2 1 2 158
W YTHD 92 12872¢ T 102472¢ (158)
92 -l Cup _ 92 1 div g2 = 1 div
5T <1+4 ) = —E[T ]OHD_chD (T g0 (159)
and the Ward identity is satisfied as
= 9(gf +93)7 — 2560 4 o pdiv Cup 1 div
C - = [T"s, - [T g5 = 0. (160)

2 =3 C 3
1287%¢ v HD v

4.3.5 Operator Qyo

The one and two point function dependence on Cyry is

A B i B i B i
sfAE)| = [sMe)]L =[] = [sEe)]] =006
L 1Cun Cyno Cuno Cuno
o 1 div B ( 2+ 2)
ZZ012 _ 91 T 93 2 =2 ¢ 2 2
_ZT (k )-OHD = CHD73847T26 (4K + 907 (91 + 93)] , (162)
e diw - (P + 22
w22 (1.2 _ 2 (91 93 1
L) 3OHOVT g ra e (163)
5 7 div 2 2
212 3Gt 29T 92)
{2 ), 3iCruory/gf + g3 52 (164)
WEWF (52119 ~ 95 2 2.2
|:ZT (kﬁ )_ C~’HD = CHDm [4:143 + 992 ’UT] 5 (165)
~ ~ 1 div - 394 1—)2
YWEWT (1.2 _ 2 Ut 1
{ vk ).éHD OO g r2e (166)
L ~div A div . 3
$6TWT (1.2 _ [E¢fw+ 2 } _ _ 9 1
RG] ()], =-3Cuovr g, (167)
o 1div - 24 42 64 \2
S (2 = Cpp |-3K2 4 T%2 4 52 168
{ ol "o [ 3272 T 302 | (168)
e ooqdiv . 2 64 \2
Eq)+¢, kQ _ . k2 92 =2 1
[ ( ) Cuo Cro | =3 32n2¢ T 3052 | (169)
, 4 2 92 4 2 2 2
mdiv = 3397 +69795+9g5 +608 " +4NE (g7 +3g5)
[T ]GHD = Cuynvy 5562 ¢ (170)

For @y the identities involving the photon are trivially satisfied. The identities without
a tadpole contribution are also directly satisfied for this operator. For the identities
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involving a tadpole contribution, the dependence on Cgr combines to satisfy the BEM
Ward identity as

A div ~ ( 2+ 2)
2 [sZ%/1.2 _ . 2 - 2, 29179
R[S0 = —3iCunk?or /ot + a2, (171)
. o div = 24 g2 64 \?
Mz [zxxug?)] = —iorCuoy/? + g2 {—319 96% 472962 + 0} 2| (172)
= 2 2 . 2 2 .
. = NIt d V9]t = d
i —QQZTH(l —Chpn) = i 7912 92 [TH]GZZD —i 7‘(]12 % Cun [TH]) 60

s e A2
= i Cyn vy \/ 93 + 93 . (173)

and the individual terms in the corresponding charged field Ward identity, dependent on
Cyn expand out as

@ o G o
M [Eé_ﬂdéi:g = Cuoor [_3 K 649326 o7 6?49;212 ! (175)

~LrH (1= Cpp) = 2PN+ L [T
2 (176)

4.3.6 Operator Qg

The operator Qg leads to a modification of the vacuum expectation value in the SM
into that of the SMEFT. Qg also contributes directly to the Goldstone boson two point
functions, and generates a tadpole term at one loop. It follows from the results in Ref. [10]
that for this operator
2y 2 qdiv . .7 div div
ndte } - [EXX} — op [TH]%Y 177
[ Cu on = Lo ()

and we find this relationship holds as expected, with

= . 1
Oy 12872 € (178)

[E@@—]dw 3CH v} (64X + (g +393) §)
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4.3.7 Operator Qw

Submission

The two point function dependence on Cyy is entirely transverse and is given by

A4 (2)
A ()]

540)

=227)

ST (12) ]
[

{225‘(13)-

(7]

