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Abstract1

The parameters in Monte Carlo (MC) event generators are tuned on experimental measurements by2

evaluating the goodness of fit between the data and the MC predictions. The relative importance3

of each measurement is adjusted manually in an often time-consuming, iterative process to meet4

different experimental needs. In this work, we introduce several optimization formulations and5

algorithms with new decision criteria for streamlining and automating this process. These algorithms6

are designed for two formulations: bilevel optimization and robust optimization. Both formulations7

are applied to the datasets used in the ATLAS A14 tune and to the dedicated hadronization datasets8

generated by the Sherpa generator, respectively. The corresponding tuned generator parameters9

are compared using three metrics. We compare the quality of our automatic tunes to the published10

ATLAS A14 tune. Moreover, we analyze the impact of a pre-processing step that excludes data11

that cannot be described by the physics models used in the MC event generators.12
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1 Introduction and Motivation84

Monte Carlo (MC) event generators are simulation tools that predict the properties of high-energy85

particle collisions. Event generators are built from theoretical formulae and models that describe86

the probabilities for various sub-event phenomena that occur in a high-energy collision. They are87

developed by physicists as a bridge between particle physics perturbation theory, which is defined88

at very high energy scales, and the observed sub-atomic particles, which are low-energy states of89

the strongly-interacting full theory. This bridge is essential for interpreting event collision data in90

terms of the fundamental quantities of the underlying theory. See [1] for an overview of the event91

generators used for physics analysis at the Large Hadron Collider (LHC).92

The description of particle collisions requires an understanding of phenomena at many different93

energy scales. At high energy scales (much larger than the masses of the sub-atomic particles), first94

principle predictions can be made in a perturbative framework based on a few universal parameters.95

At intermediate energy scales, an approximate perturbation theory can be established that intro-96

duces less universal parameters. At low energy, motivated, but subjective, models are introduced97

to describe sub-atomic particle production. These low-energy models introduce a large number of98

narrowly defined parameters. To make predictions or inferences, one must have a handle on the99

preferred models and the values of the parameters needed to describe the data. This process of100

adjusting the parameters of the MC simulations to match data is called tuning.101

This tuning task is complicated by the fact that the phenomenological models cannot claim102

to be complete or scale-invariant. When compared to a large set of collider data collected in103

different energy regimes, the MC-models do not describe the full range of event properties equally104

well. Typically, the physicists demand a tune that describes a subset of the data very well, another105

subset moderately well, and a remainder that must only be described qualitatively. This distribution106

of subsets may well vary from one group of physicists to another and has led to the education of107

experts who subjectively select and weigh data to achieve some physics goal. Two such exercises are108

the Monash tune [2] and the A14 tune [3], though others exist in the literature. Both of these tunes109

are successful, in the sense that they have been useful in understanding a wide range of phenomena110

observed at particle colliders. However, the current approach to tuning remains inefficient and111
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biased [Response to general comment (1) by Reviewer 1:] and, given the nature of the problem with112

physicists having different tuning objectives, mathematical rigor is lacking.113

This work introduces a framework that, once agreed upon, greatly reduces the subjective element114

of the tuning process and replaces it with an automated way to select the data for parameter tuning.115

1.1 Notation and terminology116

The data used in the tuning process are in the form of observables, denoted by O, and the set117

of observables is denoted by SO. Observables are quantities constructed from the (directly or118

indirectly) measured sub-atomic particles produced in an event. In this case, each observable is119

presented as a histogram that shows the frequency that the observable is measured over a range120

of possible values [Reviewer comment a: (see Figure 9 for example histograms). The range can be121

one or many divisions of the interval from the minimum to the maximum value that the observable122

can obtain. These divisions are called bins. In practice, the size of a bin is set by how well an123

observable can be measured. The number of bins of an observable O is denoted as |O|. We use124

R to denote the reference data in the histograms, a subscript b to denote a bin, Rb to denote the125

data value in a bin, and ∆Rb to denote the corresponding [Reviewer comment B:] 1-σ measurement126

uncertainty [Reviewer comment B:] which is interpreted as the standard deviation of a Gaussian127

random variable.128

The MC-model has parameters p, a d-dimensional vector in the space Ω, p ∈ Ω ⊂ Rd. The MC-129

based simulations are denoted by MC(p) to emphasize that they depend on the physics parameters130

p. The histograms computed from the MC simulation have the same structure as the histograms131

obtained from the measurement data R, with a prediction per bin MCb(p) and an uncertainty132

associated with each bin ∆MCb(p). [Reviewer comment A, Reviewer comment 1:] The uncertainty133

on the MC simulation is the numerical precision of the prediction, which typically scales as the134

inverse of the square root of the number of simulated events in a particular bin. Theoretical and135

model uncertainties are not currently included, but are discussed later.136

[Reviewer comment a:] Figure 1 shows a typical histogram. In this example, the observable,137

Thrust, has 17 bins. In the top pane, the black segments show the experimental data R. The138

vertical error bars show the uncertainty associated with the data, i.e., ∆R. The red line shows the139

data obtained from the MC simulation MC(p) with some parameter setting p. The bottom pane140

shows the ratio of MC(p) to the data in each bin. The black horizontal line shows the reference141

ratio value one, to make the visual inspection easier. When the red line is above the black line, it142

means MC(p) > R, and vice versa. The yellow region is defined by the range of the uncertainty on143

a measured value (usually the 68% confidence level on the reported value) relative to the measured144
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Figure 1: [Reviewer comment a:] A histogram of a typical observable used in the tuning process.
The top pane displays the measured (black) and predicted (red) data and their uncertainties. The
bottom pane displays the ratio of predictions to measurements. The yellow band displays the
measurement uncertainty on the reference data: [1−∆Rb/Rb, 1 + ∆Rb/Rb]. [Reviewer comment
D:] The data comes from [4] and the simulation from the sc Pythia event generator using a particular
choice of input physics parameters.
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value, i.e. [1−∆Rb/Rb, 1 + ∆Rb/Rb]. A “good” tune is one where the red line falls within the145

yellow band [Reviewer comment C:] on average. In the example Figure 1, MC(p) underpredicts the146

number of events with intermediate values of Thrust and overpredicts near the endpoints.147

1.2 Mathematical formulation of the tuning problem148

Our goal is to find a set of physics parameters, p∗, that minimizes the difference between the149

experimental data and the simulated data from an MC event generator. This difference is defined150

as follows:151

χ2
MC(p,w) =

∑
O∈SO

wO
∑
b∈O

(MC(p)−Rb)2

∆MCb(p)2 + ∆R2
b

, (1)

where wO is the weight for an observable O and w is a vector of weights, w = [w1, . . . , w|SO|]
T . In152

general, the number of bins can be different for different observables. The weights wO ≥ 0 reflect153

how much an observable contributes to the tune, i.e., if wO = 0 for some O, then this observable154

will not influence the tuning of p. [Reviewer comment E:] Since (1) is likely multimodal, several155

local optima exist (see [5, page 13] for the definition of local optimality) and our goal with using156

numerical optimization is to find at least a locally optimal solution, which is not guaranteed to157

be found by hand-tuning methods. [Reviewer comment 2:] Note that (1) treats the observables158

independently without correlations. Currently, the majority of collider data available for tuning159

are provided without these correlations. When such information becomes readily available, (1) will160

need to be modified in a non-trivial way to include them.161

The MC simulation is computationally expensive (the generation of 1 million events for a given162

set of parameters consumes about 800 CPU minutes on a typical computing cluster), severely163

limiting the number of parameter choices p that can be used in the tuning. To overcome these164

issues, we construct a parameterization of the MC simulation [Reviewer comment F and f:] following165

the work in [6] and advancing the method to new approximation models. Our new implementation,166

named apprentice, is available at https://github.com/HEPonHPC/apprentice. The function167

in Eq. (1) is not minimized directly. Instead, during the optimization over p, the MC simulation168

is replaced by a surrogate model (here, a polynomial [Reviewer comment F:] (see [6]) or a rational169

approximation to a number of MC simulations). For each bin b of each histogram, the central170

value and the corresponding uncertainty of the model prediction are parameterized independently171

as functions of the model parameters p [Reviewer comment iv:] yielding analytic expressions fb(p)172

and ∆fb(p), respectively, that can be evaluated in milliseconds. Thus, instead of Eq. (1), we173

7
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minimize174

χ2(p,w) =
∑
O∈SO

wO
∑
b∈O

(fb(p)−Rb)2

∆fb(p)2 + ∆R2
b

. (2)

[Reviewer comment iv:] which can be done efficiently using numerical methods. Eq. (2) implicitly175

assumes that each bin b is completely independent of all other bins. [Reviewer comment b:] Note176

that the choice of surrogate model introduces an uncertainty whose quantification is outside of the177

scope of this paper.178

In practice, the weights wO in Eq. (2) are adjusted manually, based on experience and physics179

intuition. [Reviewer comment iv:]: the expert fixes the weights and minimizes the function in Eq. (2)180

over the parameters p. If the fit is unsatisfactory, a new set of weights is selected, and the181

optimization over p is repeated until the tuner is satisfied.1 The selection of weights is time-182

consuming and different experts may have different opinions about how well each observable is183

approximated by the model. Our goal is to automate the weight adjustment, yielding a less sub-184

jective and less time-consuming process to find the optimal physics parameters p that will then185

be used in the actual MC simulation. This problem was also considered in [7], where weights are186

assigned [Reviewer comment 3:] based on how influential data is on constraining parameters corre-187

lations between parameters and observables without any reference to measured data values. Also188

related to this work is that of [8], which treats tuning as a black-box optimization problem within189

the framework of Bayesian optimization, but with no weighting of data.190

For convenience, we summarize our notation in Table 1.191

Table 1: Notation.

Notation Definition
O observables that are constructed from data and MC-based simulations in the form of

histograms
|O| the number of bins in an observable O
SO the set of observables used in the tune
|SO| the number of observables
R the data in the histograms
b a bin of a histogram O
Rb the data value in a bin
∆Rb data uncertainty corresponding to the data value in a bin

1For the A14 tune, this [Reviewer comment iv:] required looking at hundreds of histograms such as the one shown
in Fig. 1.
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Notation Definition
p a d-dimensional vector of real-valued parameters
MC(p) an MC simulation that depends on the physics parameters p

MCb(p) the MC simulation in a bin b
∆MCb(p) an uncertainty associated with the MC simulation in a bin b
fb(p) central value of the model prediction parameterized independently as a function of

the model parameters p

∆fb(p) the uncertainty of the model prediction parameterized independently as a function
of the model parameters p

rb(p) the variance associated with bin b as a function of model parameter p

w an |SO|-dimensional vector of real-valued weights
wO the weight given to a histogram in constructing a tune (if wO = 0 for some O, then

this observable will not influence the tuning of p).
p̂w optimal physics parameters for a given choice for the weights
w∗ an optimal set of weights for the observables
p̂w∗ the optimal set of simulation parameters corresponding to an optimal set of weights

w∗ for the observables
g the outer objective function of R|SO|×d 7→ R used in the bilevel optimization
µ a hyperparameter that specifies the percentage of the observables used in the robust

optimization
χ2
O(p) the per-observable error averaged over all bins in the observable O

pOideal the ideal tune for an observable O, i.e., the parameters that minimize Eq. (12) when
using only observable O for the tune

2 Finding the Optimal Weights for Each Observable192

In this section, we describe two mathematical formulations for finding the optimal weights in Eq. (2)193

[Reviewer comment iv:] namely that determine how much influence each observable should have on194

the optimization over the physics parameters p bilevel and robust optimization.195

9
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2.1 Bilevel optimization formulation196

We formulate a bilevel optimization problem as follows:197

min
w∈[0,1]|SO|,p̂w∈Ω

g(w, p̂w) (3a)

[Reviewer comment c:] subject to
∑
O∈SO

wO = 1 (3b)

p̂w ∈ arg min
p∈Ω

χ2(p,w) (3c)

where the [Reviewer comment iv:] upper-level function g : R|SO|×d 7→ R describes a merit function to198

determine the goodness of weights (see below for the definitions we use in this work). The lower-level199

Eq. (3c) (same as Eq. (2)) corresponds to finding [Reviewer comment G:] optimal parameters p̂w200

for a given set of weights w (note that, in general, multiple local minimizers may exist). [Reviewer201

comment iv:] , and the upper-level Eq. (3a) provides a measure of how good the weights are. The202

weights are normalized to sum to unity, see Eq. (3b), in order to prevent the trivial solution where203

all weights are 0. Bilevel optimization problems have been studied extensively in the literature, see,204

e.g., [9–13].205

In the following, we discuss two definitions of the outer objective function g(w, p̂w). Other206

formulations are possible and our selection is driven by the goal to achieve reasonably good agree-207

ment between the simulated and the observed data for all observables (rather than fitting a few208

observables extremely well and others poorly).209

2.1.1 Formulation 1: Portfolio to balance mean and variance of errors210

The portfolio objective function is motivated by portfolio optimization in finance [14], where the211

goal is to maximize the expected return while minimizing the risk. Translated to our problem, we212

want to minimize the expected error over all observables while also minimizing the variance over213

these errors.214

For a given set of weights w, we obtain the “w-optimal” parameters [Reviewer comment H:215

p̂w = p̂(w). For each observable O, an error term is averaged over the number of bins in the216

observable (|O|):[Reviewer comment H:]217

eO(p̂w) =
1

|O|
∑
b∈O

(fb(p̂w)−Rb)2

∆fb(p̂w)2 + ∆R2
b

, O ∈ SO, (4)

where the error eO(p̂w) for each observable depends on the choice of the weights w. Thus, we218

obtain a set of |SO| average error values from which we compute the following statistics:219

10
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[Reviewer comment I:]220

µ(p̂(w)) = µ(p̂w) =
1

|SO|
∑
O∈SO

eO(p̂w): average error over all observables, (5a)

221

σ2(p̂(w)) = σ2(p̂w) =
1

|SO|
∑
O∈SO

[eO(p̂w)− µ(p̂w)]2 : empirical variance of errors over all observables.

(5b)
222

The portfolio objective function for the outer optimization then becomes [Reviewer comment I:]223

224

g(w, p̂w) = µ(p̂w) + σ2(p̂w), (6)

[Reviewer comment 5:] which aims at simultaneously minimizing the expected error and the225

variance of the errors of all observables. Thus, instead of minimizing only an expected value and226

potentially obtaining a solution that allows for some observables having large errors and others small227

errors, we aim to find a solution that provides a good tradeoff between both metrics. For problems228

in which minimizing the variance is of higher priority, one can introduce a multiplier λ before the229

variance term that reflects “risk aversion”. In that case, if λ is large, we are more risk-averse, since230

reducing the variance associated with the errors will drive the minimization. If λ is small, we are231

less risk-averse, and minimizing the mean of the errors is emphasized.232

2.1.2 Formulation 2: Scoring of model fit and data uncertainty233

We consider a second outer objective function formulation based on scoring schemes ( [15, Eq. (27)]).234

The performance of a generic predictive model P at a point x is defined by a scoring rule, S(P, x) =235

−
(
x−µP
σP

)2
− log σ2

P , where P has mean performance µP and variance σ2
P . A larger value for S(P, x)236

signifies better model performance. Thus, we minimize the negative of S(P, x):237

s(P, x) = −S(P, x) =

(
x− µP
σP

)2

+ log σ2
P . (7)

[Reviewer comment J:] The intuition behind this scoring scheme is that it takes both the model238

fit and data uncertainty into consideration. For our application, x corresponds to the simulation239

prediction fb(p), µP to our observation data Rb, and the variance σ2
P to our data uncertainty ∆Rb.240

For each bin b in an observable, we calculate the score based on Eq. (7). Then, we compute the241

median (and mean) of the scores over all bins to obtain the median (average) performance for each242
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observable. In order to form the upper-level objective function, we sum up the median (mean)243

scores over all observables:244

• Outer objective based on median score [Reviewer comment H:]245

g(w, p̂w) =
∑
O∈SO

s̃O(p̂w), (8a)

246

s̃O(p̂w) = median of

{(
fb(p̂w)−Rb

∆Rb

)2

+ log(∆R2
b), ∀b ∈ O

}
. (8b)

247

• Outer objective based on mean score [Reviewer comment H:]248

g(w, p̂w) =
∑
O∈SO

s̄O(p̂w), (9a)

249

s̄O(p̂w) =
1

|O|
∑
b∈O

{(
fb(p̂w)−Rb

∆Rb

)2

+ log(∆R2
b)

}
. (9b)

250

[Reviewer comment iv:] In our numerical experiments, we analyze and compare both the251

performance of the median score and the mean score. Both the median and the mean score outer252

objective functions take into account the deviation of the prediction of fb(p̂w) from Rb and the253

uncertainty in the data ∆Rb. Thus, if an observable has large uncertainties in the data or the254

model fb(p̂w) does not approximate the data Rb well, the score for this observable deteriorates.255

Ideally, both terms
(
fb(p̂w)−Rb

∆Rb

)2
and log(∆R2

b) will be small.256

2.1.3 Solving the bilevel optimization problem using surrogate models257

Solving the inner optimization problem (3c) for each weight vector w is generally computationally258

non-trivial and its computational demand increases with the number of physics parameters p that259

have to be optimized and the number of observables present. [Reviewer comment iv:] Here, we use260

apprentice to obtain a set of optimal physics parameters p̂w. The goal is to try as few weights261

w as possible. We interpret the solution of the inner optimization problem as a black-box function262

evaluation of g(w, p̂w) for w. Given an initial set of input-output data pairs {(wi, g(wi, p̂wi)}Ii=1,263

we fit a surrogate model2 (here a radial basis function [16]) that allows us to predict the values264

2This surrogate model for the weights is independent of the one used to evaluate the MC-based predictions.
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of g(w, p̂w) at untried w. In each iteration of the optimization algorithm, these predictions are265

used to select the most promising weight vector for which the inner optimization problem should be266

solved next. Promising weight vectors have either low predicted values of g(·) or are far away from267

already evaluated points [17,18]. Each time a new weight vector has been evaluated, the surrogate268

model is updated. This iterative process repeats until a stopping criterion has been met, e.g., a269

maximal number of weight vectors has been evaluated or a maximal CPU time has been reached.270

Details about the surrogate model algorithm are given in the online supplement Section 8.1.271

[Reviewer comment iv:] Given p̂w, we compute the corresponding function value of the outer272

objective function, g(w, p̂w). Based on this value, the outer optimization algorithm selects a new273

set of weights, which will be used to solve the inner optimization problem again. This leads to274

a new solution for Eq. (3c), which in turn gives a new value for the outer objective function.275

This process repeats until the outer optimization converges to an optimal set of weights for the276

observables (denoted by w∗ = [w∗1, . . . , w
∗
|SO|]

T ) and a corresponding optimal set of simulation277

parameters (denoted by p̂w∗). [Reviewer comments 6 and vi:] Note that the surrogate model278

based optimizer balances local and global searches in order to enable an escape from local optima.279

However, our algorithm cannot guarantee to converge to the globally optimal solution because the280

optimization problem is highly multi-modal and blackbox.281

2.2 Robust optimization formulation282

As an alternative to the bilevel formulation, we developed a single-level robust optimization formu-283

lation for finding the optimal weights for Eq. (2). Robust optimization estimates the parameters p284

that minimize the largest deviation (fb(p)−Rb)2 over all bins in an uncertainty set Ub of bin b:285

minimize
w∈[0,1],p∈Ω

∑
O∈SO

wO
|O|

∑
b∈O

maximize
Rb∈Ub

(fb(p)−Rb)2 . (10)

[Reviewer comment K:] The uncertainty set Ub contains uncertain data and the goal of the opti-286

mization is to choose the best (most robust) solution among candidates that remain feasible for all287

realizations of the data in Ub. Furthermore, Ub is not a probability distribution since it is a bound288

set and we only consider feasible data within the set. Assuming that the experiment and the MC289

simulation are described using independent random variables with mean Rb, the uncertainty set Ub290

for each bin b is described by the interval [Rb −∆Rb −∆fb(p),Rb + ∆Rb + ∆fb(p)].291
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Introducing slack variables t =
[
t1, t2, . . . , t|O|

]
, we rewrite (10) as:292

minimize
t,w∈[0,1],p∈Ω

∑
O∈SO

wO
|O|

∑
b∈O

tb (11a)

subject to

tb ≥ (fb(p)− (Rb −∆Rb −∆fb(p)))2 ∀b ∈ O, ∀O ∈ SO
tb ≥ (fb(p)− (Rb + ∆Rb + ∆fb(p)))2 ∀b ∈ O, ∀O ∈ SO

(11b)

∑
O∈SO

wO
|O| ≥

µ

100

∑
O∈SO

1

|O| (11c)

where the constraint (11c) is enforced to avoid the trivial solution of all weights being zero. In this293

constraint, we bound the sum of the weights away from zero by a hyperparameter µ that specifies294

the percentage of the observables that should be used in the optimization. Problem (11) is attractive295

because it formulates the problem of finding optimal weights as a single-level optimization problem,296

which is easier to solve than the bilevel problem Eq. (3). [Reviewer comments vi:] However, like297

the bilevel algorithms, this approach cannot guarantee to converge to the globally optimal solution298

due to the nonlinear constraints (11b).299

Selecting the best µ among all the 100 runs of robust optimization is determined using a cumu-300

lative density curve of the number of observables satisfying
χ2
O(p∗,w)

|O| ≤ τ , where p∗ is the optimal301

parameter obtained from the robust optimization run, w = 1, τ ∈ R+ and O ∈ SO. Hence, in the302

plot of this curve (e.g., see Figure 12), the number of observables on the y-axis is monotonically303

increasing as τ increases on the x-axis. Then, the area between the cumulative density curve for304

each robust optimization run and the ideal cumulative density curve is computed. To build the305

ideal cumulative density curve, the p∗ in
χ2
O(p∗,w)

|O| ≤ τ is obtained by considering only observable306

O in Eq. (2). The best run is then chosen to be the one whose area to the ideal cumulative density307

curve is the smallest. An example plot of the cumulative density curve and an illustration of the308

procedure to find the best run is included in Section 8.4 of the online supplement.309

