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Abstract1

In this work, we study generative adversarial networks (GANs) as a tool to2

learn the distribution of spin configurations and to generate samples, con-3

ditioned on external tuning parameters or other quantities associated with4

individual configurations. For concreteness, we focus on two examples of con-5

ditional variables—the temperature of the system and the energy of the sam-6

ples. We show that temperature-conditioned models can not only be used7

to generate samples across thermal phase transitions, but also be employed8

as unsupervised indicators of transitions. To this end, we introduce a GAN-9

fidelity measure that captures the model’s susceptibility to external changes10

of parameters. The proposed energy-conditioned models are integrated with11

Monte Carlo simulations to perform over-relaxation steps, which break the12

Markov chain and reduce auto-correlations. We propose ways of efficiently13

representing the physical states in our network architectures, e.g., by exploit-14

ing symmetries, and to minimize the correlations between generated samples.15

A detailed evaluation, using the two-dimensional XY model as an example,16

shows that these incorporations bring in considerable improvements over stan-17

dard machine-learning approaches. We further study the performance of our18

architectures when no training data is provided near the critical region.19
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1 Introduction59

Generative models [1–4] aim at modelling complicated probability distributions of data in60

a way that they can readily be used to generate new samples. These techniques model the61

joint distribution of data, such as images of handwritten digits, and some useful quantities62

associated with the data, e.g., which of the ten digits is shown. The model is then used63

to generate unseen data by sampling from the learnt joint probability distribution, e.g.,64

produce unseen images of digits.65

In physics, we often start from a Hamiltonian, an action, or just a classical configura-66

tion energy, describing the system of interest, and, as such, formally, know the distribution67

of the elementary degrees of freedom, such as the fields in a field theory or the spin con-68

figurations in a classical spin model. Typically, one is interested in studying the behavior69

of these distributions as a function of tuning parameters, e.g., temperature or coupling70

constants, and one can think of them as the distribution of data conditioned on these71

tuning parameters. Since, however, this data is usually very high-dimensional, the es-72

sential physical properties can only be captured by evaluating physical quantities, such73
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as symmetry-breaking order parameters and their susceptibilities, or non-local probes of74

topological properties. In most interesting cases, their evaluation cannot be performed75

analytically and, hence, numerical techniques have to be used. Among those, in particu-76

lar, Monte Carlo methods, where observables are estimated by sampling from the data,77

are powerful, as they, at least in principle, guarantee asymptotic convergence to the true78

distribution.79

Markov chain Monte Carlo (MCMC) techniques work by constructing a first order80

Markov sequence where the next sample is dependent on the current sample. Unfortu-81

nately, these methods can suffer from the problem of large thermalization times and large82

auto-correlation times (especially near phase transitions), both of which increase drasti-83

cally with the increase in lattice size. For quickly generating uncorrelated samples, we84

need the auto-correlation time to be small. Starting from a random configuration, for85

efficiently reaching the state of generating valid samples that conform to the underlying86

true distribution, the thermalization time has to be short as well.87

To curtail the effect of dramatic increase of auto-correlation time near criticality, many88

global update methods have been developed, which simultaneously change the variables89

at many sites in a single MC update, such as Swendsen-Wang [5], Wolff [6], worm [7],90

loop [8,9] and directed loop [10,11] algorithms. But these methods work only for specific91

types of models and not for any generic system.92

Besides several other promising applications of machine-learning methods in physics93

[12–16], generative modelling techniques have been explored for enhanced generalizabil-94

ity and performance. For instance, Efthymiou and Melko [17] use deep-learning-based95

super-resolution techniques to produce spin configurations of larger system sizes from96

MCMC-generated configurations of smaller sizes by the use of convolutional neural net-97

works (CNNs). The resolved configurations have thermodynamic observables that agree98

with Monte-Carlo calculations for one and two-dimensional (2D) Ising models. Another99

approach is ‘self-learning Monte Carlo’ [18–21] that, in principle, works for any generic100

system and applies machine-learning-based approaches on top of MCMC to speed up the101

simulations and to reduce the increase in auto-correlation time near the critical temper-102

ature. Other approaches which apply machine-learning techniques as a supplement or103

alternative to MCMC are based on normalizing flow [22], Boltzmann machines [23–26], on104

reinforcement learning [27], on generative adversarial networks (GANs) [28–33], autoen-105

coders [34–36], and on variational autoregressive networks [37–40].106

So far, in most of these approaches, the underlying generative model is trained sepa-107

rately for different values of the tuning parameters of the system, such as different temper-108

atures. But when configurations for multiple temperatures, including close to criticality,109

need to be generated, either they require configurations for that corresponding tempera-110

ture and training a model again and/or the Markov chain has to be re-started altogether.111

For this reason, we here explore a different and less used [31–33] strategy, which consists112

of learning the conditional probability distribution of physical samples, conditioned on a113

(in general set of) parameter(s) c.114

One can distinguish two different types of conditional parameters relevant for physical115

models: c can either be an external tuning parameter, such as temperature for a thermal116

phase transition or coupling constants in a model, or a quantity that is associated with and117

a unique function of each sample, such as its energy or the number of topological defects118

in it. In this work, we study an example of each of the two types of c: temperature-119

conditioned and energy-conditioned models. In the former case, as the name suggests,120

we provide temperature as conditional information in the training data set (obtained via121

MCMC) for our deep-learning-based conditional generative models. Most notably, these122

include conditional GANs [41], among other models employed as baselines. After training,123
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our models are used to generate samples at different temperatures, which are not necessar-124

ily equal to the values of temperature in the training data set. For our energy-conditioned125

models, we show how they can be integrated with MCMC and can be used for additional126

over-relaxation steps which break the Markov chain and dampen auto-correlations. They127

are well-suited for this purpose, as they can quickly sample configurations with energy128

close to the energy of the current sample in the Markov chain while being locally dissimi-129

lar. We also study the performance of these two different applications when the training130

data is limited to temperatures away from the transition. Due to the generality of our131

approach, we believe that the optimization strategies for generative modeling of physical132

systems we discuss in this work will also be useful for the application to experimentally133

generated data [33,42].134

Generative models can be broadly subsumed into two categories—prescribed and im-135

plicit [43]. Prescribed models are those that provide an explicit parametric specification of136

the distribution of the output (data). These models typically deploy Bernoulli or Gaus-137

sian outputs, depending on the type of data. On the other hand, implicit models directly138

generate data by passing a noise vector through a deterministic function which is generally139

a neural network. Implicit models can be more expressive than their prescribed counter-140

parts but calculating likelihood becomes intractable in most cases. Most of the generative141

models in machine learning are prescribed models as they have a notion of likelihood, are142

easy to optimize and produce excellent results. But, generally, they make an assumption143

of independence between the parametric distribution across various pixels or lattice sites.144

Such assumptions in physics can be quite restrictive as the models need to capture the cor-145

relations between lattice sites. Prescribed models would otherwise need to estimate large146

co-variance matrices and ensure their positive-definiteness. For this reason, we expect and147

also confirm by our numerical experiments that implicit generative models, in particular148

in the GAN framework, are more suitable for modelling the site-to-site correlations in149

physical systems.150

Additionally, we propose other modifications that exploit the underlying structure151

of the physical systems and enhance the model’s utility. The proposed modifications152

can bring significant improvement in performance as compared to the prescribed models153

treated as baselines. We also show that, for implicit models, maximizing the mutual154

information between a set of structured latent variables and reconstructed configurations155

leads to maximizing a lower bound on the entropy of the learnt distribution; this reduces156

the correlations among configurations generated by the model and can act as an indicator157

of phase transitions. We evaluate in detail the improvements in performance of the various158

modifications we propose. While our approaches can be readily applied to other systems as159

well, we focus for concreteness in our numerical studies on the 2D XY model, as it provides160

a transparent example to benchmark these modifications and has been established as a161

challenging model for neural networks [44].162

If the type of phase transition and the associated observable, e.g., a local order param-163

eter, are known, these quantities can be evaluated with the generated samples to capture164

the phase transition. For instance, in case of the XY model, the finite-temperature BKT165

transition is associated with the proliferation/suppression of vortices [45–48]. While we166

show that our generative models can indeed reproduce the expected behavior of vortices,167

we also demonstrate that our trained network can be used to reveal the transition without168

requiring knowledge about the underlying nature of the phase transition. This unsuper-169

vised detection of phase transitions is another central topic of machine learning in physics.170