1div

div

Cw

P div IS div PO div
_ AZ 12 _ |yvZ22/12 [y WEWTF 52 _
= [5£20)], =[50, = =P =o0.0m9)
3Cw g2 k2
= I 30| R (180)
8m2e(g; + 95) | 07 |
~ 2 r k2'
— _—320W291 1362 —2°-| k2, (181)
8m2e(g1 + 93) | v |
3Cw g3 k2
= 32| (182)
87 6(91 ‘|‘92) L U |
36%V92 2 k? 2
= - —2- |k 1
8m2e [3 2 o7 ’ (183)
24aa div div P div
_ FTW— (1.2 — [yxx (22 — |n®teT (g2 =
[z (k )]éw [2 (k )}OW [z (k )}OW 0(184)
= 0. (185)

As the contributions from this operator come about due to field strengths, which limits
the Helicity connections, the results are purely transverse, and also proportional to k2.
The overall coupling dependence also directly follows from rotating the fields to mass
eigenstates. For this operator, the SMEFT Ward identities are directly satisfied.

4.4 SMEFT results; Fermion loops

4.4.1 Operator Qgyp

27 (k)

[2202)

[m720)

Cup

55 qdiv

=22,
P 1di

V)]

-éHB

[25’*(#)_ w

1CuB

1 div

[anﬂ/v (k?)

1Cup

1 div

1Cup
[AA 7.2,]4
(k)

L 1CuB
[wAZ 12y] %
S5k .

L 1Cup
1 div

1Cup

= Cun 9i 95 64 k?
(934 93)* 9 16m2e

~ g1g2 4
= CuBr5 53¢
(91 +93)% 9

(591 + 1897 g5 —

k’2
395)

1672¢ "

(186)
(187)
(188)

(189)

m; 1672¢

8Cyp k2
—CHBZNw il —f—( LR

Nwm g?
Nomy 91
*CHBZ 1672c

div div

o <k2>} ]

Cun Cus

LA 91 or P
i1Cyp N¢ Y2,
32m2¢ \/g1 —1—92 Z ¥
(1.2 . H d~zv .
R )]OHB =[5 =0

22

9 167m2e

- [EQ“W’ (/ﬁ)}

g3 (591 + 10g% g3 — 3g3)
(91 +93)?

div

Cus

)

(190)

(191)

=0,
(192)

(193)

(194)
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Most of the BFM Ward identities are trivially satisfied. These contributions come from
rescaling of SM results to the two point functions through fermion loops. An interesting
case is the Z Ward identity where the geometric Z mass dependence on this Wilson
coefficient plays a role

S22 iyt _ [232] div i Cppgior [Ezﬂ eV g1 + 951 [sz] div
L z - S, N SM 2 Cup’
HB 2 91 + 95 HB
~ 0. (195)

4.4.2 Operator Qgw

v

RARCE P WG+ g3)? 9 T6m2e .
roaa 1 div
L 1 Crw
roas qdiv ~ 4 k2
ZAZk,Q = —-C %7 5 1422_34 T o 198
) (E+ 3)? 5 5 (591 — 1491 95 = 3¢3) o aom,  (198)
roas 7 div
E,LélZ(kQ) ) — 0, (199)
L 1Crw
. div 8Crw k*n '\ g3 (591 — 697 g5 — 393)
w22 k2:| - _¢ Nw 2 95 _ 2 \991 192 2
el Ne, HWZ "M 162 9 1672 (97 +3)°
(200)
s s div Nwm g3
w22 (1.2 } - _0 0 W I2 201
[L( )OHW HWZ T6m2c (201)
NI div g SCEHV k%*n
F?‘N(Hﬂ@m = _CMVE:Nwmim; +< 3 g%&ﬁﬁ’
P
(202)
L -OHW - HW 167T2 ’
7 div
|:E¢+¢ (]{32> ) _ O, (204)
1Chrw
- 1 div - div
W (12 = - {W’W* k2 } =C NEYZor 2, (205
[ ( >.CHW ) sar w2 NG Ve P09
{Eéx(k2>'dw Crw Y NEYZ0 9 (206)
- = 1 v 3
Jowe TGO Tnne/id g
N 7 div div
YRX (2 = [TH]Z° =o. 207
|: ( )_ éHW [ }CHW ( )