3 Data Pre-processing: Filtering Observables or Bins310

We also investigate the question of how to detect and exclude observables or bins whose data Rb311

cannot be explained by the MC simulation model. [Reviewer comment iv:] One special choice of312

weight for an observable is wO = 0, which corresponds to excluding (filtering out) the observable313
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O from our parameter tune. This is driven by a significant discrepancy between the simulation314

and data. Such discrepancies can arise for at least two reasons: (1) a mistake has been made in315

the experimental analysis; and/or (2) the observable is out of the domain of predictions that can316

be made reliably with the simulation. For our studies, we assume that the source of discrepancies317

is from (2). Because the simulation is a metamodel constructed from many smaller models, it is318

difficult to make a priori statements about the domain of its predictions. [Reviewer comment 7:]319

If the intrinsic theoretical uncertainty on our models were known quantitatively, then it could be320

incorporated into the fitting procedure. However, such uncertainties are not known currently except321

by the brute-force method of choosing extreme values of the input parameters. Important physics322

may be missing from the metamodel and/or a model can describe the mean behavior but not the323

rarer fluctuations around the mean. The simulation should be able to describe the physics, but the324

inclusion of some observables worsen the description. Thus, it is quite reasonable to exclude these325

observables.326

In our discussion to this point, we have assumed that each observable has a given weight.327

However, in those situations where the model can describe the mean behavior, it can be beneficial to328

filter out individual bins b of the observable. In the observables considered in this study, and typical329

of the high energy physics phenomenon, the models can have difficulties in describing [Reviewer330

comment iv:] the rise and/or fall of a the complete distribution. [Reviewer comment iv:] (consider331

the example in Figure 1 where there is a rise from the first to the second bin and a fall from the332

penultimate to the last bin and the corresponding predicted data are far away from the measured,333

indicated by the red line in the lower pane.).334

3.1 Filtering of observables by outlier detection335

Using the surrogate model fb(p) to approximate the expensive MC simulation, we can efficiently336

minimize the per-observable-χ2 function:337

χ2
O(p) =

1

|O|
∑
b∈O

(fb(p)−Rb)2

∆fb(p)2 + ∆R2
b

,O ∈ SO (12)

for each observable O ∈ SO separately. χ2
O(p) represents the average per-bin error for the observable338

and the best possible fit of the model for this single observable. If we used only one observable339

for the tune, the parameters pOideal that minimize Eq. (12) would represent the ideal tune. The340

corresponding ideal objective function value χ2
O(pOideal) is the best possible result for each individual341

observable O. Because the ideal parameter values will be different for each observable, we will not342

be able to obtain one parameter set that minimizes Eq. (12) for all observables simultaneously.343
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Therefore, we obtain a set X of length |SO| of ideal objective function values of Eq. (12): X :=344

{χ2
1(p1

ideal), χ
2
2(p2

ideal), . . . , χ
2
|SO|(p

|SO|
ideal)} = {χi}|SO|i=1 . If the ideal error is large for some observables,345

it means that the model is not able to fit the data of these observables well at all., even with346

the freedom of not having to fit any other observables. Therefore, the inclusion of these data in347

optimizing Eq. (2) may negatively impact the overall optimization because large errors might bias348

the optimization.3349

To address this issue, we use the distribution of the values in X to identify outliers (observables350

with values for Eq. (12) “that deviate so much from other observations as to arouse suspicions351

that it was generated by a different mechanism.” [19]). We exclude the outlier observables from the352

optimization of Eq. (2) by setting their corresponding weights to zero, wO = 0.353

Multiple methods can be used for outlier detection, such as scatter plots [20], Z-score [20, Section354

1.3.5.17], interquartile range [21], generalized extreme studentized deviate [22], Grubb’s test [23,24],355

Dixon’s Q test [25], Thompson tau test [26], Pierce’s Criterion [27], and Tietjen-Moore test [28],356

to name a few. We obtained reasonable results using the Z-score. For the set X = {χi}|SO|i=1 , the357

Z-score of an observation χi is defined as zi = (χi−m)/s where m is the mean of the observation set358

X and s is the standard deviation. We calculate the Z-score for each data point i in X and define359

an outlier as zi ≥ 3. In other words, any ideal fit with a residual outside of 3 standard deviations360

is classified as an outlier. [Reviewer comment 8: ] The value 3 was chosen based on the rule of361

thumb for outlier detection in which almost all of the data (99.7%) should be within three standard362

deviations from the mean. The benefit of performing the outlier detection is that the computational363

cost of minimizing Eq. (2) is reduced. [Reviewer comment iv:] In addition, the optimization will364

not be biased by observables that the underlying model cannot describe well.365

3.2 Filtering of bins by hypothesis testing366

We explore a second and more refined approach that allows us to identify and exclude bin data367

[Reviewer comment iv:] that cannot be approximated well by the MC simulator model from the368

optimization of Eq. (2) [Reviewer comment iv:] instead of eliminating whole observables. [Reviewer369

comment 9:] The observables themselves are typically chosen to test theoretical or phenomenological370

models, and the binning is chosen so that it represents the detector resolution. , we identify a subset371

of bins for each observable that cannot be approximated well by the MC simulator model and we372

exclude only those bins from the optimization [29]. [Reviewer comment L:] The motivation of373

excluding bins is that often the physics models fail near the boundaries of observables, such as the374

turn on or tail of a particle production spectrum.375

3We address later the fidelity of the surrogate model.
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To this end, we use the χ2 test, which is a hypothesis test performed when the test statistic is376

χ2-distributed under the null hypothesis [30]. Note that the χ2 test statistic is different from the377

χ2(p,w) objective function introduced earlier. We first compute the χ2 test statistic for a subset378

B of the bins in an observable O using the computationally cheap approximation model fb(p):379

χ2
B(p) =

1

|B|
∑

b∈B⊂O

(fb(p)−Rb)2

∆fb(p)2 + ∆R2
b

. (13)

[Reviewer comment O:] Since, this test statistic is calculated per bin and then summed over a subset380

of bins B to get the total test statistic, we believe that the χ2 hypothesis test is appropriate. For381

this statistic, we hypothesize that: [Reviewer comment M:]382

Null hypothesis H0: fb(p) = Rb383

Alternate hypothesis H1: H0 is rejected, i.e., fb(p) 6= Rb384

In (13), we have a sample of size |B| based on which we compute the χ2 test statistic. However,385

the degrees of freedom of the χ2 distribution is not |B| because the samples fb(p), b ∈ B ⊂ O are not386

independent and they are related to each other through the parameters p. Due to this relationship,387

the number of degrees of freedom is reduced (see [31] for a similar argument). Hence the resulting388

degrees of freedom of the χ2 distribution for the set B is given by389

ρB = |B| − d, (14)

where d is the dimension of p.390

We now choose a value for the significance level α [Reviewer comment N:] In general, α is chosen391

by the user and commonly used values are 0.01, 0.05, or 0.1. For the results discussed in Section 4.5,392

we use 0.05. From a χ2 distribution table, we then obtain the critical value χ2
c,B for bins in B as393

a function of the significance level α and degrees of freedom ρB. More formally, we say that if the394

probability PH0(T ≤ χ2
c,B) = α, then under H0 : T ∼ χ2(ρB). Let us assume a random variable395

Z ∼ χ2(ρB), then P (Z ≤ χ2
c,B) = α. Thus, to find χ2

c,B, we need to compute the inverse of the396

cumulative distribution function (CDF) of the χ2 distribution with ρB degrees of freedom and at397

level α. Then we compare the test statistic with the critical value to decide whether H0 is accepted398

or not, i.e., if χ2
B ≤ χ2

c,B, we keep the bin subset B; otherwise, we cannot keep this bin subset.399

We mainly intend to exclude bins at the extremes of the observables, and hence we require that400

the bins we keep are contiguous. For some observables all bins may pass the χ2 test, for others, all401

bins may be excluded, or a subset of contiguous bins is kept.402
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The problem is then to find the largest contiguous subset of bins B such that χ2
B ≤ χ2

c,B. This403

is equivalent to solving the mixed-integer program404

max
s,e∈{1,2,...,|O|}

e− s

s.t. χ2
B ≤ χ2

c,B, B = {s, . . . , e},
(15)

where s and e are the start and end indices of contiguous bins in observableO. [Reviewer comment e:]405

We want to note here that this optimization problem assumes that the constraint can be evaluated406

for all subsets B of the observable O. Thus, the view of the hypothesis test from an optimization407

standpoint is the data required to check the satisfaction of the constraint, which will either lead to408

the rejection of the null hypothesis or the failure to reject the null hypothesis for each subset B.409

Additionally, before starting the optimization, we would need to evaluate the χ2
B and χ2

c,B for all410

subsets B of observable O. This can become tedious especially for observables with a large number411

of bins. To avoid this, we also propose a polynomial-time algorithm based on the maximum sub-412

array problem [32]. This algorithm is described in Section 8.2 in the online supplement. In some413

cases, the bins to keep may not be unique, i.e., there may be multiple ranges of {s, . . . , e} that are414

of the same maximum length and satisfy the null hypothesis (or satisfy the constraint in Eq. (15)).415

In practice, this is not a problem, since selecting any one of these bin subsets does not change the416

outcome of the filtering or the optimization in Eq. (2).417

4 Numerical Experiments and Comparison of Different Tunes418

In this section, we describe the setup of our numerical experiments, the datasets we use in our study,419

and the results. [Reviewer comment 10:] A comparison of the computation times required by the420

different optimizers is provided in Section 4.9. More details can be found in the online supplement.421

4.1 Setup of the numerical experiments422

We compare the results of using the methods shown in Table 2 for adjusting the weights of the423

observables in our datasets. The performance of each method is evaluated with and without data424

pre-processing (observable-filtering and bin-filtering approaches, see Sections 3.1 and 3.2), and when425

using a cubic polynomial (results presented in the online supplement) versus a rational approxima-426

tion for fb(p) in apprentice. We found relatively good performance using the degrees 3 and 1 for427

the numerator and denominator polynomial, respectively, for the rational approximation.428

18



SciPost Physics Submission

Table 2: Optimization methods used in this study.

Name Methodology Reference
“Bilevel-portfolio” bilevel optimization with portfolio outer objective function Section 2.1.1.
“Bilevel-medianscore” bilevel optimization with median score outer objective function Section 2.1.2.
“Bilevel-meanscore” bilevel optimization with mean score outer objective function Section 2.1.2.
“Robust optimization” single level robust optimization approach Section 2.2.
“Expert” weight adjustment done by the expert (only for the A14 dataset, see Section 4.3) [3]
“All-weights-equal” no optimization is used and all observable weights are set to 1

For the bilevel optimization formulation (see Eq. (3)), we made the following choices: The initial429

experimental design for the outer optimization has |SO| + 1 points, where |SO| is the number of430

observables (number of weights to be adjusted). The total number of allowed outer objective function431

evaluations (number of weight vectors tried) is 1000. Because the inner optimization function is432

multimodal, we use 100 multi-starts with apprentice to solve it. The bilevel optimization with433

each method (portfolio, meanscore, medianscore) is repeated three times with different random434

seeds and we report the results of the best run.435

For the robust optimization formulation (Eq. (11)), a total of 100 random values of µ ∈ (0, 100]436

are used when evaluating Eq. (11c) and, for each µ, the algorithm is run once. The best run amongst437

these is returned as the best µ for the robust optimization. The procedure to select the best µ is438

described in Section 2.2.439

4.2 Comparison metrics and optimal tuning parameters440

There are many ways to assess the quality of a tune. In many cases, the domain experts visually441

inspect a potentially large number of histograms [Reviewer comment iv:] (see, e.g., Figure 1) to442

make a judgment. As an objective measure, we propose three metrics, each represented as a single443

number [Reviewer comment iv:] for each tuning method, that can be used to compare the quality444

of the model fits obtained by the different methods [Reviewer comment iv:] in a more objective445

fashion:446

1. Weighted χ2: the sum over all χ2 at the best p̂w∗ ,447 ∑
O∈SO

w∗O
∑
b∈O

(fb(p̂w∗)−Rb)2

∆fb(p̂w∗)2 + ∆R2
b

. [Reviewer comment iv:] where w∗O, the weight of observable O, is scaled such that w∗O ∈ [0, 1]448

and
∑
O∈SO w

∗
O = 1.449
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2. A-optimality :450

Tr (Γpost(p̂w∗ ,w
∗)) =

d∑
i=1

λi

3. log D-optimality :451

log det (Γpost (p̂w∗ ,w
∗)) =

d∑
i=1

log λi,

where λi are the eigenvalues of Γpost, Γpost is the weighted posterior covariance matrix in the452

Bayesian formulation of the inverse problem, d is the dimension of p̂w∗ . To find Γpost, we compute453

the optimal parameter point p̂w∗ , which is also referred to as the maximum a posteriori probability454

estimate in the context of Bayesian inverse problems [33]. Given the optimal parameters, we can455

find a linearization of the model as456

FO(p̂w∗) =

[
∂f1 (p̂w∗)

∂p
,
∂f2 (p̂w∗)

∂p
, . . . ,

∂f|O| (p̂w∗)

∂p

]>
for each observableO. Then the weighted posterior can be approximated by a GaussianN (p̂w∗ ,Γpost).457

Here458

Γpost(p̂w∗ ,w
∗) =

 ∑
O∈SO

w∗OF>O(p̂w∗)Γ
−1
noiseFO(p̂w∗)

−1

(16)

where Γnoise[O] = diag
(

∆f1(p̂w∗)
2 + ∆R2

1,∆f2(p̂w∗)
2 + ∆R2

2, . . . ,∆f|O|(p̂w∗)
2 + ∆R2

|O|

)
. [Re-459

viewer comment iv:] In the computation of all three metrics w∗O is the weight of observable O460

obtained from the methods and is scaled such that w∗O ∈ [0, 1] and
∑
O∈SO

w∗O = 1.461

The Γpost(p̂w∗ ,w
∗) calculated at the optimal parameters and the optimal weights in (16) are462

used here to describe the confidence region around the tuned parameters p̂w∗ . In order to summarize463

the multidimensional nature of Γpost into a scalar quantity, we use the A- and log D-optimality464

criteria. A graphical representation of the optimality criteria is shown in [Reviewer comment iv:]465

Figure 5.1 of [34]. The A-optimality criterion computes the trace of Γpost, which is equivalent to466

the sum of its eigenvalues. This metric is proportional to the sum of the semiaxis lengths of the467

confidence ellipsoid of the parameters (lower is better), which corresponds to the average sum of the468

variances of the estimated parameters for the model [35]. The log D-optimality criterion computes469

the log of the determinant of Γpost, which is equivalent to the sum of the log of the eigenvalues of470

Γpost. This metric is proportional to the log volume of the confidence ellipsoid of the parameters471

(lower is better) [36]. It can be interpreted in terms of Shannon information. [Reviewer comment472
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11:] Note that since the weighted posterior is approximated as a Gaussian, a Gaussianity test should473

reveal that the posterior is normally distributed.474

4.3 The A14 dataset475

We chose the A14 tune [3] of the Pythia4 event generator [37] as one benchmark for developing476

and testing the methods proposed in this work. [Reviewer comment 12:] This tune has been widely477

used for Large Hadron Collider (LHC) simulations, and is thus relevant to the particle physics478

community.479

The A14 dataset contains 406 observables (thus, 406 weights to optimize) and there are 10480

tunable physics parameters p. The parameters are primarily related to the production of additional481

jets in the collisions, the distribution of energy within those jets, and the kinematics (angles and482

momenta) of the jets. They also relate to the sharing and spread of energy in the soft portion of483

the event, the portion that is less dependent on the hard process (e.g., top-quark production or484

Z-boson production). Further explanation of the generator parameters and settings are available485

in Sections 8.3 and 8.16, respectively. [Reviewer comment d]: The bounds over which we optimize486

the parameters were carefully chosen such that the polynomial parameterizations are valid within487

the bounds and to give a physically meaningful coverage such that the experimentally observed488

data was “covered” by the range of predictions. [Reviewer comment iv:] In our studies, We use the489

Rivet [38] package to compare our predictions to data. [Reviewer comment 20:] The motivation490

for and selection of observables and parameters is explained in the A14 tune paper.491

Because the coefficients of the cubic interpolation used in [3] were not available to us, we start by492

reproducing the hand-tuned parameter values published in [3, Table 3], which we refer to as NNPDF.493

In particular, we use the weights given in [3, Table 2], use their optimal parameter values as a starting494

point for the χ2 minimization, and apply our optimizer to Eq. (2). The resulting parameter values495

are reassuringly close to the values reported in [3] as shown in Table 3 where we label the original496

parameters as NNPDF, and the re-optimized parameter values as Expert. We observe that most497

of the NNPDF parameter values lie within the confidence interval derived from eigentunes (see498

Section 5) for the re-optimized Expert values. Additionally, to check whether the parameters p499

reported in [3] are within the confidence ellipsoid centered on the parameters p̂w obtained from the500

χ2 minimization (i.e., Expert parameter values), we calculate s ≡
∥∥LT (p− p̂w)

∥∥
2
, where L is the501

Cholesky factor of Γpost(p̂w,w) from Eq. (16) with weights w given in [3]. Since s = 2.73 × 10−3
502

is less than one, we say that the parameter p is covered within the confidence ellipsoid centered on503

p̂w [39].504

4To match the original study, we used version v8.186.
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In the remainder of this paper, we use the Expert parameter values for comparison [Reviewer505

comment iv:] rather than the NNPDF values, and we refer to this tune as the Expert tune in506

our comparisons. This provides a fairer comparison because we found that the original NNPDF507

parameter values did not correspond to a minimizer of the χ2 optimization, Eq. (2). [Reviewer508

comment iv:] , and thus using the original values would unfairly disadvantage the NNPDF tune in509

our comparisons. The main reason for this discrepancy is the fact that we use [Reviewer comment f:]510

an improved optimization routine (apprentice) that takes advantage of exact gradient and Hessian511

information and that requires significantly less time than the previous optimizer, and thus allows512

for an efficient multistart local optimization that increases the possibility to find better optima.513

Table 3: Parameter values for A14 published tune (left), and A14 corrected expert tune and corre-
sponding eigentune [Reviewer comment g:] 68% confidence intervals (right).