In particular, topological transitions, such as the BKT transition, are challenging due to171

their non-local nature; however, the method proposed in [49] has been demonstrated to172

work in a variety of different models [49–51] and extensions [52] for symmetry-protected173
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topological phases have been developed. We here demonstrate that trained generative174

models can also be used to indicate the phase transition in an unsupervised way: as ex-175

pected [53–56], we find that the model is particularly susceptible to parameter changes176

in the vicinity of the transition. We quantify this by introducing a fidelity measure con-177

structed on the trained GAN that can be efficiently evaluated and shows peaks in the178

vicinity of the phase transition.179

The remainder of this paper is organized as follows. In Sec. 2, we provide an introduc-180

tion to the different generative modelling techniques we explore in this work and to the XY181

model. The modifications we propose for an effective modelling of physical systems are182

described in detail in Sec. 3. The numerical experiments, using the XY model as concrete183

example, are presented in Sec. 4. Finally, Sec. 5 contains a brief summary.184

2 Generative modelling and XY model185

To establish notation and nomenclature, we first provide an introduction to the generative186

machine-learning methods we use—variational autoencoders (VAEs) and GANs, as well as187

their conditional extensions; we also define the 2D XY model, which is the model we use188

to benchmark our machine learning approach with, and the physical quantities we study.189

Readers familiar with the XY model and these generative machine-learning techniques,190

can skip this section and proceed directly with Sec. 3.191

2.1 Variational autoencoders192

VAEs are powerful continuous latent variable models used for generative modelling of a193

high-dimensional distribution over a given data set, allowing one to sample directly from194

the data distribution [57]. They have shown promising results in producing unseen fake195

images and audio files which are almost indistinguishable from real data, see Ref. [58] for196

instance. In its standard form, a VAE consists of an encoder and a decoder. The encoder197

maps from data space X to a latent space z ⊆ RD and consists of a family of distributions198

Qφ on z parameterized by φ; it is typically modeled by deep neural networks. The decoder199

consists of a family of distributions Pθ on X parameterized by θ. As the name implies,200

the encoder encodes the semantic information present in the data into the latent space.201

The decoder uses the encoded information in latent space to reconstruct the data. The202

overall objective is to maximize the likelihood of the data, independently and identically203

distributed as P (x) = ∫ Pθ(x∣z)P (z)dz, where, x ∈ X, z ∈ z, Pθ(x∣z) ∈ Pθ, and P (z) is204

the prior distribution, often taken as Gaussian. The likelihood is generally intractable to205

compute but can be maximized by maximizing the evidence lower bound (ELBO). The206

ELBO for marginal log-likelihood Pθ(x) for a data-point x is expressed as207

logPθ(x) ≥ Ez∼Qφ(z∣x)[logPθ(x∣z)] −DKL[Qφ(z∣x)∣∣P (z)],

where Qφ(z∣x) ∈ Qφ. The ELBO consists of 2 terms: (i) a loss term accounting for the208

error in the reconstructed data and (ii) a regularizing term which makes the encoder to209

encode information such that its distribution is close in Kullback-Leibler (KL) divergence,210

DKL, to the prior distribution P (z).211

Conditional VAE (C-VAE) is a simple extension of standard VAE, with the only212

difference that the data distribution as well as the latent distribution are both condi-213

tioned by some external information. We illustrate the typical structure of a C-VAE in214

Fig. 1a. The objective is now to maximize the likelihood conditioned on a given condi-215

tional information c. For our purposes here of generating samples of a physical model,216
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(a) Conditional VAE. (b) Conditional GAN.

(c) Implicit-GAN.

Figure 1: Block-diagram representation of (a) C-VAE, (b) C-GAN, and (c), our proposed
method, an Implicit-GAN. We refer to the respective parts of the main text, Sec. 2.1,
Sec. 2.2, and Sec. 3.2, for a detailed description.

the “conditional information” refers to the tuning parameters of interest in that model,217

such as temperature, T , ratios of exchange interactions in spin models, and the energy of218

samples, which can be used for sampling of the corresponding microcanonical ensemble or,219

as we will demonstrate below, decorrelate regular MCMC schemes by providing efficient220

overrelaxation steps. In general, c can be a multi-component vector comprising several221

physical tuning parameters or quantities associated with the individual samples.222

To train the C-VAE, we again maximize the ELBO, now assuming the form223

logPθ(x∣c) ≥ Ez∼Qφ(z∣x,c)[logPθ(x∣z, c)] −DKL[Qφ(z∣x, c)∣∣P (z∣c)].

Here, we will assume the prior distribution to be independent of c and to follow a normal224

distribution with zero mean and variance 1, i.e., P (z∣c) = P (z) = N (0, I).225

2.2 Generative adversarial networks226

GANs [59] are another powerful framework for modelling a probability distribution. In227

physics, GANs have been successfully applied to many different models ranging from228

binary spin systems like the Ising model [29], to the Fermi-Hubbard model [33], high-energy229

physics [28], cosmology [60], and material science [30]. A GAN consists of two models, a230

generator G(z) and a discriminator D(x). The generator is a function G ∶ z →X which231

tries to capture the data distribution and produces samples x that closely resemble samples232

from the training data. On the other hand, the discriminator is a function D ∶X → (0,1)233

which tries to estimate the probability that a sample came from the true data distribution234

(true sample) rather than from the generative model G (fake/negative sample). G tries to235

maximize the probability of D making a mistake while D tries to minimize the probability236

of being fooled by G. The result is a minimax game between two players, described by237

the value function238

V (G,D) = Ex∼pData
[logD(x)] +Ez∼p(z)[log(1 −D(G(z))]. (1)

The objective of this game can be expressed as minGmaxD V (G,D).239

Conditional GANs (C-GANs) are a simple extension [41] of standard GANs in240

which the generator produces samples based on the external information c while the dis-241

criminator tries to estimate the probability that the sample came from the true conditional242
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data distribution rather than from G. The associated minimax objective now becomes243

min
G

max
D

V (G,D; c) = min
G

max
D

(Ex∼pData
[logD(x; c)] +Ez∼p(z)[log(1 −D(G(z; c); c)]])

(2)

and we show the basic structure of a C-GAN in Fig. 1b.244

2.3 2D XY model245

While the methods we propose and compare in this work are more generally applicable,246

we will employ one specific physical model, the classical 2D XY-spin model, to illustrate247

and test the generative machine-learning methods. The XY model was chosen as it fea-248

tures key challenges—compact local degrees of freedom (two-component units vectors) and249

non-local, topological excitations (vortices) together with conventional excitations (spin250

waves)—in a minimal setting. At the same time, it is accessible via conventional MCMC251

sampling schemes, which is important for us since it allows to test the accuracy of our252

generative models.253

More specifically, the XY model consists of two-component spins on every site i of254

the lattice with fixed magnitude, which we set to 1 and, hence, are described by the unit255

vectors si = (cos θi, sin θi)
T , θi ∈ [0,2π). We here consider a 2D square-lattice of size256

N ×N and restrict ourselves to ferromagnetic nearest-neighbor interactions, J > 0; using257

the latter as unit of energy, J ≡ 1, the energy of a configuration θ = {θi} is given by258

E(θ) = − ∑
⟨i,j⟩

si ⋅ sj = − ∑
⟨i,j⟩

cos(θi − θj), (3)

where the sum over ⟨i, j⟩ includes all the adjacent sites on the lattice.259

The probability density of a configuration θ at a given temperature T ∈ R+ is given by260

261

PT (θ) =
1

Z(T )
e−

E(θ)
T , (4)

where the Boltzmann constant is set to unity and Z(T ) = ∑θ e
−
E(θ)
T is the partition262

function. Thermal expectation values, ⟨O⟩T , of physical quantities O = O(θ), such as263

mean magnetization, m(θ) = N−2
∑i si(θi), or mean energy, e(θ) = N−2E(θ), follow from264

Eq. (4) as265

⟨O⟩T =∑
θ

O(θ)PT (θ). (5)