23



SciPost Physics

Submission

The BFM photon Ward identities are trivially satisfied. The remaining Ward identities

we examine work out as

272 — iMzxPx

[Zéé} div i Cw g3 vr {sz} div.ir/gi + g3or {sz} div
L Cuw 2 g% + g% SM 2 Cuw
0, (208)

R2SEX il S5 Y2 Gy 2T QZNgyj -| X"}dw b [
= 2 HW 92 + g2 1672¢ SM  Up sMm|”
0, (209)
SWEWT g s WTeE {Ew&w;rw L 9201 [EWﬁﬁri” + Gy [Ewwirw
L L CN’HW 2 C~’HW SM ’
0, (210)
s _ sl G vear1div Cuwge [ - ey div div
2yWEST L o s 0FeL 92 pH 12 [Ewiqﬁ} SHW 92 [ [Eé d ] TH
w ¥ 3 CHVI/F 9 ur SM$[ Vs )
0. (211)
4.4.3 Operator Qywp
roa . 1 div ~ 3 g3 64 ]432
s AA ()2 _c I 212
R ( )_ G HW B (2 + g2 9 1672 n, (212)
ros» 1 div
»pAR)| 0, (213)
L - CVHWB
. 2 div 5 2 2 32 k2
YAZ (1.2 9192 94 9 9 214
=7 ( ) Cuws Hwe (gl +g%)2 9 ( ! 92) 16m2e (319
r o~s 1 div
S2E(R)| 0, (215)
- - CHWB
s o 1div . 64Crwp k> n 9195
[ ()] Crws HWB%: M6z 9 167% | (gf +92)‘21’)
25, 5. 7div NEm2 9195
[EL (k ) Cows ~Crwp Z 1672 (217)
i di
[E?ﬁw )] _ {EEWW (k:Z)} oo, (218)
—CHWB C1HVVB
qdi SA di
wn] =[] =0, (219)
—CHWB CHWB
5 1 div ~
sZ% (2] — iCywg Y NYYZop 192 , 220
[ ( )—CHWB %: C¥ 327m2e\/g} + g3 (220)
1 div ;
R (1.2 H
[Exx(k )- Cuws - [T ]CHWB - (221)
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The BFM Ward identities involving the photon and charged fields are trivially satisfied.
The remaining identities of interest work out as

Y22 _yrayEX [222] div V91 + 9307 [ zx} div LA g1 g2vr
L —wMz = —i—— |2 —iCypwp——F—
Cuwn 2 Cuws 24/ g% + g%
= 0,
5 . _ “n a div ~ . .7 div :
k,QEZx_ iMz XX 4 gﬁTH — k‘ [sz} _ Z'CHWB% [5T [EXX] _ [TH] flqz;\)/[
2 Curw NG su
= 0.

4.4.4 Operator Qup

For this operator the non-zero divergent results for the fermion loops are

[222(1{2)}&” i Cppip VI 5 Z NS Y2, (224)

Cup 12872¢
N div CN'HD’U CHD
XX ()2 } - T NT NSy g2 NYY2, 295
[ ()(}HD 32w2e%:cw 322%301/’ (225)
TH div I OHD TH div 296

Only the Ward identities involving the Tadpole contributions are non trivial for this Wil-
son coefficient dependence, and these results combine with the SM divergent terms from
fermion loops to exactly satisfy the Ward identities.

4.4.5 Operator Qyn

The fermion loops are simple for this operator, with only the Tadpole being non-vanishing
when considering divergent terms at one loop

(1" G0, = Cro [17] 53 (227)
so that
TH (1 - (?HD) =0. (228)

4.4.6 Class 5 operators: Quy

Class five operators (in the Warsaw basis, see Table 1)) can act as mass insertions and
also lead to direct vertex corrections emitting goldstone bosons. In addition, a four point
interaction is present that is not present in the SM which contributes to two point functions
through a closed fermion loop, as shown in Fig. [1l We define the mass eigenstate Wilson
coefficients

pr

with the rotation between mass (primed) and weak eigenstates

Yiyr = UMW, LIRW), g (230)
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=
|

div
?