A14 published expert tune A14 corrected expert tune
Parameter name NNPDF Expert min max
SigmaProcess:alphaSvalue 0.140 0.143 0.075 0.193
BeamRemnants:primordialKThard 1.88 1.904 1.903 1.906
SpaceShower:pT0Ref 1.56 1.643 1.636 1.653
SpaceShower:pTmaxFudge 0.91 0.908 0.905 0.912
SpaceShower:pTdampFudge 1.05 1.046 1.044 1.048
SpaceShower:alphaSvalue 0.127 0.123 0.121 0.124
TimeShower:alphaSvalue 0.127 0.128 0.043 0.197
MultipartonInteractions:pT0Ref 2.09 2.149 1.665 2.543
MultipartonInteractions:alphaSvalue 0.126 0.128 0.068 0.177
BeamRemnants:reconnectRange 1.71 1.792 1.788 1.795

The A14 observables are measurements of properties of proton-proton collisions at
√
s = 7 TeV514

performed by the ATLAS collaboration. These include event properties (e.g., the Z-boson transverse515

momentum, or the opening angles between the highest transverse momentum jets in the event) and516

properties of jets (e.g., the spread of energy within a jet, or the momentum of particles within a517

jet). In [3], the 406 observables are categorized into 10 groups (see Table 7), namely Track jet518

properties (200 observables) [40], Jet shapes (59 observables) [41], Dijet decorr (9 observables)519

[42], Multijets (8 observables) [43], pZT (fit range < 50GeV, 20 observables) [44, 45], Substructure520

(36 observables) [46], tt̄ gap (4 observables) [47], tt̄ jet shapes (20 observables) [48], Track-jet521

UE (8 observables) [49, 50], and Jet UE (42 observables) [51, 52]. The highest weights in [3] are522

assigned to observables that relate to the production of additional high-momentum partons (the523

22



SciPost Physics Submission

ratios of 3-jet to 2-jet events, and the fraction of top-quark production events that do not have an524

additional central jet). On the other hand, low weights are assigned to observables that measure525

the same physical phenomenon in several kinematic regimes. The weighting of these observables526

ensures that the additional radiation and soft part of the events are consistent and well-modeled for527

all hard processes. In addition, these parameters are difficult or impossible to constrain using data528

from e+e− collision events, and they must be tuned using data from the LHC.529

4.4 The Sherpa dataset530

As a second benchmark, we tune a set of parameters for the Sherpa event generator [53]. To531

our knowledge, the default parameters were not optimized by weighting data, and thus serve as an532

unbiased cross-check of our results. [Reviewer comment iv:] In contrast to the A14 dataset used to533

tune Pythia, the The data are confined to observables at e+e− colliders and they include event534

shapes and charged particle inclusive spectra from Z-boson decays, differential and integrated jet535

rates, measurements of B-hadron fragmentation, and the multiplicity of various hadrons [54–57].536

Accordingly, the parameters are limited to those of the Sherpa hadronization model.537

The Sherpa dataset contains 88 observables, hence 88 weights to optimize. This is significantly538

less than the set of observables available in the Rivet analyses (126) for the following reasons.539

First, we reduce the number of observables to 114 by removing those that measure more than 3540

jets, since this is beyond the scope of the physics simulation. Then, we apply a pre-filter step541

that removes distributions where none of the data bins fall within the envelope of predictions from542

our surrogate model. These all correspond to single-bin particle counts (such as the number of f0543

mesons) that the Sherpa hadronization model either grossly under- or over-estimates. There are544

13 tunable physics parameters whose definition and ranges are shown in Table 16 in Section 8.3 of545

the online supplement. These parameters are all part of the cluster model that produces physical546

particles from quarks and gluons. [Reviewer comment 13:] The reason for including this dataset in547

our study is to show the general applicability of our optimizers and to try them out on a dataset548

for which an expert tune is not provided.549

4.5 Data pre-processing: filtering out observables and bins550

In this subsection, we present the results of applying the filtering methods. [Reviewer comment551

iv:] described in Sections 3.1 and 3.2. First, we consider the outlier detection method described in552

Section 3.1. We find that the filtering results differ based on the choice of surrogate function (cubic553

polynomial versus a rational approximation). Based on the comparison of surrogate function predic-554

tions to the full MC simulations, we believe that the rational approximation yields a more faithful555

23



SciPost Physics Submission

representation. Therefore, we present our main results using only the rational approximation. The556

names of the outlier observables in the A14 and the Sherpa dataset using a cubic polynomial and557

a rational approximation, respectively, are shown in the online supplement in Sections 8.5 and 8.6.558

Table 4 shows a distribution of the χ2
O values obtained for each observable O from Eq. (12) for A14559

(left) and Sherpa (right) when using the rational approximation. We find that the per-observable560

ideal parameters yield mostly small χ2
O values (in [0, 1)), but outliers are present in both datasets.561

Using the rational approximation, 9 and 3 outlier observables are filtered from the A14 and Sherpa562

datasets, respectively.563

Table 4: Distribution of the χ2
O values for A14 (left) and Sherpa (right). 2.0438 and 2.0177

correspond to the values where the Z-score equals 3 (see Section 3.1). The observables with χ2
O ≥

2.0438 for A14 and χ2
O ≥ 2.0177 for Sherpa are the outliers. There are 9 outliers (6+2+1) in A14

and 3 outliers (1+2+0) in Sherpa.

A14 Sherpa

χ2
O range Number of observables χ2

O range Number of observables
[0, 1) 367 [0, 1) 82
[1, 2.0438) 30 [1, 2.0177) 3
[2.0438, 3) 6 [2.0177, 3) 1
[3, 4) 2 [3, 4) 2
[4, 5) 1 [4, 5) 0

Figure 2 shows the outcomes of the bin-filtering approach described in Section 3.2 for each ob-564

servable O in A14 (top) and Sherpa (bottom) when using the rational approximation. In both565

datasets, multiple bins are removed. More specifically, most bins are removed in the Track jet prop-566

erties and pZT groups of the A14 dataset. The patterns in the A14 plot result from the partitioning567

of the data. For Tracked jet properties (labeled A), the observables are replicated for two values of568

jet cone size (R = 0.4, 0.6), explaining the similarities between bins (1, 100) and (101, 200). Fur-569

thermore, 4 types of observables are considered, and each is sliced into different ranges of transverse570

momentum and rapidity.571

In the Sherpa dataset, all bins are removed from some observables whereas from two observ-572

ables, we remove only two and five bins [Reviewer comment 14:] (see observables in bold font in573

Table 22). Additionally, since the number of degrees of freedom of the χ2 distribution is reduced574

by the number of parameters that the bins share in each observable (see Eq. (14)), the bin filter is575

not applied to any observable with fewer than 10 and 13 bins in the A14 and the Sherpa datasets,576

24



SciPost Physics Submission

respectively. The names of the observables from which the bins have been filtered and their χ2 test577

statistic and critical χ2 values are given in Sections 8.7 and 8.8 of the online supplement. The single578

bin observables correspond to counts of a particular type of particle.579
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(a) Bins kept and removed by the bin filter in all A14 observables organized by the observable group. Group
A is Track jet properties, group B is Jet shapes, group C is Dijet decorr, group D is Multijets, group E is pZT ,
group F is Substructure, group G is tt̄ gap, group H is Track-jet UE, group I is tt̄ jet shapes, and group J is
Jet UE.
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(b) Bins kept and removed by the bin filter in all Sherpa observables.

Figure 2: Illustration of the bin filtering results.

4.6 Results for the A14 dataset580

In this section, we present a detailed analysis of our results with the A14 dataset.581

4.6.1 Comparison metric outcomes for the A14 dataset582

In this section, we consider the three metrics introduced in Section 4.2 to compare various tunes.583

For the A14 dataset, Table 5 shows the results when using the rational approximation for the full584
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data, the observable-filtered data, and the bin-filtered data, respectively. The results when using585

the cubic polynomial approximation are shown in the online supplement in Section 8.12.1. Note586

that smaller numbers indicate better performance. [Reviewer comment iv:] We bold the smallest587

number of each metric for better visualization. For our comparison metrics, we take into account588

all observables and bins, respectively, but we do not use the filtered out observables and bins when589

determining the optimal parameters.590

Based on these results we can see that no method performs the best for all metrics in all cases. In591

fact, for the full dataset, the Expert tune has the best score for two of our three metrics. [Reviewer592

comment iv:] Nonetheless, the automated methods do produce comparable results in those cases.593

The robust optimization consistently achieves the best performance under the Weighted χ2 criterion.594

The Bilevel-portfolio method performs the best under the A-optimality criteria, and the Expert595

tune performs the best under the D-optimality criteria for the observable-filtered datasets. The596

Bilevel-portfolio method performs the best under the A- and D-optimality criteria for the bin-597

filtered datasets. In comparison to the results obtained with the cubic polynomial approximation598

(see Section 8.12.1 of the online supplement), the rational approximation yields better results for599

all methods under the Weighted χ2 criterion.600

When comparing across Table 5, we see that in most cases, results with the observable-filtered601

data and bin-filtered data provide smaller values compared with those using the full dataset. We602

observe that by filtering out the observables and bins that cannot be well explained by the model,603

[Reviewer comment h:] there is an improvement in the best values (in bold) of the metrics. [Reviewer604

comment 15:] This is an expected result because the excluded bins and observables no longer605

“distract” the optimizer by yielding large errors and thereby dominating the optimization. The606

selection of the best optimization method depends on the goals and preferences of the user as there607

is no one method that performs best for all metrics (no free lunch). [Reviewer comment h:] However,608

we note here that lower A- log D-optimality values in the observable- and bin-filtered case indicate609

more confidence in the parameter predictions. We show in Section 8.9 that by excluding the filtered610

bins and observables from the fitting process, the quality of the model does not deteriorate.611

4.6.2 Comparison of the cumulative distribution of bins at different variance levels612

In this section, we introduce a new summarized graphical comparison of the results. [Reviewer613

comment iv:] that is motivated by the bottom pane in the histogram plot of Figure 1. We study614

the distribution of the χ2 values per bin obtained using different tuning approaches. For each615

parameter set, we compute the ratio rb(p) =
(fb(p)−Rb)2

∆fb(p)2 + ∆R2
b

of the residual between the data and616
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Table 5: [Reviewer comment 16:] A14 results with the full dataset, observable-filtered dataset and
bin-filtered dataset when using the rational approximation. Lower numbers are better. The best
results are in bold. In each dataset, W-χ2 refers to the Weighted χ2 metric, A-o refers to the A-opt
metric, and l-D-o refers to the log D-opt metric.

Data Full dataset Observable-filtered dataset Bin-filtered dataset
Method W-χ2 A-o l-D-o W-χ2 A-o l-D-o W-χ2 A-o l-D-o
Meanscore 0.1119 0.8513 -63.6805 0.0671 0.6793 -65.1939 0.0923 0.7738 -64.8949
Medscore 0.1320 0.7673 -63.3846 0.0823 0.7008 -64.3410 0.1175 0.7734 -64.0170
Portfolio 0.1224 0.9425 -61.1694 0.1372 0.5130 -68.0382 0.1652 0.4788 -68.8998
Expert 0.0965 0.5705 -68.4091 0.0781 0.5765 -68.4674 0.0947 0.5868 -68.3093
Equal-weights 0.0815 0.7673 -64.0008 0.0563 0.7179 -64.5198 0.0640 0.7384 -65.2606
Robust opt 0.0402 1.0526 -65.7547 0.0388 1.1086 -65.7182 0.0485 0.8445 -67.3645

the prediction divided by the variance per bin. The rb values are sorted from the smallest to largest,617

and the cumulative distribution is formed.618

The cumulative distribution plot for all bins in the A14 dataset is shown in Figure 3 and for619

the bins in each category in Figure 4. The more bins that reside on the bands of variance levels620

less than 1 the better, as this indicates smaller deviations of the model from the experimental data.621

[Reviewer comment iv:] When analyzing these results it is important to Note that even though all622

the category plots have a scale between 0 and 1 on the y-axis, the number of bins in the individual623

categories of A14 are very different, e.g., more than 50% of all bins in the A14 dataset belong to624

Track Jet Properties. [Reviewer comment j:] Note, however, that we can see from the optimal625

weights assigned to each observable category (see Table 7, Section 4.6.4), the robust optimization626

approach is able to recognize the redundancy in the data and gives the observables in three of four627

subcategories little to no weight. On the other hand, the goal of the bilevel approaches is to fit each628

observable approximately equally well and the optimal weights mimic the expert’s hand-tuning.629

Hence, we see that the trend of the curves in the plot for Track Jet Properties in Figure 4 follows630

more closely that of the curves when all bins are considered as in Figure 3.631

It can be seen from Figure 3 that there is only a small difference among the approaches when632

all A14 bins are considered. Near the variance boundary, the difference between the approaches is633

even smaller [Reviewer comment iv:] . Additionally, at the variance boundary, and all approaches634

perform better than the Expert tune. [Reviewer comment 17:] For sample data x distributed635

normally as N (µ, σ), the χ2 distribution with one degree of freedom is a distribution of the squared636

standard normal deviate given by ((x− µ) /σ)2 [58]. Hence, for a normally distributed sample, the637

CDF of the bins with variance values rb(p) should theoretically follow a χ2 distribution with one638
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degree of freedom. We compare the CDF of the bins against the CDF of this theoretical distribution639

in Figure 3. We observe that the CDF of the bins obtained from the different methods does not640

match the CDF of the theoretical distribution. In particular, we observe that bins whose residuals641

are 10−1 < rb(p) ≤ 101.5 arise from samples that are not normally distributed.642

Figure 4 shows that these differences become more prominent for individual categories of the A14643

data. For instance, [Reviewer comment iv:] the parameters obtained from the robust optimization644

performs well for Jet shapes and Track-jet UE. [Reviewer comment iv:] We also see that Near645

the variance boundary, the parameters obtained from the Expert tune perform better for Multijets646

and tt̄ gap whereas [Reviewer comment iv:] the parameters obtained from the other approaches647

perform better for Substructure. These plots also show that there is a trade-off in fitting among the648

different approaches, which enables the physicist to use these results as guidance for selecting the649

most appropriate tuning method depending on the categories that are of greater significance.650

Figure 3: [Reviewer comment 17:] Cumulative distribution function (CDF) of all bins (y-axis) in
the A14 dataset at different bands of variance levels (x-axis) given by rb(p) = (fb(p)−Rb)2

∆fb(p)2+∆R2
b
and the

theoretical χ2 distribution with one degree of freedom.
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Figure 4: Cumulative distribution of bins (y-axis) in each category of the A14 dataset at different
bands of variance levels (x-axis) given by rb(p) = (fb(p)−Rb)2

∆fb(p)2+∆R2
b
.

4.6.3 Optimal parameter values for the A14 dataset with rational approximation651

The optimal parameter values for the A14 dataset when using the full dataset, the outlier-filtered652

dataset, and the bin-filtered dataset are shown in [Reviewer comment 18:] Table 6. For a better653

visual comparison of the different solutions obtained with our methods, we illustrate the [0,1]-scaled654

optimal values in the online supplement Section 8.11. We have also computed the Euclidean distance655

between the Expert tune and our tunes after normalizing the parameter values to [0,1].656

In Table 6, we can see that there are differences between the optimal parameters obtained657

with different methods and when using different filtering approaches. In particular, the results of658

the Bilevel-meanscore method tend to be approximately equally far from the expert solution no659

matter the filtering approach. This indicates that the bilevel-meanscore method is less sensitive660

to the data used in the optimization. The other methods show a larger variability of the optimal661
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parameter values depending on the filtering approach. [Reviewer comment S:] The eigentune results662

corresponding to the solutions in Table 6 are discussed in Section 5.663

Table 6: [Reviewer comment 18:] Optimal parameter values for the A14 dataset when using the
rational approximation in the optimization. Euclidean distances are calculated based on the nor-
malized parameter values.

ID Parameter name Expert Meanscore Medianscore Portfolio Robust opt Equal-weights

A
ll
ob

se
rv
ab

le
s

1 SigmaProcess:alphaSvalue 0.143 0.138 0.133 0.136 0.139 0.137
2 BeamRemnants:primordialKThard 1.904 1.855 1.723 1.796 1.883 1.851
3 SpaceShower:pT0Ref 1.643 1.532 1.184 1.322 1.588 1.493
4 SpaceShower:pTmaxFudge 0.908 1.014 1.083 1.041 1.025 1.026
5 SpaceShower:pTdampFudge 1.046 1.071 1.084 1.061 1.084 1.067
6 SpaceShower:alphaSvalue 0.123 0.128 0.129 0.128 0.127 0.128
7 TimeShower:alphaSvalue 0.128 0.130 0.129 0.128 0.132 0.129
8 MultipartonInteractions:pT0Ref 2.149 2.033 1.883 1.937 2.052 2.076
9 MultipartonInteractions:alphaSvalue 0.128 0.124 0.118 0.120 0.126 0.125
10 BeamRemnants:reconnectRange 1.792 2.082 1.914 1.987 2.602 1.980

Euclidean distance from the expert solution 0.290 0.664 0.475 0.268 0.301

O
bs
er
va
bl
e-
fil
te
re
d

1 SigmaProcess:alphaSvalue 0.143 0.140 0.138 0.141 0.138 0.139
2 BeamRemnants:primordialKThard 1.904 1.865 1.839 1.861 1.879 1.843
3 SpaceShower:pT0Ref 1.643 1.574 1.603 1.593 1.614 1.550
4 SpaceShower:pTmaxFudge 0.908 0.953 0.906 0.984 1.006 0.950
5 SpaceShower:pTdampFudge 1.046 1.076 1.081 1.060 1.075 1.062
6 SpaceShower:alphaSvalue 0.123 0.128 0.128 0.129 0.128 0.127
7 TimeShower:alphaSvalue 0.128 0.123 0.123 0.118 0.132 0.124
8 MultipartonInteractions:pT0Ref 2.149 2.064 2.017 2.095 2.022 2.039
9 MultipartonInteractions:alphaSvalue 0.128 0.126 0.125 0.129 0.125 0.126
10 BeamRemnants:reconnectRange 1.792 1.852 1.903 1.801 2.719 1.937

Euclidean distance from the expert solution 0.227 0.293 0.273 0.291 0.254

B
in
-fi
lt
er
ed

1 SigmaProcess:alphaSvalue 0.143 0.139 0.140 0.131 0.137 0.140
2 BeamRemnants:primordialKThard 1.904 1.877 1.885 1.811 1.822 1.876
3 SpaceShower:pT0Ref 1.643 1.572 1.561 2.227 1.426 1.627
4 SpaceShower:pTmaxFudge 0.908 0.964 0.968 0.869 0.948 0.943
5 SpaceShower:pTdampFudge 1.046 1.056 1.053 1.481 1.053 1.068
6 SpaceShower:alphaSvalue 0.123 0.128 0.128 0.136 0.128 0.128
7 TimeShower:alphaSvalue 0.128 0.128 0.129 0.126 0.136 0.130
8 MultipartonInteractions:pT0Ref 2.149 2.028 2.175 2.338 1.931 2.080
9 MultipartonInteractions:alphaSvalue 0.128 0.124 0.128 0.135 0.120 0.126
10 BeamRemnants:reconnectRange 1.792 2.047 1.854 1.820 2.404 2.001

Euclidean distance from the expert solution 0.232 0.179 1.076 0.426 0.194
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4.6.4 Comparison of optimal weights for the A14 dataset with rational approximation664

We compare the optimal weights obtained by the different tuning methods in Table 7. We normalize665

the weights obtained to match the scale of weights assigned by Expert published in [3]. In each666

group, we report the average weight of observables in that group. The Expert tune assigned the667

highest weights to the categories Multijets and tt̄ gap, [Reviewer comment j:] which result in better668

fits as illustrated in the corresponding plots in Figure 6. The robust optimization approach sets669

some of the weights for Track jet properties to zero. [Reviewer comment j:] The weights for the670

robust optimization approach are almost all either 0 or 17.85, which corresponds to unscaled 0− 1671

weights that we would expect from this approach. We note that the weights for the four Track-672

jet properties classes are similar for the expert and the bilevel approaches (approx. 10), while the673

robust approach returns weights of (17.85, 0, 1.62, 0). We believe that these weights indicate that the674

corresponding observables are nearly dependent resulting in redundant components of least-square675

residuals. We observe in Figure 4 that setting these weights to zero does not degrade the residuals676

of these observables, confirming that redundant information is present. [Reviewer comment j:] This677

observation indicates that even though Track jet properties dominates the tune in terms of the678

number of observables, the inherent redundancy in the data does not dominate the final fit, and679

can be detected by the robust optimization approach.680

4.6.5 Impact of data pre-processing by filtering on optimal results681

In Table 8, we show the number of filtered and unfiltered bins in the A14 and Sherpa datasets682

that lie within a one σ variance level. A large number of bins within a one σ level indicates smaller683

deviations of the model from the experimental data. The cumulative distribution plot with the684

parameters obtained from the robust optimization approach for filtered and unfiltered data for the685

different categories is shown in Figure 5 (the plots for the other methods are shown in Section 8.9686

of the online supplement).687

From these results, we observe that there is no significant difference in the number of bins688

within the one σ variance level between the optimal parameters p∗a obtained when all bins were689

used for tuning and the optimal parameters p∗b and p∗o obtained when only the bin filtered and690

observable filtered bins are used for tuning, respectively. Additionally, when comparing across691

Table 5, we see that in most cases, the results with the observable-filtered data and bin-filtered data692

provide smaller values in the proposed criteria compared with those using the full dataset. These693

observations indicate that the MC generator cannot explain the removed bins [Reviewer comment694

iv:] by the filtering approaches well and that the information contained in these bins does not add695
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Table 7: Comparison of the optimal weights obtained by each method using the rational approxi-
mation. The observable grouping corresponds to the same grouping as in [3].

Expert Bilevel-
meanscore

Bilevel-
medianscore

Bilevel-
portfolio

Robust
opt

Track jet properties
Charged jet multiplicity (50 distributions) 10 11.41 11.92 11.43 17.85
Charged jet z (50 distributions) 10 11.01 10.00 10.28 0.00
Charged jet prelT (50 distributions) 10 9.47 10.20 13.11 1.62
Charged jet ρch(r) (50 distributions) 10 10.63 12.72 12.19 0.00
Jet shapes
Jet shape ρ (59 distributions) 10 12.46 8.49 9.69 17.85
Dijet decorr
Decorrelation ∆φ (Fit range: ∆φ > 0.75) (9 distributions) 20 18.82 10.32 18.50 15.87
Multijets
3-to-2 jet ratios (8 distributions) 100 15.06 11.18 11.06 17.85
pZT (Fit range: pZT < 50GeV)
Z-boson pT (20 distributions) 10 12.16 11.85 9.25 17.85
Substructure
Jet mass,

√
d12,
√
d23, τ21, τ23 (36 distributions) 5 10.71 12.75 14.23 17.85

tt̄ gap
Gap fraction vs Q0, Qsum for |y| < 0.8 100 24.56 5.05 1.97 17.85
Gap fraction vs Q0, Qsum for 0.8 < |y| < 1.5 80 23.73 47.01 4.01 17.85
Gap fraction vs Q0, Qsum for 1.5 < |y| < 2.1 40 2.39 14.20 7.35 17.85
Gap fraction vs Q0, Qsum for |y| < 2.1 10 5.47 19.00 12.82 17.85
Track-jet UE
Transverse region Nch profiles (5 distributions) 10 13.01 24.18 7.46 17.85
Transverse region mean pT profiles for R = 0.2, 0.4, 0.6 (3
distributions)

10 7.91 16.89 9.68 17.85

tt̄ jet shapes
Jet shapes ρ(r), ψ(r) (20 distributions) 5 10.44 11.47 10.29 15.17
Jet UE
Transverse, trans-max, trans-min sum pT incl. profiles (3
distributions)

20 12.11 5.32 10.51 17.85

Transverse, trans-max, trans-min Nch incl. profiles (3 dis-
tributions)

20 6.16 14.42 6.56 17.85

Transverse sum ET incl. profiles (2 distributions) 20 5.11 2.71 7.72 17.85
Transverse sum ET/sum pT ratio incl., excl. profiles (2
distributions)

5 11.94 10.81 11.65 17.85

Transverse mean pT incl. profiles (2 distributions) 10 12.47 7.28 10.45 17.85
Transverse, trans-max, trans-min sum pT incl. distribu-
tions (15 distributions)

1 10.54 14.44 8.27 17.85

Transverse, trans-max, trans-min sum Nch incl. distribu-
tions (15 distributions)

1 11.62 10.33 11.48 17.85
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significant information to the tune.696

Table 8: Number of bins in the A14 and Sherpa datasets within the one σ variance level. Larger numbers
are better. The variance level for each bin is calculated as rb(p) = (fb(p)−Rb)2

∆fb(p)2+∆R2
b
. Test data type specifies

the data over which rb(p) is calculated, where All means that all bins are used, Not Filtered refers to only
the bins that remain after filtering, and Filtered refers to the bins that were filtered out by the respective
filter specified in the Filtering Method as well as the envelope filter. For each data type, the number of bins
in the corresponding dataset is also specified. Parameters specify the type of optimal parameters used in
rb(p) where p∗a are the parameters obtained when all bins were used during tuning whereas p∗b and p∗o are
the parameters obtained when only the bin filtered and observable filtered date are used, respectively.