In general, Eq. (5) cannot be evaluated exactly and, hence, has to be analyzed with ap-266

proximate analytical techniques or numerical approaches. One of the most common ways267

of evaluating the sum in Eq. (5) numerically, proceed via MCMC sampling of configu-268

rations θ according to the distribution PT (θ), e.g., via the Metropolis-Hastings (MH)269

algorithm [61]. In each step of the MH algorithm, a configuration θ′ is generated from270

a current configuration θ with some a priori selection probability W (θ′∣θ). This new271

configuration is then accepted with probability272

WA(θ
′
∣θ) = min(1,

W (θ∣θ′)e−E(θ′)

W (θ′∣θ)e−E(θ)
). (6)

When W (⋅) is symmetric, i.e., W (θ∣θ′) =W (θ′∣θ), then Eq. (6) becomes273

WA(θ
′
∣θ) = min(1, e−(E(θ′)−E(θ))

). (7)
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The goal of this work is to investigate how generative models can be used to generate274

samples θ for efficient evaluation of the expectation values of observables in Eq. (5).275

Besides the mean energy and magnetization mentioned above, we also investigate the276

number of vortices in the system at a given temperature. Vortices are non-local excitations277

defined by a non-zero winding, ν ≠ 0, of the unit vector si on any closed path encircling278

the core of the vortex. Proliferation or suppression of vortices are the defining feature for279

the finite-temperature phase transition, the BKT transition [45–48], of the 2D XY model.280

Studying vortices is not only motivated by the fact that they are integral to the physics of281

the XY model, but also due to their non-local, topological nature; as a consequence, one282

might expect that vortices are more difficult to capture by machine-learning techniques283

than local excitations.284

In practice, we detect vortices in samples by counting, for every site i, the angle285

differences in anti-clockwise sense around the (3× 3) square centered at i. Each difference286

was constrainted to lie in (−π,π] using a saw function. The “vorticity” V of a configuration287

θ is the number of vortices with winding number ν = +1.288

3 Proposed method289

Having introduced the basic generative models, we will next discuss our proposed imple-290

mentation and some additional modifications which improve the models’ performance in291

generating samples. To be concrete, we will discuss them mostly in the context of the292

2D XY model, although they apply equally well to many other systems as well. These293

modifications are motivated from the structure of the physical system. First, we discuss294

how the states are represented in both of our implementations. Then we detail the changes295

in the models’ structures and training objectives. To analyze systematically how relevant296

the different modifications are, we present an ablation analysis in Appendix A.297

3.1 Representation of physical states298

The first set of modifications concerns the representation of states. As we will see, choosing299

a proper way of parameterizing the physical states is integral to an efficient and feasible300

generative modelling.301

3.1.1 Exploiting symmetries302

First of all, many physical systems exhibit symmetries. Formally, this means that the303

energy E(x) of any state x is the same as that of the transformed state, x′, E(x) = E(x′).304

This can be exploited to find a more compact representation of the state: one can represent305

states such that two states that are related by a symmetry have the exact same representa-306

tion. Unbiased sampling is guaranteed by randomly performing symmetry transformations307

on the generated state, since E(x) = E(x′) implies that any two symmetry-related states308

are equally likely.309

In the case of the XY model, an important symmetry is the invariance under global310

rotation of all spins,311

θ Ð→ θ′ = θ + θ0, θ0 ∈ R. (8a)

This symmetry allows us to reduce the dimensionality of the representation of the states312

from N2 to N2 − 1. In practice, for any given state θ we choose θ0 such that313

(m(θ′i))y = N
−2
∑
i

sin(θ′i) = 0, (8b)
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i.e., describe the state by deviations of the spin orientations about a certain ‘mean-314

direction’ (here chosen along the x-axis). As E(θ) for the XY model is invariant un-315

der Eq. (8a), we know PT (θ) = PT (θ
′, θ0) = P (θ′)P (θ0), with uniform P (θ0). We will316

model P (θ′) using a deep generative model, and sample θ0 uniformly in [0,2π). Thus,317

we have reduced the dimensionality of space (the degrees of freedom of data) in which the318

manifold of lattice configurations is embedded and, more importantly, made sure that the319

symmetries are respected exactly by our sampling procedure.320

3.1.2 Topology of degrees of freedom321

For many physical systems, the degrees of freedom on every site are compact. For instance,322

for XY-spin or Heisenberg-spin models, the local configuration space is a one-dimensional323

or two-dimensional sphere, respectively. In these cases, one has to be careful about choos-324

ing a smooth representation of these spaces that respects their topology.325

For the XY, the angles θi ∈ [0,2π) have discontinuous jumps at 2π. As such, directly326

using angles as input to the model does not explicitly take into account the topological327

and geometrical properties of the space of XY spins. For example, an angle of 2○ is quite328

similar to 358○, and also 180○ is not a good estimate of the mean spin orientation. The329

topology at each lattice site can be taken into account by using a two-channel lattice330

consisting of cosines and sines of lattice angles at both input and output of our model;331

this means that instead of θi, we use the two-component unit vectors si = (cos θi, sin θi)
T ,332

as has previously been implemented for different machine learning studies of the XY model333

(see, e.g., Ref. [62]).334

Such a choice of input and output makes the model an implicit model. This also335

allows to overcome the limitations on the model’s ability to capture correlations between336

lattice sites due to independent sampling from N(µi, σi) at each lattice site i. We use this337

representation for the GAN framework. A similar extension to VAE framework makes the338

ELBO intractable. While there exist approaches like that of Ref. [63] to overcome this339

issue, most of them are based on adversarial training (or likelihood free inference).340

3.1.3 Periodic boundary conditions341

As we are interested in the bulk properties of the XY model and not in the behavior around342

edges, we will assume periodic boundary conditions throughout this work. Mathematically,343

this means that we replace θ(i1,i2), by θ̃(i1,i2) ∶= θ((i1)N ,(i2)N ), where (i)N denotes i modulo344

N . For the implementation with deep neural networks, we increase the size of the lattice345

from N ×N to (N + 2) × (N + 2), keeping the middle N ×N lattice sites the same and346

filling the sites at the new edges in accordance with the periodic boundary conditions.347

We expect that this improves the performance of feature extracting kernels of the CNNs348

especially at the “edges” of a lattice. We use this form of periodic padding on the input349

layer of the encoder (for VAE) or discriminator (for GAN).350

3.2 Proposed conditional models351

Now, we describe the proposed implicit GAN models for lattice simulations. The Implicit-352

GAN can be conditioned on temperature or on energy, which we denote as “ImplicitGAN-353

T” and “ImplicitGAN-E”, respectively.354

3.2.1 Minimizing output biases355

As mentioned above, we propose to normalize the spin configurations such that their net356

magnetization vector m(θ′) always points along the x-axis, see Eq. (8). But, there is357
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nothing in the training objective in Eq. (2) which explicitly incentivizes the network to358

produce configurations with their magnetization to point along the x-axis. If this condition359

is not satisfied, it implies that our model has developed some bias, which may be due to the360

model parameters being stuck in a local minimum during training. We indeed observed361

that the training objective in Eq. (2) can lead to bad local optima, as discussed later in362

Sec. A. Thus, if we add a term forcing the generative model to minimize the square of the363

y-component of the magnetization in a configuration we can minimize such biases. The364

GAN value function now becomes365

Vb(G,D; c) = V (G,D; c) + λEz∼p(z);θ′=G(z;c) [∑
i

sin(θ′i)

N2
]

2

(9)

where, λ ∈ R+ is a constant hyper-parameter.366

3.2.2 Maximizing the output entropy367

The generated samples will hardly have any practical significance if we cannot guarantee368

convergence to the exact distribution—especially considering the fact that GANs are sus-369

ceptible to the mode-collapse problem, i.e., they might miss a subset of the modes of a370

multimodal distribution of the samples. In practice, we could use the generated x as the371

initial configuration for MCMC. But if the different samples generated by our model have372

high correlations among themselves, the number of MCMC steps needed to obtain uncor-373

related samples would be large, thereby, defeating the purpose of the extra computational374

efforts for training the generator. We can decrease the number of MCMC steps needed if375

we can reduce the initial correlation among the different samples generated by our model.376

To achieve this, we propose to additionally maximize the overall entropy (more specif-377

ically, the ‘differential entropy’) of the learnt distribution h(G(z, c)), i.e., to make the378

learnt distribution more ‘diffused’, while also keeping the distribution of generated sam-379

ples in close agreement to the true distribution for all temperatures. It has been shown380

that, in the case of prescribed models, the entropy-regularized loss function reduces the381

problem of mode-collapse [64]. In practice, the problem is that h(x) is difficult to compute382

or maximize. However, we can instead maximize a lower bound on h(x) in the following383

way: due to the symmetry, I(x; c) = I(c;x), of the mutual information I, it holds384

h(x) = h(c) − h(c∣x) + h(x∣c)

≥ h(c) − h(c∣x) + h(x∣c, z).