SM
(222)
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where the fermion sum is over ¢ = {u,d, ¢} and p,r sums over mass eigenstate flavors.
The contributions to the one and two point functions are

div

i A ] div P 5 div P div
)L = [ = s =[] = oesy
1Cyu Cyn Cyn Cyn
ARy 7 div [ Ayt Ay— div Nd} 2 92 ~
SV (g2 — [ow kQ} N Ry e 232
S, = P, =G Y Ol (22)
IS 1 div r 55 div Nd) 172 (92 —|—92) ~
w22 :2y]° — [n2242 } R cr TRy 9233
SR, = [, sire VoGl (23)
TN NE o /9 + 63 ~
»EX (K2 = —i ¢ LRy, Cy, 234
=7 Con D w (20
AR, 7 div [ div wa;ng ~
B AR AT [W Wt k2]~ N 92y e 235
[Ewkz)-dw B Ek?]\ﬂ” & Z3N§@TY o (236)
1éym 1672 ¢H — 167% LA~
Ay a_ 1 div k Nw 3N¢@2 B
20Tk L = — ¢y, C SC Ty O (237)
[ 1¢un Z 1672¢ ;/) wH Z 1672¢ ]% ’f,g
v
1 div . SNCUT
[T, = %167@6 Yw Cu;)g (238)

The Ward identities are satisfied in the same manner as those in the SM involving fermion

loops.

4.4.7 Class 6 operators: Q.p, Qin, QuB

Class six operators (see Table only act as vertex corrections. We define the mass

eigenstate Wilson coefficients

Cip =U' (¥, L) CypU(t), R), (239)
pr
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and find

[2f402)

24 02)

57 ()

[(ZF5 )]

SOV ()]

[2502@2)}

Cl

C”«/

div

!

VB

div

B

div

Y B

Submission

= [=£20)]

div

/

YB

g1 93 k?

go k?

(97 + g3)4m2e

(97 + g3)32m% |

div
=0,

div
C;B

= [sven], =[5
(240)

[Qe Ye Clp4+QuN.Yq Chp +QuN.Yu C' 5+ h.c.] ,
PP pp PP pp PP pp
(241)

(93 —7g3)Ye Clp+ (1397 —32)Yu Ol + h.c.] ,
pp PP P p

g2 k? [ o 2 2 %
07+ g2)32n% _(3 9 — 591)5;% 0%5 + he| (242)
g1k | =, g3 —54¢7)Ne,, -~
(7 & o216 (393—95)1;~;Cé3+ 2 3 ! Y;;;)C;B—f—h.c. ,
1 2 L pp pp
kQ r( 2 _ 3 2 N. 5
. 912 (91 93) Cy, Gl + hec.| | (243)
(gl + 92)1671'26 L 3 PP pp
= [eE)]L =[]l =[]l =0
C&)B C{DB C&,B
(244)
htdh— div div
A k2] = [TH1%' =o. 245
=), =1, (245)

Here Qy = (—1,—1/3,2/3) for ¢ = (e,d,u). As the non-vanishing divergent results are
purely transverse, the SMEFT Ward identities are trivially satisfied. A subset of these
results can be checked against the literature, and they do agree with Ref. [35].

4.4.8 Class 6 operators: Q. , Qaw, Quw

We define mass eigenstate Wilson coefficients in the same manner for this operator class

and find

RGN

=],

PpW

div
ol
YW

=42 (6]

RGN

RGN

g3 g2 k?

(97 + g3)Am2e

g1 k?

(97 + 93)32m%

ga k?

g2 k?

(97 + 93)167%€

go k?

2 2 ~
7+ )aante |01~ TV C&W—I—h.c},

2 2 ~
0+ g)ionze |91 394 cgwm.c},

o=,

Cfpw W

{E}/}ﬁyﬂ/*(kg)} o,

(246)

[Qe Ye Gl + NeQaYa Clyw + NeQuYu Clay + h.c.] ,
pp

pp  pp pp

(247)