Dataset Filtering method
Test

data type
Parameters

Robust
optimization

Bilevel-meanscore Bilevel-medianscore Bilevel-portfolio

A14

Bin
Filtered

All
(# 7010)

p∗a 3730 3724 3687 3693
p∗b 3625 3775 3765 3573

Not filtered
(# 5199)

p∗a 3350 3317 3265 3273
p∗b 3248 3365 3342 3185

Filtered
(# 1811)

p∗a 380 407 422 420
p∗b 377 410 423 388

Observable
Filtered

All
(# 7010)

p∗a 3730 3724 3687 3693
p∗o 3732 3734 3695 3509

Not filtered
(# 6707)

p∗a 3675 3660 3624 3630
p∗o 3679 3672 3629 3444

Filtered
(# 303)

p∗a 55 64 63 63
p∗o 53 62 66 65

Sherpa

Bin
Filtered

All
(# 792)

p∗a 320 337 371 256
p∗b 343 328 345 243

Not filtered
(# 588)

p∗a 272 283 317 214
p∗b 282 270 292 200

Filtered
(# 204)

p∗a 48 54 54 42
p∗b 61 58 53 43

Observable
Filtered

All
(# 792)

p∗a 320 337 371 256
p∗o 286 348 386 252

Not filtered
(# 727)

p∗a 304 319 355 237
p∗o 271 331 370 235

Filtered
(# 65)

p∗a 16 18 16 19
p∗o 15 17 16 17

4.6.6 Comparison of rational approximation and the MC simulator697

Similar to the analysis conducted in Section 4.6.2, we compare the cumulative distribution of bins at698

different bands of variance levels computed using the approximation model as rb(p) = (fb(p)−Rb)2
∆fb(p)2+∆R2

b
699

and the MC generator model as r̃b(p) = (MCb(p)−Rb)2
∆MCb(p)2+∆R2

b
, where p are the parameters obtained700

from the tuning approaches. The more bins that are on the bands of variance levels less than701
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Figure 5: Cumulative distribution of bins remaining after filtering (not filtered) and of those filtered
out (filtered) on the y-axis at different bands of variance levels on the x-axis. The variance level for
each bin is calculated as rb(p) = (fb(p)−Rb)2

∆fb(p)2+∆R2
b
with parameters p∗a, which is obtained when all bins

were used, and parameters p∗b and p∗o, which are obtained when only the bin filtered and observable
filtered data are used, respectively.

one, the better. Figure 6 shows the plot of this comparison for bins in each category of the A14702

dataset.5 To avoid making the plot too busy, we show the results using the parameters from three703

approaches. A similar plot showing the results with parameters from the remaining approaches is704

given in Section 8.10 in the online supplement.705

We observe in Figure 6 that the Dijet decorr, Jet shapes, pZT , Track-jet UE, and tt̄ gap categories706

show differences in the performance between rb(p) and r̃b(p) for each approach. Additionally, for707

the robust optimization and Bilevel-meanscore approaches, this difference in the performance is not708

5The Jet UE comparison is missing from this figure because the internal ATLAS analysis is not available to us.
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as wide as that of the Expert (for e.g., see pZT , Track-jet UE categories). This suggests that (a)709

there are categories where the approximations are not able to capture the MC generator perfectly,710

and (b) in general, the rational approximation is a better surrogate for the MC generator than the711

polynomial approximation. [Reviewer comment iv:] , i.e., the rational approximation gives better712

predictions of the MC generator than the polynomial approximation.713

Figure 6: Cumulative distribution of bins (y-axis) in each category of the A14 dataset at different
bands of variance levels (x-axis) computed with cubic polynomial approximation (PA) or rational
approximation (RA) and the MC simulation.

4.7 Results for the Sherpa dataset714

In this section, we present the detailed results for the Sherpa dataset.715
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4.7.1 Comparison metric outcomes for the Sherpa dataset716

Table 9 shows the results when using the rational approximation (results for the cubic polynomial717

approximation are in the online supplement Section 8.12.6). Smaller numbers indicate better per-718

formance. The smallest number of each metric is bold for better visualization. Similar to A14, we719

find that the robust optimization approach achieves the best performance in terms of the Weighted720

χ2 criterion. Assigning equal weights to all observables yields the best results in terms of A- and721

D-optimality for the full and the bin-filtered dataset. The portfolio approach yields the best A- and722

D-optimality values when using the observable-filtered dataset.723

Compared with the results of A14, we see that the magnitudes of [Reviewer comment iv:] all724

metrics numbers obtained for the Sherpa dataset for the Weighted χ2, A- and D-optimality criteria725

are much larger. [Reviewer comment 21:] The large A- and D-optimality values reflect that we726

have larger regions of uncertainty associated with the optimal parameters, and thus we have less727

confidence in the validity of the results obtained for the Sherpa dataset than for the A14 dataset.728

Table 9: Results for the comparison metrics for the full, observable-filtered, and bin-filtered Sherpa

dataset using the rational approximation. The best results are in bold. In each dataset, W-χ2 refers
to the Weighted χ2 metric, A-o refers to the A-opt metric, and l-D-o refers to the log D-opt metric.

Data Full dataset Observable-filtered dataset Bin-filtered dataset
Method W-χ2 A-o l-D-o W-χ2 A-o l-D-o W-χ2 A-o l-D-o
Meanscore 0.2201 9.0147 -39.3957 0.3621 11.1570 -36.5249 0.1490 17.9602 -33.5825
Medscore 0.2249 43.2031 -25.7164 0.2315 13.0679 -35.3498 0.2136 21.9361 -31.4329
Portfolio 0.1510 11.9869 -35.7488 0.4728 8.5578 -38.6042 0.1239 16.8518 -35.2237

Equal-weights 0.2794 6.8428 -42.0325 0.3930 59.9885 -18.8193 0.1753 11.5372 -36.0252
Robust opt 0.0603 55.8079 -22.0884 0.0509 32.9470 -30.5536 0.0919 17.9858 -33.6522

4.7.2 Comparison of the cumulative distribution of bins at different variance levels729

Similar to the analysis conducted in Section 4.6.2, we compare the cumulative distribution of bins730

at different bands of variance level computed using the optimal parameters p obtained from the731

tuning approaches (see Figure 7).[Reviewer comment iv:] shows the plot of this comparison for732

all bins. The results show that fewer bins lie within the variance boundary of one when using the733

parameters of the bilevel-portfolio approach. On the other hand, the bilevel-medianscore approach734

finds parameters that yield the most bins at lower bands of variance levels.735
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Figure 7: [Reviewer comment 17:] Cumulative distribution function (CDF) of all bins (y-axis) in
the Sherpa dataset at different bands of variance levels (x-axis) given by rb(p) = (fb(p)−Rb)2

∆fb(p)2+∆R2
b
.

This function is a normal CDF with mean 1 and a different standard deviation for each method.

4.7.3 Optimal parameter values for the Sherpa dataset with rational approximation736

The optimal parameter values for the Sherpa dataset when no filtering, observable-filtering, and737

bin-filtering were applied, respectively, are shown in Table 10. For a visualization of the different738

solutions obtained with our methods, we illustrate the [0,1]-scaled optimal parameters in the online739

supplement Section 8.12.4. We see that many of the parameters lie on the boundary of the parameter740

space (shown in the table in bold), indicating that we might need to change the size of the parameter741

domain to avoid model extrapolation.742

Note that for the Sherpa dataset, we do not have an “expert” solution for benchmark compar-743

ison. Instead, we compare the solutions to the chosen reasonable default setting. The parameter744

range is constructed by multiplying the default value by 0.5 and 1.5 to obtain the lower and the745
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upper bound, respectively, i.e., the default values lie in the middle of the parameter range. We see746

that there are differences between the optimal parameters obtained with the different methods, in747

particular, bilevel-medianscore gives a very similar solution to the default setting when no filtering748

is applied.749

The distribution of weights from the different methods has a similar pattern as for the tunes750

based on the A14 dataset. These patterns are displayed in Fig. 20 in the online supplement. Robust751

optimization selects only one of the event shape observables as relevant, while applying the same752

equal weight to most of the particle multiplicity (one bin) distributions. The other methods have753

weights that are more widely distributed among the observables with a small number of weights far754

from the average.755

4.8 Closure test756

[Reviewer comment vii:] In order to show that our proposed optimization methods are able to find757

the “correct” solutions, we construct a simple toy model with linear approximations that has two758

parameters and four observables. Each observable has five bins. The approximation fb(p) for each759

bin b is a linear function of the form aTp + c. The coefficients of the linear function are given760

in Section 8.14. The deviation ∆fb(p) is 0 for all bins. The experimental data is made up of761

standard deviation ∆Rb and mean values Rb for each bin b. The standard deviation is a constant762

of 0.005 for all bins. The mean values of the bins are obtained by evaluating the linear function763

at known parameter values. For the bins in the first three observables, the parameter value of764

p = (−0.7778, 0.2729) is used whereas for the bins in the fourth observable, the parameter value of765

p̂ = (−0.0448,−0.3878) is used. We expect that the combined weight of the first three observables766

is larger than the weight of the fourth observable (with optimal tune p) since the number of bins767

that fit well to the experimental data is greater from the first three observables than from the fourth768

observable alone, thus resulting in lower objective value in the optimization algorithms.769

For the bilevel optimization methods, we perform the outlier detection technique to see if the770

fourth observable will be removed. For the robust optimization method, we expect that the optimal771

weights should be [1,1,1,0], or equivalently, [0.3333, 0.3333, 0.3333, 0] after normalization.772

Table 11 shows that all proposed methods can recognize that the fourth observable should not773

be involved in the optimization, and all methods can find the optimal parameter tune p. The774

table also summarizes the comparison metric results obtained with all proposed methods, and the775

results show that the meanscore method performs the best under the Weighted χ2 metric, and the776

medianscore method performs the best under the A- and D-optimality criteria.777
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Table 10: Optimal parameter values obtained with all methods using rational approximation when
no filtering (88 observables used), observable-filtering (3 observables were filtered out), and bin-
filtering (7 bins were filtered out) was applied. The parameter values on the boundaries of the
parameter space are indicated in bold.

ID Parameter name Default Meanscore Medianscore Portfolio Robust opt Equal-weights

A
ll
ob

se
rv
ab

le
s

1 KT_0 1.00 0.888 0.789 0.919 0.909 0.872
2 ALPHA_G 1.25 0.626 1.500 0.626 1.874 0.626
3 ALPHA_L 2.50 3.749 1.890 3.749 1.252 3.749
4 BETA_L 0.10 0.150 0.050 0.087 0.150 0.150
5 GAMMA_L 0.50 0.274 0.339 0.750 0.683 0.293
6 ALPHA_H 2.50 3.400 2.897 1.251 2.841 3.440
7 BETA_H 0.75 0.827 0.536 0.783 0.540 0.795
8 GAMMA_H 0.10 0.148 0.050 0.082 0.150 0.150
9 STRANGE_FRACTION 0.50 0.517 0.498 0.583 0.508 0.546
10 BARYON_FRACTION 0.18 0.100 0.175 0.106 0.136 0.090
11 P_QS_by_P_QQ_norm 0.48 0.720 0.419 0.572 0.613 0.720
12 P_SS_by_P_QQ_norm 0.02 0.010 0.015 0.030 0.030 0.010
13 P_QQ1_by_P_QQ0 1.00 1.499 1.206 0.948 1.190 1.499

Euclidean distance from the default solution 1.513 0.984 1.244 1.289 1.531

O
bs
er
va
bl
e-
fil
te
re
d

1 KT_0 1.00 0.867 0.744 0.952 0.876 0.886
2 ALPHA_G 1.25 0.775 0.626 0.626 0.626 0.957
3 ALPHA_L 2.50 3.749 1.252 3.749 1.252 2.424
4 BETA_L 0.10 0.109 0.050 0.050 0.150 0.113
5 GAMMA_L 0.50 0.250 0.437 0.413 0.750 0.460
6 ALPHA_H 2.50 3.053 2.318 1.251 2.826 3.132
7 BETA_H 0.75 0.827 0.625 0.750 0.375 0.969
8 GAMMA_H 0.10 0.050 0.134 0.094 0.050 0.131
9 STRANGE_FRACTION 0.50 0.479 0.580 0.651 0.506 0.511
10 BARYON_FRACTION 0.18 0.270 0.137 0.090 0.137 0.180
11 P_QS_by_P_QQ_norm 0.48 0.720 0.469 0.495 0.470 0.601
12 P_SS_by_P_QQ_norm 0.02 0.010 0.030 0.030 0.030 0.019
13 P_QQ1_by_P_QQ0 1.00 0.500 1.499 1.499 1.499 0.958

Euclidean distance from the default solution 1.408 1.249 1.372 1.446 0.637

B
in
-fi
lt
er
ed

1 KT_0 1.00 0.895 0.821 0.948 0.820 0.899
2 ALPHA_G 1.25 0.893 1.483 0.626 1.874 0.626
3 ALPHA_L 2.50 3.749 2.334 2.567 3.749 3.749
4 BETA_L 0.10 0.050 0.150 0.074 0.050 0.067
5 GAMMA_L 0.50 0.390 0.250 0.750 0.250 0.454
6 ALPHA_H 2.50 1.251 3.670 1.251 1.969 1.251
7 BETA_H 0.75 0.715 0.534 0.739 1.125 0.715
8 GAMMA_H 0.10 0.119 0.142 0.105 0.050 0.089
9 STRANGE_FRACTION 0.50 0.556 0.542 0.570 0.531 0.559
10 BARYON_FRACTION 0.18 0.122 0.120 0.124 0.138 0.124
11 P_QS_by_P_QQ_norm 0.48 0.595 0.720 0.492 0.497 0.577
12 P_SS_by_P_QQ_norm 0.02 0.030 0.030 0.030 0.030 0.030
13 P_QQ1_by_P_QQ0 1.00 1.499 1.499 1.499 1.499 1.499

Euclidean distance from the default solution 1.266 1.377 1.201 1.462 1.242
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Table 11: Results for the closure test. Shown are the optimal weights obtained with each method,
the optimal parameters, and the outcomes for our performance metrics.

Bilevel-meanscore Bilevel-medscore Bilevel-portfolio Robust optimization
Weights
Observable 1 0.8060 0.5485 0.2550 0.3333
Observable 2 0.0070 0.3100 0.3663 0.3333
Observable 3 0.1870 0.1415 0.3787 0.3333
Observable 4 0 0 0 0
Parameters
p0 -0.7778 -0.7780 -0.7775 -0.7781
p1 0.2726 0.2729 0.2728 0.2731
Performance metrics (lower numbers are better, best results are in bold)
Weighted χ2 0.5866 0.7631 0.9867 1.0023
A-optimality 3.21E-06 2.25E-06 2.74E-06 2.58E-06
log-D-optimality -29.6887 -30.0576 -29.8999 -29.9521

4.9 A note on computation times778

The bilevel optimization approaches [reviewer comment iv:] of medianscore, meanscore, and portfolio779

are run on a 4-core, 32 GB RAM machine running at 1.1 GHz. For the results of robust optimiza-780

tion [Reviewer comment iv:] presented in this paper, 100 values for µ are used that are run on 100781

threads in parallel on a server with 64 Intel Xeon Gold CPU cores running at 2.30 GHz. There are782

two threads per core, but each run of robust optimization is done on a single thread. Additionally,783

this server is equipped with 1.5TB DDR4 2666 MHz of memory. A simple comparison to find the784

best µ takes one minute. The all-weights-equal approach is run on a 4-core, 32 GB RAM machine785

running at 1.1 GHz. [Reviewer comment l:] Note that in our numerical experiments we were not786

primarily concerned with architecture-dependent run times, but rather to ensure that our codes for787

automated optimization can be executed on different architectures.788

The time taken by all the tuning approaches for unfiltered (All data) as well as for bin-filtered789

and observable-filtered A14 data is given in Table 12. In the unfiltered data case, the bilevel790

optimization approaches [Reviewer comment iv:] of medianscore, meanscore, and portfolio take791

approximately 14.5 hours and each run (i.e., one µ) of robust optimization takes an average of792

about 0.8 hours. Since all 100 values of µ were run in parallel, the total time to complete all 100793

runs of robust optimization is approximately two hours. In comparison, campaigns to tune weights794

40



SciPost Physics Submission

by hand takes many weeks or months. Given our results, we can see that the automated weight795

adjustment by optimization is significantly faster than hand-tuning. The all-weights-equal approach796

took less than 10 minutes, but it leads to inferior results.797

The observable filtering method requires a single-tune to obtain the χ2 values per observable798

which takes 1647 seconds (0.45 hours) for all observables in the A14 dataset, which is followed by799

applying the Z-score method to filter out outliers (see Section 3.1) and this takes about 10 seconds.800

Once the single-tune to obtain the χ2 values per observable is performed, the bin filtering [Reviewer801

comment iv:] method takes an additional 300 seconds [Reviewer comment iv:] to filter out the bins802

from for the A14 dataset. Thus, the total pre-processing time required for observable filtering is803

1657 seconds (0.46 hours) and for bin-filtering is 1947 seconds (0.54 hours).804

From Table 12, we observe that the time taken to tune parameters in the observable-filtered805

and bin-filtered data case is significantly smaller than for the unfiltered data case. For the bilevel806

optimization approaches, the time required per iteration for the observable- and bin-filtered cases807

is 6% and 55% less, respectively, and for each run of robust optimization, it is 9% and 36% less,808

respectively. Also, the overhead of performing observable and bin filtering is small compared to809

the time it takes to tune parameters. Since the results from Section 4.6.5 show that the bins810

filtered by bin and observable filtering do not add significant information to the tune, we can claim811

that using filtered data provides a significant improvement in compute-time performance for tuning812

parameters.813

Table 12: CPU time (in seconds) and time per iteration (in seconds) taken by all approaches when
using all, the observable-filtered, and the bin-filtered A14 data. The robust optimization approach
converges after 69, 105, and 83 iterations, respectively. The bilevel-medianscore, -meanscore, and
-portfolio approaches are all run for 1000 iterations.

Method
All data Bin filtered Observable filtered

CPU time
Time per
iteration

CPU time
Time per
iteration

CPU time
Time per
iteration

Robust optimization 3035 44 2989 28 3327 40
Bilevel-medianscore 52326 52 23600 24 49057 49
Bilevel-meanscore 52169 52 23600 24 49018 49
Bilevel-portfolio 52366 52 23609 24 49084 49
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5 Eigentunes814

We use the eigentune approach to calculate confidence intervals for the optimal parameters. We815

note that the A- and D-optimality criteria provide the size of confidence ellipsoid around the optimal816

parameters. Here, we expand this information by scanning generator parameters along the principal817

axes of this ellipsoid. Details of this method are described in [6] and a similar approach is used in818

estimating the uncertainties of predictions from the parton distribution functions [59]. The interval819

defines a boundary beyond which the value of the objective function is larger than the objective820

function value at the minimum by a criterion. The criterion is normally chosen to be the number821

of degrees of freedom n, which is defined as the total number of bins of all observables minus the822

number of generator parameters, d, i.e., n =
∑
O∈SO |O|−d. However, to properly take into account823

the weights assigned to observables, we use the scaled effective sample size as the criteria, which is824

calculated as follows:825

n = γ ×
(

(
∑

iwi)
2∑

iw
2
i

− d
)

The weights are normalized so that the sum of weights associated with all observables equals one.826

γ is iteratively tuned and chosen to be 0.01. The interval would represent the uncertainties of the827

parameters should the objective function follow a χ2 distribution. Smaller intervals associated with828

the tuned parameters indicate that the parameters are better constrained by the experimental data.829

Given the non-linearity of the objective function and parameter correlations, a reliable approach830

to find the 68% confidence interval is to evaluate the objective function for all possible parameter831

values. However, this poses a computational challenge. Instead, we project the multidimensional832

parameter space into two directions defined by the eigenvectors u1,2 associated with the largest833

and smallest eigenvalues of the covariance matrix of the parameters, which are calculated using the834

inverse of Eq. (16). Then we find an offset α such that the sum of all χ2 satisfies835

χ2(p′1,2) = χ2(p∗) + n (17)

where p′1,2 = p∗±u1,2×α. For each eigenvector, we obtain two vectors p′ from Eq. (17). Finally, the836

procedure results in a matrix of sizes of 4 times d. Each column represents a generator parameter;837

the minimum and maximum in each column are used to define the eigentune as shown in Tables 13838

and 14 for the A14 and the Sherpa dataset, respectively, using the rational approximation. The839

same surrogate model is used for all methods. It is possible that the determined intervals go beyond840

the predefined parameter range. In this case, the MC predictions are extrapolated by the surrogate841

model. When the lower part of the interval goes negative, we force the value to be zero.842

42



SciPost Physics Submission

For the A14 data, different optimization methods result in similar intervals for all parameters.6843

The beam remnants (e.g. BeamRemnants:reconnectRange) and space-like showering parameters844

(e.g. SpaceShower:pT0Ref) are better constrained; their intervals are within 1% of their optimized845

parameters. However, the strong coupling [Reviewer comment 22: ] parameter in hard scattering846

processes (SigmaProcess:alphaSvalue) and time-like showering (TimeShower:alphaSvalue) are847

less constrained.848

For the Sherpa data, different optimization methods produce quite different intervals. Overall,849

the bilevel-meanscore method results in relatively small intervals for all parameters. The heavy850

quark fragmentation parameters (e.g. ALPHA_H) are well-constrained thanks to the B-hadron frag-851

mentation measurements, but the light quark fragmentation parameters are not.852

Table 13: Eigentune results for the A14 data using the rational approximation for different opti-
mization methods.