Now, h(x∣c, z) = 0 for an implicit model (as opposed to prescribed models, where h(x∣c, z)385

may not be non-negative), because the value of x is completely determined by the value386

of {c, z}. Thus,387

h(x) ≥ h(c) − h(c∣x) = I(c;x). (10)

Here h(c) is constant because we have already specified and fixed the latent distribution of388

conditional information: in the case of temperature-conditioned models, c ≡ T and P (T )389

is uniform over all temperatures in the training data. For energy-conditioned models, we390

have c ≡ E with P (E) being determined by the physical system and the choice of training391

data. Consequently, minimizing h(c∣x) maximizes the lower bound on h(x).392

Minimizing h(c∣x) requires access to the posterior P (c∣x). But, we can minimize an393
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upper bound on h(c∣x) by defining an auxiliary distribution A(ĉ∣x) as:394

h(c∣x) = −Ex[Ec∼P (c∣x)[logP (c∣x)]]

= −Ex[DKL(P (ĉ∣x)∣∣A(ĉ∣x)) +Eĉ∼P (c∣x)[logA(ĉ∣x)]]

≤ −Ex[Eĉ∼P (c∣x)[logA(ĉ∣x)]]

= −Eĉ∼P (c)[Ex∼P (x∣c)[logA(ĉ∣x)]]

≡ LH(G,A) (11)

We use an auxiliary network A to estimate c from x, i.e., maximize the probability P (ĉ = c).395

Such a technique of maximizing a lower bound on mutual information in terms of an396

auxiliary distribution was previously proposed in [65]. According to Eq. (11), h(ĉ∣x)397

can be minimized by minimizing its upper bound given by LH(G,A). Note the bound398

becomes tight when Ex[DKL(P (ĉ∣x)∣∣A(ĉ∣x))]→ 0. The modified objective, which involves399

the auxiliary distribution, is given by400

min
G,A

max
D

{Vb(G,D; c) + γLH(G,A)}, (12)

where γ ∈ R+ is a constant hyper-parameter and Vb as in Eq. (9). Note LH(G,A) maximizes401

only a lower bound on the entropy and, hence, h(x) is not guaranteed to increase. The gap402

h(x∣c)−h(x∣c, z) = I(x; z∣c) is expected to be small since, by the structure of the model, one403

does not expect large mutual information between noise variables and generated samples.404

Since I(x; z∣c) ≥ 0, the overall entropy is likely to increase in practice.405

Typically, A and D are implemented as neural networks sharing most of the layers.406

But, in our case, the information of c should only be given to D and not to A. Therefore,407

they were employed as separate neural networks, as shown in Fig. 1c. The discriminator408

D tries to predict the probability that the sample belongs to the true distribution, while409

the auxiliary network A outputs a distribution over c for a given configuration. The410

distribution is assumed to be Gaussian with mean and variance ĉµ and ĉσ predicted by411

the network A.412

3.3 Unsupervised detection of phase transitions413

So far, our focus has been on generating samples following Eq. (4) for the evaluation of414

physical observables according to Eq. (5). If we are interested in studying phase tran-415

sitions and know which observables capture the transition, e.g., a local order parameter416

in case of a conventional, symmetry-breaking phase transition, we can simply evaluate417

these observables with our generated samples. However, one of the central questions of418

machine learning in the context of condensed matter and statistical physics is to find ways419

of detecting the transition without “telling” the algorithm which observables are relevant.420

The in this sense “unsupervised” detection of phase transitions could potentially be useful421

in cases where the order parameter or topological invariant characterizing the transition422

are not known.423

Having constructed models that can generate samples at a given value of the conditional424

parameter(s) c, we here analyze whether the behavior of these models upon tuning c can425

be used to infer where phase transitions take place, without requiring any knowledge426

about the underlying order parameter. In line with previous works [53–56], dealing with427

different machine-learning setups, we expect that our generative models are particularly428

susceptible to changes in c in the vicinity of phase transitions. For ease of reading and429

since we explicit study this choice in our numerical experiments, we will use c = T in the430

remainder of this subsection. We reiterate, however, that our machine-learning framework431
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is able to provide samples subject to, in principle, arbitrary conditional constraints c. For432

instance, c = E will allow studying transitions as a function of energy in a microcanonical433

ensemble or studying the behavior of the system as a function of other “post-selection”434

conditions on the samples is achievable as well.435

The first measure we use is directly related to the one defined in previous works [53,56]436

and makes use of the auxiliary network A(x) = T̂ that we implemented to estimate the437

temperature from the samples x, needed to maximize the output entropy. One expects438

that the expectation value Ex∼PT [A(x)] over samples x at temperature T is approximately439

constant deep inside the two phases and that it varies maximally at the transition. As440

such441

D(T0) =
∂Ex∼PT [A(x)]

∂T
∣
T=T0

≈
Ex∼PT0+∆T

[A(x)] −Ex∼PT0−∆T
[A(x)]

2∆T
(13)

should be peaked around the critical temperature.442

The second measure we introduce is unique to GANs and can be defined for any GAN443

architecture, not only for the modified version with the additional auxiliary network. This444

measure is analogous to the widely studied quantum fidelity, which has also been extended445

to finite temperature and thermal phase transitions [66]. It is based on the idea that the446

form of a state (density matrix for thermal ensembles) will change most dramatically upon447

modifying a tuning parameter by a small amount (such as temperature T → T +∆T ) in the448

vicinity of a phase transition. This will first require a measure of similarity of two states449

or ensembles. For this we will use the expectation value of D(x,T ) with x taken from450

some given ensemble p′. Since D(x,T ) estimates the probability of x coming from the451

true thermal ensemble, this expectation value quantifies how similar the thermal ensemble452

and p′ are. Since we are interested in tuning temperature, we replace p′ by the ensemble453

generated by the generator at a different temperature and, thus, define the GAN fidelity454

as455

FGAN(T ) =
1

∆T
Ez∼p(z)[D(G(z;T ), T ) −D(G(z;T ), T +∆T )]. (14)

Imagine starting in the high-temperature phase and gradually decreasing T . Once T456

reaches the phase transition, the generator in the second term in Eq. (14) starts producing457

samples that are not “expected” by the discriminator. Thus, the latter decreases its value,458

FGAN(T ) increases, and is expected to peak in the vicinity of the phase transition. We459

emphasize that the GAN fidelity in Eq. (14) is defined entirely in terms of the networks460

and can be evaluated very efficiently, once the networks have been trained.461

3.4 Over-relaxation and models conditioned on energy462

Similar to their temperature-conditioned counterparts, models conditioned on energy can463

also be used to provide samples directly and to study phase transitions. However, we464

here focus on a different application and discuss how energy-conditioned models can be465

integrated with MCMC to accelerate lattice simulations. Inspired by Ref. [28], where466

the potential of non-conditional GANs was explored as over-relaxation steps in MCMC467

simulations, we here propose to use conditional GANs for this purpose. By construction,468

our energy-conditioned models can provide samples with energy close to that of the current469

sample in the Monte-Carlo chain. As opposed to using unconditional GANs, no in general470

numerically expensive pre-sampling of the model is required to obtain samples within the471

desired energy range.472

More specifically, the model we use here has the ImplicitGAN architecture introduced473

above. As opposed to the discussion in Sec. 3.3, where we focused on temperature-474

conditioned models, we here use the energy per site e(θ) of each sample θ rather than475

12



SciPost Physics Submission

temperature as conditional input and focus on G(z, e) instead of the generalized form476