(347 — 595)Y;)ep Clw+(5g2—11 g%)qu% Clw + h.c.] ,

pp pp

(248)

pp  pp

(39f = 92)Ve Cow + (597 —393)Vu Clw + h.c.] ,

pp P

(249)

pp pp
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ARy div k2 ~
W 2y | - 9y [UpMNS Cly Ye +h.c} 250
[ T )}Cfpw (91 + 93) 1672 b g pa (250)

g2 k? |: =/ =
—————— |NoVorxm Cu Yu +NecVerm Cow Ya + h.c.] ,
(g% -+ g%) 16 7'1'2 pr r‘gl raq pr dr‘/;/ pq
5. div ALa div Y div
[22X(k2)} o= - [2¢*W (k:Z)} o= [z¢ W*(k@)} ) (251)
CLW C;pw Cfpw

N div LAl div div
K kQ}N [2¢*¢ 2 } R /A A L 9252
[ ), W), =g, (252)

Once again, the non-vanishing divergent results are purely transverse, and the SMEFT
Ward identities are trivially satisfied.

4.4.9 Class 7 operators: Qpe, Qrus QHds QHud

For this operator class, we define the mass eigenstate Wilson coefficients
é}{dJR =u' (v, R) éHwR U, R), (253)
pr

and note that only the flavour diagonal contributions » = p contribute at one loop due to
the lack of flavour changing neutral currents in tree level couplings in the SM. Directly we
find

s s 1 div P div
A= s = (254)
- - H'L/JR Hz/)R
r +5 7 div k2 ~ ~ ~
E%Z(kQ) i — _9214922 I:Qe C}{e + N.Qy Cllqu + N¢ Qq C}{d , (255)
- 1Chyp e pp pp pp
- R ~di
272 (k%) C = 0, (256)
I 1Cmy,
2 -9
PO 1 div - g5 NC U Yd Yu
AARIIN= = —Cl VA rr PP 4 he., 257
[ T ( ) Crro hlr#d C;ID(TM 6472e + h.c (257)
2 9
L < div _ 95 Ncv7Y g Yu
SV ()2 = -C V& rr PP 4 e, 258
[ L ( )_ Crro h}T#d Cé(rM 6472e + n.c (258)
22,01 g% k? ] =1 =
[ET (k)] . = TonZc |:QECH6 + No Qu Chpy + Qq NCCHd:| (259)
1CHyp mee PP PP PP
2 2y 2
+ w [C}{e Y2 — No Gy Y2 4+ No Clyy Yﬁ} , (260)
16me pp PP pp PP pp pp
22 ,,2\]% (9%+9§) @72“ ] 2 2 2 ] 2
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A ~di 2 2~ N - B
[EZX(kQ) S 7V91+292”T [C’}{e Y2 — N Cly Y2 + Ne Clyy Yﬁ} . (262)
1CHyp pp PP pp PP pp PP
SN 5 y2 = o | K
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1Cryp pp PP pp PP pp  pp) A€
N 1 div div ~ g2 NC ’UTY Y
=0V (12 = [V = -Chate I e
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(264)
F+é— 219 ) No¥q Yo
20T (o } — Ol Ve —TT P e 265
=0 Gt HudVCKM ™ grze T (265)
H1div .
[T] Crrgy = O (266)

These results directly satisfy the corresponding SMEFT Ward identities.

4.4.10 Class 7 operators: ng, Q(l)

For the left handed fermion operators in this class, we similarly define the mass eigenstate
Wilson coefficients

O =ut (v, L) O Uy, L). (267)
p’!"

Again, only the flavour diagonal contributions r = p contribute at one loop due to the
lack of flavour changing neutral currents in tree level couplings in the SM. We find

P 7 div AA div
S (k?) N {EwaQ)]é'(l) =0, (268)
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CHyr, CHyy, L

Again the SMEFT Ward identities are directly satisfied by these expressions.
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4.4.11 Class 7 operators: ng, QS()Z

In this case one finds
1 div
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Again, these results directly satisfy the corresponding SMEFT Ward identities.
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5 Discussion

Theoretical consistency checks, such as the BFM Ward identities examined and validated
at one loop in this work, are useful because they allow internal cross checks of theoretical
calculations, and provide a means of validating numerical codes that can be used for
experimental studies. This is of increased importance in the SMEFT, which is a complex
field theory.