Parameters Expert Bilevel-meanscore Bilevel-mediansocre Bilevel-portfolio Robust optimization
min max min max min max min max min max

SigmaProcess:alphaSvalue 0.075 0.193 0.079 0.192 0.079 0.190 0.074 0.195 0.085 0.183
BeamRemnants:primordialKThard 1.903 1.906 1.805 1.910 1.674 1.769 1.744 1.850 1.876 1.892
SpaceShower:pT0Ref 1.636 1.653 1.516 1.547 1.142 1.228 1.298 1.344 1.586 1.591
SpaceShower:pTmaxFudge 0.905 0.912 1.012 1.016 1.069 1.096 1.037 1.046 1.025 1.026
SpaceShower:pTdampFudge 1.044 1.048 1.064 1.076 1.082 1.086 1.058 1.064 1.078 1.091
SpaceShower:alphaSvalue 0.121 0.124 0.125 0.131 0.127 0.130 0.124 0.133 0.123 0.129
TimeShower:alphaSvalue 0.043 0.197 0.044 0.192 0.039 0.213 0.030 0.213 0.051 0.198
MultipartonInteractions:pT0Ref 1.665 2.543 1.649 2.562 1.780 1.979 1.160 2.829 1.461 2.528
MultipartonInteractions:alphaSvalue 0.068 0.177 0.072 0.161 0.115 0.121 0.062 0.186 0.094 0.151
BeamRemnants:reconnectRange 1.788 1.795 2.065 2.105 1.912 1.915 1.972 2.000 2.589 2.618

[Reviewer comment 25:] The eigentune results serve as a good platform for comparing our853

automated optimization algorithms, but it requires manual adjustment of the criteria n and the854

exploitation of all eigenvectors to produce a realistic uncertainty band. We tried to generate new855

events with the eigentunes based on the robust optimization outcomes as shown in Table 13 using856

the Pythia8 generator configured closely to the one used in the A14 tune. The uncertainty band857

was too large to be practically used. To find a reasonable uncertainty band, we performed the858

eigentune for all ten eigenvectors separately and concluded the strong coupling constant affects most859

observables. Therefore, we manually adjust the strong coupling values and with an uncertainty of860

5% on the strong coupling constant we produced a reasonable uncertainty band. Figure 8 shows861

two exemplary distributions with the uncertainty band (blue and red lines) included.862

6[Reviewer comment 22:] See Table 15 for a description of the physics parameters.
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Table 14: Eigentune results for the Sherpa data using the rational approximation for different
optimization methods. Parameters with negative values are set to zero.

Parameters Bilevel-meanscore Bilevel-mediansocre Bilevel-portfolio Robust optimization
min max min max min max min max

KT_0 0.815 0.970 0.688 0.957 0.524 1.254 0.491 1.273
ALPHA_G 0.438 0.792 1.325 1.604 0.571 0.691 1.597 2.115
ALPHA_L 3.683 3.824 1.309 2.863 3.525 3.939 0.291 2.088
BETA_L 0 0.460 0.043 0.062 0 0.440 0 0.387
GAMMA_L 0.175 0.362 0.330 0.352 0.688 0.823 0.220 1.087
ALPHA_H 3.245 3.537 2.843 2.988 1.200 1.311 2.289 3.475
BETA_H 0.747 0.898 0.484 0.585 0.623 0.972 0.350 0.759
GAMMA_H 0.059 0.249 0 0.080 0.013 0.133 0 0.469
STRANGE_FRACTION 0.496 0.556 0.395 0.595 0.415 0.706 0.440 0.567
BARYON_FRACTION 0 0.459 0.129 0.218 0.018 0.170 0 0.342
P_QS_by_P_QQ_norm 0.552 0.809 0.319 0.524 0.552 0.588 0.594 0.629
P_SS_by_P_QQ_norm 0. 0.031 0. 0.103 0 0.081 0 0.068
P_QQ1_by_P_QQ0 1.492 1.512 1.202 1.210 0.945 0.952 1.167 1.210

Figure 8: [Reviewer comment 25:] Two exemplary distributions with uncertainty band included.
The upper band is in blue and lower band in red. The bottom panel shows the ratio of MC
predictions over the data where the yellow band shows the uncertainties associated with the data.
Left: jet shape ρ as a function of the distance to the jet axis r; Right: the differential cross section
of dijet events as a function of the azimuth angle differences between the two jets ∆φ.
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6 Discussion863

The results presented in the previous sections demonstrate that automated tuning methods can864

produce better fits of the generator predictions to data. Several figures of merit for comparing865

different tunes were considered. The automation of the process means that tuning can be performed866

in less time and with less subjective bias. In this section, we discuss the physics impact of various867

tuning results.868

6.1 Implications of our results on physics869

Physics event generators are imperfect tools. They contain a mixture of solid physics predictions,870

approximations, and ad hoc models. The approximations and models are expected to be incomplete,871

and thus are unlikely to describe the full range of observables accessible by the experiment. Despite872

this fact, for a certain choice of parameters, a model may be able to describe parts of the data. This873

agreement would be accidental and would likely compromise predictions of this model for different874

parts of the data. The weighting of data by an expert is a primitive attempt to force the model to875

agree with data in a region of interest to the physicist – which, most of the time, corresponds to a876

region where a model should be applied. It is equivalent to adding a large systematic uncertainty877

to the data that is de-emphasized by the weighting.878

Here, we address whether the automated methods accomplish this weighting of data without879

explicit input from the physicist. First, we should state our expectations for a tune to the A14880

dataset. The features of the expert tune were previously discussed in [3, Section. 2.2.1]. The A14881

data is all of interest to the physicist, but some of those observables are expected a priori to be882

described better by the event generator than others. The parton shower and hadronization model are883

expected to describe well Tracked jet properties and Jet shapes. The description of jets is essential for884

all hadron collider analyses and is the raison d’être for event generators. tt̄ jet shapes emphasize the885

final state parton shower, and is critical to be described well when making precision predictions that886

are sensitive to the top quark mass. Dijet decorr and pZT observables provide constraints on initial887

state parton shower and intrinsic transverse momentum parameters free from most other parameters,888

and are generically important to be described well. Additional properties, such as the number of889

jets produced in di-jet or Z events or the production of jets at extreme angles, are beyond the890

scope of the Pythia predictions. Track-jet UE and Jet UE observables are sensitive to Pythia’s891

multi-parton-interaction model, which describes most of the particles produced in a high-energy892

collision. The addition of Multijets observables is biasing the parton shower to describe a next-to-893

leading order observable, while the leading-logarithm parton shower includes only an approximation894
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to the full result. Experience shows that this biasing provides a globally better description of many895

observables of interest to the physicist with little effort and without significantly impacting other896

predictions. This feature was built into the Expert tune by applying a large weight to this dataset.897

Finally, adding the tt̄ gap category is asking for the description of an exclusive observable, which898

has very strong requirements in its construction, whereas the Pythia prediction here is valid for899

more inclusive observables. Including this data in the tune is a very specific physics requirement900

that may be beyond the scope of the Pythia approximations.901

6.2 Observables with improved descriptions902

Examples of observable predictions with a lower χ2
O value than the expert tune are displayed in903

Figures 9a-9c. These reflect an improvement in a class of observables and are indicative of all the904

comparisons between predictions and data.905

All of our methods produce a better description of the data than the expert tune for the category906

Jet shapes, though the expert prediction is mainly differing in only the first bin. This observable907

is expected to be described well, in general, since it lies in a physics regime compatible with the908

Pythia approximations.909

The predictions for the pZT and Dijet decorr categories are also improved. We note that the910

weights found for these analyses are not substantially different than for the expert tune, but that911

other categories have their weights reduced (see Table 7 for reference). This implies some tension912

between these observables and the Multijets category (to be discussed below).913

The comparisons between predictions and data shown in our figures are based on runs of the914

MC event generator for the parameter values derived using the surrogate model. Before continuing,915

we should comment on the differences in Figure 6 (and in Figure 17 in Section 8.9 of the online916

supplement) between the surrogate model (RA) and explicit runs of the event generator (MC)917

at the output tuned parameters. The surrogate model would be unreliable if the output tune918

parameters were outside or near the boundary of the parameter range used to derive the inputs for919

the surrogate. A comparison of the parameter values relative to the expert tune and Figure 18 shows920

the distribution of parameter values normalized to the sampling range: rparam = p−pmin
pmax−pmin

. All921

of the central values for the parameters are well within the sampling range. Only the parameters922

SpaceShower:pTdampFudge and BeamRemnants:reconnectRange come near the boundaries. For923

the former, the minimum sampling value was 1.0, and the tuning results only indicate that this924

parameter should be near 1.0. For the latter, the maximum sampling value was chosen quite large925

so that all results appear to be close to the minimum value.926

Furthermore, the most noticeable differences between the RA surrogate predictions and MC927
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Figure 9: Examples of A14 observables and their χ2
O values for which the automated tuning leads

to better fits than the expert’s hand tuning.

47



SciPost Physics Submission

occur for rather small values of the variance between the data and predictions. These values have928

a negligible impact on the full χ2, and are within the expected range of validity of the surrogate929

model.930

6.3 Observables with worse descriptions931

The predictions for Track jet properties and Substructure are not significantly improved, but also932

not degraded. Most of the observables in these categories were designed to tune and test the933

multi-parton interaction model, and thus it is no surprise that they are described well.934

Two categories stand out as being better described by the expert tune. These are the Mul-935

tijets and tt̄ gap categories that were given a particularly large weight in the expert tune. Some936

examples can be seen in Figure 10a-10c. It is no surprise that these categories are not described937

as well as the expert tune. It is surprising that the parameters sensitive to this observable, namely938

TimeShower:alphaSvalue and SpaceShower:alphaSvalue are actually somewhat larger than the939

expert tune values, see Table 6. Larger values for these parameters should mean forcing the predic-940

tion to look more like a higher-order calculation. Clearly, other data, such as Dijet decorr and pZT941

prefer larger values for these parameters than the Multijets category alone.942

[Reviewer comment 24:] Without the expert input, our automated methods do not emphasize943

these observables. The Pythia predictions for Multijets and tt̄ processes are based on calculations944

that could be made more accurate (by performing matched or merged calculations based on external945

input – see [60]), but only at the expense of breaking the universality of the tune. The expert946

weighting used the flexibility of the Pythia model to imitate these more accurate calculations and947

force agreement with the data. The A14 tune was meant to be applied to physics predictions from948

the internal Pythia model for which the corrections were not readily available or easily applicable.949

However, if the goal is to provide a tune that can be used even in association with process-dependent950

corrections, then those provided in this study are more appropriate.951

6.4 Results for Sherpa tuning952

Some of the results of the Sherpa tuning are shown in Figure 11. In general, all of the parameter953

selection methods applied here yield an improved global χ2
O over the default values. The param-954

eters varied in this tuning exercise are all related to the formation of physical particles. This is955

a phenomenon that occurs at a low-energy scale and cannot be described realistically (currently,956

at least) from theory. The model employed in Sherpa is a cluster model that fissions colorless957

blobs of energy into particles using a parameterized probability distribution. Despite the fact that958

hadronization occurs at a low-energy scale, it has an impact on observables that are used to test959
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Figure 10: Examples of A14 observables and their χ2
O values for which the automated tuning

approach performs worse than the expert’s hand tuning.

49



SciPost Physics Submission

b b
b
b
b
b
b
b
b

b
b

b
b

b
b

b

b

b

b

b Data
default, χ2/n = 8.07
mean, χ2/n = 1.36
med, χ2/n = 0.72
port, χ2/n = 4.19
equalw, χ2/n = 0.53
robust, χ2/n = 1.00

10−2

10−1

1

10 1

Sphericity, S

N
d

σ
/

d
S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-4 σ

-2 σ

0 σ

2 σ

4 σ

S

(M
C
−

d
at

a)

(a) Jet shapes [55]

b
b

b

b
b

b
b

b
b b b b b

b
b

b
b

b
b

b
b

b
b

b

b

b

b

b

b

b Data
default, χ2/n = 1.85
mean, χ2/n = 0.84
med, χ2/n = 0.67
port, χ2/n = 0.87
equalw, χ2/n = 0.74
robust, χ2/n = 0.9910−2

10−1

1

10 1

10 2

10 3
Differential 3-jet rate with Durham algorithm (91.2 GeV)

d
σ

/
d

y 3
4

10−4 10−3 10−2 10−1

-4 σ

-2 σ

0 σ

2 σ

4 σ

yDurham
34

(M
C
−

d
at

a)

(b) Jet rates [54]

b

b Data
default, χ2/n = 0.39
mean, χ2/n = 1.00
med, χ2/n = 0.03
port, χ2/n = 15.67
equalw, χ2/n = 4.71
robust, χ2/n = 0.33

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5
Mean K+ multiplicity

M
ul

ti
pl

ic
it

y

90.5 91 91.5 92 92.5

-4 σ

-2 σ

0 σ

2 σ

4 σ

(M
C
−

d
at

a)

(c) Particle count [57]

b

b

b b

b

b

b

b

b

b

b Data
default, χ2/n = 11.84
mean, χ2/n = 14.41
med, χ2/n = 12.30
port, χ2/n = 31.99
equalw, χ2/n = 19.66
robust, χ2/n = 8.61

10−1

1

10 1

Mean multiplicity

M
ul

ti
pl

ic
it

y

π+ π0 K+ K0 η η
′

ρ0 ρ+ p Λ
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

M
C

/D
at

a

(d) Several particle counts side-by-side [57]

Figure 11: Examples of histogram plots of the χ2
O values for the Sherpa tune.
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perturbative predictions at relatively high-energy scales. For these observables, it is impossible to960

entirely disentangle the perturbative prediction from the non-perturbative hadronization model pre-961

diction. Figures 11a-11b show comparisons of our tunes to the default, demonstrating a significant962

improvement in most cases. Figure 11c shows mixed results for the production of one particular963

species of particle. Figure 11d is an example of an inclusive observable that counts the number of964

particles produced without any direct reference to their energy or position in the detector.965

All of these results are for a certain precision of perturbation theory. There are both technical966

and mathematical reasons to truncate perturbation theory in a certain order. These calculations967

were based on the lowest order perturbation theory with an improved parton shower approximation968

to simulate additional perturbative effects. The lowest order prediction produces 2 jets using exact969

perturbation theory and any additional jets using the parton shower approximation. Figure 11b is970

an observable that counts the number of 3-jet events as a function of the jet definition. While our971

results are improved over the default, this indicates higher-order perturbative calculations might972

improve the description even more (e.g., 3 jets calculated in exact perturbation theory and 4 or973

more jets from the parton shower approximation).974

Table 10 shows the parameters values for the various tunes. The simplest comparison is between975

the default values and “All-weights-equal.” The all-weights-equal method yields the tune that would976

result if only the data considered in this study were used. One result is that several of the parameters977

take on the extremum of the values considered here. Without any additional direction to choose978

the range for our parameter scan, we chose 1/2 of the default value to define our sampling window.979

One surprising result is that the parameter P_QQ1_by_P_QQ0, which represents the ratio of spin-1980

to spin-0 diquarks, is driven to a value > 1. While there is no obvious reason that the cluster model981

breaks down, spin-1 diquark production is usually expected to be suppressed. The fact that the982

parameter BARYON_FRACTION is driven to its minimal value compensates for this large value.983

While the type of large scale parameter tuning we have in mind here can only be performed prac-984

tically using surrogate models, the fact that some tuned parameters are pushed to the boundaries985

suggests another direction of algorithmic development. In particular, we would like our algorithm986

to have the capability to recognize a trust region and update the surrogate model with dedicated987

simulations when necessary.988
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7 Conclusions989

In this paper, we propose several algorithms for automating the weighting the importance of data990

used in the tuning process for Monte Carlo event generators. We performed two studies. The first991

used particle collider data and predictions are from the Large Hadron Collider (LHC) and had an992

expert selection of analysis weights as a benchmark. The second used data and predictions are993

from the Large Electron-Positron (LEP) Collider and had only the default parameter choices as994

a reference. The algorithms considered included a bilevel optimization based on several scoring995

procedures and a single-level robust optimization. We find that our automatic methods produce996

parameter tunes that are comparable to labor-intensive, by-hand tunes. For the LHC tuning, filter-997

ing of hard-to-describe observables can lead to tunes of superior quality by identifying observables998

or subsets of observables that cannot be described by the event generator. For the LEP tuning,999

many of the tuned parameters were driven to the extremum of our sampling range, suggesting that1000

the current models are missing some important physics. [Reviewer comment iii:] We note here that1001

filtering approaches only eliminate parts of the model that are highly unlikely to be explained by1002

data. Hence, it is a conservative approach since the range of the function within the domain is1003

usually much larger than the range of the values that could be used to fit the data. The filtering1004

is based on the intuition that the models that are highly unlikely to be explained by data could be1005

removed to (a) get a better estimate of the tune, and (b) prevent the algorithms from going into1006

regions of extrapolation.1007

First, the results show that the parameter values we found agree with and have the potential1008

to improve the physicists’ hand-tuned results. Second, since we automate the weight adjustment1009

for the tune-relevant observables, physicists do not need to hand-tune the weights for observables1010

anymore; we propose several methods for adjusting the weights, so physicists are not involved in1011

the subjective re-weighting anymore. Third, by filtering out and excluding observables and bins,1012

we can save computational time during optimization and improve the parameter values. Fourth, we1013

derived new metrics to easily compare different tunes, and it shows that our methods can perform1014

better than the physicists’ hand-tuning approach.1015

[Reviewer comments R and T:] To get the baseline recommendation among the proposed meth-1016

ods, we suggest that the physicist first select a metric to be minimized. Then, from Tables 5 and 9,1017

we see that if the goal is to minimize the weighted χ2 metric, the robust optimization approach1018

should be chosen. On the other hand, if the goal is to minimize the uncertainty of the estimate,1019

we recommend performing the observable- or bin-filtering first and then using the bilevel-portfolio1020

method.1021
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For the Sherpa data, most of the optimal parameters are on the boundaries of the parameter1022

space, indicating that we might need to change the size of the parameter domain to avoid model1023

extrapolation. One possible solution to this problem is to build an outer loop for moving the center1024

of the parameter search space and apply the trust region method. We leave this to future research.1025

[Reviewer comments ii and v:] In this work, we assumed that each bin is completely indepen-1026

dent of all the other bins. To consider correlations, we need to solve p̂w ∈ arg minp∈Ω ||F(p) −1027

D||2
Γ−1/2(p)WΓ−1/2(p)

, where F(p) is an aggregate vector of central values of the model prediction1028

obtained using a polynomial or rational approximation, D is the aggregated vector of data, W is the1029

weight vector, and Γ(p) is the covariance matrix. As we see, the inclusion of the covariance matrix1030

only affects the inner optimization and the methods proposed here for automatic weight adjustment1031

would be unchanged. However, including the covariance matrix has its challenges. Specifically, (a)1032

the information of the correlations among the bins is currently unavailable, (b) since the covariance1033

matrix depends on the parameter values, we would need to approximate it using a kernel function,1034

and (c) solving this optimization problem is non-trivial since it would require the inversion and1035

taking the square root of the covariance kernel for each objective function evaluation. Tackling1036

these issues is outside the scope of this paper and hence, taking into account bin correlations is left1037

as future work.1038

[Reviewer comments vi and d:] In this work, we do not address the issue of the gap that may1039

exist between the model and the MC event generator. However, this gap only affects the inner1040

optimization. As a result, the parameter tune obtained from minimizing the weighted χ2 objective1041

in the inner optimization problem may not yield the same χ2 value when used in the MC event1042

generator. Another issue is how to select the bounds of the parameter domain Ω. To overcome these1043

issues, we need an approach that queries the MC event generator directly in the inner optimization.1044

This can be achieved by using a derivative-free optimization approach. However, this task is non-1045

trivial since doing this efficiently would require using the correct fidelity of the MC, the number of1046

parameters at which to run the MC, and also deal with other issues that would affect the convergence1047

of such an algorithm. Hence, we leave this work as future research topic.1048
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8 Online Supplement1211

Online supplement for “BROOD: Bilevel and Robust Optimization and Outlier Detection for Effi-1212

cient Tuning of High-Energy Physics Event Generators”.1213

8.1 Solving the outer problem with derivative-free surrogate optimization1214

Solving the inner optimization problem can become computationally demanding as it depends on1215

the number of observables involved, the number of bins per observable (and therefore the number1216

of parameters), and the starting guess (and therefore the number of iterations needed). Thus, the1217

goal is to determine the optimal weights w∗ within as few iterations of the outer loop as possible1218

since this number determines how often we have to solve the inner optimization problem. We do not1219

have a full analytic expression of g(w, p̂w) (black box) since computing this value involves solving1220

the inner optimization problem. Thus, also derivatives of g(w, p̂w) are not available. A widely used1221

approach for optimizing computationally expensive black-box functions is to use computationally1222

cheap approximations (surrogates, metamodels) of the expensive function and to use the approxima-1223

tion throughout the optimization to make iterative sampling decisions [61]. Here, we approximate1224

g(w, p̂w) with a radial basis function (RBF) [62], although in general any approximation model1225

could be used. An RBF interpolant is defined as follows:1226

s(w) =
n∑
i=1

γiφ(‖w −wi‖2) + q(w), (18)

where s : R|SO| 7→ R, wi, i = 1, . . . , n, are the weight vectors for which we have already evaluated the1227

objective function of the outer optimization problem, γi are parameters that must be determined,1228

φ(·) is the radial basis function (here, we choose the cubic, φ(r) = r3, but other options are possible),1229

‖ · ‖2 denotes the Euclidean norm, and q(·) is a polynomial tail whose order depends on the choice1230

of φ. When using the cubic RBF, the polynomial tail must be at least linear (q(w) = β0 + β>w)1231

in order to uniquely determine the RBF parameters (γi, i = 1, . . . , n, β0,β = [β1, . . . , β|SO|]
>).1232

The RBF interpolant s(w) then predicts the value of the objective function at the point w. It is1233

interpolating, and thus the prediction at an already evaluated point wi will agree with the observed1234

function value. Using the RBF, we thus have g(w, p̂w) = s(w) + e(w), where e(w) denotes the1235

difference between the RBF and the true function value and it is 0 at already evaluated vectors wi.1236
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The values of the RBF parameters are determined by solving a linear system of equations:1237 [
Φ W

W> 0

][
γ

β′

]
=

[
G

0

]
, (19)

where the elements of Φ are Φιν = φ(‖wι −wν‖2), ι, ν = 1 . . . n, 0 is a matrix with all entries 0 of1238

appropriate dimension, and1239

W =


w>1 1
...