G(z, c).477

3.4.1 General procedure478

Once the models are trained we generate samples in the following way:479

1. Starting from an initial configuration θ0,480

2. perform nMC MCMC updates to obtain a configuration θt.481

3. To implement an over-relaxation step, we use the trained model and construct a new482

configuration, θ′t, according to θ′t = G(zt, e
∗

t ), where e∗t is obtained by fine-tuning the483

energy of the sample to the desired value,484

e∗t = arg min
e

[E(G(zt, e)) −E(θt)]
2, (15)

with zt being sampled from the prior distribution P (z).485

4. Move to step 2 until enough samples are retained.486

Note that, ideally, e = E(θt)/N
2 would minimize Eq. (15), but this is not the case487

since GANs only approximately learn the distribution (see Appendix B for a discussion).488

Nonetheless, the energy of the samples produced by G(z,E/N2) are close to E and the489

true optimum of Eq. (15) is expected to be in the vicinity of E(θt)/N
2. This makes finding490

e∗t more efficient in our energy-conditioned model.491

While it was argued in Ref. [28] that the selection probabilityW [entering Eq. (6)] of the492

GAN-based over-relaxation step is expected to be (approximately) symmetric, W (θ∣θ′) =493

W (θ′∣θ), we emphasize that this will strictly speaking not hold in general nor exactly. For494

instance, GANs suffering from the mode-collapse problem will fail to lead to a symmetric495

W . Nonetheless, we here assume that it holds for our trained models, which allows496

simplifying Eq. (6) to Eq. (7) and test, in Sec. 4.5.3, whether the samples generated from497

it have statistical properties close to the ground truth. The validity of this assumption is498

supported empirically by the good performance of the models.499

3.4.2 Solving the optimization problem500

One way to solve Eq. (15) is to back-propagate the gradients through the entire generator,501

keeping its weights fixed, which will be very expensive as it requires multiple forward and502

backward passes over a deep neural network and the number of iterations may be very503

large. Another practical problem with this approach is that in our architecture multiple504

copies of conditional information are set as input to the generator. If gradient descent505

is used, it is possible that it may decrease some of the values and may cause others to506

increase. If only a single copy of conditional information is used during training, the507

GAN may completely ignore this conditional information among relatively larger number508

of noise variables.509

A simpler way is to solve it as a bandit optimization problem, where the only feedback510

one gets is the function value f(e) = E(G(z, e)) and not the gradient. When the model511

is only conditioned on energy, the bandit version of the problem is only one dimensional.512

Most well-known methods existing in the literature solve this problem by constructing an513

unbiased estimate of the gradient of ‘close approximation’ of f and then performing the514

updates from e→ e +∆e according to gradient descent, i.e.515

∆e = −α(f(et) −E(θt))f
′
(et), (16)

13



SciPost Physics Submission

where α is the step size. There are several methods to obtain an estimate of the gradient516

for a function f(x). Here we use a two-point feedback estimate [67],517

f ′(x) ≈
Eu[(f(x + δu) − f(x))u]

δ
. (17)

In Eq. (17), u ∼ N (0, I) and δ should be kept sufficiently small to obtain high accuracy,518

while not too small to avoid increasing the variance of the gradient estimate. Instead of519

computing the exact expectation value, we use a stochastic estimate with only a single520

realization of u. In this way, E(G(z, e)) can be made arbitrarily close to E(θ). In practice,521

we set a threshold value ∆Ethr and the optimization will be done until a configuration522

with ∆E = ∣E(G(zt, e)) −E(θ)∣ ≤ ∣∆Ethr∣ is found.523

When considered over multiple over-relaxation steps, the problem in Eq. (15) can also524

be interpreted as an online optimization problem where at time step t an agent receives a525

loss function ft(e) = (E(G(e, z))−E(θt))
2 and the goal is to minimize the loss accumulated526

over various time steps. In our implementation, we exploit this nature and use the optimum527

of ft(⋅) as starting value for our iterative minimization of ft+1(⋅). Note that this does not528

induce additional correlations in our samples since zt is sampled independently at each529

time step.530

4 Numerical experiments531

In this section, we present a detailed study of the performance of the generative modelling532

approaches outlined above, using the 2D XY model as a concrete example. We first533

compare the model conditioned on temperature with certain baseline approaches that are534

defined below. In the second set of experiments, we test the ability of our model to detect535

phase transitions in an unsupervised way by evaluation of D(T ) and FGAN(T ) in Eqs. (13)536

and (14). Then we present results for models conditioned on energy and their integration537

with MCMC. In the next set of experiments, we train our models only over configurations538

with temperatures that are below and above the critical temperature. We then test both539

classes of models over the complete range of temperatures, i.e., investigate how well it can540

interpolate over unseen temperatures near criticality.541

4.1 Generation of training data542

In this work, we use lattices of size N × N , where N = {8,16}. The training data is543

obtained using the MH algorithm for 32 uniformly spaced values of temperature T in544

the range [0.05,2.05]. For each value of T , 10000 configurations are generated. Starting545

from a randomly initialized state for each T , a sufficiently large number of configurations546

are rejected initially, to account for thermalization. A configuration is included in the547

training data set after every 120 MCMC steps for 8 × 8 and after 400 steps for 16 × 16548

lattice, to reduce correlations in the training data. The angle at each lattice site is scaled549

down linearly from [0,2π) to [0,1). Thus each configuration is a 2D matrix with each550

entry between [0,1). The data is then characterized by investigating the distribution of551

observables like magnetization m, energy E, and vorticity V , all as a function of T . The552

samples generated via MCMC as well as the estimated observables serve as the ground553

truth for evaluations.554
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4.2 Evaluation metrics555

How do we know whether and to which extent the ensemble of generated configurations556

follow the true distribution? To evaluate, we compute the aforementioned observables557

using generated samples, and compare the distribution of these observables with the dis-558

tribution of those obtained from MCMC simulations. To compare these distributions, we559

deploy the following measures on the histograms of observables generated for 500 different560

configurations.561

4.2.1 Percentage overlap (%OL)562

Our first measure is %OL, which corresponds to the overlap between two histograms, each563

of which is normalized to unit sum. Mathematically, the %OL of two distributions Pr and564

Pθ is calculated as:565

%OL(Pr, Pθ) =∑
i

min(Pr(i), Pθ(i)), (18)

where i is the bin index. We use 40 bins in the range [0,1] for the histogram of magneti-566

zation and 80 bins in the range [-2,0] for energy. It is not a self-sufficient measure in the567

sense that the %OL between the histograms can be quite small even though the computed568

values of observables are sufficiently close to each other.569

4.2.2 Earth mover distance (EMD)570

The second measure of the distance between two probability distributions we use is EMD571

with the following interpretation: if the distributions are thought of as two different ways572

of piling up a certain amount of dirt, the EMD is the minimum cost of turning one pile into573

the other. Here, the cost is assumed to be the amount of dirt moved times the distance by574

which it is moved. The EMD W (Pr, Pθ) between two distributions Pr and Pθ of a scalar575

observable y is defined as576

W (Pr, Pθ) =
∞

∑
x=−∞

∣
x

∑
y=−∞

(Pr(y) − Pθ(y))∣.

4.3 Baseline models for comparison577

We perform a series of numerical experiments to test the effectiveness of the proposed578

methods. For comparison, we use modifications and extensions of the method of [34] as579

our two baselines, which provide a reference for the performance of our proposed Implicit-580

GAN approach.581

4.3.1 C-HG-VAE582

The first baseline model we use is C-HG-VAE. It is a prescribed generative model and was583

proposed in [34], referred to by them as HG-VAE. Being the (to the best of our knowledge)584

only available generative model which has been designed specifically for sampling the 2D585

XY model, it is the most natural starting point for us to construct a baseline model.586