It is important to stress that the Ward identities are always modified transitioning
to the SMEFT from the SM, but the nature of the changes to the identities depends
on the gauge fixing procedure. If the Background Field Method is not used, then only
more complicated Slavnov-Taylor [36-38] identities hold. These identities also necessarily
involve modifications from the SM case due to the presence of SMEFT operators. The
derivation in Ref. [9], that is expanded upon in this work, should make clear why this is
necessarily the case. The identities are modified because the Lagrangian quantities on the
curved background Higgs manifold’s present, that the correlation functions are quantized
on, and related in the Ward or Slavnov-Taylor identities, are the natural generalization of
the coupling constants and masses of the SM for these field spaces.

To our knowledge, the first discussion on the need to modify these identities in the
SMEFT in the literature is in Ref. [39], and this point is also consistent with discussion
in Ref. [40,41], which recognizes this modification of Ward identities is present.

In the literature, one loop calculations have been done in the SMEFT within the
BFM [1522/35,42-46], and also outside of the BFM [23//40,41,47-53]. It is important, when
comparing results, that one recognizes that radiative scheme dependence, includes differing
dependence on Wilson coefficients in the two point functions. These functions differ in the
BFM in the SMEFT, compared to other schemes, because the corresponding symmetry
constraints encoded in the Ward identities or Slavnov-Taylor identities also differ. Scheme
dependence is manifestly a very significant issue in the SMEFT when seeking to build
up a global fit, which will necessarily combine many predictions produced from multiple
research groups. It is important that scheme and input parameter dependence is clearly
and completely specified in a one loop SMEFT calculation to aid this effort, and one
should not misunderstand scheme dependence, and equate differences found in results in
different schemes with error when comparing. In this work, we avoid such an elementary
mistake. In any case, we stress again that in the SMEFT, in any gauge fixing approach,
the Ward identities, or Slavnov-Taylor identities, necessarily differ from those in the SME]

We also emphasize the appearance of the two derivative Higgs operators in the Ward
identities, modifying the tadpole contributions. This is consistent with, and an explicit
representation of, the discussions in Refs. [16,[54,55]. The subtle appearance of such
corrections again show the need to take the SMEFT to mass eigenstate interactions in a
consistent mannerﬂ A consistent treatment of the SMEFT to all orders in o7 /A [3] while
preserving background field invariance leads directly to the geoSMEFT. This approach also
gives an intuitive interpretation of how and why the Lagrangian parameters are modified,
due to the presence of the curved Higgs field spaces modifying correlation functions.

6 Conclusions

In this paper we have validated Ward identities in the SMEFT at one loop, when cal-
culating using the Background Field Method approach to gauge fixing. These results

4For an alternative point of view on these issues see Ref. [49)
5Tt is interesting to compare the treatment of such effects in this work to Ref. [56]
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lay the groundwork for generating numerical codes to next to leading order in both the
perturbative and non-perturbative expansions in the theory while using the Background
Field Method in the geoSMEFT. The results also offer a clarifying demonstration on the
need to carefully define SMEFT mass eigenstate interactions, to ensure that the theory is
formulated in a consistent manner. Utilizing the Background Field Method is of increased
utility (in the opinion of the authors of this paper) in the case of the SMEFT, as this is an
effective theory including a Higgs field. Any correct formulation of the SMEFT is consis-
tent with the assumed SU(2), x U(1)y symmetry at one loop, and this can be checked by
comparing against the Ward-Takahashi or Slavnov-Taylor identities. We encourage those
developing alternative formulations of the SMEFT to demonstrate the consistency of their
results with the corresponding symmetry constraints classically, and at one loop, to ensure
that the various approaches are all well defined.

In this work we have demonstrated that the Ward identities provide an excellent oppor-
tunity to cross check loop calculations performed in the SMEFT. In future works, this will
allow for consistency checks of relevant full one-loop contributions to the effective action.
For example, the full one-loop calculation of the W-boson propagator can be consistency
checked against the full loop calculation of W-¢ mixing. The background field method will
also allow for Dyson resummation of the one-loop corrections to the propagator without
breaking gauge invariance [32]. To the best of the authors’ knowledge, no works concern-
ing the SMEFT have formulated or confirmed the corresponding Slavnov-Taylor identities
for traditional R¢ gauge fixing. This work provides a clear foundation from which these
next steps can be approached.
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