...
w>n 1

 γ =


γ1

γ2

...
γn

 β′ =



β1

β2

...
β|SO|

β0


G =


g(w1, p̂w1)

g(w2, p̂w2)
...

g(wn, p̂wn)

 . (20)

The linear system in Eq. (19) has a solution if and only if rank(W) = |SO|+ 1 [16]. During the1240

optimization, we use the RBF prediction at unsampled points to determine a new vector w for which1241

we solve the inner optimization problem. It is important that at this step only weights that sum up1242

to 1 are chosen. The steps of the iterative sampling algorithm are summarized in Algorithm 8.1.1243

The inputs that must be supplied to the algorithm are the number of points n0 to be used in the1244

initial experimental design and the maximum number nmax of outer objective function evaluations1245

(i.e., the number of inner optimizations) one is willing to allow. The number n0 should in our case1246

be at least |SO| + 1, since this is the minimum number of points we need to fit the RBF model.1247

nmax should depend on how long the inner optimization takes and the time budget of the user.1248

When creating the initial experimental design in Step 1, we have to ensure that the con-1249

straint (3b) is satisfied. Also, we have the condition that the weights lie in [0, 1] and are uniform1250

in their support. This means that the weights follow the Dirichlet distribution, i.e., the set of1251

points are uniformly distributed over the open standard (|SO| − 1)-simplex. To achieve this, we1252

generate an initial design where all weights are drawn from the symmetric Dirichlet distribution,1253

Dir(α1 = α2 = . . . = α|SO| = 1) [63–65].1254

We evaluate the outer objective function at these points, i.e., we solve the inner optimization1255

problem at each point and we obtain G in Eq. (20). With the sum-one-scaled initial experimental1256

design, however, the rank of the matrixW is now only |SO| (and not the required |SO|+ 1). Thus,1257

we solve the problem as one of dimension |SO| − 1, i.e., for fitting the RBF model, we only use the1258
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Algorithm 8.1: Derivative-free optimization of the outer equality-constrained optimiza-
tion problem
Input: Number of initial experimental design points n0; the maximum number of evaluations

nmax

Output: The best weight vector w∗ and corresponding p̂∗w∗

1: Create an initial experimental design with n0 points; ensure that Eq. (3b) is satisfied for all
points;

2: Compute the value of the outer optimization objective function at all points in the initial
design;

3: Fit an RBF model to the sample data pairs {(wi, g(wi, p̂wi))}n0
i=1

4: Set n = n0

5: while n < nmax do
6: Use the RBF to determine a new point wnew and ensure that Eq. (3b) is satisfied;
7: Solve the inner optimization problem for wnew and obtain p̂wnew ;
8: Compute the value of the outer optimization objective function for (wnew, p̂wnew);
9: Update the RBF model with the new data;
10: n← n+ 1;
11: end while
12: return the best parameter values (w∗, p̂∗w∗);
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first |SO| − 1 values of each sample point (the “reduced” sample points). Thus, we use1259

W =


w1,1 w1,2 . . . w1,|SO|−1 1

w2,1 w2,2 . . . w2,|SO|−1 1
...

...
...

...
...

wn,1 wn,2 . . . wn,|SO|−1 1

 (21)

and the coefficient vector for the polynomial tail thus becomes [β1, . . . , β|SO|−1, β0]>. The vector γ1260

and the matrix G do not change. The elements of Φ are computed from the (|SO| − 1)-dimensional1261

sample vectors. Note, however, that when we evaluate the objective function in Eq. (3a), we always1262

evaluate it for the full-dimensional vectors, as we can simply compute wj,|SO| = 1−∑|SO|−1
i=1 wi for1263

each j = 1, . . . , n.1264

In the iterative sampling procedure (Steps 5-11), we use the RBF model to determine a new1265

vector wnew at which we will do the next evaluation of Eq. (3a). Since we do not know whether the1266

objective function is multimodal, we have to balance local and global search steps, i.e., we have to1267

balance our sample point selection such that we select points with low predicted function values but1268

also points that are far away from already evaluated points. Moreover, the new sample point must1269

satisfy Eq. (3b). In order to do so, we generate a large set of candidate points from the Dirichlet1270

distribution. We use the RBF to predict the function values at the candidate points. Since the RBF1271

is defined over the (|SO| − 1)-dimensional space, we use only the first |SO| − 1 parameter values1272

of each candidate point. We denote the (|SO| − 1)-dimensional candidate points by x1, . . . ,xNcand ,1273

where we choose Ncand large (for example, 500|SO|). For each candidate point, we use the RBF to1274

predict its function value using (18) and we obtain s(xk), k = 1, . . . , Ncand. We scale these values1275

to [0,1] according to1276

Vs(xk) =
s(xk)− smin

smax − smin
, k = 1, . . . , Ncand, (22)

where1277

smin = min{s(xk), k = 1, . . . , Ncand} and smax = max{s(xk), k = 1, . . . , Ncand}. (23)

We also compute the distances d(xk, S) of each candidate point to the set of already evaluated points1278

S (in the (|SO| − 1)-dimensional Euclidean space), and we scale these distances to [0,1] according1279

to1280

Vd(xk) =
dmax − d(xk)

dmax − dmin
, k = 1, . . . , Ncand, (24)

where1281

dmin = min{d(xk, S), k = 1, . . . , Ncand} and dmax = max{d(xk, S), k = 1, . . . , Ncand}. (25)
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The ideal new sample point wnew will have a large distance to the set of already evaluated points1282

S and a low predicted objective function value. Using the two criteria defined above, we compute1283

a weighted sum of both (following [66])1284

V (xk) = νVs(xk) + (1− ν)Vd(xk), k = 1, . . . , Ncand, (26)

where ν ∈ [0, 1] is a parameter that determines how much emphasis we put on either criterion.1285

If ν is large, it means we put most emphasis on Vs, and we favor candidate points that have low1286

predicted objective function values. This also means that the search is more local as low function1287

values are usually predicted around the best point found so far. If ν is small, we put more emphasis1288

on Vd and we favor points that are far away from the set of already evaluated points, and thus the1289

search is more global. By varying the weights ν between different values in [0,1], we can achieve a1290

repeated transition between local and global search, and therefore we can avoid becoming stuck in1291

a local optimum. The candidate point with the lowest V value will become the new sample point1292

wnew. We evaluate the objective function (inner optimization) at the new point (augmented with1293

the missing parameter value), and given the new data, we update the RBF model. The algorithm1294

iterates until the maximum number of function evaluations nmax has been reached.1295

8.2 Polynomial-time algorithm for filtering bins by hypothesis testing1296

In this section, we describe the polynomial-time algorithm to solve the problem of finding the largest1297

contiguous subset of bins B ⊂ O to be kept for tuning, i.e., finding the largest contiguous subset of1298

bins B ⊂ O such that χ2
B ≤ χ2

c,B, where χ
2
c,B is the critical value for bins in B. This algorithm is1299

described in Algorithm 8.2 and it is based on the maximum subarray problem [32].1300

In this algorithm, we first find the critical value for each bin in line 1 as described in Section 3.2.1301

The degree of the freedom is given by ρB = |B| − d and since ρB cannot be negative, the critical1302

values for only the bin index b > d is calculated in line 1. Then the χ2 test statistic is computed for1303

each bin in O in lines 2-3. Then, while iterating through the bins in O, in lines 6, we check whether1304

the current bin b can be added to B and if so, we update the counters and add the current bin b to1305

the end of B (via e) in lines 7-10. If the current bin b cannot be added to B, then in lines 12-13 we1306

shift the start s of B (through τ) such that the start is now at the bin index where the condition1307

in line 6 could be satisfied in future iterations. Finally, in lines 14-19, we perform a sanity check to1308

make sure that B contains the set of bins that yield the lowest χ2
B test statistic.1309
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Algorithm 8.2: Algorithm to find bins B in observable O to keep for tuning
Input : fb,Rb,∆fb,∆Rb,∀b ∈ O; significance level α
Output: start index s and end index e of bins, i.e., B = {s, . . . , e} to keep in O

1 Calculate the critical values for each bin:

kb =

χ2
c,b = f(ρb, α), if b > d

∞, otherwise
, ∀b ∈ {1, 2, . . . , |O|},p ∈ Ω ⊂ Rd

2 Find p∗ by minimizing χ2
O in Eq. (12)

3 Calculate the test statistic values for each bin:

χ2
b(p
∗) = (fb(p

∗)−Rb)2
∆fb(p∗)2+∆R2

b
, ∀b ∈ {1, 2, . . . , |O|}

4 Initialize Σ← 0, b̂← 0, s← 0, e← 0, τ ← 0

5 for b ∈ {1, 2, . . . , |O|} do
6 if Σ + χ2

b ≤ kb̂+1
then

7 Σ← Σ + χ2
b

8 b̂← b̂+ 1

9 s← τ

10 e← b

11 else if Σ 6= 0 then
12 Σ← Σ− χ2

b−b̂
+ χ2

b

13 τ ← b− b̂+ 1

14 if s > 0 and χ2
s−1 < χ2

e then
15 e← e− 1

16 s← s− 1

17 else if e < |O| and χ2
s > χ2

e+1 then
18 e← e+ 1

19 s← s+ 1

20 return B = {s, . . . , e}.
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8.3 A14 and Sherpa physics parameters1310

The A14 tunable physics parameters, their definitions and tuning ranges are shown in Table 15.1311

The Sherpa parameters, their definitions and tuning ranges are shown in Table 16.1312

Table 15: Pythia physics parameters used in the A14 tune, their definitions, and tuning ranges
(min, max). More details of the parameters can be found in the on-line Pythia manual: pythia.
org/latest-manual/Welcome.html

Parameter Description min max

SigmaProcess:alphaSvalue
Strong coupling parameter αS , at the scale Q2 = M2

Z ,
used to calculate QCD cross sections

0.12 0.15

BeamRemnants:primordialKThard
Hard process scale dependence of the primordial k⊥
added to hard scattering subsystems.

1.5 2.0

SpaceShower:pT0Ref
Regulator of the pT → 0 divergence of the initial state
(ISR) parton shower kernels

0.75 2.5

SpaceShower:pTmaxFudge Factor to modify the starting ISR evolution scale 0.5 1.5
SpaceShower:pTdampFudge Factor to dampen the ISR evolution scale 1.0 1.5
SpaceShower:alphaSvalue Similar to SigmaProcess:alphaSvalue, but for ISR 0.10 0.15

TimeShower:alphaSvalue
Similar to SigmaProcess:alphaSvalue, but for
final state (FSR) parton showers

0.10 0.15

MultipartonInteractions:pT0Ref
Similar to SpaceShower:pT0Ref, but used in the
multiparton interaction (MPI) model

1.5 3.0

MultipartonInteractions:alphaSvalue Similar to SigmaProcess:alphaSvalue, but for MPI 0.10 0.15

BeamRemnants:reconnectRange
Sets probability for color reconnections between lower
and higher pT systems

1.0 10.0

8.4 Selection of the best hyperparameter in robust optimization1313

In order to find the best value for µ in the robust optimization, we first build for each run (each1314

µ) a cumulative density curve of the number of observables for which χ2
O(p∗,w)

|O| ≤ τ , where p∗ is1315

the optimal parameter obtained from the robust optimization run, w = 1, τ ∈ R+ and O ∈ SO.1316

Then, we construct the “ideal” cumulative density curve, for which p∗ in χ2
O(p∗,w)

|O| ≤ τ is obtained1317

by optimizing for each observable O separately. An example plot showing the cumulative density1318

curve from the ideal case to some of the robust optimization runs is shown in Figure 12.1319

Then, the area between the cumulative density curve for each robust optimization run and the1320

ideal cumulative density curve is computed. For the A14 dataset and all runs completed for robust1321

optimization, the area between the curve is given in Table 17 (smaller values are better). Finally,1322
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Table 16: Sherpa physics parameters, their definitions and tuning ranges (min, max).

Parameters Definition min max
KT_0 generic parameter for non-perturbative transverse momentum 0.5 1.5
ALPHA_G gluon fragmentation 0.62 1.88
ALPHA_L light quark fragmentation z power 1.25 3.75
BETA_L light quark fragmentation 1− z power 0.05 0.15
GAMMA_L light quark fragmentation exp power 0.25 0.75
ALPHA_H heavy quark fragmentation z power 1.25 3.75
BETA_H heavy quark fragmentation 1− z power 0.375 1.125
GAMMA_H heavy quark fragmentation exp power 0.05 0.15
STRANGE_FRACTION suppression of s quarks 0.25 0.75
BARYON_FRACTION suppression of baryons 0.09 0.27
P_QS_by_P_QQ_norm fraction of di-quarks with one strange quark 0.24 0.72
P_SS_by_P_QQ_norm fraction of di-quarks with two strange quarks 0.01 0.03
P_QQ1_by_P_QQ0 fraction of di-quarks with spin-1 to spin-0 0.5 1.5

for completeness, the best values of µ found for both the A14 and Sherpa datasets are given in1323

Table 18.1324

8.5 Outlier observables in the A14 dataset1325

There are 12 outlier observables using the cubic polynomial approximation and 9 outlier observables1326

using the rational approximation in the A14 dataset.1327

Cubic Polynomial Model Rational Approximation Model
/ATLAS_2011_I919017/d01-x02-y02 /ATLAS_2011_I919017/d01-x02-y02

/ATLAS_2011_I919017/d01-x02-y03 /ATLAS_2011_I919017/d01-x04-y04

/ATLAS_2011_I919017/d01-x03-y02 /ATLAS_2011_I919017/d02-x04-y03

/ATLAS_2011_I919017/d01-x03-y07 /ATLAS_2011_I919017/d02-x04-y04

/ATLAS_2011_I919017/d01-x04-y07 /ATLAS_2011_I919017/d02-x04-y05

/ATLAS_2011_I919017/d01-x04-y08 /ATLAS_2011_I919017/d02-x04-y09

/ATLAS_2011_I919017/d01-x04-y09 /ATLAS_2011_I919017/d02-x04-y10

/ATLAS_2011_I919017/d02-x04-y04 /ATLAS_2011_I919017/d02-x04-y14

/ATLAS_2011_I919017/d02-x04-y10 /ATLAS_2011_I919017/d02-x04-y15

/ATLAS_2011_I919017/d02-x04-y13

/ATLAS_2011_I919017/d02-x04-y14
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/ATLAS_2011_I919017/d02-x04-y15

8.6 Outlier observables in the Sherpa dataset1328

There are 2 outlier observables using the cubic polynomial approximation and 3 outlier observables1329

using the rational approximation in the Sherpa dataset.1330

Cubic Polynomial Model Rational Approximation Model
/DELPHI_1996_S3430090/d07-x01-y01 /DELPHI_1996_S3430090/d02-x01-y01

/DELPHI_1996_S3430090/d08-x01-y01 /DELPHI_1996_S3430090/d07-x01-y01

/DELPHI_1996_S3430090/d08-x01-y01

8.7 Bin filtered data for A14 dataset1329

In Table 21, we give the names of the A14 observables from which bins have been filtered, the1330

number of bins filtered out, critical χ2 value, and χ2 test statistic before and after filtering the bins.1331

8.8 Bin filtered data for Sherpa dataset1332

In Table 22, we give the names of the Sherpa observables from which bins have been filtered, the1333

number of bins filtered out, critical χ2 value, and χ2 test statistic before and after filtering the bins.1334

8.9 Complete results from filtering out observables and bins1335

In Figures 13 and 14, the cumulative distribution plots for parameters obtained after bin filtering1336

and observable filtering for the A14 data are presented. In Figures 15 and 16, the cumulative1337

distribution plots for parameters obtained after bin filtering and observable filtering for the Sherpa1338

data are presented. From these figures, we observe that there is no significant difference in the1339

number of bins within the 1 σ variance level between the optimal parameters p∗a obtained when1340

all bins were used for tuning and the optimal parameters p∗b and p∗o obtained when only the bin1341

filtered and observable filtered bins are used for tuning, respectively. [Reviewer comments h and1342

25:] There is some disagreement in the cumulative distribution of bins when the variance level is1343

less than 10−1. But this is not significant since the number of these bins is small and all of them1344

have small levels of variance. Additionally, to get p∗a, the filtered bins were used. So we see that for1345

variance levels less than 10−1, p∗a performs better on the filtered data (solid blue line) than p∗b or1346

p∗o (dashed blue line). However for variance levels beyond 10−1, this difference is negligible. This1347
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Table 17: Area between ideal cumulative density curve and the cumulative density curves of the
robust optimization runs for various hyperparameters µ for the A14 full dataset (smaller values are
better). The data are organized in ascending order of the area between the curves.

rank µ Area rank µ Area rank µ Area rank µ Area
1 80 7.51e+02 26 79 1.05e+03 51 24 1.32e+03 76 38 1.66e+03
2 78 7.93e+02 27 81 1.12e+03 52 35 1.32e+03 77 29 1.72e+03
3 76 7.95e+02 28 71 1.13e+03 53 93 1.35e+03 78 51 1.72e+03
4 77 8.15e+02 29 95 1.14e+03 54 89 1.39e+03 79 49 1.73e+03
5 73 8.53e+02 30 10 1.15e+03 55 45 1.40e+03 80 57 1.73e+03
6 70 8.91e+02 31 11 1.17e+03 56 42 1.41e+03 81 50 1.74e+03
7 90 8.96e+02 32 12 1.17e+03 57 41 1.43e+03 82 43 1.74e+03
8 26 9.09e+02 33 18 1.18e+03 58 68 1.43e+03 83 44 1.76e+03
9 88 9.11e+02 34 3 1.19e+03 59 67 1.44e+03 84 55 1.79e+03
10 74 9.14e+02 35 21 1.19e+03 60 46 1.44e+03 85 47 1.87e+03
11 86 9.42e+02 36 20 1.19e+03 61 39 1.46e+03 86 60 1.93e+03
12 72 9.43e+02 37 16 1.19e+03 62 30 1.48e+03 87 37 1.94e+03
13 27 9.44e+02 38 69 1.20e+03 63 63 1.48e+03 88 59 1.95e+03
14 83 9.47e+02 39 22 1.20e+03 64 40 1.51e+03 89 33 1.96e+03
15 75 9.53e+02 40 23 1.21e+03 65 64 1.52e+03 90 54 1.97e+03
16 87 9.59e+02 41 19 1.21e+03 66 28 1.55e+03 91 58 1.99e+03
17 8 9.61e+02 42 13 1.22e+03 67 61 1.56e+03 92 53 2.08e+03
18 82 9.72e+02 43 25 1.23e+03 68 98 1.56e+03 93 94 2.13e+03
19 2 9.77e+02 44 97 1.24e+03 69 62 1.58e+03 94 56 2.14e+03
20 84 9.80e+02 45 7 1.25e+03 70 66 1.58e+03 95 52 2.23e+03
21 5 9.90e+02 46 15 1.27e+03 71 32 1.58e+03 96 99 2.74e+03
22 85 9.99e+02 47 17 1.28e+03 72 48 1.59e+03 97 36 3.00e+03
23 1 1.01e+03 48 14 1.29e+03 73 31 1.60e+03 98 34 3.02e+03
24 9 1.03e+03 49 92 1.30e+03 74 65 1.61e+03 99 91 3.05e+03
25 6 1.04e+03 50 4 1.31e+03 75 96 1.64e+03 100 100 3.89e+03
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Figure 12: Ideal cumulative density curve and the cumulative density curves of robust optimization
runs with selected hyperparameter values µ for the A14 dataset.