The C-HG-VAE employs CNNs instead of fully connected networks to account for587

translational symmetry of the physical system. To improve the agreement of thermo-588

dynamic observables with the ground truth, Ref. [34] modified the standard VAE loss589

function by additionally including the following term:590

LH = [e(θ) − e(θ̂)]2, (19)
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which involves the energies e(θ) and e(θ̂) per lattice site of the ground truth (θ) and the591

generated configurations (θ̂), respectively. A multivariate standard normal distribution592

was chosen as the prior P (z) and, during training, the input spin configuration to the593

encoder is s = {θi} ∈ RN×N . For the ease of implementation with standard CNN libraries,594

the input is formatted as two channels, one consisting of the spin configuration and the595

other consisting of T . This format has also been used by AlphaGo [68]. The output of the596

decoder (i.e., reconstruction layer) is split into two terms µ and σ corresponding to the597

parameters of a Gaussian distribution. Configurations were generated by sampling from598

the Gaussian N (µi, σi), µ ∈ RN×N , σ ∈ RN×N , with each lattice site i distributed indepen-599

dently. In the abbreviation HG-VAE, H refers to the LH term and G to the Gaussian600

parametric specification of the reconstruction layer. HG-VAE generates new configura-601

tions using z sampled from the approximately learned variational distribution Qφ(z∣x) and602

then feeds these z to the decoder. Generating z from Qφ(z∣x) requires use of MC samples603

for that corresponding temperature. Hence, their method cannot generate configurations604

for temperatures not in the training data. But since our goal is to generate configurations605

even for temperatures for which no training data is available, we modify their method to a606

conditional model named C-HG-VAE by providing additional information of temperature607

to both encoder and decoder. For generating new configurations, we provide z ∼ N (0, I)608

and T to the decoder. T is concatenated multiple times with z so as the decoder does609

not ignore this information along with multiple z. The block diagram representation of610

C-HG-VAE is the same as that of the C-VAE in Fig. 1a.611

4.3.2 C-GAN612

As second baseline model, we use a prescribed form of a standard C-GAN, introduced in613

Sec. 2.2. The C-GAN employing CNNs was trained on the space of angles to reconstruct614

configurations, given T . The input to the generator consists of T concatenated with z ∈ RN615

sampled from a Gaussian prior, where N is the linear lattice size. Similar to C-HG-VAE,616

the generator outputs µi ∈ RN×N and σi ∈ RN×N corresponding to the parameters of a617

Gaussian distribution from which the configurations are sampled. The reparametrization618

trick [57] is used to ensure differentiability of the network. The input of the discriminator619

has two channels—one consisting of the spin configurations x and the other of T . The620

output of the discriminator is a scalar distinguishing the real from the fake sample.621

4.4 Proposed method: ImplicitGAN622

This is the proposed implicit C-GAN approach. While all of the key components of this623

method have been motivated and explained in detail in Sec. 3.2 above, we here provide a624

concise summary of it:625

1. The angles θi of the spins in each sample are shifted, θi → θi + θ0, such that the net626

magnetization vector (m) always points in the direction corresponding to θi = 0.627

2. The reconstruction layer of the generator consists of two channels [xi, yi], which we628

normalize at each site as [xi, yi]→ [xi, yi]/
√
x2i + y

2
i . The input of the discriminator629

has 3 channels, with the first two channels consisting of cosines and sines of lattice630

angles and the 3rd channel containing conditional variable, T or E.631

3. To take into account the periodic boundary conditions of the lattice, we use periodic632

padding of size 1 for the input layer of the discriminator.633

4. To minimize the biases, Eq. (9) was used as objective function. The value of λ was634

chosen to be 10 for 8 × 8 and 1 for 16 × 16 lattices.635
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(a) Magnetization ⟨∣m∣⟩ for (8× 8) lattice (b) Magnetization ⟨∣m∣⟩ for (16×16) lattice

(c) Energy ⟨e⟩ for (8 × 8) lattice (d) Energy ⟨e⟩ for (16 × 16) lattice.

Figure 2: Expectation values (dots and lines) of observables (normalized per site) com-
puted from samples generated by the indicated methods as a function of temperature.
Shaded portions represent the standard deviation of the corresponding observable. MC
samples are taken as the ground truth; the method giving more overlap with the ground
truth is better.

5. To maximize the entropy of the generated samples, the output layer of the discrim-636

inator now has two outputs, A(T̂ ∣G(z, c)) and D(x), with learning objective given637

in Eq. (12). The value of γ was chosen to be 100 and 10 for 16×16 and 8×8 lattices,638

respectively.639

Below, we use “ImplicitGAN-T” to refer to the situation that samples are generated by640

the GAN trained conditioned on c = T . While “ImplicitGAN-E” indicates that sampling641

is performed by local-update MCMC for a given T combined with over-relaxation steps642

with the ImplicitGAN-E model as explained in Sec. 3.4.643

4.5 Results644

4.5.1 Comparison with baselines: matching observables645

For comparison with baselines, the trained temperature-conditioned models described in646

Sec. 4.3 were tested by computing observables, namely magnetization and energy, over the647

generated configurations. Fig. 2 illustrates mean magnetization ⟨∣m∣⟩ and mean energy648

⟨e⟩ values as a function of T . We can notice that ⟨∣m∣⟩ decreases and ⟨e⟩ increases with649

T for all methods except C-GAN. This shows that C-GAN fails completely to capture650

the statistics of the data it is supposed to generate. We can also see that the distribu-651

tion of ImplicitGAN-T -generated observables is much closer to the ground truth (MC) as652
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Table 1: Evaluation metrics, as defined in Sec. 4.2, along with standard deviation, com-
puted over 500 configurations and averaged across all temperatures. Smaller EMD and
higher %OL are better. Best values are indicated in bold.

Metric Lattice size C-GAN C-HG-VAE ImplicitGAN-T

EMD 8 × 8 0.358 ± 0.246 0.157 ± 0.086 0.038 ± 0.024
Magnetization 16 × 16 0.152 ± 0.056 0.118 ± 0.028 0.041 ± 0.043

EMD 8 × 8 0.484 ± 0.250 0.256 ± 0.063 0.022 ± 0.012
Energy 16 × 16 0.233 ± 0.140 0.296 ± 0.060 0.010 ± 0.005

%OL 8 × 8 29.31 ± 33.35 52.18 ± 19.15 76.69 ± 6.46
Magnetization 16 × 16 7.97 ± 16.39 42.78 ± 17.33 67.34 ± 20.41

%OL 8 × 8 9.43 ± 13.94 10.29 ± 5.43 68.28 ± 20.72
Energy 16 × 16 13.64 ± 19.33 0.62 ± 0.03 65.83 ± 18.35

(a) D(T ) computed across vari-
ous temperatures. The peaks are
observed around the critical tem-
perature. The shaded portion is
0.950 ± 0.0625.

(b) FGAN(T ) computed across var-
ious temperatures.

(c) Observed vorticity for 16×16
sites as a function of tempera-
ture.

Figure 3: Detection of BKT phase transition (a,b) directly from measures defined in terms
of the networks (unsupervised) and (c) by evaluation of the vorticity of generated samples.

compared to that of C-HG-VAE generated observables. These results, with the metrics653

averaged across temperatures, are quantified in Table 1. The implicit-GAN-T produces654

the best results over all the metrics as well as lattice sizes. Our ablation analysis presented655

in Appendix A shows which of the different improvements of the method were particularly656

crucial in enhancing the performance.657

4.5.2 Detecting phase transitions658

We now analyze the ability of the model to detect phase transitions by analyzing its659

susceptibility to changes in temperature using the two measures introduced in Sec. 3.3.660

We begin with D in Eq. (13) which is plotted in Fig. 3a with ∆T = 0.0625, computed661

over 500 configurations produced by the generator. We observe that it exhibits peaks in662

the vicinity of the expected phase transition. However, there is no clear maximum, but663

rather a double-peak feature. Also the finite-size scaling is opposite to what one would664

expect, since the double-peak features move to larger rather than smaller temperatures665

with increasing N . More dramatically, the trend does not indicate that these features666

approach the true location of the transition at large N as they are further way from the667

BKT transition temperature for larger N .668

Due to these shortcomings of D for detecting the BKT transition in our GAN archi-669

tecture, we here focus on the second measure—the GAN-fidelity—introduced in Eq. (14)670
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with corresponding plot in Fig. 3b, using ∆T = 0.0625. For the larger system size, we671

here observe a clear, isolated peak very close (at around T ≈ 0.95) to the expected transi-672

tion temperature for that system size. For the smaller system size, the peak gets broader673

and is also shifted to the left. While the broadening is a natural feature of smaller N ,674

the shift of its maximum is not the expected finite-size scaling trend—this is similar to675

D, but now seems to approach the correct value with increasing N . One reason for the676

unexpected trend in the peak position could be that FGAN is more reliable for the GAN677

with the larger system size: we found that, at lower N , the discriminator is not as suc-678

cessful in determining fake samples (we find E[D(G(z;T ), T )] around 0.45 for N = 8 as679

opposed to around 0.15 for N = 16). Note that the negative values of FGAN at very low T680

are clearly unphysical and just related to the fact that the generator underestimates the681

magnetization slightly at low temperatures, see Fig. 2(a,b).682

Notwithstanding these issues, it is encouraging to see that we can capture the phase683

transition without prior knowledge of the underlying relevant observable, using the simple684

measure FGAN that is readily evaluated once the generative model has been trained.685

Further work, however, is required to see what the advantages and limitations of this686

approach are and to understand the finite size scaling behavior in the XY and other687

models. Likely, a combination with unsupervised clustering algorithms, e.g., that of [49],688

can provide additional assistance in detecting phase transitions in an unsupervised way.689

We leave a detailed, system-size-dependent study of these aspects for future work.690

On top of being able to capture the phase transition in an unsupervised way, we are691

dealing with a generative model. Consequently, in cases where we do know the physical692

quantity capturing the phase transition, we can also directly compute it with the samples693

generate by the networks. In the case of the 2D XY model, the transition is characterized694

by the suppression (proliferation) of vortices when entering the low-temperature (high-695

temperature) phase. For this reason, we have computed the number of vortices as a696

function of temperature, both in the generated and in the MCMC samples; as can be seen697

in Fig. 3c, we find good agreement. This shows that the Implicit-GAN approach can,698

indeed, capture topological excitations, which have cause problems in other applications699

of neural networks [44].700

4.5.3 Models conditioned on energy701

We next test the procedure introduced in Sec. 3.4 of using energy-conditioned models702

for over-relaxation steps in the context of the 2D XY model. In terms of training and703

architecture, the only difference to ImplicitGAN-T is that the prior distribution was chosen704

to be uniform in [−1,1] (instead of Gaussian) and that e(θ) was provided as conditional705

information (instead of temperature), which we have shifted by 1.0 so that its mean value706

is around zero over the temperature range. The same training data, see Sec. 4.1, was used.707

To solve Eq. (15), only 3 iterations according to Eq. (16) with δ = 0.075 in Eq. (17)708

were performed. If the best of these 3 iterations did not yield a configuration with ∆E709

less than the chosen ∆Ethr, the over-relation step was dropped. A temperature-dependent710

threshold ∆Ethr linearly increasing from [1/N2,8/N2] across 32 temperatures was used711

in our numerics. For stability purposes, gradients clipping between [−0.02,0.02] was also712

done.713

Naturally, if only very few over-relaxation steps are performed, it will be very difficult to714

see in the data whether ImplicitGAN-E biases the Monte-Carlo chain and leads to incorrect715

results. For that reason, we focused our experiments on the regime where significant biases716

would be apparent if they were present and performed only nM = 2N (recall N is the linear717

system size) local updates in between over-relaxation steps. Nonetheless, as can be seen in718

Fig. 4, there is very good agreement between the ground truth (pure MCMC simulations)719
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(a) Magnetization ⟨∣m∣⟩ for (8 × 8) lattice (b) Magnetization ⟨∣m∣⟩ for (16×16) lattice

(c) Energy ⟨e⟩ for (8 × 8) lattice (d) Energy ⟨e⟩ for (16 × 16) lattice

Figure 4: Comparison of energy-conditioned models integrated with MCMC and
temperature-conditioned (direct sampling) models with ground truth (MC samples). Sym-
bols and lines indicate average values and shaded portion the standard deviation of the
corresponding observable as a function of temperature.

and our heavily GAN-over-relaxed simulations. As we show in Appendix B, the additional720

over-relaxation steps reduce the correlations significantly between subsequent samples in721

the Monte-Carlo chain.722

To reduce the thermalization time, the Markov chain is intialized by generating samples723

from Implicit-GAN-E itself. The input e needed for the initial configuration is obtained724

for a given T by a linear approximation of the energy vs. temperature curve of MC samples725

(Figs. 4c, 4d). Other initializations, including random initialization, give similar results,726

but need higher burnout.727

4.5.4 Interpolating across unseen temperatures around Tc728

After having obtained architectures capable of modelling the joint distribution of spin729

configurations across temperatures, we next test whether these models can also generate730

samples in the vicinity of the phase transition without having been trained on samples731

in that regime—a much more challenging problem. We define the critical region as T ∈732

[0.75,1.25]. Note that the critical temperature is Tc ≈ 0.89 [69] for large system sizes,733

N → ∞; due to logarithmic finite-size corrections, we expect it to be larger, about 0.95,734

for our system sizes [44].735

To test this, we trained a new ImplicitGAN model for both classes of conditional736

models discussed above, on the configurations for temperatures in the interval [0.05,0.75]∪737

[1.25,2.05], i.e., outside the critical region. This corresponds to a 25% reduction in training738
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(a) Magnetization ⟨∣m∣⟩ for (8× 8) lattice (b) Magnetization ⟨∣m∣⟩ for (16×16) lattice

(c) Energy ⟨e⟩ for (8 × 8) lattice (d) Energy ⟨e⟩ for (16 × 16) lattice

Figure 5: Same as Fig. 4, but no training data was provided in the region T ∈ [0.75,1.25]
(highlighted in yellow) in the vicinity of the transition.

data. Then we test our model by also interpolating for the temperatures which are not739

even present in the training data.740

The results are presented in Fig. 5, where all hyper-parameters were kept the same as741

before. One can see that both Implicit-GAN-T and Implicit-GAN-E still capture the main742

tendencies of the data, although the former has significantly reduced accuracy in magneti-743

zation. The performance of the latter, however, is almost unaffected. Consequently, using744

GANs to enhance MCMC simulations is even possible when no training data is provided745

in the critical region.746

5 Conclusions747

In this work, we have studied different deep-learning-based approaches for generating spin748

configurations. We have discussed in detail several modifications of the basic models in749

order to warrant a more efficient representation of the states, that, e.g., takes into account750

symmetries of the system and the geometry of the local degrees of freedom. Furthermore,751

the correlations between the samples generated by the model are shown to be reduced752

by incentivizing our model to increase the entropy of the learnt distribution. Although753

the approaches used are more generally applicable, we employed the 2D XY model to754

benchmark the models’ performances. To this end, samples were generated using MCMC755

to train the models. MCMC was also used to provide the ground truth to compare756

the generated samples with. For the latter, we investigated the histograms of relevant757

observables—magnetization, energy, and vorticity. Overall, we found that implicit mod-758
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els perform better and, in particular, our proposed ImplicitGAN outperforms all other759

machine-learning models considered.760

We have focused on conditional models, which, after training, can be used to generate761

configurations for in principle arbitrary values of tuning parameters—in our case tempera-762

ture and energy. We demonstrate that this can be employed for generating configurations763

near criticality, even without providing training data in the vicinity of the transition. This764

could be useful for circumventing or at least mitigating critical slowing down in MCMC765

simulations. It also provides the perspective that, instead of storing a huge amount of sam-766

ples for an interesting model, one could just store (and make publicly available) a precisely767

trained neural network to generate samples for future use. We further hope that, when768

applied to experimental data, it can be used to gain insights about parameter regimes769

inaccessible in the lab. For these applications, the flexibility of conditional models could770

prove crucial, since they allow for a multitude of possible conditional variables associated771

with samples, including complex post-selection criteria.772

Finally, we have also shown that conditional models themselves can be employed to773

detect phase transitions, without any prior knowledge, by investigating the networks’774

susceptibility to parameter changes. Most importantly, we propose a GAN fidelity measure775