Table 18: Best µ obtained for A14 and Sherpa datasets when unfiltered (All data), bin filtered and
observable filtered data are used for parameter tuning.

Dataset All data Bin filtered Observable filtered
A14 80 76 80

Sherpa 82 71 73

means that filtering the bins or observables does not deteriorate the variance of the bins for levels1348

greater than 10−1. To summarize, we conclude that the MC generator cannot explain very well the1349

data of the bins that were removed by filtering. Hence, removing these bins from the tuning process1350

does not reduce the information required to achieve a good tune as the performance for bins with1351

moderate and high variance in the filtered case is very similar to the case when all the bins are1352
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included.1353

Figure 13: Cumulative distribution of bins for the A14 dataset at different bands of variance levels
using different approaches. Results are shown using the parameters p∗a obtained using all bins
during optimization, and the parameters p∗b obtained when only the bin filtered bins are used
during optimization.

8.10 Comparison of the rational approximation with the MC generator1354

We compare the cumulative distribution of bins at different bands of variance levels computed using1355

the rational approximation (RA) model as rb(p) = (fb(p)−Rb)2
∆fb(p)2+∆R2

b
and the MC generator model as1356

r̃b(p) = (MCb(p)−Rb)2
∆MCb(p)2+∆R2

b
, where p are the parameters obtained from the different tuning approaches.1357

In Figure 6, we showed the plot of this comparison for bins in each category of the A14 dataset1358

using the parameters from three approaches. For completeness, in Figure 17, we show the plot of1359

this comparison for the remaining three approaches.1360
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Figure 14: Same as Figure 13, but using observable filtering.

We observe in Figure 17 that around the variance boundary, except for in the Track-jet UE and1361

Multijets categories, there is no significant difference in performance between rb(p) and r̃b(p) for1362

each approach. In the case of Track-jet UE and Multijets categories, the number of bins that lie1363

within the variance boundary is quite low compared to other categories. This suggests that many1364

bins in these categories cannot be explained well by either the MC generator or the approximation1365

for the optimal tuning parameters reported by the approaches. Additionally, we observe in these1366

categories that the approximations are not able to capture the MC generator perfectly.1367

8.11 Optimal parameter values for the A14 dataset with the rational approxi-1368

mation1369

To better visually compare the different solutions obtained with our optimization methods, we show1370

the [0,1]-scaled optimal parameter values in Figure 18.1371
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Figure 15: Same as Figure 13 , but for the Sherpa dataset.

8.12 Results for using the cubic polynomial to approximate the MC simulation1372

In the main paper, we showed the numerical results when using a rational approximation of the1373

MC simulation during tuning. In the A14 publication [3], a cubic polynomial was used. Thus, in1374

this section, we present the results obtained with our optimization methods when using a cubic1375

polynomial instead of a rational approximation.1376

8.12.1 Comparison metric outcomes for the A14 dataset using the cubic polynomial1377

approximation1378

Tables 24 shows the comparison metrics we introduced in the main paper in Section 4.2 when1379

using the cubic polynomial approximation for the full data, the observable-filtered data, and the1380

bin-filtered data, respectively. We see that for all three cases and most criteria (except for the1381

D-optimality in the observable-filtered case), our automated methods for adjusting the observable1382
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Figure 16: Same as Figure 15, but using observable filtering.

weights perform better than the expert solution (i.e., using the parameters published in [3]).1383

8.12.2 Optimal parameter values for the A14 dataset using the cubic polynomial1384

approximation1385

Table 25 shows the optimal values for the tuned parameters obtained by all methods for the A141386

dataset when using all observables in the tune. For Bilevel-meanscore, -medianscore and -portfolio,1387

we repeated the experiments three times using different random number seeds and we report the1388

best results among the three trials based on their respective objective functions. From these results,1389

we can see that the Bilevel-medianscore method leads to a solution that is closest to the expert’s1390

solution.1391

To better visually compare the different solutions obtained with our methods, we show the1392

[0,1]-scaled optimal values in Figure 18. We can see that there are differences between the optimal1393
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Figure 17: Cumulative distribution of bins in each category of the A14 dataset at different bands
of variance levels computed with the rational approximation (RA) given by, rb(p) = (fb(p)−Rb)2

∆fb(p)2+∆R2
b

and the MC simulation given by r̃b(p) = (MCb(p)−Rb)2
∆MCb(p)2+∆R2

b

parameters obtained with the different methods, in particular, the results of the robust optimization1394

method tend to be further away from the expert’s solution for parameters 1, 2, 3, 7, 8, 9 and 10.1395

The results of the portfolio optimization differ from the expert tune in particular for parameters 1,1396

2, 3, 4 and 7. The mean- and medianscore results are very similar to each other as well as to the1397

expert’s solution.1398

We conducted a similar analysis on the observable- and bin-filtered data. Table 26 shows the1399

optimal parameter values that we obtain with the automated optimization methods after filtering1400

out the 12 observables that the model cannot explain (see also Section 3.1). The expert solution is1401

the same as before and based on all observables. We include it for easier comparison. With only a1402

75



SciPost Physics Submission

Figure 18: Optimal parameter values for the A14 dataset obtained when using all, bin-filtered
(_bin) and observable-filtered (_obs) data in the optimization and the polynomial approximation
(PA) and rational approximation (RA). Values are normalized to [0,1].

few exceptions, all parameters obtained with the automated optimizations change (as compared to1403

using the full dataset). Figure 18 shows the optimal parameter values obtained with each method1404

scaled to [0,1]. In comparison to when using the full dataset, we see that the results of the robust1405

optimization now agree better with the expert’s tune for parameters 3, 4, and 8, but less agreement1406

is achieved for parameter 10. Of the three bilevel methods, the medianscore objective function leads1407

to optimal parameters that are most similar to the expert tune.1408

In Table 27 and Figure 18 we show the optimal parameter values obtained with our methods after1409

applying the bin-filtering approach described in Section 3.2 in the main document. In comparison1410

to our results that do not use any filtering, we can see a much larger disagreement in the optimal1411

parameters for all methods. In fact, all methods yield optimal parameters that are significantly1412

further away from the expert’s solution, except for parameters 7 and 10. The Euclidean distance1413
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between the optimal parameters obtained by our proposed methods and the expert solution shows1414

that the bilevel-medianscore method leads to the most similar parameter values while all the other1415

methods lead to very different tunes.1416

8.12.3 Comparison of optimal weights for the A14 dataset with cubic polynomial1417

approximation1418

In Table 28 we present the optimal weights assigned to each observable group by each method1419

following the presentation style in [3]. The weights reported for our method are averages of the1420

weights over all observables that belong to the same group. We scaled the weights such that they1421

are on equal footing (all add up to 4580).1422

The largest differences between the expert-adjusted values and the values determined by our1423

methods are for Multijets, tt̄ gap and Jet UE, while for the remaining groups, the values are very1424

similar. These results, together with our analysis above let us conclude that an automated method1425

for adjusting the weights of observables for tuning parameters is a viable approach and can lead to1426

better results than hand-tuning.1427

8.12.4 Optimal parameter values for the Sherpa dataset with rational approximation1428

For a better visual comparison of the different solutions obtained with our methods, we show the1429

[0,1]-scaled optimal values in Figure 19. Compared to the results for the A14 dataset, we see that1430

there are significant differences between the optimal parameters obtained with the different methods.1431

8.12.5 Optimal parameter values for the Sherpa dataset with the cubic polynomial1432

approximation1433

The physics parameters p and their optimization ranges are shown in Table 16. Tables 29, 301434

and 31 shows the optimal values for the physics parameters obtained by all methods when no1435

filtering was applied before optimization, after using outlier detection to remove observables from1436

the optimization, and after using the bin-filtering approach that excludes individual bins from1437

the optimization, respectively. For an illustrative comparison, we show the [0,1]-scaled optimal1438

parameter values in Figure 19. The default values lie right in the middle of the parameter range.1439
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Figure 19: Comparison of the optimal parameter values for Sherpa obtained with the different
optimization methods when no, observable, and bin data filtering was applied and the rational and
polynomial approximation was used. Values are normalized to [0,1].

8.12.6 Comparison metric outcomes for the Sherpa dataset with the cubic polynomial1440

approximation1441

Tables 33 shows the comparison metrics of our experiments when using the cubic polynomial ap-1442

proximation for the full data, the observable-filtered data, and the bin-filtered data, respectively.1443

Smaller numbers indicate better performance. The smallest number of each metric is bold for better1444

visualization.1445

Based on these results, we can see that the all-weights-equal method (i.e. not adjusting any1446

weights) has the best performance for the full dataset under the A- and D-optimality. The bilevel-1447

portfolio method performs best under the A- and D-optimality for both the observable- and bin-1448

filtered datasets. The robust optimization method performs best in all three cases under the1449
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Weighted χ2 criterion.1450

8.13 Weights assigned by different fitting methods1451

Figure 20 shows the weights per observable obtained from the tune to Sherpa using the methods1452

described in this paper.
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Figure 20: Distribution of weights assigned to observables for the different fitting methods described
in the paper. Observables to the left are based on kinematic properties of events, while those to the
right are particle multiplicities.

1453

8.14 Coefficients of the approximation function of the toy model1454

[Reviewer comment vii:] In Table 34, we give the coefficients of the approximation fb(p) for each1455

bin b, which is a linear function of the form aTp+c of the toy model from the closure test described1456

in Section 4.8.1457
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8.15 Eigentunes for the results obtained with the cubic polynomial approxima-1458

tion1459

Tables 35 and 36 shows the eigentune results for the A14 and Sherpa datasets, respectively, when1460

using the cubic polynomial approximation.1461

8.16 Generator settings for Pythia and Sherpa1462

Typical run card for A14 studies using Pythiav8.186.1463

Tune:pp = 14
Tune:ee = 7

PDF:useLHAPDF = on
PDF:LHAPDFset = NNPDF23_lo_as_0130_qed
PDF:LHAPDFmember = 0
PDF:extrapolateLHAPDF = off

! 3) Beam parameter settings. Values below agree with default ones.
Beams:idA = 2212 ! first beam, p = 2212, pbar = -2212
Beams:idB = 2212 ! second beam, p = 2212, pbar = -2212
Beams:eCM = 7000. ! CM energy of collision

# uncomment for QCD
PhaseSpace:pTHatMin = 10.0
HardQCD:all = on
PhaseSpace:bias2Selection = on
PhaseSpace:bias2SelectionRef = 10.0
# uncomment for t-tbar
#Top:qqbar2ttbar = on
#Top:gg2ttbar = on
#SpaceShower:pTmaxMatch = 2
#SpaceShower:pTmaxFudge = 1
#SpaceShower:pTdampMatch = 1
# uncomment for Z
#WeakSingleBoson:ffbar2gmZ = On
#23:onMode = off
#23:onIfAny = 11 13 15 5 4 3
#SpaceShower:pTmaxMatch = 2
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#SpaceShower:pTmaxFudge = 1
#SpaceShower:pTdampMatch = 1

# Example set of tuning parameters
SigmaProcess:alphaSvalue 0.1343
BeamRemnants:primordialKThard 1.711
SpaceShower:pT0Ref 1.823
SpaceShower:pTmaxFudge 1.047
SpaceShower:pTdampFudge 1.492
SpaceShower:alphaSvalue 0.1302
TimeShower:alphaSvalue 0.1166
MultipartonInteractions:pT0Ref 2.953
MultipartonInteractions:alphaSvalue 0.127
BeamRemnants:reconnectRange 4.747

ParticleDecays:limitTau0 = on
ParticleDecays:tau0Max = 10

We used these settings to reproduce the original results when necessary and to make full predictions1464

for parameters selected using the surrogate function. Some of the original data using in the A141465

study was private at that time and was only made public later. In a relatively small number of1466

cases, the public data was in a different form than that used for the original study, so we were1467

unable to reproduce those predictions.1468

Typical run card for Sherpa studies using v3.0.0.1469

# general settings

SHOWER_GENERATOR: CSS
ANALYSIS: Rivet
FRAGMENTATION: Ahadic
INTEGRATION_ERROR: 0.02

# model parameters

ALPHAS(MZ): 0.1188
ORDER_ALPHAS: 2

# collider setup
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BEAMS: [11, -11]
BEAM_ENERGIES: 45.6

# hadronization parameters
AHADIC:
KT_0 : 0.9088969039427998
ALPHA_G : 1.8736652396525728
ALPHA_L : 1.2518697247467987
BETA_L : 0.14989272155179253
GAMMA_L : 0.6832145156132761
ALPHA_H : 2.840868263919124
BETA_H : 0.5404054759080933
GAMMA_H : 0.14984034099619253
STRANGE_FRACTION : 0.5075082631730515
BARYON_FRACTION : 0.1357479921139296
P_QS_by_P_QQ_norm : 0.612797404412154
P_SS_by_P_QQ_norm : 0.029994467832440565
P_QQ1_by_P_QQ0 : 1.1896505751927051

PARTICLE_DATA:
4: {Massive: true}
5: {Massive: true}

PARTICLE_CONTAINER:
1098: {Name: C, Flavours: [4, -4]}
1099: {Name: B, Flavours: [5, -5]}

PROCESSES:
- 11 -11 -> 93 93:

Order: {QCD: 0, EW: 2}
- 11 -11 -> 4 -4:

Order: {QCD: 0, EW: 2}
- 11 -11 -> 5 -5:

Order: {QCD: 0, EW: 2}

RIVET:
ANALYSES:

- SLD_2002_S4869273
- DELPHI_1996_S3430090

82



SciPost Physics Submission

- JADE_OPAL_2000_S4300807
- PDG_HADRON_MULTIPLICITIES

We used these settings to reproduce the data for our surrogate function and to make full predictions1470

for parameters selected using the surrogate function.1471
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Table 21: Bin filtering of A14 data: Shown are the observables from which bins were removed and the number of bins removed. We also show
the critical χ2 values and the χ2 test statistic before and after bin filtering. If all the bins were removed from the observable then the number of
bins removed is shown in bold font and the χ2 test statistic before and after bin filtering is the same.

Observable Name
No. of

filtered bins χ2
c,B

χ2
B before

filtering bins
χ2
B after

filtering bins
/ATLAS_2011_I919017/d01-x02-y04 11 3.84 9.77 9.77
/ATLAS_2011_I919017/d01-x02-y05 13 7.81 13.51 13.51
/ATLAS_2011_I919017/d01-x02-y13 11 3.84 9.43 9.43
/ATLAS_2011_I919017/d01-x02-y18 11 3.84 6.20 6.20
/ATLAS_2011_I919017/d01-x03-y01 11 21.03 24.00 3.57
/ATLAS_2011_I919017/d01-x03-y02 4 21.03 48.57 19.72
/ATLAS_2011_I919017/d01-x03-y03 2 25.00 28.99 24.72
/ATLAS_2011_I919017/d01-x03-y04 2 32.67 35.36 32.19
/ATLAS_2011_I919017/d01-x03-y06 10 26.30 59.81 26.13
/ATLAS_2011_I919017/d01-x03-y07 7 25.00 58.78 23.91
/ATLAS_2011_I919017/d01-x03-y08 5 28.87 36.98 28.27
/ATLAS_2011_I919017/d01-x03-y09 6 35.17 41.10 35.10
/ATLAS_2011_I919017/d01-x03-y12 3 23.68 31.51 21.33
/ATLAS_2011_I919017/d01-x03-y13 15 31.41 58.77 26.18
/ATLAS_2011_I919017/d01-x03-y14 12 33.92 69.51 32.38
/ATLAS_2011_I919017/d01-x03-y17 3 23.68 30.48 22.60
/ATLAS_2011_I919017/d01-x03-y18 1 30.14 30.65 26.75
/ATLAS_2011_I919017/d01-x03-y19 12 33.92 43.45 6.13
/ATLAS_2011_I919017/d01-x04-y03 22 21.03 45.11 45.11
/ATLAS_2011_I919017/d01-x04-y04 21 19.68 93.99 93.99
/ATLAS_2011_I919017/d01-x04-y05 4 16.92 22.81 16.74
/ATLAS_2011_I919017/d01-x04-y08 22 21.03 65.21 65.21
/ATLAS_2011_I919017/d01-x04-y09 22 21.03 71.99 71.99
/ATLAS_2011_I919017/d01-x04-y10 2 18.31 25.18 18.27
/ATLAS_2011_I919017/d01-x04-y13 12 22.36 49.09 2.36
/ATLAS_2011_I919017/d01-x04-y14 24 23.68 71.30 71.30
/ATLAS_2011_I919017/d01-x04-y15 4 21.03 27.53 20.80
/ATLAS_2011_I919017/d01-x04-y18 2 23.68 23.77 22.57
/ATLAS_2011_I919017/d01-x04-y19 8 22.36 36.75 16.78
/ATLAS_2011_I919017/d01-x04-y25 3 26.30 29.14 24.98
/ATLAS_2011_I919017/d02-x02-y05 1 11.07 13.84 9.87
/ATLAS_2011_I919017/d02-x02-y09 1 9.49 12.32 8.52
/ATLAS_2011_I919017/d02-x02-y14 1 9.49 12.19 9.18
/ATLAS_2011_I919017/d02-x03-y02 15 30.14 40.31 7.63
/ATLAS_2011_I919017/d02-x03-y06 3 31.41 36.64 28.59
/ATLAS_2011_I919017/d02-x03-y07 4 31.41 55.51 29.12
/ATLAS_2011_I919017/d02-x03-y12 7 31.41 45.41 30.04
/ATLAS_2011_I919017/d02-x03-y17 1 30.14 30.64 28.11
/ATLAS_2011_I919017/d02-x04-y03 10 26.30 46.87 19.20
/ATLAS_2011_I919017/d02-x04-y04 25 25.00 136.83 136.83
/ATLAS_2011_I919017/d02-x04-y05 28 28.87 74.75 74.75
/ATLAS_2011_I919017/d02-x04-y08 16 27.59 82.23 25.29
/ATLAS_2011_I919017/d02-x04-y09 27 27.59 156.13 156.13
/ATLAS_2011_I919017/d02-x04-y10 30 31.41 126.00 126.00
/ATLAS_2011_I919017/d02-x04-y13 14 26.30 71.23 23.47
/ATLAS_2011_I919017/d02-x04-y14 27 27.59 103.20 103.20
/ATLAS_2011_I919017/d02-x04-y15 9 28.87 70.47 26.49
/ATLAS_2011_I919017/d02-x04-y18 3 26.30 32.01 25.80
/ATLAS_2011_I919017/d02-x04-y19 13 28.87 67.53 23.91
/ATLAS_2011_I919017/d02-x04-y20 10 28.87 57.69 28.31
/ATLAS_2011_I919017/d02-x04-y24 10 28.87 43.46 28.24
/ATLAS_2011_I919017/d02-x04-y25 3 31.41 39.98 28.20
/ATLAS_2011_ZPT/d02-x01-y01 1 14.07 15.77 14.06
/ATLAS_2011_ZPT/d02-x02-y02 2 14.07 16.94 13.93
/ATLAS_2011_ZPT/d03-x01-y01 1 14.07 15.32 13.85

/ATLAS_2013_JETUE/d08-x01-y03 1 12.59 19.97 11.51
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Table 22: Bin filtering of Sherpa data: Shown are the observables from which bins were removed
and the number of bins removed. We also show the critical χ2 values and the χ2 test statistic before
and after bin filtering. If all the bins were removed from the observable then the number of bins
removed is shown in bold font and the χ2 test statistic before and after bin filtering is the same.

Observable Name
No. of

filtered bins χ2
c,B

χ2
B before

filtering bins
χ2
B after

filtering bins
/DELPHI_1996_S3430090/d02-x01-y01 17 9.49 35.19 35.19
/DELPHI_1996_S3430090/d04-x01-y01 17 9.49 24.89 24.89
/DELPHI_1996_S3430090/d06-x01-y01 21 15.51 41.59 41.59
/DELPHI_1996_S3430090/d07-x01-y01 22 16.92 83.91 83.91
/DELPHI_1996_S3430090/d08-x01-y01 26 22.36 80.11 80.11
/DELPHI_1996_S3430090/d10-x01-y01 2 11.07 15.90 10.59
/DELPHI_1996_S3430090/d11-x01-y01 20 14.07 94.30 94.30
/DELPHI_1996_S3430090/d16-x01-y01 14 3.84 17.63 17.63
/DELPHI_1996_S3430090/d18-x01-y01 23 18.31 101.31 101.31
/DELPHI_1996_S3430090/d19-x01-y01 21 15.51 59.12 59.12
/DELPHI_1996_S3430090/d20-x01-y01 16 7.81 20.48 20.48
/DELPHI_1996_S3430090/d33-x01-y01 5 52.19 75.18 50.31
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Table 23: [Reviewer comment 16:] A14 results with the full dataset, observable-filtered dataset and
bin-filtered dataset when using the cubic polynomial approximation, calculated on the full dataset.
Lower numbers are better. The best results are in bold. In each dataset, W-χ2 refers to the
Weighted χ2 metric, A-o refers to the A-opt metric, and l-D-o refers to the log D-opt metric.