FGAN that can be readily evaluated for any trained GAN and is demonstrated to peak776

in the vicinity of transitions, in analogy to the well-known quantum fidelity measure and777

its thermal extensions [66]. We hope that this can supplement unsupervised clustering778

algorithms, such as that of Ref. [49], for future machine-learning-based studies of phase779

transitions. One could also explore interpretable ML models [70] to extract the crucial780

physical aspects, such as order parameters or defect proliferation, underlying the phase781

transition. On a more general level, this illustrates the advantages of the additional “tuning782

parameter” c of conditional models, which further opens up the possibility to study phase783

transitions in one and the same neural network as a function of c. One might wonder784

whether (and what kind of) different universality classes of transitions can be established785

in conditional networks.786

In the future, we are also planning to further test and refine the ImplicitGAN approach,787

by applying it to other classical models and systematically studying the behavior of ob-788

servables and FGAN with increasing system size. Additional directions include developing789

models conditioned on system size and exploring quantum mechanical systems.790
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Note added—During the final stages of the completion of this project, another work794
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model. The emphasis of this work is different from ours and, in particular, does not contain796

the analysis of implicit and prescribed models, the application as an over-relaxation step,797

nor that of network-based unsupervised indicators (D and FGAN) of the phase transition,798

but instead relies on the helicity modulus.799

A Ablation analysis800

In this appendix, we perform a detailed ablation analysis for the temperature-conditioned801

models, to examine the effect of each of the components of our proposed Implicit-GAN802
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approach, see Sec. 3 and Sec. 4.4, separately. For the sake of comparison, we average the803

values of the metrics defined in Sec. 4.2 across all the temperatures used in the training804

data and we name our models as805

1. C-GAN: The standard prescribed C-GAN, which is also used as a baseline (Sec. 4.3).806

2. C-GAN1: A standard implicit C-GAN modeling θi using the angles θi rather than the807

two-component unit vectors si as input. The generator is a deterministic function808

of z and outputs the angles θi.809

3. C-GAN2: It is same as the C-GAN1 model but trained using si = (cos θi, sin θi) as810

input. It also includes periodic padding of size 1 but the total magnetization of each811

sample of the training data was not rotated to point along the x-axis.812

4. C-GAN3: It is same as C-GAN2 with magnetization direction normalization as in813

Eq. (8).814

5. C-GAN4: Same as C-GAN3 but the training objective is now modified according to815

Eq. (9), in order to minimize the output bias.816

6. Implicit-GAN: This is the proposed implicit C-GAN as was used in Sec. 4.4 in the817

main text. It is the same as C-GAN4 but with the entropy-regularized objective of818

Sec. 3.2.2.819

The performance of each of these models over the metrics is given in Table 2. A com-820

parison between C-GAN and C-GAN1 illustrates that, keeping other factors the same,821

implicit models perform better than prescribed models. Accounting for the continuity of822

the space of angles and the periodic boundary conditions further improves the performance823

as can be seen by comparing C-GAN1 with C-GAN2. Exploiting the global spin-rotation824

symmetry of the XY model brings further improvement in the agreement of the observ-825

ables, as is visible from the performance of C-GAN3. Thus, discontinuous jumps of θi at826

2π and not taking into account periodic boundary conditions and spin-rotation symmetry827

seem to be important factors causing the bad performance of C-GAN1 and C-GAN2. Con-828

sistent with [34], we observed that this was not a serious problem when (unconditioned)829

GANs were trained only for a single temperature.830

We see that the performance of C-GAN4 is comparable to C-GAN3 for the metrics in831

Table 2. However, one has to note that these metrics are not directly sensitive to whether832

the generator satisfies the constraint of total magnetization pointing along the x axis,833

∑i sin(θi)/N
2 = 0; the additional term ∝ λ in Eq. (9) explicitly incentivizes the generator834

to obey the constraint. To test this, we compare the average values of the y-component of835

the magnetization, before (C-GAN3) and after (C-GAN4) adding the term ∝ λ. Figure 6836

shows a significant reduction in the average ‘bias’, as with C-GAN4 the curves are closer837

to x-axis. This can be considered as a first-order moment matching test to check whether838

the model learns the true distribution of the samples, which were reprocessed according839

to Eq. (8). The parameter λ ≈ 1 − 10 was observed to work well. With a large value840

of λ(≈ 100), the average bias across temperatures becomes small but the performance of841

the model over the metrics starts degrading. Hence, there exists a trade-off between the842

performance and bias.843

Finally, we can see in Table 2 that the performance of Implicit C-GAN, in terms of844

reproducing the distribution of observables, is comparable to that of C-GAN3 and C-845

GAN4 for magnetization and seems to become even better for the energy. On top of that,846

the key advantage of the Implicit-GAN is that it generates more uncorrelated samples847
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Table 2: Ablation analysis: Evaluation metrics, along with standard deviation, com-
puted over 500 configurations of a 16×16 lattice, averaged across all temperatures. Smaller
EMD and higher %OL are better.

Metric EMD Mag. EMD Energy %OL Mag. %OL Energy

C-GAN 0.304±0.113 0.234±0.14 7.969±16.394 16.643±13.863
C-GAN1 0.290±0.101 0.212±0.122 20.6±21.275 18.381±8.303
C-GAN2 0.136±0.04 0.098±0.064 41.181±21.295 35.269±23.922
C-GAN3 0.071±0.075 0.034±0.028 67.068±16.092 47.25±21.815
C-GAN4 0.043±0.038 0.041±0.035 69.275±22.586 37.181±22.397
ImplicitGAN-T 0.041±0.043 0.010±0.005 67.343±20.415 65.832±18.351

Figure 6: Average value of Y-component of magnetization computed over 500 configura-
tions. Due to pre-processing of the MCMC data, the curves should be close zero.

as compared to the latter. To quantify this, we measure correlations between a pair of848

samples, θ = {θj} and θ′ = {θ′j}, generated by our models. To this end, we introduce849

κ(T ) =
1

N2∑
j

∣E[ei(θj−θ0)e−i(θ
′

j−θ
′

0)]∣ (20)

as our measure for the average cross-correlation. Here, θ0 = ∑j(θj/N
2)2π and θ′0 =850

∑j(θ
′

j/N
2)2π to make sure that we do not get κ ≈ 0 simply because we have exploited851

the global spin-rotation symmetry, see Sec. 3.1.1. The expectation value in Eq. (20) is852

taken with respect to the configurations generated by the models.853

For instance, from C-GAN3 to Implicit-GAN, we obtain an improvement from κ =854

0.65± 0.38 to κ = 0.27± 0.2 at T = 1.5 and for N = 16. We observed a significant reduction855

in cross-correlation as compared to C-GAN3 for both 8× 8 and 16× 16 lattices and across856

temperatures. Nonetheless, a comparison with the ground truth (MC) still reveals an857

enhanced κ in the disordered high-temperature phase, which means that the Implicit-858

GAN generated samples are not perfect and do not completely explore the state space.859

B Characteristics of ImplicitGAN-E860

We here present more details on the properties of our ImplicitGAN-E models. As already861

mentioned in Sec. 3.4, GANs learn distributions only approximately. As such, the energy862

of the states generated by G(z, e), z ∼ P (z), will have energy densities only approximately863

equal to e. To quantify this, we plot in Fig. 7a the I/O characteristic of our ImplicitGAN-864

E models, i.e., the distribution of E(G(z, e))/N2, z ∼ P (z), as a function of e. As can865

be seen, E(G(z, e))/N2 and e clearly follow each other, but systematic deviations exist.866
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(a) Input-Output Characteristics for (8 × 8) and (16 × 16) lattices respectively.

(b) Auto-correlation, as defined in Eq. (21), as
a function of the number of local updates for 5
different temperatures and N = 16. Solid lines
are MCMC with local updates and dashed lines is
MCMC with over-relaxation.

Figure 7: Characteristics of our ImplicitGAN-E model.

These observations show that the use of conditional models can accelerate the search for867

states with the desired energy significantly, as compared to regular GANs. At the same868

time, we also learn that fine-tuning e to obtain the required energy with high precision869

via Eq. (15) is still important; otherwise, we would obtain systematic deviations in our870

Markov chain.871

To explicitly demonstrate that the use of ImplicitGAN-E as over-relaxation steps de-872

creases the correlations between samples in the Markov chain, we here compute the fol-873

lowing auto-correlation function:874

Rm(τ) = [
∑
M−τ
i=1 mimi+τ − (M − τ)⟨m⟩

[1,M−τ]⟨m⟩
[τ+1,M]

⟨m2⟩
[1,M]

− ⟨m⟩2
[1,M]

], (21)

where mi denotes the value of ∣m∣ in the ith sample in the Markov chain and ⟨m⟩
[j1,j2] =875

1
∣j2−j1+1∣

∑
j2
j=j1

mj . A plot of the auto-correlation function Rm(τ) with and without the876

over-relaxation step is shown in Fig. 7b. Clearly, at all temperatures, the addition of877

GAN-based over-relaxations steps significantly reduces the correlations of samples in the878

Markov chain.879
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