Data full dataset observable-filtered dataset bin-filtered dataset
Method W-χ2 A-o l-D-o W-χ2 A-o l-D-o W-χ2 A-o l-D-o

Bilevel-
meanscore

0.1290 0.5358 -66.0364 0.1079 0.8082 -61.9210 0.1244 0.7147 -64.7848

Bilevel-
medscore

0.1645 0.4114 -70.0545 0.1702 0.4955 -66.6920 0.2171 0.5433 -69.7202

Bilevel-
portfolio

0.1900 0.6590 -63.0378 0.1764 0.7408 -61.3839 0.1159 0.5205 -70.1573

Expert
tune

0.1306 0.5466 -68.6511 0.1306 0.5466 -68.6511 0.1306 0.5466 -68.6511

All-weights-
equal

0.1034 0.5553 -65.6099 0.1049 0.6689 -63.6502 0.1406 0.4122 -69.2732

Robust
optimization

0.0697 0.9749 -66.7931 0.0829 1.0574 -66.3665 0.1234 0.8075 -67.1015

Table 24: [Reviewer comment 16:] A14 results with the full dataset, observable-filtered dataset
and bin-filtered dataset when using the cubic polynomial approximation, calculated on the reduced
dataset. Lower numbers are better. The best results are in bold. In each dataset, W-χ2 refers to
the Weighted χ2 metric, A-o refers to the A-opt metric, and l-D-o refers to the log D-opt metric.

Data full dataset observable-filtered dataset bin-filtered dataset
Method W-χ2 A-o l-D-o W-χ2 A-o l-D-o W-χ2 A-o l-D-o

Bilevel-
meanscore

0.1290 0.5358 -66.0364 0.1079 0.8082 -61.9210 0.0778 1.0199 -60.6441

Bilevel-
medscore

0.1645 0.4114 -70.0545 0.1702 0.4955 -66.6920 0.1085 0.7208 -67.4322

Bilevel-
portfolio

0.1900 0.6590 -63.0378 0.1764 0.7408 -61.3839 0.0738 0.4231 -69.4117

Expert
tune

0.1306 0.5466 -68.6511 0.0799 0.5542 -68.6748 0.0456 0.8985 -63.5606

All-weights-
equal

0.1034 0.5553 -65.6099 0.0857 0.6769 -63.6881 0.0379 0.7390 -63.8424

Robust
optimization

0.0697 0.9749 -66.7931 0.0829 1.0574 -66.3665 0.0642 0.9559 -64.8659
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Table 25: Optimal parameter values for the A14 dataset obtained when using all observables in the
optimization and the cubic polynomial approximation.

ID Parameter name Expert Bil.-meanscore Bil.-medianscore Bil.-portfolio Robust opt All-weights-equal
1 SigmaProcess:alphaSvalue 0.143 0.139 0.141 0.140 0.136 0.138
2 BeamRemnants:primordialKThard 1.904 1.867 1.884 1.866 1.826 1.862
3 SpaceShower:pT0Ref 1.643 1.632 1.735 1.651 1.395 1.603
4 SpaceShower:pTmaxFudge 0.908 0.939 0.904 0.988 0.933 0.944
5 SpaceShower:pTdampFudge 1.046 1.079 1.069 1.047 1.063 1.067
6 SpaceShower:alphaSvalue 0.123 0.129 0.130 0.130 0.128 0.129
7 TimeShower:alphaSvalue 0.128 0.123 0.124 0.121 0.136 0.124
8 MultipartonInteractions:pT0Ref 2.149 2.083 2.065 2.039 1.925 2.092
9 MultipartonInteractions:alphaSvalue 0.128 0.127 0.127 0.126 0.120 0.127
10 BeamRemnants:reconnectRange 1.792 1.531 1.405 1.591 2.567 1.636

Euclidean distance from the expert solution 0.246 0.235 0.428 0.451 0.259

Table 26: Optimal parameter values for A14 when using the cubic polynomial approximation with
all methods after outlier detection to filter out observables that cannot be approximated well by
the model.

ID Parameter name Expert Bilevel-meanscore Bilevel-medianscore Bilevel-portfolio Robust opt All-weights-equal
1 SigmaProcess:alphaSvalue 0.143 0.136 0.141 0.137 0.136 0.137
2 BeamRemnants:primordialKThard 1.904 1.793 1.853 1.754 1.829 1.772
3 SpaceShower:pT0Ref 1.643 1.329 1.369 1.218 1.425 1.301
4 SpaceShower:pTmaxFudge 0.908 1.079 1.088 1.223 0.926 1.085
5 SpaceShower:pTdampFudge 1.046 1.069 1.053 1.101 1.065 1.074
6 SpaceShower:alphaSvalue 0.123 0.129 0.128 0.129 0.129 0.129
7 TimeShower:alphaSvalue 0.128 0.124 0.123 0.116 0.136 0.124
8 MultipartonInteractions:pT0Ref 2.149 1.971 2.098 1.870 1.971 1.983
9 MultipartonInteractions:alphaSvalue 0.128 0.122 0.126 0.120 0.121 0.123
10 BeamRemnants:reconnectRange 1.792 1.812 1.614 1.714 2.632 1.851

Euclidean distance from the expert solution 0.447 0.279 0.553 0.432 0.480

Table 27: Optimal parameter values obtained for A14 with the cubic polynomial approximation
with all methods after using the bin-filtering approach that excludes individual bins from the opti-
mization.

ID Parameter name Expert Bilevel-meanscore Bilevel-medianscore Bilevel-portfolio Robust opt All-weights-equal
1 SigmaProcess:alphaSvalue 0.143 0.141 0.143 0.136 0.136 0.132
2 BeamRemnants:primordialKThard 1.904 1.919 1.918 1.575 1.794 1.716
3 SpaceShower:pT0Ref 1.643 1.802 2.284 2.300 1.355 2.123
4 SpaceShower:pTmaxFudge 0.908 0.968 1.014 0.920 0.856 0.843
5 SpaceShower:pTdampFudge 1.046 1.071 1.147 1.442 1.047 1.465
6 SpaceShower:alphaSvalue 0.123 0.130 0.130 0.144 0.132 0.143
7 TimeShower:alphaSvalue 0.128 0.129 0.127 0.131 0.138 0.130
8 MultipartonInteractions:pT0Ref 2.149 2.059 1.800 2.228 1.925 2.306
9 MultipartonInteractions:alphaSvalue 0.128 0.126 0.120 0.131 0.118 0.131
10 BeamRemnants:reconnectRange 1.792 1.860 1.922 1.807 2.340 1.622

Euclidean distance from the expert solution 0.376 0.354 0.848 0.525 1.111
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Table 28: Comparison of the optimal weights obtained by each method using the cubic polynomial
approximation. The observable grouping corresponds to the same grouping used in [3].

expert Bilevel-
meanscore

Bilevel-
medianscore

Bilevel-
portfolio

robustopt

Track jet properties
Charged jet multiplicity (50 distributions) 10 10.74 14.98 10.64 19.38
Charged jet z (50 distributions) 10 11.29 8.66 13.71 0.00
Charged jet prelT (50 distributions) 10 11.20 10.39 10.99 0.00
Charged jet ρch(r) (50 distributions) 10 11.57 10.58 12.55 0.00
Jet shapes
Jet shape ρ (59 distributions) 10 11.57 11.06 10.20 19.38
Dijet decorr
Decorrelation ∆φ (Fit range: ∆φ > 0.75) (9 distributions) 20 12.39 8.37 9.39 15.07
Multijets
3-to-2 jet ratios (8 distributions) 100 12.99 27.19 5.88 19.38
pZT (Fit range: pZT < 50GeV)
Z-boson pT (20 distributions) 10 12.78 14.53 6.71 19.38
Substructure
Jet mass,

√
d12,
√
d23, τ21, τ23 (36 distributions) 5 10.55 9.91 9.74 15.61

tt̄ gap
Gap fraction vs Q0, Qsum for |y| < 0.8 100 0.18 2.10 3.88 19.38
Gap fraction vs Q0, Qsum for 0.8 < |y| < 1.5 80 0.75 9.52 5.71 19.38
Gap fraction vs Q0, Qsum for 1.5 < |y| < 2.1 40 7.93 8.31 39.20 19.38
Gap fraction vs Q0, Qsum for |y| < 2.1 10 18.19 13.43 11.05 19.38
Track-jet UE
Transverse region Nch profiles (5 distributions) 10 15.87 13.45 13.53 19.38
Transverse region mean pT profiles for R = 0.2, 0.4, 0.6 (3
distributions)

10 7.56 11.72 10.30 19.38

tt̄ jet shapes
Jet shapes ρ(r), ψ(r) (20 distributions) 5 10.86 10.91 12.25 10.66
Jet UE
Transverse, trans-max, trans-min sum pT incl. profiles (3
distributions)

20 12.76 22.51 9.65 19.38

Transverse, trans-max, trans-min Nch incl. profiles (3 dis-
tributions)

20 15.57 9.65 6.01 19.38

Transverse sum ET incl. profiles (2 distributions) 20 12.71 12.75 25.03 3.73
Transverse sum ET/sum pT ratio incl., excl. profiles (2
distributions)

5 7.53 18.29 28.35 19.38

Transverse mean pT incl. profiles (2 distributions) 10 7.65 7.45 13.34 19.38
Transverse, trans-max, trans-min sum pT incl. distribu-
tions (15 distributions)

1 9.39 5.50 11.04 19.38

Transverse, trans-max, trans-min sum Nch incl. distribu-
tions (15 distributions)

1 11.92 9.85 14.52 19.38
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Table 29: Optimal parameter values for the Sherpa dataset obtained with all methods using the
cubic polynomial approximation when no filtering was applied before optimization (88 observables).

ID Parameter name Default Bilevel-meanscore Bilevel-medscore Bilevel-portfolio Robust opt All-weights-equal
1 KT_0 1.00 0.850 0.837 0.903 0.870 0.853
2 ALPHA_G 1.25 0.626 0.626 0.626 1.874 0.626
3 ALPHA_L 2.50 3.634 2.022 3.108 1.252 3.749
4 BETA_L 0.10 0.150 0.069 0.050 0.150 0.150
5 GAMMA_L 0.50 0.250 0.353 0.750 0.619 0.286
6 ALPHA_H 2.50 3.455 2.047 1.251 2.712 3.454
7 BETA_H 0.75 0.736 0.610 0.657 0.573 0.922
8 GAMMA_H 0.10 0.144 0.124 0.050 0.150 0.140
9 STRANGE_FRACTION 0.50 0.531 0.521 0.529 0.514 0.497
10 BARYON_FRACTION 0.18 0.099 0.132 0.091 0.139 0.104
11 P_QS_by_P_QQ_norm 0.48 0.720 0.617 0.502 0.601 0.720
12 P_SS_by_P_QQ_norm 0.02 0.010 0.030 0.030 0.030 0.010
13 P_QQ1_by_P_QQ0 1.00 1.499 1.499 1.349 1.164 1.499

Euclidean distance from the default solution 1.508 1.130 1.400 1.236 1.497

Table 30: Optimal parameter values for the Sherpa dataset obtained with all methods using
the cubic polynomial approximation after using outlier detection to remove observables from the
optimization (3 observables removed).

ID Parameter name Default Bilevel-meanscore Bilevel-medscore Bilevel-portfolio Robust opt All-weights-equal
1 KT_0 1.00 0.898 0.834 0.946 0.945 0.853
2 ALPHA_G 1.25 1.136 0.751 0.626 1.874 0.942
3 ALPHA_L 2.50 1.454 2.088 3.749 3.749 2.275
4 BETA_L 0.10 0.050 0.050 0.050 0.050 0.136
5 GAMMA_L 0.50 0.409 0.305 0.627 0.626 0.553
6 ALPHA_H 2.50 3.748 1.358 1.251 1.533 1.804
7 BETA_H 0.75 0.406 0.375 0.591 1.125 0.760
8 GAMMA_H 0.10 0.078 0.150 0.086 0.050 0.066
9 STRANGE_FRACTION 0.50 0.541 0.528 0.552 0.529 0.553
10 BARYON_FRACTION 0.18 0.181 0.139 0.090 0.270 0.270
11 P_QS_by_P_QQ_norm 0.48 0.240 0.602 0.449 0.384 0.298
12 P_SS_by_P_QQ_norm 0.02 0.020 0.025 0.030 0.030 0.023
13 P_QQ1_by_P_QQ0 1.00 1.499 1.499 1.499 0.639 0.837

Euclidean distance from the default solution 1.222 1.327 1.378 1.463 0.937
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Table 31: Optimal parameter values for the Sherpa dataset obtained with all methods using the
cubic polynomial approximation after using the bin-filtering approach that excludes individual bins
from the optimization (204 bins out of 5246 total bins were removed).

ID Parameter name Default Bilevel-meanscore Bilevel-medscore Bilevel-portfolio Robust opt All-weights-equal
1 KT_0 1.00 0.866 0.820 0.897 0.950 0.911
2 ALPHA_G 1.25 0.626 1.114 0.626 1.874 0.626
3 ALPHA_L 2.50 3.749 3.502 2.216 3.749 3.749
4 BETA_L 0.10 0.079 0.053 0.050 0.050 0.078
5 GAMMA_L 0.50 0.383 0.325 0.750 0.627 0.367
6 ALPHA_H 2.50 1.251 1.251 1.251 1.527 1.251
7 BETA_H 0.75 0.738 0.675 0.694 1.125 0.741
8 GAMMA_H 0.10 0.092 0.116 0.099 0.050 0.104
9 STRANGE_FRACTION 0.50 0.536 0.547 0.543 0.529 0.541
10 BARYON_FRACTION 0.18 0.120 0.127 0.129 0.270 0.130
11 P_QS_by_P_QQ_norm 0.48 0.636 0.578 0.472 0.384 0.569
12 P_SS_by_P_QQ_norm 0.02 0.030 0.030 0.030 0.030 0.030
13 P_QQ1_by_P_QQ0 1.00 1.499 1.499 1.499 0.637 1.499

Euclidean distance from the default solution 1.263 1.215 1.272 1.464 1.224

Table 32: Results for the comparison metrics for the full, observable-filtered and bin-filtered Sherpa

dataset using the cubic polynomial approximation, calculated on the full dataset. The best results
are in bold. In each dataset, W-χ2 refers to the Weighted χ2 metric, A-o refers to the A-opt metric,
and l-D-o refers to the log D-opt metric. Note that we do not have an expert solution for this
dataset.

Data full dataset observable-filtered dataset bin-filtered dataset
Method W-χ2 A-o l-D-o W-χ2 A-o l-D-o W-χ2 A-o l-D-o

Bilevel-
meanscore

0.1777 9.0959 -39.9863 0.4740 14.3374 -35.2608 0.2504 17.2334 -32.7683

Bilevel-
medscore

0.2370 13.3943 -37.1420 0.4786 13.6299 -36.6594 0.1835 16.9248 -32.1289

Bilevel-
portfolio

0.3409 8.7863 -39.6956 0.2139 10.4481 -36.8254 0.2906 13.3500 -36.3598

All-weights-
equal

0.2305 6.8732 -42.0678 0.4789 28.2419 -28.1536 0.1928 10.4897 -37.0305

Robust
optimization

0.0507 56.9168 -21.9561 0.0093 94.7811 -23.5723 0.0364 72.5601 -26.8516
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Table 33: Results for the comparison metrics for the full, observable-filtered and bin-filtered Sherpa

dataset using the cubic polynomial approximation, calculated on the reduced dataset. The best
results are in bold. In each dataset, W-χ2 refers to the Weighted χ2 metric, A-o refers to the A-opt
metric, and l-D-o refers to the log D-opt metric. Note that we do not have an expert solution for
this dataset.

Data full dataset observable-filtered dataset bin-filtered dataset
Method W-χ2 A-o l-D-o W-χ2 A-o l-D-o W-χ2 A-o l-D-o

Bilevel-
meanscore

0.1777 9.0959 -39.9863 0.4740 14.3374 -35.2608 0.2526 17.5098 -32.5916

Bilevel-
medscore

0.2370 13.3943 -37.1420 0.4786 13.6299 -36.6594 0.1147 15.1990 -36.2567

Bilevel-
portfolio

0.3409 8.7863 -39.6956 0.2139 10.4481 -36.8254 0.2255 15.5833 -34.9095

All-weights-
equal

0.2305 6.8732 -42.0678 0.3922 28.9575 -27.9246 0.1571 13.5814 -34.7914

Robust
optimization

0.0507 56.9168 -21.9561 0.0093 94.7811 -23.5723 0.0856 77.0710 -26.2532
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Table 34: [Reviewer comment vii:] Coefficients of the approximation fb(p) for each bin b, which is a
linear function of the form aTp + c of the toy model from the closure test described in Section 4.8.

Observable Bin aT c

Observable 1

Bin 1 (8.21, 8.22) 17.65
Bin 2 (8.13, 5.23) 18.96
Bin 3 (9.53, 5.54) 18.37
Bin 4 (8.08, 6.41) 17.61
Bin 5 (8.80, 8.75) 17.07

Observable 2

Bin 1 (6.01, 9.71) 15.63
Bin 2 (6.16, 7.12) 16.71
Bin 3 (7.96, 9.10) 17.18
Bin 4 (6.54, 8.98) 16.74
Bin 5 (8.95, 9.42) 18.93

Observable 3

Bin 1 (9.13, 7.66) 18.23
Bin 2 (7.79, 7.86) 18.07
Bin 3 (7.94, 9.14) 13.81
Bin 4 (7.16, 9.07) 16.15
Bin 5 (9.61, 7.97) 17.49

Observable 4

Bin 1 (8.21, 8.22) 14.40
Bin 2 (8.13, 5.23) 16.98
Bin 3 (9.53, 5.54) 10.89
Bin 4 (8.08, 6.41) 19.48
Bin 5 (8.80, 8.75) 16.50
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Table 35: Eigentune results for the A14 dataset using the optimal physics parameters p∗ obtained
with the different optimization methods when using the cubic polynomial approximation.

Parameters Expert Bilevel-meanscore Bilevel-medianscore Bilevel-portfolio Robust optimization
min max min max min max min max min max

SigmaProcess:alphaSvalue 0.072 0.196 0.071 0.197 0.079 0.190 0.076 0.191 0.079 0.187
BeamRemnants:primordialKThard 1.899 1.904 1.849 1.888 1.877 1.894 1.855 1.881 1.764 1.895
SpaceShower:pT0Ref 1.616 1.633 1.622 1.640 1.733 1.737 1.631 1.667 1.377 1.411
SpaceShower:pTmaxFudge 0.904 0.914 0.938 0.940 0.884 0.923 0.986 0.990 0.932 0.935
SpaceShower:pTdampFudge 1.039 1.047 1.059 1.102 1.053 1.085 1.045 1.049 1.061 1.064
SpaceShower:alphaSvalue 0.116 0.128 0.128 0.130 0.118 0.141 0.129 0.131 0.128 0.129
TimeShower:alphaSvalue 0.076 0.199 0.034 0.223 0.046 0.205 0.083 0.145 0.042 0.198
MultipartonInteractions:pT0Ref 1.749 2.666 1.533 2.707 1.536 2.621 1.989 2.116 1.866 1.965
MultipartonInteractions:alphaSvalue 0.045 0.186 0.095 0.154 0.114 0.140 0.044 0.180 0.100 0.133
BeamRemnants:reconnectRange 1.719 1.719 1.523 1.541 1.390 1.420 1.589 1.595 2.565 2.568

Table 36: Eigentune results for the Sherpa dataset using the optimal physics parameters p∗ ob-
tained with the different optimization methods when using the cubic polynomial approximation.

Parameters Bilevel-meanscore Bilevel-medianscore Bilevel-portfolio Robust optimization
min max min max min max min max

KT_0 0.572 1.845 0.818 0.884 0.798 1.002 0.350 1.021
ALPHA_G 0.113 0.769 0.472 0.690 0.612 0.639 1.288 2.044
ALPHA_L 3.468 4.227 1.956 2.181 2.917 3.309 0 1.697
BETA_L 0 0.255 0 0.487 0 0.305 0 0.233
GAMMA_L 0.064 0.915 0.226 0.405 0.746 0.755 0.328 1.625
ALPHA_H 2.981 3.587 2.000 2.162 1.235 1.268 2.427 2.898
BETA_H 0.662 0.771 0.582 0.677 0.637 0.675 0 0.741
GAMMA_H 0.045 0.190 0.070 0.255 0 0.134 0 0.652
STRANGE_FRACTION 0.068 0.749 0.446 0.655 0.501 0.558 0.413 0.546
BARYON_FRACTION 0 0.335 0.117 0.166 0 0.186 0.030 0.516
P_QS_by_P_QQ_norm 0.669 0.828 0.576 0.715 0.458 0.549 0.537 0.619
P_SS_by_P_QQ_norm 0 0.087 0 0.105 0 0.076 0 0.050
P_QQ1_by_P_QQ0 1.496 1.508 1.498 1.500 1.348 1.349 1.153 1.200
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